JPH11183761A - Optical connection structure - Google Patents

Optical connection structure

Info

Publication number
JPH11183761A
JPH11183761A JP9355991A JP35599197A JPH11183761A JP H11183761 A JPH11183761 A JP H11183761A JP 9355991 A JP9355991 A JP 9355991A JP 35599197 A JP35599197 A JP 35599197A JP H11183761 A JPH11183761 A JP H11183761A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
mirror surface
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9355991A
Other languages
Japanese (ja)
Other versions
JP3570874B2 (en
Inventor
Yuriko Ueno
由里子 上野
Shigeo Tanahashi
成夫 棚橋
Katsuhiro Kaneko
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35599197A priority Critical patent/JP3570874B2/en
Publication of JPH11183761A publication Critical patent/JPH11183761A/en
Application granted granted Critical
Publication of JP3570874B2 publication Critical patent/JP3570874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Abstract

PROBLEM TO BE SOLVED: To provide optical connection structure capable of preventing the generation of light attenuation due to reflected light on the end face of an optical waveguide and the generation of an adverse effect due to the adhesion of dust to a mirror surface and allowed to be easily and accurately produced as compared with conventional optical connection structure. SOLUTION: The optical connection structure is obtained by optically connecting an optical waveguide 12 consisting of a clad part 12b formed on the upper surface of a substrate and a core part 12a to a photoelectric conversion element 13 packaged on the substrate 11 through a mirror surface 14 formed on the upper surface of the substrate 11, inclining the end face 12c of the waveguide 12 and the mirror surface 14 from the upper surface of the substrate 11 respectively at 32 to 162 deg. and 30 to 60 deg. and a gap between the end face 12c of the waveguide 12 and the mirror surface 14 is filled with resin 15 having approximately the same refractive index as that of the core part 12a of the waveguide 12. Since the adhesion of dust to the mirror surface 14 can be suppressed and the generation of light scattering or the like on the end face 12c of the waveguide 12 can also be prevented, optical signals can be efficiently inputted/outputted between the waveguide 12 and the element 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信システムある
いはコンピュータ・交換機等に使用される光信号−電気
信号変換モジュール基板における受光/発光素子と光導
波路との光信号伝送のための光接続構造に関し、詳しく
は光電変換素子と光導波路との間の入出射光を基板上に
形成した鏡面を介して容易に精度よく接続するための光
接続構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical connection structure for transmitting an optical signal between a light receiving / light emitting element and an optical waveguide in an optical signal-to-electrical signal conversion module substrate used in an optical communication system or a computer / switch. More specifically, the present invention relates to an optical connection structure for easily and accurately connecting incoming and outgoing light between a photoelectric conversion element and an optical waveguide via a mirror surface formed on a substrate.

【0002】[0002]

【従来の技術】光通信システムやコンピュータ・交換機
等の光信号伝送システムにおいては、伝送された光信号
の信号処理は電子デバイスが担っているため、光信号と
電気信号との変換を行なう光電変換装置が必要であり、
そのような光信号と電気信号の境界領域には光ファイバ
や光導波路などの光の伝送路と、レーザダイオード等の
発光素子・フォトダイオード等の受光素子などの光電変
換素子と、それら光電変換素子や電子素子の制御や電気
信号の処理を行なうためのLSI・電子部品を駆動させ
るための電気回路等が混在することとなる。
2. Description of the Related Art In an optical signal transmission system such as an optical communication system or a computer / exchanger, a signal processing of a transmitted optical signal is performed by an electronic device, and therefore, a photoelectric conversion for converting an optical signal into an electric signal. Equipment is needed,
In the boundary region between such an optical signal and an electric signal, a light transmission path such as an optical fiber or an optical waveguide, a light emitting element such as a laser diode, a photoelectric conversion element such as a light receiving element such as a photodiode, and the photoelectric conversion element. In addition, LSIs for controlling electronic elements and processing of electric signals, electric circuits for driving electronic components, and the like are mixed.

【0003】中でも、高速・広帯域通信システムを実現
するために、光通信システムにおけるチップ間光インタ
ーコネクションとして光表面実装や光配線を用いた装置
あるいは光モジュールへの関心が高まっているが、重要
な要素技術の一つとして、光導波路とレーザダイオード
等の発光素子・フォトダイオード等の受光素子などの光
電変換素子との間を高効率に光接続する技術が求められ
ている。
[0003] Above all, in order to realize a high-speed and wide-band communication system, there is an increasing interest in a device or an optical module using optical surface mounting or optical wiring as an optical interconnection between chips in an optical communication system. As one of the elemental technologies, there is a demand for a technology for efficiently optically connecting an optical waveguide and a photoelectric conversion element such as a light-emitting element such as a laser diode or a light-receiving element such as a photodiode.

【0004】このような要求に対し、例えば図3に断面
図で示すように、基板1上に表面実装された光電変換素
子3としての面受光型フォトダイオードの下面の受光面
3aに、基板1の上面に形成された、光導波路2のコア
部2aを伝搬してきた光を入射させるために、光導波路
2の端部に対向させた反射面として基板1の上面に45度
の角度に切り出した鏡面4を形成し、この鏡面4で光を
上方へ光路変換させる技術が提案されている。
In response to such a requirement, as shown in a cross-sectional view of FIG. 3, for example, a light receiving surface 3a on the lower surface of a surface light receiving type photodiode as a photoelectric conversion element 3 surface-mounted on the substrate 1, In order to make the light propagating through the core portion 2a of the optical waveguide 2 formed on the upper surface of the optical waveguide 2 incident thereon, a 45 ° angle was cut out on the upper surface of the substrate 1 as a reflection surface facing the end of the optical waveguide 2. A technique has been proposed in which a mirror surface 4 is formed and the light path is converted upward by the mirror surface 4.

【0005】また、この技術によれば、光電変換素子3
としての面発光型レーザダイオードの下面の発光面3a
から発光された光を光導波路2のコア部2aに入射させ
る場合には、上記とは逆に、発光された光は鏡面4で基
板1の上面に平行な方向へ光路変換されて光導波路2の
端面に入射されることとなる。
According to this technique, the photoelectric conversion element 3
Emitting surface 3a on the lower surface of surface emitting laser diode
In the case where the light emitted from the optical waveguide 2 is made incident on the core portion 2a of the optical waveguide 2, the emitted light is converted into an optical path by the mirror surface 4 in a direction parallel to the upper surface of the substrate 1, and Will be incident on the end face of.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな鏡面4を介して光路変換する従来の光接続構造にお
いては、光導波路2の端面と鏡面4との間は通常は空気
層であり、光電変換素子3を表面実装する際に鏡面4上
にゴミ等が付着することがあるため、そのような場合に
は光導波路2を伝搬してきた光はゴミ等によって散乱さ
せられて伝搬光を正確に光路変換することができなくな
ってしまい、また、散乱によって伝搬損失が大きくなっ
てしまうという問題点があった。
However, in the conventional optical connection structure in which the optical path is changed via the mirror surface 4, the space between the end surface of the optical waveguide 2 and the mirror surface 4 is usually an air layer, When the conversion element 3 is surface-mounted, dust or the like may adhere to the mirror surface 4. In such a case, the light that has propagated through the optical waveguide 2 is scattered by the dust and the like, and the propagated light can be accurately reflected. There has been a problem that the optical path cannot be changed, and the propagation loss increases due to scattering.

【0007】さらに、従来の光接続構造においては光導
波路2の端面は伝搬光の進行方向、つまり基板1の上面
に対して垂直に切り出されて形成されており、しかも光
導波路2のコア部2aの屈折率と空気層の屈折率とが大
きく異なるため、光導波路2の端面における伝搬光の反
射が生じてしまい、光信号を減衰させる原因となるとい
う問題点もあった。
Furthermore, in the conventional optical connection structure, the end face of the optical waveguide 2 is cut out in the direction of propagation of the propagation light, that is, perpendicular to the upper surface of the substrate 1, and the core 2a of the optical waveguide 2 is formed. Is significantly different from the refractive index of the air layer, reflection of the propagating light at the end face of the optical waveguide 2 occurs, which causes a problem of attenuating an optical signal.

【0008】また、このような光接続構造は、例えば2
本の光導波路2と光電変換素子3とを接続する場合であ
れば、2本の光導波路2を互いの光の伝送方向が90度と
なるようにして端面を隣り合わせて配設し、それら端面
に対向させて互いに90度に隣り合う2つの鏡面4を形成
することが行なわれる。
[0008] Such an optical connection structure is, for example, 2
When the two optical waveguides 2 and the photoelectric conversion element 3 are connected, the two optical waveguides 2 are arranged such that their light transmission directions are 90 degrees and their end faces are adjacent to each other. In this case, two mirror surfaces 4 adjacent to each other at 90 degrees are formed.

【0009】しかしながら、上記のような従来の光接続
構造においては、鏡面4は、例えば光導波路2の端部を
ECR装置を用いて異方性エッチングを行なって基板1
の上面に対して垂直に切り出した後に同じくECR装置
を用いて鏡面4の傾きが45度となるように加工して形成
され、あるいは、基板2の上面に光導波路2を形成して
その端部をECR装置を用いて異方性エッチングを行な
って基板1の上面に対して垂直に切り出し、鏡面4は異
なる基板上に鏡面支持台を形成してダイシングソーやダ
イヤモンドソー等で傾きが45度となるように切り出し
て、基板1の上面に光導波路2の端面と対向させて形成
した位置決めガイドに従って鏡面支持台と鏡面4とを接
着剤を用いて装着固定することにより形成されているこ
とから、一方向の光導波路2に対して各1回の加工が必
要であり、上記のように互いに90度となるように配設さ
れた方向の違う光導波路2に対向させて鏡面4を形成す
るには、その加工・作製に非常に手間がかかってしまう
という問題点もあった。
However, in the above-described conventional optical connection structure, the mirror surface 4 is anisotropically etched on the end of the optical waveguide 2 by using an ECR device, for example, to form the substrate 1.
After being cut out perpendicular to the upper surface of the substrate, the mirror surface 4 is similarly processed by using the ECR device so that the inclination of the mirror surface 4 becomes 45 degrees, or the optical waveguide 2 is formed on the upper surface of the substrate 2 and the end portion thereof is formed. Is anisotropically etched using an ECR apparatus, and cut out perpendicularly to the upper surface of the substrate 1. The mirror surface 4 forms a mirror support on a different substrate, and has a 45 ° inclination using a dicing saw or a diamond saw. It is formed by mounting the mirror surface support base and the mirror surface 4 using an adhesive according to a positioning guide formed on the upper surface of the substrate 1 so as to face the end surface of the optical waveguide 2. One processing is required for each of the optical waveguides 2 in one direction, and as described above, the mirror surface 4 is formed facing the optical waveguides 2 having different directions arranged at 90 degrees to each other. Is the processing There was also very problem that the time and effort it takes to.

【0010】本発明は以上のような従来技術の問題点に
鑑みて案出されたものであり、その目的は、光導波路の
端面での光の反射光による光の減衰ならびに鏡面へのゴ
ミの付着による悪影響を防止し、基板上面に形成された
光導波路と基板上に実装された光電変換素子とを鏡面を
介して効率的に光接続することができ、しかも従来の光
接続構造よりも容易にかつ精度よく作製することができ
る光接続構造を提供することにある。
The present invention has been devised in view of the above-mentioned problems of the prior art, and has as its object the purpose of attenuating light due to the reflected light of light at the end face of an optical waveguide and of removing dust to the mirror surface. The optical waveguide formed on the upper surface of the substrate and the photoelectric conversion element mounted on the substrate can be efficiently optically connected to each other through a mirror surface, preventing the adverse effects of adhesion, and is easier than the conventional optical connection structure. An object of the present invention is to provide an optical connection structure that can be manufactured accurately and accurately.

【0011】[0011]

【課題を解決するための手段】本発明の光接続構造は、
基板の上面に形成された、クラッド部とこのクラッド部
中のコア部とから成る光導波路と、前記基板上に実装さ
れた、下面に受光部もしくは発光部を有する光電変換素
子とを、前記基板の上面に形成された、前記光導波路の
端面に対向するとともに前記光電変換素子の受光部もし
くは発光部にその下方で対向する鏡面を介して光学的に
接続した光接続構造であって、前記光導波路の端面およ
び前記鏡面を各々前記基板の上面に対して32〜162 度お
よび30〜60度の斜面とし、かつ前記光導波路の端面と前
記鏡面との間に前記光導波路のコア部と略同じ屈折率を
有する樹脂を充填したことを特徴とするものである。
An optical connection structure according to the present invention comprises:
An optical waveguide formed on an upper surface of a substrate, comprising a clad portion and a core portion in the clad portion, and a photoelectric conversion element mounted on the substrate and having a light receiving portion or a light emitting portion on a lower surface, An optical connection structure formed on an upper surface of the optical waveguide, and optically connected to a light receiving portion or a light emitting portion of the photoelectric conversion element through a mirror surface below the light receiving portion or the light emitting portion of the photoelectric conversion element. The end surface of the waveguide and the mirror surface are inclined at 32 to 162 degrees and 30 to 60 degrees with respect to the upper surface of the substrate, respectively, and between the end surface of the optical waveguide and the mirror surface are substantially the same as the core portion of the optical waveguide. It is characterized by being filled with a resin having a refractive index.

【0012】[0012]

【発明の実施の形態】以下、本発明の光接続構造につい
て図面に基づいて詳細に説明する。図1は本発明の光接
続構造の実施の形態の一例を示す断面図である。図1に
おいて11は基板、12は基板11の上面に形成された、クラ
ッド部12bとクラッド部12b中のコア部12aとから成る
光導波路、13は基板11上に実装された、下面に受光部も
しくは発光部としての受発光面13aを有する光電変換素
子である。また、14は基板11の上面に形成された、光導
波路12の端面12cに対向するとともに光電変換素子3の
受発光面13aにその下方で対向する鏡面であり、15は光
導波路12の端面12cと鏡面14との間に充填された、光導
波路12のコア部12aと略同じ屈折率を有する樹脂であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an optical connection structure according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of an embodiment of the optical connection structure of the present invention. In FIG. 1, reference numeral 11 denotes a substrate, 12 denotes an optical waveguide formed on an upper surface of the substrate 11 and includes a clad portion 12b and a core portion 12a in the clad portion 12b, and 13 denotes a light-receiving portion mounted on the substrate 11 and a lower surface. Alternatively, it is a photoelectric conversion element having a light receiving / emitting surface 13a as a light emitting unit. Reference numeral 14 denotes a mirror surface formed on the upper surface of the substrate 11, which faces the end face 12c of the optical waveguide 12 and faces the light receiving / emitting surface 13a of the photoelectric conversion element 3 below the end face. A resin having a refractive index substantially the same as that of the core portion 12a of the optical waveguide 12, which is filled between the optical waveguide 12 and the mirror surface 14.

【0013】基板11としては、光ファイバ実装用V溝付
きシリコン基板あるいは多層セラミック回路基板、ポリ
イミド樹脂・フッ素樹脂・オレフィン樹脂・エポキシ樹
脂等の絶縁層と銅等の配線導体とを用いた有機系薄膜多
層回路を積層したアルミナ・ムライト・窒化アルミニウ
ム・ガラスセラミックス等から成るセラミック電気回路
基板、多層有機回路基板等を用いることができる。
As the substrate 11, a silicon substrate with a V-groove for mounting an optical fiber or a multilayer ceramic circuit substrate, an organic system using an insulating layer of polyimide resin, fluorine resin, olefin resin, epoxy resin or the like and a wiring conductor of copper or the like. A ceramic electric circuit board made of alumina, mullite, aluminum nitride, glass ceramics, or the like in which thin-film multilayer circuits are stacked, a multilayer organic circuit board, or the like can be used.

【0014】基板11として石英基板またはシリコン基板
を用いる場合は、その基板11の上面の表面粗さはRa=
0.1 μm以下と非常に平担であることから、火炎堆積法
によりその基板11上に石英から成る光導波路12を形成し
た際に良好な伝搬特性を示すものとなるという点で有利
である。さらに、シリコン基板は、その性質からKOH
によるエッチングにより約57度の角度をなすV溝をその
上面に容易に形成できるため、光導波路12と外部との接
続に使用する光ファイバとの接続において、光ファイバ
をそのV溝に実装することにより、基板11上で高精度に
光導波路12と光ファイバを接続できるという点でも有利
となる。
When a quartz substrate or a silicon substrate is used as the substrate 11, the surface roughness of the upper surface of the substrate 11 is Ra =
Since it is very flat at 0.1 μm or less, it is advantageous in that when the optical waveguide 12 made of quartz is formed on the substrate 11 by the flame deposition method, good propagation characteristics are exhibited. Further, the silicon substrate has a KOH
In the connection between the optical waveguide 12 and the optical fiber used for the connection with the outside, the optical fiber must be mounted in the V-groove because a V-groove having an angle of about 57 degrees can be easily formed on the upper surface thereof by etching with This is advantageous in that the optical waveguide 12 and the optical fiber can be connected on the substrate 11 with high accuracy.

【0015】また、基板11にアルミナ・ムライト・窒化
アルミニウム・ガラスセラミックス等から成る多層セラ
ミック基板を使用する場合には、基板11内部にも電気配
線を設けることが可能となるため、石英基板やシリコン
基板においては上面に形成される電気配線を基板11内部
に配線できることから、基板11の小型化を図ることが可
能となるという点で有利となる。
When a multilayer ceramic substrate made of alumina, mullite, aluminum nitride, glass ceramic, or the like is used as the substrate 11, electric wiring can be provided inside the substrate 11, so that a quartz substrate or a silicon substrate can be used. Since the electric wiring formed on the upper surface of the substrate can be routed inside the substrate 11, it is advantageous in that the size of the substrate 11 can be reduced.

【0016】さらに、窒化アルミニウムは熱伝導が約17
0 W/K程度と大きいため、基板11上に実装された光電
変換素子13からの発熱を、基板11内に配設された配線を
通して効率よく基板11の下面に逃がすことが可能とな
り、それにより光電変換素子13の温度が安定するため、
安定した動作が得られるという点でも有利となる。
Furthermore, aluminum nitride has a thermal conductivity of about 17
Since it is as large as about 0 W / K, heat generated from the photoelectric conversion element 13 mounted on the substrate 11 can be efficiently released to the lower surface of the substrate 11 through the wiring provided in the substrate 11, whereby Because the temperature of the photoelectric conversion element 13 is stable,
It is also advantageous in that a stable operation can be obtained.

【0017】また、ガラスセラミックスを基板11として
用いた場合には、多層配線基板とできるとともに内層の
電気配線を銀または銅からなるものとすることができ、
アルミナ・ムライト・窒化アルミニウム等を基板として
用いた場合の配線材料であるタングステンやモリブデン
等の高融点金属に比べて1/2以下の電気抵抗となるた
め、電気配線を伝播する信号や電源電圧を減衰すること
なく光電変換素子13に電気信号や電源を供給でき、安定
した動作を得ることができるという点でも有利となる。
When glass ceramics is used as the substrate 11, a multilayer wiring board can be formed, and the electric wiring in the inner layer can be made of silver or copper.
When the substrate is made of alumina, mullite, aluminum nitride, etc., the electric resistance is less than half of that of the refractory metal such as tungsten or molybdenum, which is the wiring material. It is also advantageous in that an electric signal or power can be supplied to the photoelectric conversion element 13 without attenuation, and a stable operation can be obtained.

【0018】なお、基板11として多層セラミック回路基
板を用いる場合であれば、従来周知の技術を利用して、
例えば、アルミナ・シリカ等のセラミックス原料粉末に
適当な溶媒を混合してシート状となした絶縁層と成るセ
ラミックグリーンシートを製作し、このセラミックグリ
ーンシート上にタングステン・モリブデン等の高融点金
属を含有する配線導体と成る導電ペーストを所定パター
ンにスクリーン印刷するとともに順次積層し、しかる
後、セラミックグリーンシートと導電ペーストとを同時
に一体焼成して多層セラミック回路基板を製作する。ま
た、光電変換素子13を実装するための搭載部には光電変
換素子13の搭載固定用の金属パッドを形成し、半田バン
プ等の接続端子16により光電変換素子13を所定位置に搭
載・固定するとともに配線導体と光電変換素子13との電
気的な接続を行なう。
If a multi-layer ceramic circuit board is used as the substrate 11, a conventionally well-known technique is used.
For example, an appropriate solvent is mixed with a ceramic raw material powder such as alumina or silica to produce a ceramic green sheet that becomes an insulating layer formed into a sheet, and a high melting point metal such as tungsten or molybdenum is contained on the ceramic green sheet. The conductive paste to be the wiring conductors to be printed is screen-printed in a predetermined pattern and sequentially laminated, and then the ceramic green sheets and the conductive paste are simultaneously fired simultaneously to produce a multilayer ceramic circuit board. Further, a metal pad for mounting and fixing the photoelectric conversion element 13 is formed on a mounting portion for mounting the photoelectric conversion element 13, and the photoelectric conversion element 13 is mounted and fixed at a predetermined position by a connection terminal 16 such as a solder bump. At the same time, the electrical connection between the wiring conductor and the photoelectric conversion element 13 is performed.

【0019】基板11の上面に形成された光導波路12はク
ラッド部12bとクラッド部12b中のコア部12aとから成
り、光電変換素子13に光接続される側の端面12cは基板
11の上面に対して角度θ1 が32〜162 度の斜面となるよ
うに形成されており、他端(図示せず)は外部回路との
光信号の授受のための光ファイバあるいは他の光電変換
素子等に光接続されている。
The optical waveguide 12 formed on the upper surface of the substrate 11 comprises a cladding portion 12b and a core portion 12a in the cladding portion 12b, and an end surface 12c on the side optically connected to the photoelectric conversion element 13 is formed on the substrate.
11 is formed so as to form an inclined surface having an angle θ 1 of 32 to 162 degrees with respect to the upper surface of the optical disk 11. Optically connected to a conversion element and the like.

【0020】光導波路12の端面12cを基板11の上面に対
して角度θ1 が32〜162 度の斜面となるようにするの
は、次のような理由による。
The reason why the end surface 12c of the optical waveguide 12 is inclined with respect to the upper surface of the substrate 11 at an angle θ 1 of 32 to 162 degrees is as follows.

【0021】まず、角度θ1 が基板11の上面に対して鋭
角の場合については、図1中にLで示した光導波路12の
端面12cのコア部12aと鏡面14との水平距離は後述する
ように40μm以下とする必要があることから、この端面
12aに対向する鏡面14の角度θ2 を後述するように最小
の30度として基板11の上面で端面12aの下端と鏡面14の
下端とが接するときに、基板11の上面からコア部12aの
中心までの高さをh=12μmとすると、 h(1/tanθ1 +1/tanθ2 )≦40(μm) より、 θ1 ≧32(度) となる。一方、角度θ1 が基板11の上面に対して鈍角の
場合については、同様に水平距離Lを40μm以下とし、
この端面12aに対向する鏡面14の角度θ2 を後述するよ
うに最大の60度として、光導波路12の上面と鏡面14の上
端とが同じ高さのときに両者の間に異方性エッチングを
行なうために必要な間隙として10μmを確保するものと
し、コア部12aの中心から鏡面14の上端までの高さを
h’=12μmとすると、 h’{1/tan(180 −θ1 )+(1/tan
θ2 )}≦40−10(μm) より、 θ1 ≦162 (度) となる。従って、光導波路12の端面12cの基板11の上面
に対する斜面の角度θ1は、32度〜162 度の範囲内とす
る必要がある。
First, in the case where the angle θ 1 is an acute angle with respect to the upper surface of the substrate 11, the horizontal distance between the core portion 12a of the end surface 12c of the optical waveguide 12 and the mirror surface 14 indicated by L in FIG. 1 will be described later. This end face needs to be 40 μm or less.
The angle θ 2 of the mirror surface 14 facing the surface 12a is set to a minimum of 30 degrees as described later, and when the lower end of the end surface 12a and the lower end of the mirror surface 14 are in contact with each other on the upper surface of the substrate 11, the center of the core portion 12a extends from the upper surface of the substrate 11 Assuming that the height up to h = 12 μm, θ 1 ≧ 32 (degrees) from h (1 / tan θ 1 + 1 / tan θ 2 ) ≦ 40 (μm). On the other hand, when the angle θ 1 is an obtuse angle with respect to the upper surface of the substrate 11, the horizontal distance L is similarly set to 40 μm or less,
As the largest 60 degrees as described below the angle theta 2 of the mirror surface 14 opposed to the end surface 12a, the upper end of the upper surface and the mirror surface 14 of the optical waveguide 12 is anisotropically etched between the two at the same height Assuming that 10 μm is secured as a gap required for performing the above operation and that the height from the center of the core portion 12a to the upper end of the mirror surface 14 is h ′ = 12 μm, h ′ {1 / tan (180−θ 1 ) + ( 1 / tan
θ 2 )} ≦ 40−10 (μm), θ 1 ≦ 162 (degrees). Therefore, the angle theta 1 of the inclined surface with respect to the upper surface of the substrate 11 of the end face 12c of the optical waveguide 12 is required to be in the range of 32 degrees to 162 degrees.

【0022】光導波路12としては基板11の上面に形成さ
れる一般的な埋め込み型光導波路を用いることができ、
例えば、クラッド部にSiO2 膜を用い、コア部にSi
2−GeO2 を用いたシリカ系のものや、クラッド部
とコア部とにシロキサンポリマを用いたもの、ポリイミ
ド・ベンゾシクロブテン・PMMA・SiO2 −TiO
2 等を用いたものを使用することができる。
As the optical waveguide 12, a general embedded optical waveguide formed on the upper surface of the substrate 11 can be used.
For example, an SiO 2 film is used for the clad part, and a Si
A silica-based material using O 2 —GeO 2 , a siloxane polymer in the clad portion and the core portion, polyimide / benzocyclobutene / PMMA / SiO 2 —TiO
Those using 2 etc. can be used.

【0023】中でも、シロキサンポリマから成る光導波
路12を用いると、下地の平坦化材料を兼ねた光導波路12
の下部のクラッド部12b用材料としてキュア前後の膜厚
の収縮率が99%程度と極めて小さいため、深さや高さが
100 μm程度もあるような基板上の段差や溝等があって
も下部のクラッド部12bの形成後には1μm程度の段差
が生じるだけとなり、光導波路12を形成した場合の損失
がほとんど問題とならなくなり、十分低損失な光伝送が
可能となる。併せて、基板11の上面の起伏形状による散
乱が極めて小さくなり、クロストークノイズ発生の原因
となるような散乱光の発生を抑制することもできる。ま
た、シロキサンポリマが下地の平坦化層と光導波路12の
下部のクラッド部12bとを兼ねているものであることか
ら、製造上の容易性ならびに経済性にも優れたものとな
る。
In particular, when the optical waveguide 12 made of a siloxane polymer is used, the optical waveguide 12 serving also as a planarizing material of the base is used.
As the material for the lower cladding part 12b, the shrinkage ratio of the film thickness before and after curing is extremely small at about 99%,
Even if there are steps or grooves on the substrate that have a thickness of about 100 μm, only a step of about 1 μm will occur after the formation of the lower clad portion 12b, and if the loss in forming the optical waveguide 12 is almost a problem, And optical transmission with sufficiently low loss becomes possible. At the same time, scattering due to the undulating shape of the upper surface of the substrate 11 becomes extremely small, and the generation of scattered light that causes the generation of crosstalk noise can be suppressed. In addition, since the siloxane polymer serves as both the underlying planarization layer and the clad portion 12b below the optical waveguide 12, the siloxane polymer is excellent in ease of manufacture and economical.

【0024】このようなシロキサンポリマから成る光導
波路12を形成するには、例えば以下のようにすればよ
い。まず、基板11の上面にシロキサンポリマ溶液をスピ
ンコート法により塗布し、100 ℃/30分+270 ℃/60分
の熱処理を行ない、厚さ9μmのシロキサンポリマ膜
(屈折率1.4440、λ=1.3 μm)から成る下部のクラッ
ド部12bを形成する。次に、テトラnブトキシチタン/
シロキサンポリマ混合溶液をスピンコート法・ロールコ
ート法・スプレーコート法等により塗布し、100 ℃/30
分+270 ℃/60分の熱処理を行ない、厚さ6μmのシロ
キサンポリマ膜(屈折率1.4482、λ=1.3 μm)から成
るコア部12aを形成する。続いてRIE加工を行なうた
めのマスクとなるAl膜をスパッタリング法により形成
し、コア部12aのパターンとなるライン幅7μmのレジ
ストパターンをフォトリソグラフィの手法により形成し
てH3 PO4 /CH3 COOH/HNO3 の混合溶液に
よりAl膜をエッチングしてレジストパターンをAl膜
に転写する。次いでレジストパターンを除去した後フッ
素ガスを用いたRIE加工によりコア部12aのエッチン
グを行ない、その後Al膜を除去してクラッド部12bを
形成する。
The formation of the optical waveguide 12 made of such a siloxane polymer may be performed, for example, as follows. First, a siloxane polymer solution is applied on the upper surface of the substrate 11 by a spin coating method, and heat treatment is performed at 100 ° C./30 minutes + 270 ° C./60 minutes to obtain a 9 μm-thick siloxane polymer film (refractive index: 1.4440, λ = 1.3 μm). Is formed. Next, tetra-n-butoxytitanium /
A siloxane polymer mixed solution is applied by spin coating, roll coating, spray coating, etc.
A heat treatment is performed for + 270 ° C./60 minutes to form a core portion 12a made of a 6 μm-thick siloxane polymer film (refractive index: 1.4482, λ = 1.3 μm). Subsequently, an Al film serving as a mask for performing RIE processing is formed by a sputtering method, and a resist pattern having a line width of 7 μm serving as a pattern of the core portion 12a is formed by a photolithography method, and H 3 PO 4 / CH 3 COOH is formed. The resist pattern is transferred to the Al film by etching the Al film with a mixed solution of / HNO 3 . Next, after removing the resist pattern, the core portion 12a is etched by RIE using fluorine gas, and then the Al film is removed to form the clad portion 12b.

【0025】以上により、コア部12aの高さが6μmで
幅が7μm、屈折率が1.4482であり、クラッド部12bの
屈折率が1.4440のシロキサンポリマから成る埋め込み型
の光導波路12を得ることができる。
As described above, a buried optical waveguide 12 made of a siloxane polymer having a core portion 12a having a height of 6 μm, a width of 7 μm, a refractive index of 1.4482, and a cladding portion 12b having a refractive index of 1.4440 can be obtained. .

【0026】なお、光導波路12のコア部12aならびにク
ラッド部12bには、前述のように以下のような種々の材
料を使用することができる。 材料 屈折率 成膜方法 ポリイミド 1.53〜1.60 スピンコート法・ロールコート法等 ベンゾシクロブテン 1.53〜1.58 同上 PMMA 1.53〜1.56 同上 SiO2 −TiO2 1.44〜2.00 スパッタリング法・CVD法等 SiO2 −GeO2 1.44〜2.00 同上 これらの材料の中からコア部12aの屈折率がクラッド部
12bの屈折率よりも大きくなるようにそれぞれ選択して
使用すればよい。そして、これらの材料によるコア部12
aの加工には上記の例と同様にフォトリソグラフィ法お
よびRIE加工を利用すればよく、例えば前述のように
下部のクラッド部12bとしてシロキサンポリマ膜を形成
した後に屈折率1.45・厚さ8μmのSiO2 −TiO2
膜をスパッタリング法により形成し、その後、コア部12
aの加工等を同様に行なえばよい。
The core 12a and the clad 12b of the optical waveguide 12 can be made of the following various materials as described above. Material having a refractive index film formation method polyimide from 1.53 to 1.60 a spin coating method, a roll coating method or the like benzocyclobutene 1.53 to 1.58 Ditto PMMA from 1.53 to 1.56 Ditto SiO 2 -TiO 2 1.44~2.00 sputtering, CVD method, or the like SiO 2 -GeO 2 1.44 ~ 2.00 Same as above. Among these materials, the refractive index of the core
What is necessary is just to select and use each so that it may become larger than the refractive index of 12b. The core 12 made of these materials
Photolithography and RIE may be used for the processing of a in the same manner as in the above example. For example, after forming a siloxane polymer film as the lower cladding portion 12b as described above, a SiO 2 film having a refractive index of 1.45 and a thickness of 8 μm is formed. 2- TiO 2
A film is formed by a sputtering method.
The processing of a may be performed in the same manner.

【0027】また、光導波路12の端面12cを基板11の上
面に対して角度θ1 が32〜162 度の斜面とするには、例
えば、ECR装置を用いた異方性エッチングやフッ素ガ
ス雰囲気中でのRIE(反応性イオンエッチング)等に
よればよい。
In order to make the end face 12c of the optical waveguide 12 a slope having an angle θ 1 of 32 to 162 ° with respect to the upper surface of the substrate 11, for example, anisotropic etching using an ECR device or a fluorine gas atmosphere (Reactive ion etching) or the like.

【0028】例えば、光導波路12として前述のシロキサ
ンポリマ膜から成る光導波路12を用いた場合であれば、
まず前述のようにして形成された光導波路12の端部にR
IEの際のマスクとなるアルミニウム膜をスパッタリン
グ法等により成膜し、フォトリソグラフィの技術を用い
て端面12cを形成する斜面の形状のパターンをパターニ
ングする。このパターニングを行なったアルミニウム膜
をマスクとしてフッ素系ガス雰囲気中でRIEにより、
端面12cを32度から162 度の基板11の上面に対する角度
θ1 を有する斜面に加工する。この基板11の上面に対す
る角度θ1 の角度はRIE条件を最適化することによっ
て任意に設定することができる。
For example, if the optical waveguide 12 made of the siloxane polymer film is used as the optical waveguide 12,
First, R is added to the end of the optical waveguide 12 formed as described above.
An aluminum film serving as a mask at the time of IE is formed by a sputtering method or the like, and a pattern of an inclined surface forming the end face 12c is patterned by using a photolithography technique. RIE is performed in a fluorine-based gas atmosphere using the patterned aluminum film as a mask.
Processed into slope having an angle theta 1 with respect to the upper surface of the substrate 11 of 162 ° end face 12c from 32 degrees. The angle θ 1 with respect to the upper surface of the substrate 11 can be set arbitrarily by optimizing the RIE conditions.

【0029】基板11の上面に形成される鏡面14は、前述
のように光導波路12の端面12cに対向するとともに光電
変換素子13の受発光面13aにその下方で対向するよう
に、また基板11の上面に対して角度θ2 が30〜60度の斜
面となるように形成されている。このような鏡面14は、
基板11の上面の一部を利用して、あるいは図1に示した
ように基板11の上面に例えば光導波路12のクラッド部12
bと同様にして積層された鏡面支持台17を使用して、基
板11の上面に対する角度θ2 が30〜60度の斜面を形成
し、その斜面にアルミニウムやチタン・銅・銀等の金属
膜を周知の蒸着法やスパッタリング法等によって被着す
ることによって形成される。
The mirror surface 14 formed on the upper surface of the substrate 11 faces the end face 12c of the optical waveguide 12 and the light receiving / emitting surface 13a of the photoelectric conversion element 13 under the mirror surface 14 as described above. angle theta 2 is formed to be 30 to 60 degrees of slope relative to the top surface. Such a mirror surface 14
Using a part of the upper surface of the substrate 11, or as shown in FIG.
Using a mirror support 17 stacked in the same manner as in b, a slope having an angle θ 2 of 30 to 60 degrees with respect to the upper surface of the substrate 11 is formed, and a metal film such as aluminum, titanium, copper, or silver is formed on the slope. Is formed by a known vapor deposition method, a sputtering method, or the like.

【0030】例えば、鏡面支持台17として前述のシロキ
サンポリマ膜から成るクラッド部12bと同様のものを用
いる場合であれば、まず前述の方法と同様にして光導波
路12と略同じ高さとなる鏡面支持台17を形成し、次に、
RIEの際のマスクとなるアルミニウム膜をスパッタリ
ング法により成膜し、フォトリソグラフィの技術を用い
て鏡面14を形成する斜面の形状のパターンをパターニン
グする。このパターニングを行なったアルミニウム膜を
マスクとしてフッ素系ガス雰囲気中でRIEにより、鏡
面14となる30度から60度の基板11の上面に対する角度θ
2 を有する斜面を加工する。この基板11の上面に対する
角度θ2 の角度はRIE条件を最適化することによって
任意に設定することができる。次に、斜面のうち光路を
変換する鏡面14となる部分に金属膜を被着させるため
に、その部分だけをフォトリソグラフィの技術によって
マスクを形成して露出させる。そして、蒸着法やスパッ
タリング法等によってアルミニウム等の金属膜を被着さ
せる。
For example, if the mirror support 17 is the same as the clad portion 12b made of a siloxane polymer film described above, first, the mirror support having substantially the same height as the optical waveguide 12 is formed in the same manner as described above. Form a platform 17, then
An aluminum film serving as a mask at the time of RIE is formed by a sputtering method, and a pattern having an inclined surface forming the mirror surface 14 is patterned by using a photolithography technique. Using the patterned aluminum film as a mask, the angle θ with respect to the upper surface of the substrate 11 of 30 ° to 60 ° to become the mirror surface 14 by RIE in a fluorine-based gas atmosphere.
Machine the slope with 2 . The angle θ 2 with respect to the upper surface of the substrate 11 can be arbitrarily set by optimizing the RIE conditions. Next, in order to apply a metal film to a portion of the slope that becomes a mirror surface 14 for converting an optical path, only that portion is exposed by forming a mask by a photolithography technique. Then, a metal film such as aluminum is deposited by an evaporation method, a sputtering method, or the like.

【0031】なお、基板11の上面に対する角度θ2 の角
度は、鏡面14で反射された光が光導波路12と鏡面14との
間に充填した樹脂15から空気層へ出る際の屈折角θ3
基板11の上面に垂直な方向に対して45度以下になるよう
に設定したものである。従って、鏡面14は必ずしもその
全面にわたって平面である必要はなく、コア部12aに対
向する領域において基板11の上面に対する角度θ2 が30
〜60度の範囲内に入っていればよく、基板11の上面に対
する角度θ2 が連続的に変化するような曲面となってい
てもよい。
The angle θ 2 with respect to the upper surface of the substrate 11 is the refraction angle θ 3 when the light reflected by the mirror surface 14 exits from the resin 15 filled between the optical waveguide 12 and the mirror surface 14 to the air layer. Is set to be 45 degrees or less with respect to a direction perpendicular to the upper surface of the substrate 11. Therefore, the mirror surface 14 does not necessarily have to be flat over the entire surface, and the angle θ 2 with respect to the upper surface of the substrate 11 is 30 in the region facing the core portion 12a.
It is sufficient that within the range of 60 degrees, may be a curved surface such as an angle theta 2 with respect to the upper surface of the substrate 11 is varied continuously.

【0032】この基板11の上面に対する角度θ2 の設定
の理由は、光が空気層へ出る際の屈折角θ3 が45度以上
になると鏡面14と光電変換素子13の面受発光面13aとの
光学的結合が困難になるためである。
The reason for setting the angle θ 2 with respect to the upper surface of the substrate 11 is that when the refraction angle θ 3 when light exits into the air layer becomes 45 degrees or more, the mirror surface 14 and the surface light emitting / receiving surface 13 a of the photoelectric conversion element 13 become This is because the optical coupling becomes difficult.

【0033】すなわち、この鏡面14に光導波路12のコア
部12aから基板11の上面に平行な光が入射して鏡面14に
よって全反射し、光導波路12の端面12cと鏡面14との間
に充填された屈折率n1 の樹脂15を通ってその基板11の
上面に平行な表面から屈折率n2 =1.0 の空気層へ基板
11の上面に垂直な方向から屈折角θ3 で出て行く場合に
ついて考えると、鏡面14の上方に実装された光電変換素
子13の下面の受発光面13aに光が入射するためには屈折
角θ3 が−45度〜+45度の範囲内となる必要がある。
That is, light parallel to the upper surface of the substrate 11 is incident on the mirror surface 14 from the core portion 12a of the optical waveguide 12 and totally reflected by the mirror surface 14 to fill the space between the end surface 12c of the optical waveguide 12 and the mirror surface 14. Through a resin 15 having a refractive index of n 1 from the surface parallel to the upper surface of the substrate 11 to an air layer having a refractive index of n 2 = 1.0.
Considering the case where the direction perpendicular to the top surface 11 and exits at a refractive angle theta 3, the angle of refraction for light incident on the lower surface of the light emitting and receiving surface 13a of the photoelectric conversion element 13 mounted above the mirror 14 theta 3 is required to be within the range of -45 degrees to + 45 degrees.

【0034】まず、屈折角θ3 が+45度となるには、n
1 =1.445 とすると、 n1 sin(90−2θ2 )=n2 sinθ3 sin(90−2θ2 )=(n1 /n2 )sinθ3 =(1/1.445 )sin45 より、 90−2θ2 ≒30 θ2 ≒30(度) となる。一方、屈折角θ3 が−45度となるには、同様に
して n1 sin(2θ2 −90)=n2 sinθ3 sin(2θ2 −90)=(n1 /n2 )sinθ3 =(1/1.445 )sin(−45) より、 2θ2 −90≒30 θ2 ≒60(度) となる。従って、鏡面14の基板11の上面に対する斜面の
角度θ2 は、30度〜60度の範囲内とする必要がある。
First, in order for the refraction angle θ 3 to be +45 degrees, n
1 = When 1.445, from n 1 sin (90-2θ 2) = n 2 sinθ 3 sin (90-2θ 2) = (n 1 / n 2) sinθ 3 = (1 / 1.445) sin45, 90-2θ 2 ≒ 30 θ 2 ≒ 30 (degrees). On the other hand, in order for the refraction angle θ 3 to be −45 degrees, similarly, n 1 sin (2θ 2 −90) = n 2 sin θ 3 sin (2θ 2 −90) = (n 1 / n 2 ) sin θ 3 = (1 /1.445) sin (−45), so that 2θ 2 −90 ≒ 30 θ 2 ≒ 60 (degrees). Therefore, the angle θ 2 of the inclined surface of the mirror surface 14 with respect to the upper surface of the substrate 11 needs to be in the range of 30 degrees to 60 degrees.

【0035】なお、光電変換素子13から発光された光を
光導波路12に効率よく入射させたい場合には、鏡面14の
角度θ2 を略45度に設定すると、光電変換素子13から発
光された光の光路が鏡面で90度変換されて光導波路12の
光の伝送方向に平行となってコア部12aに入射させるこ
とが容易となるので好適となる。
When the light emitted from the photoelectric conversion element 13 is desired to be efficiently incident on the optical waveguide 12, the angle θ 2 of the mirror surface 14 is set to approximately 45 degrees, and the light emitted from the photoelectric conversion element 13 is emitted. This is preferable because the optical path of the light is converted by 90 degrees on the mirror surface and becomes parallel to the light transmission direction of the optical waveguide 12 and easily enters the core 12a.

【0036】ここで、通常は光導波路12の端面12cと鏡
面14とは同じ作製工程でもって同時に斜面として形成さ
れ、斜面とした後の両者の間には従来の光接続構造と同
様に空気層(空隙)が存在することとなる。
Here, usually, the end face 12c and the mirror surface 14 of the optical waveguide 12 are simultaneously formed as a slope by the same manufacturing process, and after the slope is formed, an air gap is formed between the two as in the conventional optical connection structure. (Voids) are present.

【0037】そこで、本発明においては、この光導波路
12の端面12cと鏡面14との間の空気層(空隙)に、光導
波路12のコア部12aと略同じ屈折率を有する樹脂15を充
填する。このように光導波路12の端面12cと鏡面14との
間をコア部12aと略同じ屈折率を有する樹脂15で充填す
ることによって、光電変換素子13を表面実装する際に鏡
面14上にゴミが付着することを防ぐと同時に、樹脂15が
充填された充填部において光信号を損失させることなく
光電変換素子13に結合することができる。
Therefore, in the present invention, this optical waveguide
An air layer (gap) between the end surface 12c of the optical waveguide 12 and the mirror surface 14 is filled with a resin 15 having substantially the same refractive index as the core 12a of the optical waveguide 12. By filling the space between the end surface 12c of the optical waveguide 12 and the mirror surface 14 with the resin 15 having substantially the same refractive index as the core portion 12a, dust can be left on the mirror surface 14 when the photoelectric conversion element 13 is surface-mounted. At the same time as preventing the adhesion, the optical signal can be coupled to the photoelectric conversion element 13 without losing the optical signal in the filling portion filled with the resin 15.

【0038】このような樹脂15の充填部において、光導
波路12を伝搬してきた光は光導波路12の端面12cでフレ
ネル反射を生じる。一般的に、光導波路12のコア部12a
の屈折率と、光導波路12の端面12cと鏡面14との間に充
填する樹脂15の屈折率との差が大きい方がフレネル反射
率が大きい。従って、コア部12aの屈折率と樹脂15の屈
折率とは同じであることが最適であるが、このフレネル
反射率が1%以下であれば光導波路12を伝搬する光の伝
搬損失の増加を無視できることから、光導波路12のコア
部12aの屈折率と光導波路12の端面12cと鏡面14との間
に充填する樹脂15の屈折率差△nは一4.0 %〜+5.6 %
の範囲内として、略同一の屈折率とすることが望まし
い。このような樹脂としては、例えばコア部12aと同じ
シロキサンポリマやフッ素樹脂・エポキシ樹脂・ポリイ
ミド樹脂等が挙げられる。
In such a filling portion of the resin 15, light propagating through the optical waveguide 12 causes Fresnel reflection at the end face 12 c of the optical waveguide 12. Generally, the core portion 12a of the optical waveguide 12
The greater the difference between the refractive index of the optical waveguide 12 and the refractive index of the resin 15 filled between the end face 12c of the optical waveguide 12 and the mirror surface 14, the greater the Fresnel reflectivity. Therefore, it is optimal that the refractive index of the core portion 12a is the same as the refractive index of the resin 15, but if the Fresnel reflectivity is 1% or less, the propagation loss of light propagating through the optical waveguide 12 is increased. Since it can be ignored, the refractive index difference Δn between the refractive index of the core portion 12a of the optical waveguide 12 and the resin 15 filled between the end face 12c and the mirror surface 14 of the optical waveguide 12 is between 4.0% and + 5.6%.
It is desirable that the refractive indices are substantially the same within the range. Examples of such a resin include a siloxane polymer, a fluororesin, an epoxy resin, and a polyimide resin, which are the same as those of the core portion 12a.

【0039】このように光導波路12の端面12cと鏡面14
との間を樹脂15で充填することによって、光電変換素子
13を表面実装する際に鏡面14上にゴミが付着することを
防ぐことができる。また、光導波路12を形成するコア部
12aと略同じ屈折率を有する樹脂15で光導波路12の端面
12cと鏡面14との間を充填するため、コア部12aと樹脂
15との屈折率差がコア部12aと空気層との屈折率差より
小さくなることから、従来の光接続構造で問題であった
光導波路12の端面12cでの光の反射を抑制することがで
き、例えば反射率で1%以下と小さくすることができ
る。
As described above, the end surface 12 c of the optical waveguide 12 and the mirror surface 14
The space between the photoelectric conversion element and the
It is possible to prevent dust from adhering to the mirror surface 14 when the surface 13 is mounted. Also, a core portion forming the optical waveguide 12
The end face of the optical waveguide 12 is made of resin 15 having substantially the same refractive index as 12a.
In order to fill the space between 12c and mirror surface 14, core 12a and resin
Since the difference in the refractive index from the optical waveguide 15 is smaller than the difference in the refractive index between the core 12a and the air layer, it is possible to suppress the reflection of light on the end face 12c of the optical waveguide 12, which is a problem in the conventional optical connection structure. For example, the reflectance can be reduced to 1% or less.

【0040】また、コア部12aと樹脂15との屈折率を略
同じとし、両者の屈折率差をほとんど無視できる小さな
ものとしていることから、光導波路12の端面12cの角度
が基板11の上面に対して90度となる場合であっても、そ
の端面12cにおける伝搬光の反射はほとんど無視できる
程度に抑制することができる。
Since the refractive indices of the core portion 12a and the resin 15 are substantially the same and the difference between the refractive indices of the two is small enough to be almost negligible, the angle of the end face 12c of the optical waveguide 12 is set at the upper surface of the substrate 11. Even when the angle is 90 degrees, the reflection of the propagating light on the end face 12c can be suppressed to an almost negligible level.

【0041】なお、図1中にLで示した光導波路12の端
面12c(中心部)と鏡面14との間の水平距離(基板11の
上面と平行な方向の距離)はできるだけ短い方が、光導
波路12の端面12aから分散して広がった光が効率よく鏡
面14に当たり、鏡面14で反射した光が上面に実装してい
る光電変換素子13の受発光面13aに効率よく入射する。
しかしながら、鏡面14および光導波路12の端面12cの加
工限界を考慮すると、光導波路12の端面12c(中心部)
と鏡面14との間の水平距離Lは約22μmが最短距離とな
る。
The horizontal distance (the distance in the direction parallel to the upper surface of the substrate 11) between the end surface 12c (center portion) of the optical waveguide 12 and the mirror surface 14, which is indicated by L in FIG. Light dispersed and spread from the end surface 12a of the optical waveguide 12 efficiently hits the mirror surface 14, and light reflected by the mirror surface 14 efficiently enters the light receiving / emitting surface 13a of the photoelectric conversion element 13 mounted on the upper surface.
However, considering the processing limit of the mirror surface 14 and the end face 12c of the optical waveguide 12, the end face 12c of the optical waveguide 12 (center portion)
The shortest distance between the mirror surface 14 and the horizontal distance L is about 22 μm.

【0042】一方、光導波路12を伝搬する光をガウスビ
ームで近似すると光導波路12の端面12aから出てきた光
のビーム径ωは、光導波路12内のビーム径をω0 、入射
波長をλ、水平距離をLとしたとき、式ω=λL/2ω
0 より、約±5度の広がりを持つことが計算される。こ
の分散して広がった光が鏡面14に当たって、鏡面14で反
射した光が基板11上に実装されている光電変換素子13の
受発光部13aに入射するためには、光導波路12の端面12
c(中心部)と鏡面14との間の水平距離Lを約40μm以
下にすることが望ましい。これに対し、水平距離Lを40
μmを超えて大きな値にすると、広がりを持った光が鏡
面14に到達せずに、基板11上の空気層へ逃げたり、ある
いは基板11側へ入射して乱反射したりするため損失が大
きくなる。従って、光導波路12の端面12c(中心部)と
鏡面14との間の水平距離Lは約22〜40μmの範囲とする
ことが望ましい。
On the other hand, when the light propagating in the optical waveguide 12 is approximated by a Gaussian beam, the beam diameter ω of the light emerging from the end face 12a of the optical waveguide 12 is ω 0 in the optical waveguide 12 and λ 0 in the incident wavelength. , When the horizontal distance is L, the equation ω = λL / 2ω
From 0 , it is calculated to have a spread of about ± 5 degrees. In order for the dispersed and spread light to hit the mirror surface 14 and the light reflected by the mirror surface 14 to be incident on the light emitting / receiving section 13a of the photoelectric conversion element 13 mounted on the substrate 11, the end face 12 of the optical waveguide 12 is required.
It is desirable that the horizontal distance L between c (center) and the mirror surface 14 be about 40 μm or less. On the other hand, when the horizontal distance L is 40
If the value is larger than μm, the spread light will escape to the air layer on the substrate 11 without reaching the mirror surface 14, or will be incident on the substrate 11 side and diffusely reflected, resulting in a large loss. . Therefore, it is desirable that the horizontal distance L between the end surface 12c (center portion) of the optical waveguide 12 and the mirror surface 14 be in the range of about 22 to 40 μm.

【0043】基板11上に実装され、鏡面14の上方に位置
する、下面に受発光面13aを有する光電変換素子13とし
ては、例えばフォトダイオード等がある。この光電変換
素子13の受発光面13aと鏡面14との距離としては、光導
波路12の端面12cから樹脂15中に出射され分散して広が
った光が鏡面14に当たって、鏡面14で反射した光がその
上方に実装されている光電変換素子13の受発光面13aに
入射する構造を設計する必要があるが、鏡面14で反射し
た光は、樹脂15から空気層へ出るときに広がりを持つ。
この広がりの大きさは樹脂15と空気層との屈折率差の大
きさによって異なり、その屈折率差や前述の水平距離L
を組み合わせて考慮して設計しなければならないが、そ
れらを前述の各々のパラメータの上記範囲を考慮する
と、図1中にDで示した鏡面14の上面(鏡面14の上方に
位置する樹脂15の表面)から光電変換素子13の受発光面
13aまでの距離は、0〜20μm程度の範囲内に設定する
のが望ましい。
As the photoelectric conversion element 13 mounted on the substrate 11 and located above the mirror surface 14 and having a light receiving / emitting surface 13a on the lower surface, for example, there is a photodiode or the like. The distance between the light receiving / emitting surface 13a of the photoelectric conversion element 13 and the mirror surface 14 is such that light emitted from the end surface 12c of the optical waveguide 12 and dispersed and spread into the resin 15 hits the mirror surface 14 and is reflected by the mirror surface 14. It is necessary to design a structure to be incident on the light receiving / emitting surface 13a of the photoelectric conversion element 13 mounted thereon, but the light reflected by the mirror surface 14 has a spread when it exits from the resin 15 to the air layer.
The extent of this spread depends on the magnitude of the difference in the refractive index between the resin 15 and the air layer.
In consideration of the above-mentioned ranges of the respective parameters, the upper surface of the mirror surface 14 indicated by D in FIG. 1 (the upper surface of the resin 15 positioned above the mirror surface 14) must be considered. Surface) to the light receiving / emitting surface of photoelectric conversion element 13
It is desirable that the distance to 13a is set within a range of about 0 to 20 μm.

【0044】次に、本発明の光接続構造について、2本
の光導波路12を互いの光の伝送方向が90度となるように
してその端面12cを隣り合わせて配設し、それら端面12
cに対向させて互いに90度に隣り合う2つの鏡面14を形
成した例を、図2に平面図で示す。図2では光電変換素
子を除き、かつ樹脂15を充填する前の状態を示してお
り、図1と同様の箇所には同じ符号を付してある。
Next, in the optical connection structure of the present invention, the two optical waveguides 12 are disposed such that their light transmission directions are at 90 degrees and their end faces 12c are adjacent to each other.
FIG. 2 is a plan view showing an example in which two mirror surfaces 14 adjacent to each other at 90 degrees are formed so as to face c. FIG. 2 shows a state before the resin 15 is filled and the photoelectric conversion element is removed, and the same portions as those in FIG. 1 are denoted by the same reference numerals.

【0045】図2の例によれば、樹脂15が充填される充
填部を、互いの光の伝送方向が90度となるように配設さ
れた2つの光導波路12の角度θ1 が鋭角の端面12c同士
がそれぞれ斜面を構成し、かつ、それら2つの光導波路
12にそれぞれ対向する鏡面14が互いに90度となるように
隣接して配置されて斜面を構成するようなテーパー面を
有する四角形穴として形成している。
According to the example shown in FIG. 2, the filling portion filled with the resin 15 is formed such that the angle θ 1 of the two optical waveguides 12 arranged so that the light transmission direction of each other is 90 degrees is an acute angle. The end faces 12c form slopes, respectively, and the two optical waveguides
The mirror surfaces 14 facing each other are arranged adjacent to each other so as to be at 90 degrees to each other, and are formed as square holes having a tapered surface so as to form a slope.

【0046】このような四角形穴は、例えば、光導波路
12と鏡面14の鏡面支持台17とを光導波路12のクラッド部
12bを形成する材料で形成し、光導波路12の端面12cの
角度θ1 も30〜60度の範囲に設定する場合には、光導波
路12の端面12cと鏡面14とを基板11の上面に対してそれ
ぞれ角度が30〜60度の斜面となるように前述のRIE等
により同時に加工することにより、容易にかつ精度よく
形成することができる。
Such a square hole is, for example, an optical waveguide
12 and the mirror surface support 17 of the mirror surface 14
Formed of a material that forms a 12b, when setting the angle θ ranges are also from 30 to 60 degrees first end surface 12c of the light guide 12 and an end surface 12c and the specular 14 of the optical waveguide 12 with respect to the upper surface of the substrate 11 By performing simultaneous processing by the above-described RIE or the like so as to form an inclined surface having an angle of 30 to 60 degrees, it is possible to form easily and accurately.

【0047】また、図2のような構成としてテーパー面
を有する四角形穴を加工することによって、2種類の方
向の光導波路12の端面12cと鏡面14との加工を一度に行
なうことができ、光電変換素子実装用の回路基板作製に
おける工程数を減少させることができる。
By processing a rectangular hole having a tapered surface as shown in FIG. 2, the processing of the end surface 12c and the mirror surface 14 of the optical waveguide 12 in two directions can be performed at one time. The number of steps in manufacturing a circuit board for mounting a conversion element can be reduced.

【0048】さらに、光導波路12と鏡面14の鏡面支持台
17とに同じ材料を用いて同時に形成した場合には、光導
波路12の端面12cと鏡面14とのアライメントが、高さ方
向や左右にずれる心配がなくなって容易になる。
Further, a mirror surface support for the optical waveguide 12 and the mirror surface 14
When the same material is used for the light guide 17 and the mirror 17 at the same time, the alignment between the end face 12c of the optical waveguide 12 and the mirror surface 14 can be easily performed without worrying about shifting in the height direction or right and left.

【0049】そして、所定の四角形穴を形成し、金属膜
を被着して鏡面14を形成した後に、コア部12aと略同じ
屈折率を有する樹脂15、例えばTiO2 をドープしたシ
ロキサンポリマで四角形穴を充填し、必要に応じて光電
変換素子13を表面実装するための電極パッド等をアルミ
ニウム等の金属膜を成膜・パターン加工することによっ
て形成することにより、光モジュール用の回路基板を得
ることができる。
After a predetermined square hole is formed and a mirror surface 14 is formed by applying a metal film, a square is formed with a resin 15 having substantially the same refractive index as the core portion 12a, for example, a siloxane polymer doped with TiO 2. A circuit board for an optical module is obtained by filling the holes and forming electrode pads and the like for surface-mounting the photoelectric conversion element 13 as necessary by forming and patterning a metal film such as aluminum. be able to.

【0050】なお、上記の例に対して、光導波路12の端
面12cの角度θ1 を32〜162 度の範囲で鏡面14の角度θ
2 と異なるものとする場合には、光導波路12の端面12c
と鏡面14とを別々の条件や工程で加工し形成してもよい
ことは言うまでもない。
In the above example, the angle θ 1 of the end face 12 c of the optical waveguide 12 is set in the range of 32 to 162 degrees,
If it is different from 2 , the end face 12c of the optical waveguide 12
It goes without saying that the mirror surface 14 and the mirror surface 14 may be processed and formed under different conditions and steps.

【0051】本発明は上記の実施の形態の例に限定され
るものではなく、本発明の要旨を逸脱しない範囲で種々
の変更・改良を施すことは何ら差し支えない。例えば、
図2においては2本の光導波路を互いの光の伝送方向が
90度となるような光接続構造を示したが、これらは任意
の角度に設定して、光導波路とそれに対向する鏡面とに
対応する斜面を形成するようにしてもよい。
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. For example,
In FIG. 2, the two optical waveguides are connected with each other in a light transmission direction.
Although the optical connection structures are shown to be 90 degrees, they may be set at an arbitrary angle to form a slope corresponding to the optical waveguide and a mirror surface facing the optical waveguide.

【0052】[0052]

【発明の効果】本発明によれば、基板の上面に対向して
形成される光導波路の端面および鏡面を各々基板の上面
に対して32〜162 度および30〜60度の斜面とし、かつ光
導波路の端面と鏡面との間に光導波路のコア部と略同じ
屈折率を有する樹脂を充填したことから、鏡面の上方に
光電変換素子を表面実装する際に鏡面上にゴミが付着し
て伝搬光がゴミによって散乱や反射光による光の減衰を
起こすことを防ぐと同時に、光導波路の端面と鏡面との
間を伝搬する光を空気層を伝搬する場合に比較して散乱
を少なくして光電変換素子と光学的に良好に接続するこ
とができる。また、光導波路を伝搬してきた光または光
導波路に入射する光が光導波路の端面で反射を起こすこ
とが抑制されて効率的に光電変換素子との間で入出力さ
せることができる。
According to the present invention, the end face and the mirror surface of the optical waveguide formed facing the upper surface of the substrate are inclined at 32 to 162 degrees and 30 to 60 degrees with respect to the upper surface of the substrate, respectively. Dust adheres and propagates on the mirror surface when the photoelectric conversion element is surface-mounted above the mirror surface because resin between the end face of the waveguide and the mirror surface is filled with a resin having the same refractive index as the core of the optical waveguide. While preventing light from being scattered by dust and causing attenuation of light due to reflected light, the light propagating between the end surface of the optical waveguide and the mirror surface is reduced in scattering as compared with the case where the light propagates through the air layer. Optically good connection with the conversion element can be achieved. Further, it is possible to suppress the reflection of the light propagating in the optical waveguide or the light incident on the optical waveguide on the end face of the optical waveguide, and to efficiently input and output the light to and from the photoelectric conversion element.

【0053】また、光導波路の端面と鏡面とを同時に加
工することによって、例えば2方向の光導波路の端面と
鏡面の加工を一度に行なうことができ、それらのアライ
メントを容易にかつ精度よく行うことができるととも
に、光モジュール用等の回路基板作製における工程数を
減少させることができる。
Further, by simultaneously processing the end face and the mirror surface of the optical waveguide, it is possible to simultaneously process the end face and the mirror surface of the optical waveguide in two directions, for example, and to easily and accurately align them. And the number of steps in manufacturing a circuit board for an optical module or the like can be reduced.

【0054】以上により、本発明によれば、光導波路の
端面での光の散乱ならびに鏡面へのゴミの付着による悪
影響を防止し、基板上面に形成された光導波路と基板上
に実装された光電変換素子とを鏡面を介して効率的に光
接続することができ、しかも従来の光接続構造よりも容
易にかつ精度よく作製することができる光接続構造を提
供することができた。
As described above, according to the present invention, it is possible to prevent the scattering of light on the end face of the optical waveguide and the adverse effect due to the adhesion of dust to the mirror surface, and the optical waveguide formed on the upper surface of the substrate and the photoelectric device mounted on the substrate. It is possible to provide an optical connection structure that can efficiently optically connect the conversion element via a mirror surface and that can be manufactured more easily and more accurately than a conventional optical connection structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光接続構造の実施の形態の一例を示す
断面図である。
FIG. 1 is a sectional view showing an example of an embodiment of an optical connection structure of the present invention.

【図2】本発明の光接続構造の実施の形態の他の例を示
す平面図である。
FIG. 2 is a plan view showing another example of the embodiment of the optical connection structure of the present invention.

【図3】従来の光接続構造の例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a conventional optical connection structure.

【符号の説明】[Explanation of symbols]

11・・・・・基板 12・・・・・光導波路 12a・・・コア部、12b・・・クラッド部、12c・・・
端面 13・・・・・光電変換素子 13a・・・受発光面 14・・・・・鏡面 15・・・・・樹脂
·························································································
End face 13: Photoelectric conversion element 13a: Light receiving / emitting surface 14: Mirror surface 15: Resin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の上面に形成された、クラッド部と
該クラッド部中のコア部とから成る光導波路と、前記基
板上に実装された、下面に受光部もしくは発光部を有す
る光電変換素子とを、前記基板の上面に形成された、前
記光導波路の端面に対向するとともに前記光電変換素子
の受光部もしくは発光部にその下方で対向する鏡面を介
して光学的に接続した光接続構造であって、前記光導波
路の端面および前記鏡面を各々前記基板の上面に対して
32〜162度および30〜60度の斜面とし、かつ前
記光導波路の端面と前記鏡面との間に前記光導波路のコ
ア部と略同じ屈折率を有する樹脂を充填したことを特徴
とする光接続構造。
1. A photoelectric conversion element having an optical waveguide formed on an upper surface of a substrate and comprising a cladding portion and a core portion in the cladding portion, and a light receiving portion or a light emitting portion on a lower surface mounted on the substrate. And an optical connection structure formed on the upper surface of the substrate and optically connected to a light receiving portion or a light emitting portion of the photoelectric conversion element via a mirror surface facing the light receiving portion or the light emitting portion below the optical waveguide. The end surface and the mirror surface of the optical waveguide are inclined at 32 to 162 degrees and 30 to 60 degrees with respect to the upper surface of the substrate, respectively, and the optical waveguide is disposed between the end surface of the optical waveguide and the mirror surface. An optical connection structure characterized by being filled with a resin having substantially the same refractive index as the core portion.
JP35599197A 1997-12-25 1997-12-25 Optical connection structure Expired - Fee Related JP3570874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35599197A JP3570874B2 (en) 1997-12-25 1997-12-25 Optical connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35599197A JP3570874B2 (en) 1997-12-25 1997-12-25 Optical connection structure

Publications (2)

Publication Number Publication Date
JPH11183761A true JPH11183761A (en) 1999-07-09
JP3570874B2 JP3570874B2 (en) 2004-09-29

Family

ID=18446775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35599197A Expired - Fee Related JP3570874B2 (en) 1997-12-25 1997-12-25 Optical connection structure

Country Status (1)

Country Link
JP (1) JP3570874B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207661A (en) * 2002-01-11 2003-07-25 Omron Corp Optical waveguide device
US6661939B2 (en) 2000-09-26 2003-12-09 Kyocera Corporation Optical module and method for manufacturing same
JP2004053623A (en) * 2002-07-16 2004-02-19 Ngk Spark Plug Co Ltd Optical waveguide substrate equipped with optical path changing part and its manufacture method
WO2004025343A1 (en) * 2002-09-11 2004-03-25 Fujitsu Limited Optical device and production method therefor
JP2007219143A (en) * 2006-02-16 2007-08-30 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic equipment
JP2009139413A (en) * 2007-12-03 2009-06-25 Oki Electric Ind Co Ltd Optical element and method of manufacturing the same
WO2009107671A1 (en) * 2008-02-25 2009-09-03 パナソニック電工株式会社 Photoelectric conversion device
JP2011180276A (en) * 2010-02-26 2011-09-15 Kyocera Corp Optical transmission substrate and optical module
JP2011232786A (en) * 2011-08-25 2011-11-17 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic apparatus
JP2011242706A (en) * 2010-05-21 2011-12-01 Shinko Electric Ind Co Ltd Light waveguide device and method for manufacturing the same
JP2012058731A (en) * 2010-09-03 2012-03-22 National Central Univ Electro-optical coupler module having optical waveguide structure
JP2014225029A (en) * 2014-07-17 2014-12-04 株式会社日立製作所 Manufacturing method of optical module
US8929693B2 (en) 2012-06-07 2015-01-06 Samsung Electronics Co., Ltd. Semiconductor package and semiconductor device including the same
JP2021018409A (en) * 2019-07-17 2021-02-15 新光電気工業株式会社 Optical waveguide, optical waveguide device and method for manufacturing optical waveguide
WO2023228263A1 (en) * 2022-05-24 2023-11-30 日本電信電話株式会社 Optical receiver

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661939B2 (en) 2000-09-26 2003-12-09 Kyocera Corporation Optical module and method for manufacturing same
JP2003207661A (en) * 2002-01-11 2003-07-25 Omron Corp Optical waveguide device
JP2004053623A (en) * 2002-07-16 2004-02-19 Ngk Spark Plug Co Ltd Optical waveguide substrate equipped with optical path changing part and its manufacture method
WO2004025343A1 (en) * 2002-09-11 2004-03-25 Fujitsu Limited Optical device and production method therefor
JP2007219143A (en) * 2006-02-16 2007-08-30 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic equipment
JP2009139413A (en) * 2007-12-03 2009-06-25 Oki Electric Ind Co Ltd Optical element and method of manufacturing the same
WO2009107671A1 (en) * 2008-02-25 2009-09-03 パナソニック電工株式会社 Photoelectric conversion device
JP2009260227A (en) * 2008-02-25 2009-11-05 Panasonic Electric Works Co Ltd Photoelectric conversion device
JP2011180276A (en) * 2010-02-26 2011-09-15 Kyocera Corp Optical transmission substrate and optical module
JP2011242706A (en) * 2010-05-21 2011-12-01 Shinko Electric Ind Co Ltd Light waveguide device and method for manufacturing the same
US8634683B2 (en) 2010-05-21 2014-01-21 Shinko Electric Industries Co., Ltd. Optical waveguide device and method of manufacturing the same
JP2012058731A (en) * 2010-09-03 2012-03-22 National Central Univ Electro-optical coupler module having optical waveguide structure
US8588559B2 (en) 2010-09-03 2013-11-19 National Central University Optical coupler module having optical waveguide structure
JP2011232786A (en) * 2011-08-25 2011-11-17 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic apparatus
US8929693B2 (en) 2012-06-07 2015-01-06 Samsung Electronics Co., Ltd. Semiconductor package and semiconductor device including the same
JP2014225029A (en) * 2014-07-17 2014-12-04 株式会社日立製作所 Manufacturing method of optical module
JP2021018409A (en) * 2019-07-17 2021-02-15 新光電気工業株式会社 Optical waveguide, optical waveguide device and method for manufacturing optical waveguide
WO2023228263A1 (en) * 2022-05-24 2023-11-30 日本電信電話株式会社 Optical receiver

Also Published As

Publication number Publication date
JP3570874B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US6706546B2 (en) Optical reflective structures and method for making
US6611635B1 (en) Opto-electronic substrates with electrical and optical interconnections and methods for making
US6343171B1 (en) Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
US9484482B2 (en) Efficient optical (light) coupling
US6845184B1 (en) Multi-layer opto-electronic substrates with electrical and optical interconnections and methods for making
US6996303B2 (en) Flexible optical waveguides for backplane optical interconnections
US6690845B1 (en) Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making
US6785447B2 (en) Single and multilayer waveguides and fabrication process
JPH11183761A (en) Optical connection structure
US20020028045A1 (en) Optical coupling structures and the fabrication processes
JP3413839B2 (en) Optoelectronic integrated circuit device
JP4624162B2 (en) Opto-electric wiring board
JP2000199827A (en) Optical wave guide device and its manufacture
US20200003956A1 (en) Fiber-to-chip grating coupler for photonic circuits
JP2007148087A (en) Optoelectrical integrated wiring board and optoelectrical integrated wiring system
US8693815B2 (en) Optoelectronic composite substrate and method of manufacturing the same
JP2002006161A (en) Optical wiring substrate and optical wiring module and their manufacturing method
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JPH1152198A (en) Optical connecting structure
CN111103658A (en) Device for optical coupling and system for communication
JPH1195062A (en) Optical connection structure
JP2004022666A (en) Semiconductor device
KR100460388B1 (en) Optical waveguide with micromirror, its manufacturing method and optical information processor
US11119280B2 (en) Grating couplers and methods of making same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees