【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はシリコンウェーハ等
の基板に酸化膜等の成膜処理を行う基板成膜装置に関す
るものである。
【0002】
【従来の技術】図3は、バッチ処理式の基板成膜装置の
1つであり、酸化膜を成膜する従来の縦型酸化炉を示し
ている。
【0003】有天筒状のヒータユニット1の内部に、有
天筒体であり均熱管として機能する外管2が前記ヒータ
ユニット1と同心に設けられ、更に前記外管2の内部に
有天筒体である内管3が前記外管2と同心に設けられて
いる。前記内管3の内部は反応室4となっている。
【0004】前記内管3の下端部より前記外管2に沿っ
て立上がったガス導入管5は前記内管3の天井上面に形
成されたガス溜め6に連通している。該ガス溜め6は多
数のガス分散孔(図示せず)を介して前記反応室4に連
通している。又、前記内管3の下部には排気管7が連通
している。
【0005】前記内管3の下方からは図示しないボート
エレベータにより基板の保持手段であるボート8が装
入、引出しされる様になっており、該ボート8には処理
される基板9が水平姿勢で多段に装填される。前記ボー
ト8はボートエレベータに設けられた炉口蓋10にボー
トキャップ11を介して載置され、前記炉口蓋10は前
記ボート8装入時には前記内管3の下端開口部(炉口
部)を気密に閉塞する様になっている。
【0006】基板9の成膜処理、例えば酸化膜を成膜す
る場合、前記ヒータユニット1により前記反応室4を高
温に加熱し、真空引きした後前記ガス導入管5、ガス溜
め6を介して前記内管3の天井から酸素を導入し、前記
反応室4内を酸素で充填し、前記基板9の表面を酸化さ
せて酸化膜を生成する。
【0007】酸化膜生成後、前記ボート8を引出す前
に、前記反応室4内を窒素ガスに置換する。これは、前
記基板9に必要以上に酸化膜が生成することを抑止する
為であり、又酸素が炉外へ漏出することを防止する為で
ある。
【0008】窒素ガスへの置換は前記ガス導入管5、ガ
ス溜め6を介して窒素ガスを供給しつつ、前記排気管7
から排気することで行われている。
【0009】前記反応室4内が窒素ガスに置換され、該
反応室4内が所定温度迄降下した後、前記ボート8が引
出される。
【0010】図4は化学気相成膜法により基板表面に成
膜処理を行うバッチ処理式のCVD成膜装置の反応炉部
を示している。
【0011】有天筒状のヒータユニット1の内部に有天
筒体の外管14が前記ヒータユニット1と同心に設けら
れ、更に前記外管14の下端に炉口フランジ15が設け
られ、前記外管14の内部に同心に設けられた内管16
は前記炉口フランジ15に支持されている。前記内管1
6の内部は反応室4となっている。
【0012】反応ガスを導入するガス導入管17は前記
炉口フランジ15を貫通して前記内管16内下部に連通
しており、前記炉口フランジ15に設けられた排気管1
8は、前記外管14と内管16との間の空間19に連通
している。
【0013】ボート8は図示しないボートエレベータに
設けられた炉口蓋10にボートキャップ11を介して載
置され、前記内管16の下方からは前記ボートエレベー
タにより前記ボート8が装入、引出しされる。該ボート
8には処理される基板9が水平姿勢で、多段に装填さ
れ、前記炉口蓋10はボート8装入時には前記内管16
の下端開口部(炉口部)を気密に閉塞する。
【0014】前記外管14内が真空引きされ、前記反応
室4が前記ヒータユニット1により加熱され、反応ガス
が前記ガス導入管17より導入されて、前記基板9表面
に成膜処理される。
【0015】成膜処理後、前記排気管18より排気され
つつ、前記ガス導入管17より窒素ガスが導入され、前
記外管14の内部が窒素ガスに置換される。置換後、前
記ボート8が炉内より引出される。
【0016】
【発明が解決しようとする課題】図3で示す従来の基板
成膜装置では、前記反応室4の上部から窒素ガスを導入
しているので、上部から徐々に窒素ガスに置換され、前
記排気管7より酸素が押出される。この為、下部の基板
は上部の基板より多くの時間酸素に接することとなり、
上部の基板に比して酸化膜が厚くなる可能性があり、前
記ボート8の上部に装填された基板9と下部に装填され
た基板9とで、膜厚に差が生じることもあった。
【0017】又、図4で示す従来の基板成膜装置では、
前記反応室4の下部から窒素ガスを導入しているので、
下部から徐々に窒素ガスに置換され、前記排気管18よ
り反応ガスが押出される。この為、上部の基板は下部の
基板より多くの時間反応ガスに接することとなり、下部
の基板に比して生成膜が厚くなる可能性があり、前記前
記ボート8の上部に装填された基板9と下部に装填され
た基板9とで、膜厚に差が生じることもあった。
【0018】本発明は斯かる実情に鑑み、同一工程で処
理した基板間で成膜膜厚の不均一を解消し、成膜品質が
安定する様にしたものである。
【0019】
【課題を解決するための手段】本発明は、成膜処理を行
う反応室と該反応室に装入され、基板を保持する基板保
持手段と、前記反応室の一端側から不活性ガスを導入す
る第1のガス導入管と、前記反応室の他端側から排気す
る排気手段と、前記反応室の一端と他端の間から不活性
ガスを供給する第2のガス導入管を具備した基板成膜装
置に係るものである。
【0020】
【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
【0021】図1により第1の実施の形態について説明
する。
【0022】該第1の実施の形態は、上記図3で示した
酸化膜を成膜する基板成膜装置を示している。
【0023】尚、図1中、図3中で示したものと同等の
ものには同符号を付し、その説明を省略する。
【0024】第2のガス導入管である副導入管21を外
管2の下端より内管3の外面に沿って立上げ、前記副導
入管21を前記内管3の所要位置、例えば前記ボート8
の高さの中間位置に相当する部分に前記副導入管21の
先端を連通させる。該副導入管21はヒータユニット1
より外方に延出し、図示しない窒素ガス供給源に接続さ
れる。ガス導入管5は図示しない窒素ガス供給源に接続
されると共に図示しない酸素ガス供給源に接続され、図
示しない切替えバルブにより、窒素ガス供給源と酸素ガ
ス供給源との連通状態が切替えられる様になっている。
【0025】基板の成膜処理、例えば酸化膜を成膜する
場合、ヒータユニット1により反応室4を高温に加熱
し、真空引きした後前記ガス導入管5、ガス溜め6を介
して前記内管3の天井から酸素を導入し、前記反応室4
内を酸素で充填し、基板9の表面を酸化させて酸化膜を
生成する。この時、排気管7からは前記反応室4内を所
定圧に保つ様に排気され、前記副導入管21は図示しな
いバルブにより、閉塞されている。
【0026】酸化膜生成後、前記ボート8を引出す前
に、前記ガス導入管5から前記ガス溜め6を介して窒素
ガスを供給すると共に前記副導入管21から窒素ガスを
導入しつつ、前記排気管7から排気し、内管3の内部を
窒素ガスにより、置換する。
【0027】前記副導入管21から窒素ガスが導入され
るのは成膜処理が完了してから、次の成膜処理が開始さ
れる迄の期間であり、又導入される時間は成膜処理が完
了してから次の成膜処理が開始される迄の全期間、或は
一部の期間、成膜処理の全期間内であって反応ガスを別
の反応ガスに切替える場合の間の時間である。
【0028】前記副導入管21から窒素ガスを供給する
ことで、前記ボート8の上部と中間部とが同時に窒素ガ
スに置換されることとなり、該ボート8上部に位置する
基板9と下部に位置する基板9とで酸素に接している時
間の差が少なくなり、前記ボート8上の基板9の位置の
相違に起因する成膜膜厚の相違がなくなる。
【0029】而して、同一バッチ処理での基板間での膜
厚の均一性が向上する。
【0030】図2は第2の実施の形態を示しており、上
記図4で示した化学気相成膜法により基板表面に成膜処
理を行うバッチ処理式のCVD成膜装置に対応してい
る。
【0031】尚、図2中、図4中で示したものと同等の
ものには同符号を付し、その説明を省略する。
【0032】有天筒状のヒータユニット1の内部に有天
筒体の外管14が同心に設けられ、更に該外管14の下
端に炉口フランジ15が設けられ、前記外管14の内部
に同心に設けられた内管16は前記炉口フランジ15に
支持されている。前記内管16の内部は反応室4となっ
ている。
【0033】前記炉口フランジ15を貫通し、前記内管
16に沿って立上がる副導入管22を設け、該副導入管
22の上端は前記内管16の内側(前記反応室4)に開
口している。前記副導入管22の他端部は、前記炉口フ
ランジ15より外方に延出し、図示しない窒素ガス供給
源に接続されている。排気管18はバルブ(図示せず)
の切替えにより、反応ガス供給源、窒素ガス供給源に択
一的に接続される。
【0034】前記外管14内が真空引きされ、内部が前
記ヒータユニット1により加熱され、反応ガスがガス導
入管17より導入されて、基板9表面に成膜処理され
る。前記副導入管22はバルブ(図示せず)により閉塞
され、前記排気管18からは前記反応室4が所定圧に保
持される様に排気される。
【0035】成膜処理後、前記排気管18より排気され
つつ、前記ガス導入管17、副導入管22より窒素ガス
が導入され、前記外管14の内部が窒素ガスに置換され
る。置換後、前記ボート8が前記反応室4内より引出さ
れる。
【0036】前記副導入管22から窒素ガスを供給する
ことで、前記ボート8の下部と中間部とが同時に窒素ガ
スに置換されることとなり、前記ボート8の下部に位置
する基板9と上部に位置する基板9とで反応ガスに接し
ている時間の差が少なくなり、前記ボート8の位置の相
違に起因する成膜膜厚の相違がなくなる。
【0037】而して、同一バッチ処理での基板間での膜
厚の均一性が向上する。
【0038】上記第2の実施の形態に於いても、前記副
導入管22から窒素ガスが導入されるのは成膜処理が完
了してから、次の成膜処理が開始される迄の期間であ
り、又導入される時間は成膜処理が完了してから次の成
膜処理が開始される迄の全期間、或は一部の期間、成膜
処理の全期間内であって反応ガスを別の反応ガスに切替
える場合の間の時間である。
【0039】尚、上記実施の形態では、副導入管から導
入される窒素ガスの導入箇所は1箇所であったが、複数
箇所としてもよく、副導入管の本数も1本に限らず、複
数本であっても良い。又、第2の実施の形態に於いて、
副導入管22を内管16の内面に沿って立上がらせても
よい等、副導入管の設ける位置、形状については種々変
更が可能である。更に成膜処理後導入するガスを窒素ガ
スとしたが、窒素ガス以外の不活性ガス、例えばアルゴ
ン等であっても良いことは言う迄もない。
【0040】
【発明の効果】以上述べた如く本発明によれば、成膜処
理を行う反応室と該反応室に装入され、基板を保持する
基板保持手段と、前記反応室の一端側から不活性ガスを
導入する第1のガス導入管と、前記反応室の他端側から
排気する排気手段と、前記反応室の一端と他端の間から
不活性ガスを供給する第2のガス導入管を具備したの
で、同一工程で処理した基板間で成膜膜厚の均一性が向
上し、成膜品質が安定するという優れた効果を発揮す
る。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a substrate film forming apparatus for forming a film such as an oxide film on a substrate such as a silicon wafer. 2. Description of the Related Art FIG. 3 shows a conventional vertical oxidation furnace which is one of batch processing type substrate film forming apparatuses and forms an oxide film. [0003] An outer tube 2, which is a canned cylindrical body and functions as a heat equalizing tube, is provided concentrically with the heater unit 1 inside a canned cylindrical heater unit 1. An inner tube 3 which is a cylindrical body is provided concentrically with the outer tube 2. The inside of the inner tube 3 is a reaction chamber 4. A gas inlet pipe 5 rising from the lower end of the inner pipe 3 along the outer pipe 2 communicates with a gas reservoir 6 formed on the upper surface of the ceiling of the inner pipe 3. The gas reservoir 6 communicates with the reaction chamber 4 through a number of gas dispersion holes (not shown). An exhaust pipe 7 communicates with a lower portion of the inner pipe 3. A boat 8 serving as a substrate holding means is loaded and unloaded from below the inner tube 3 by a boat elevator (not shown). Is loaded in multiple stages. The boat 8 is placed via a boat cap 11 on a furnace lid 10 provided in a boat elevator, and the furnace lid 10 hermetically seals the lower end opening (furnace opening) of the inner tube 3 when the boat 8 is loaded. To be closed. In the case of forming a film on the substrate 9, for example, forming an oxide film, the reaction chamber 4 is heated to a high temperature by the heater unit 1, evacuated, and then passed through the gas introduction pipe 5 and the gas reservoir 6. Oxygen is introduced from the ceiling of the inner tube 3, the inside of the reaction chamber 4 is filled with oxygen, and the surface of the substrate 9 is oxidized to form an oxide film. After the oxide film is formed and before the boat 8 is pulled out, the inside of the reaction chamber 4 is replaced with nitrogen gas. This is to prevent an oxide film from being formed more than necessary on the substrate 9 and to prevent oxygen from leaking out of the furnace. The replacement with nitrogen gas is carried out while supplying nitrogen gas through the gas introduction pipe 5 and the gas reservoir 6 while the exhaust pipe 7 is being supplied.
It is done by exhausting from. After the inside of the reaction chamber 4 has been replaced with nitrogen gas and the inside of the reaction chamber 4 has dropped to a predetermined temperature, the boat 8 is pulled out. FIG. 4 shows a reactor section of a batch processing type CVD film forming apparatus for forming a film on a substrate surface by a chemical vapor deposition method. An outer tube 14 having a canned cylindrical body is provided concentrically with the heater unit 1 inside the heater unit 1 having a cylindrical shape, and a furnace port flange 15 is provided at a lower end of the outer tube 14. Inner tube 16 provided concentrically inside outer tube 14
Are supported by the furnace opening flange 15. The inner pipe 1
The inside of 6 is a reaction chamber 4. A gas inlet pipe 17 for introducing a reaction gas penetrates through the furnace port flange 15 and communicates with the lower portion of the inner pipe 16.
8 communicates with a space 19 between the outer tube 14 and the inner tube 16. The boat 8 is mounted via a boat cap 11 on a furnace cover 10 provided in a boat elevator (not shown), and the boat 8 is loaded and unloaded from below the inner tube 16 by the boat elevator. . Substrates 9 to be processed are loaded in the boat 8 in a horizontal position in multiple stages, and the furnace cover 10 is attached to the inner tube 16 when the boat 8 is loaded.
Of the lower end (furnace opening) of the airtightly closed. The inside of the outer tube 14 is evacuated, the reaction chamber 4 is heated by the heater unit 1, and a reaction gas is introduced from the gas introduction tube 17 to form a film on the surface of the substrate 9. After the film forming process, nitrogen gas is introduced from the gas introduction pipe 17 while being evacuated from the exhaust pipe 18, and the inside of the outer pipe 14 is replaced with nitrogen gas. After the replacement, the boat 8 is pulled out of the furnace. In the conventional substrate film forming apparatus shown in FIG. 3, since nitrogen gas is introduced from the upper part of the reaction chamber 4, it is gradually replaced with nitrogen gas from the upper part. Oxygen is extruded from the exhaust pipe 7. For this reason, the lower substrate is exposed to oxygen for a longer time than the upper substrate,
The oxide film may be thicker than the upper substrate, and a difference in film thickness may occur between the substrate 9 loaded on the upper portion of the boat 8 and the substrate 9 loaded on the lower portion. In the conventional substrate film forming apparatus shown in FIG.
Since nitrogen gas is introduced from the lower part of the reaction chamber 4,
The nitrogen gas is gradually replaced from the lower part, and the reaction gas is extruded from the exhaust pipe 18. For this reason, the upper substrate is in contact with the reaction gas for a longer time than the lower substrate, and there is a possibility that the formed film becomes thicker than the lower substrate. In some cases, there was a difference in the film thickness between the substrate 9 and the substrate 9 loaded below. The present invention has been made in view of the above-mentioned circumstances, and is intended to eliminate non-uniformity in film thickness between substrates processed in the same process and to stabilize film formation quality. According to the present invention, there is provided a reaction chamber for performing a film forming process, a substrate holding means which is inserted into the reaction chamber and holds a substrate, and an inactive member provided at one end of the reaction chamber. A first gas introduction pipe for introducing gas, an exhaust unit for exhausting gas from the other end of the reaction chamber, and a second gas introduction pipe for supplying inert gas from between one end and the other end of the reaction chamber. The present invention relates to a substrate film forming apparatus provided. Embodiments of the present invention will be described below with reference to the drawings. The first embodiment will be described with reference to FIG. The first embodiment shows a substrate film forming apparatus for forming the oxide film shown in FIG. In FIG. 1, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. A sub-introduction pipe 21, which is a second gas introduction pipe, is raised from the lower end of the outer pipe 2 along the outer surface of the inner pipe 3, and the sub-introduction pipe 21 is moved to a required position of the inner pipe 3, for example, the boat. 8
The leading end of the sub-introduction pipe 21 is communicated with a portion corresponding to an intermediate position at the height of. The sub-introduction tube 21 is
It extends further outward and is connected to a nitrogen gas supply source (not shown). The gas introduction pipe 5 is connected to a nitrogen gas supply source (not shown) and to an oxygen gas supply source (not shown) so that the communication state between the nitrogen gas supply source and the oxygen gas supply source is switched by a switching valve (not shown). Has become. In the case of forming a film on a substrate, for example, forming an oxide film, the reaction chamber 4 is heated to a high temperature by the heater unit 1 and evacuated, and then the inner pipe is passed through the gas inlet pipe 5 and the gas reservoir 6. Oxygen is introduced from the ceiling of the reaction chamber 3 and
The inside is filled with oxygen, and the surface of the substrate 9 is oxidized to form an oxide film. At this time, air is exhausted from the exhaust pipe 7 so as to maintain the inside of the reaction chamber 4 at a predetermined pressure, and the sub-introduction pipe 21 is closed by a valve (not shown). After the oxide film is formed and before the boat 8 is pulled out, the nitrogen gas is supplied from the gas introduction pipe 5 through the gas reservoir 6 and the exhaust gas is introduced while introducing the nitrogen gas from the sub-introduction pipe 21. The gas is exhausted from the pipe 7 and the inside of the inner pipe 3 is replaced with nitrogen gas. The nitrogen gas is introduced from the sub-introduction pipe 21 during a period from the completion of the film forming process to the start of the next film forming process. The time from when the reaction gas is switched to another reaction gas during the entire period from the completion of the process to the start of the next film formation process, or a part of the period, within the entire period of the film formation process It is. By supplying nitrogen gas from the sub-introduction pipe 21, the upper portion and the intermediate portion of the boat 8 are simultaneously replaced with nitrogen gas, and the substrate 9 located on the upper portion of the boat 8 and the lower portion are located on the lower portion. The difference in the time in which the substrate 9 is in contact with oxygen is reduced, and the difference in the film thickness due to the difference in the position of the substrate 9 on the boat 8 is eliminated. Thus, the uniformity of the film thickness between the substrates in the same batch processing is improved. FIG. 2 shows a second embodiment, which corresponds to a batch processing type CVD film forming apparatus for forming a film on a substrate surface by the chemical vapor deposition method shown in FIG. I have. In FIG. 2, the same components as those shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. An outer tube 14 of a canned cylindrical body is provided concentrically inside the heater unit 1 having a cylindrical shape, and a furnace port flange 15 is provided at a lower end of the outer tube 14. An inner tube 16 provided concentrically with the furnace is supported by the furnace port flange 15. The inside of the inner tube 16 is the reaction chamber 4. A sub-introduction pipe 22 which penetrates the furnace port flange 15 and rises along the inner pipe 16 is provided, and the upper end of the sub-introduction pipe 22 is opened inside the inner pipe 16 (the reaction chamber 4). are doing. The other end of the sub-introduction pipe 22 extends outward from the furnace port flange 15 and is connected to a nitrogen gas supply source (not shown). The exhaust pipe 18 is a valve (not shown)
, The gas supply source is selectively connected to the reaction gas supply source and the nitrogen gas supply source. The inside of the outer tube 14 is evacuated, the inside is heated by the heater unit 1, and a reaction gas is introduced from a gas introduction tube 17 to form a film on the surface of the substrate 9. The sub-introduction pipe 22 is closed by a valve (not shown), and the exhaust pipe 18 is evacuated so that the reaction chamber 4 is maintained at a predetermined pressure. After the film forming process, nitrogen gas is introduced from the gas introduction pipe 17 and the sub-introduction pipe 22 while being exhausted from the exhaust pipe 18, and the inside of the outer pipe 14 is replaced with nitrogen gas. After the replacement, the boat 8 is pulled out of the reaction chamber 4. By supplying nitrogen gas from the sub-introduction pipe 22, the lower portion and the intermediate portion of the boat 8 are simultaneously replaced with nitrogen gas, and the substrate 9 and the substrate 9 located at the lower portion of the boat 8 The difference in the time of contact with the reactive gas between the substrate 9 and the substrate 9 is reduced, and the difference in the film thickness due to the difference in the position of the boat 8 is eliminated. Thus, the uniformity of the film thickness between the substrates in the same batch processing is improved. In the second embodiment, the nitrogen gas is introduced from the sub-introduction pipe 22 only after the completion of the film forming process and before the next film forming process is started. In addition, the introduction time is within the entire period from the completion of the film forming process to the start of the next film forming process, or a part of the time, within the entire period of the film forming process, and Is the time between switching to a different reaction gas. In the above-described embodiment, the introduction point of the nitrogen gas introduced from the sub-introduction pipe is one. However, a plurality of points may be introduced, and the number of sub-introduction pipes is not limited to one. It may be a book. Also, in the second embodiment,
The position and shape of the sub-introduction tube can be variously changed, for example, the sub-introduction tube 22 may be raised along the inner surface of the inner tube 16. Further, although the gas introduced after the film forming process is nitrogen gas, it goes without saying that an inert gas other than nitrogen gas, for example, argon or the like may be used. As described above, according to the present invention, a reaction chamber for performing a film forming process, substrate holding means which is inserted into the reaction chamber and holds a substrate, A first gas introduction pipe for introducing an inert gas, exhaust means for exhausting from the other end of the reaction chamber, and a second gas introduction for supplying an inert gas from between one end and the other end of the reaction chamber Since the tube is provided, the uniformity of the film thickness is improved between the substrates processed in the same process, and the excellent effect of stabilizing the film formation quality is exhibited.
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す要部説明図で
ある。
【図2】本発明の第2の実施の形態を示す要部説明図で
ある。
【図3】第1の従来例を示す説明図である。
【図4】第2の従来例を示す説明図である。
【符号の説明】
1 ヒータユニット
2 外管
3 内管
4 反応室
5 ガス導入管
7 排気管
8 ボート
9 基板
17 ガス導入管
18 排気管
21 副導入管
22 副導入管BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a main part showing a first embodiment of the present invention. FIG. 2 is an explanatory view of a main part showing a second embodiment of the present invention. FIG. 3 is an explanatory diagram showing a first conventional example. FIG. 4 is an explanatory diagram showing a second conventional example. [Description of Signs] 1 Heater unit 2 Outer tube 3 Inner tube 4 Reaction chamber 5 Gas introduction tube 7 Exhaust tube 8 Boat 9 Substrate 17 Gas introduction tube 18 Exhaust tube 21 Secondary introduction tube 22 Secondary introduction tube