JP2003096437A - Ultraviolet light absorbent and/or shielding agent and method for producing the same - Google Patents

Ultraviolet light absorbent and/or shielding agent and method for producing the same

Info

Publication number
JP2003096437A
JP2003096437A JP2001292945A JP2001292945A JP2003096437A JP 2003096437 A JP2003096437 A JP 2003096437A JP 2001292945 A JP2001292945 A JP 2001292945A JP 2001292945 A JP2001292945 A JP 2001292945A JP 2003096437 A JP2003096437 A JP 2003096437A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
salt
ultraviolet
shielding agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292945A
Other languages
Japanese (ja)
Other versions
JP4858665B2 (en
Inventor
Akira Okubo
彰 大久保
Arihiro Kawamoto
有洋 川本
Nozomi Hashimoto
望 橋本
Akiyo Yoshida
昭代 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomita Pharmaceutical Co Ltd
Original Assignee
Tomita Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomita Pharmaceutical Co Ltd filed Critical Tomita Pharmaceutical Co Ltd
Priority to JP2001292945A priority Critical patent/JP4858665B2/en
Publication of JP2003096437A publication Critical patent/JP2003096437A/en
Application granted granted Critical
Publication of JP4858665B2 publication Critical patent/JP4858665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ultraviolet light absorbent and/or shielding agent effective not only in the UV-B area but in the UV-A area. SOLUTION: This ultraviolet light absorbent and/or ultraviolet light-shielding agent contains titanium oxide obtained by hydrolyzing a low valent titanium salt (especially a 3 valent titanium salt).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、UV-A領域において
紫外線吸収能を有する酸化チタン、その製造法、該酸化
チタンからなる紫外線吸収及び/又は遮蔽剤に関する。
TECHNICAL FIELD The present invention relates to titanium oxide having an ultraviolet absorbing ability in the UV-A region, a method for producing the same, and an ultraviolet absorbing and / or shielding agent comprising the titanium oxide.

【0002】[0002]

【従来の技術】太陽からの紫外線は240〜400nmの範囲の
波長を有する。紫外線は、その波長領域によって3帯域
にわけられる。すなわち、320〜400nmの長波長の紫外線
(UV-A)、280〜320nmの紫外線(UV-B)、および地球の
オゾン層で吸収され、地表にはほとんど到達しない240
〜280nmの低波長の紫外線(UV-C)である。このような
放射線は、人体に悪影響を及ぼすだけでなく、放射線を
受けた種々の物質は脆化、変色、分解、不安定化等の現
象が見られ、多くの商業製品の価値を低下させる原因と
なっていた。
Ultraviolet rays from the sun have wavelengths in the range 240 to 400 nm. Ultraviolet rays are divided into three bands according to their wavelength range. That is, it is absorbed by the long wavelength ultraviolet rays (UV-A) of 320 to 400 nm, the ultraviolet rays of 280 to 320 nm (UV-B), and the ozone layer of the earth, and does not reach the surface 240
It is a low wavelength ultraviolet ray (UV-C) of ~ 280 nm. Such radiation not only adversely affects the human body, but various substances that have received radiation have phenomena such as embrittlement, discoloration, decomposition, and destabilization, which are the causes of reducing the value of many commercial products. It was.

【0003】このため、耐光性(耐候性)材料を提供す
るために、プラスチック、ゴムのような高分子化合物、
感熱記録シートおよび熱転写用インキ、または液晶表示
材料には、紫外線を吸収・遮蔽する効果のある化合物が
添加されることがある。この様な添加剤は、紫外線によ
る人体の炎症および製品の劣化等を防止するために、化
粧品、塗料、レンズ、フィルタ、フィルムなどにも用い
られてきた。
Therefore, in order to provide a light resistant (weather resistant) material, a polymer compound such as plastic or rubber,
A compound having an effect of absorbing and blocking ultraviolet rays may be added to the thermal recording sheet and the thermal transfer ink or the liquid crystal display material. Such additives have been used in cosmetics, paints, lenses, filters, films and the like in order to prevent inflammation of the human body and deterioration of products due to ultraviolet rays.

【0004】従来、そのような添加剤としては、例え
ば、サリシレート系、ベンゾフェノン系、ベンゾトリア
ゾール系、シアノアクリレート系、ヒダントイン誘導
体、ヒンダードアミン系(光安定剤)の有機化合物が知
られているが、有機系紫外線吸収剤は、その吸収作用に
より、即効的な紫外線遮蔽効果を期待することはできて
も、持続性(耐久性)、安全性等の問題からその使用量
が減少してきている。したがって、これらの問題の少な
い無機系化合物からなる紫外線吸収・遮蔽剤が近年注目
されている。
Conventionally, as such additives, for example, salicylate-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based, hydantoin derivatives, hindered amine-based (light stabilizer) organic compounds are known. Due to its absorbing action, the ultraviolet absorbers can be expected to have an immediate ultraviolet-shielding effect, but their use amount is decreasing due to problems such as durability (durability) and safety. Therefore, in recent years, an ultraviolet absorber / shielding agent composed of an inorganic compound having less of these problems has been attracting attention.

【0005】無機系化合物からなる紫外線吸収・遮蔽剤
は、無機化合物それ自体が持っている紫外線吸収能と粒
子サイズの制御によって紫外線波長領域の散乱能の2つ
の機能を発揮せしめるものが主流である。代表的な無機
系化合物としては、粒子サイズを制御した酸化チタン、
酸化亜鉛、酸化セリウム等の金属酸化物である紫外線吸
収・遮蔽剤が提案されている(特開昭49−450号公
報、特開平5−43682号公報、特公平7−2329
4号公報)。
The mainstream of the ultraviolet absorbing / screening agent composed of an inorganic compound is that which has two functions of the ultraviolet absorbing ability of the inorganic compound itself and the scattering ability in the ultraviolet wavelength region by controlling the particle size. . As a typical inorganic compound, titanium oxide whose particle size is controlled,
Ultraviolet absorbing / blocking agents which are metal oxides such as zinc oxide and cerium oxide have been proposed (JP-A-49-450, JP-A-5-43682, JP-B-7-2329).
4 publication).

【0006】酸化亜鉛はUV-A付近に有効な吸収域が見ら
れ、特に化粧料用紫外線吸収剤としての利用が見込まれ
るが、酸・アルカリと反応しやすく、化学的安定性に難
点がある。また、酸化セリウムはUV-A付近に有効な吸収
域が見られ、UV-A遮蔽には有効であるが、高価であるた
めその使用が制限される。これらに対して、酸化チタン
は化学的安定性が高く、比較的安価であり、UV-B付近に
有効な吸収域があるが、UV-Aに対しては、粒子サイズを
制御して散乱による遮蔽効果を補う必要があり、最も効
果的な散乱効果が得られる粒子径は、0.1μm以下の平
均粒子径からなる微粒子であるとされている。
[0006] Zinc oxide has an effective absorption region near UV-A, and is expected to be used as a UV absorber for cosmetics in particular, but it easily reacts with acids and alkalis and has difficulty in chemical stability. . Further, cerium oxide has an effective absorption region near UV-A and is effective for UV-A screening, but its use is limited because it is expensive. On the other hand, titanium oxide has high chemical stability, is relatively inexpensive, and has an effective absorption region near UV-B. However, for UV-A, the particle size is controlled to cause scattering. It is necessary to make up for the shielding effect, and the particle size with which the most effective scattering effect is obtained is said to be fine particles having an average particle size of 0.1 μm or less.

【0007】しかしながら、このような微粒子金属酸化
物は、凝集が起こりやすく、使用時に分散工程を必要と
することから、コストも高く、それが使用上の制限とな
っていた。
However, such fine particle metal oxides easily aggregate, and require a dispersion step at the time of use, so that the cost is high, which is a limitation in use.

【0008】[0008]

【発明が解決しようとする課題】本発明は、粒子サイズ
に関係なくUV-A及びUV-Bの両紫外線領域において、充分
な紫外線吸収・遮蔽効果を有する、酸化チタンからなる
紫外線吸収及び/又は遮蔽剤の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a titanium oxide UV absorbing and / or UV absorbing agent having a sufficient UV absorbing / shielding effect in both UV-A and UV-B UV regions regardless of particle size. The purpose is to provide a shielding agent.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記従来技
術の問題点に鑑み鋭意検討を重ねた結果、低原子価チタ
ン塩にアルカリを加えて加水分解して得られる酸化チタ
ンが紫外線吸収能を有することを見出し本発明を完成し
た。
The present inventor has conducted extensive studies in view of the above problems of the prior art, and as a result, titanium oxide obtained by adding an alkali to a low-valent titanium salt and hydrolyzing it absorbs ultraviolet rays. The present invention was completed by finding out that it has the ability.

【0010】すなわち、本発明は、以下の酸化チタン、
その製造法、該酸化チタンからなる紫外線吸収及び/又
は遮蔽剤を提供する。 項1.低原子価チタン塩を加水分解することにより、UV
-A吸収能を有する酸化チタンの製造法。 項2.低原子価チタン塩が3価チタン塩であることを特
徴とする項1記載の酸化チタンの製造法。 項3.加水分解により得られる加水分解物を、さらに焼
成することを特徴とする項1記載の酸化チタンの製造
法。 項4.低原子価チタン塩を加水分解することにより得ら
れる、UV-A吸収能を有する酸化チタン。 項5.項4に記載の酸化チタンからなる紫外線吸収及び
/又は遮蔽剤。
That is, the present invention provides the following titanium oxide,
A method for producing the same and an ultraviolet ray absorbing and / or shielding agent comprising the titanium oxide are provided. Item 1. UV by hydrolyzing low-valent titanium salt
-A method for producing titanium oxide having absorption ability. Item 2. Item 2. The method for producing titanium oxide according to Item 1, wherein the low-valent titanium salt is a trivalent titanium salt. Item 3. Item 2. The method for producing titanium oxide according to Item 1, wherein the hydrolyzate obtained by hydrolysis is further calcined. Item 4. UV-A absorbing titanium oxide obtained by hydrolyzing a low-valent titanium salt. Item 5. Item 4. An ultraviolet absorbing and / or shielding agent comprising titanium oxide according to item 4.

【0011】[0011]

【発明の実施の形態】本発明において、低原子価チタン
塩としては、2〜3.8価のチタン塩をいう。2価及び3.8
価のチタン原子は、4価のチタン原子を特定条件下で還
元することで得られる。好ましくは2価、3価のチタン
塩であり、さらに好ましくは3価のチタン塩である。こ
れらのうちの1種又は2種以上を使用することができ
る。塩の形態としては、正塩、酸性塩、塩基性塩や、単
塩、複塩や、錯塩や、含水塩(水和物)、無水塩を問わ
ない。具体的な化合物としては、塩化チタン、臭化チタ
ン、硫酸チタン、チタンテトラプロポキシド等が挙げら
れるがこれらに限定されない。好ましいのは水溶性のチ
タン塩であり、その例としては、塩化チタン、硫酸チタ
ン、臭化チタン等が挙げられる。さらに好ましくは、三
塩化チタン、硫酸チタン(III)等である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the low-valent titanium salt refers to a titanium salt having a valence of 2 to 3.8. Bivalent and 3.8
A valent titanium atom can be obtained by reducing a tetravalent titanium atom under specific conditions. A divalent or trivalent titanium salt is preferable, and a trivalent titanium salt is more preferable. One or more of these can be used. The form of the salt may be a normal salt, an acidic salt, a basic salt, a single salt, a double salt, a complex salt, a hydrous salt (hydrate) or an anhydrous salt. Specific compounds include, but are not limited to, titanium chloride, titanium bromide, titanium sulfate, titanium tetrapropoxide, and the like. Preferred are water-soluble titanium salts, and examples thereof include titanium chloride, titanium sulfate, titanium bromide and the like. More preferred are titanium trichloride and titanium (III) sulfate.

【0012】上記チタン塩を加水分解する際のpHは非常
に重要であるが、所望の酸化チタンが生成する限り特に
制限されない。例えば、pH4.0〜10.0程度、好ましくはp
H6.0〜8.0程度である。この範囲内であれば、アルカリ
加水分解、中性加水分解、酸加水分解のいずれの加水分
解法も採用できる。
The pH at which the above titanium salt is hydrolyzed is very important, but is not particularly limited as long as the desired titanium oxide is produced. For example, pH of about 4.0 to 10.0, preferably p
It is about H6.0-8.0. Within this range, any of hydrolysis methods such as alkali hydrolysis, neutral hydrolysis and acid hydrolysis can be adopted.

【0013】例えば、アルカリ加水分解の条件は次のと
おりである。使用されるアルカリとしては、例えば水酸
化ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸
カリウム、アンモニア水、尿素等が挙げられ、これらの
1種若しくは2種以上を用いることができる。加水分解
におけるアルカリ及びチタン塩の形態は、例えば、水溶
液、アルコール溶液等が例示される。好ましくは水溶液
である。
For example, the conditions for alkaline hydrolysis are as follows. Examples of the alkali used include sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, aqueous ammonia, and urea, and one or more of these can be used. Examples of the form of the alkali and titanium salts in the hydrolysis include an aqueous solution and an alcohol solution. It is preferably an aqueous solution.

【0014】チタン塩水溶液の濃度は、Tiとして2〜30
重量%程度、好ましくは4〜20重量%程度、さらに好ま
しくは5〜10重量%程度である。
The concentration of the titanium salt aqueous solution is 2 to 30 as Ti.
The amount is about 4% by weight, preferably about 4 to 20% by weight, more preferably about 5 to 10% by weight.

【0015】アルカリ水溶液の濃度は、例えば2重量%
からアルカリの飽和濃度、好ましくは10重量%からアル
カリの飽和濃度、さらに好ましくは20〜30重量%であ
る。
The concentration of the alkaline aqueous solution is, for example, 2% by weight.
To 10% by weight, preferably 10 to 20% by weight, more preferably 20 to 30% by weight.

【0016】チタン塩を水溶液中で加水分解して酸化チ
タンを得る。チタン塩を含有する水溶液を、例えば40〜
100℃程度、好ましくは80〜100℃程度、さらに好ましく
は90〜100℃程度に加熱した後、アルカリを徐々に添加
して、pH4.0〜10.0程度、好ましくはpH6.0〜8.0程度に
調整し、加水分解を行う。pH調整後、必要に応じて、20
〜100℃程度、好ましくは20〜50℃程度で、1〜24時間
程度、好ましくは5〜20時間程度、さらに好ましくは10
〜12時間程度、撹拌または静置して熟成させることによ
って、生成物の粒子が増大し、よりUV-A吸収効果に優
れ、また濾過効率にも優れた沈殿物が得られる。
The titanium salt is hydrolyzed in an aqueous solution to obtain titanium oxide. Aqueous solution containing titanium salt, for example 40 ~
After heating to about 100 ° C, preferably about 80 to 100 ° C, more preferably about 90 to 100 ° C, gradually add alkali to adjust the pH to about 4.0 to 10.0, preferably about pH 6.0 to 8.0. And hydrolyze. After adjusting the pH, if necessary, 20
To about 100 ° C, preferably about 20 to 50 ° C, for about 1 to 24 hours, preferably about 5 to 20 hours, and more preferably 10
By aging with stirring or standing for about 12 hours, particles of the product are increased, and a precipitate having more excellent UV-A absorption effect and excellent filtration efficiency is obtained.

【0017】加水分解によって生成した沈殿を、好まし
くは濾過により分離し、水洗、乾燥した後、必要に応じ
て100〜500℃程度、好ましくは200〜400℃程度、さらに
好ましくは300〜400℃程度で焼成する。
The precipitate formed by hydrolysis is preferably separated by filtration, washed with water and dried, and if necessary, about 100 to 500 ° C, preferably about 200 to 400 ° C, more preferably about 300 to 400 ° C. Bake at.

【0018】4価のチタン塩を加水分解した場合には、
ルチル型の結晶構造を有する酸化チタンが生成する。し
かし、本発明では2〜3.8価のチタン塩を加水分解する
ため、加水分解時に2〜3.8価のチタン塩が徐々に酸化
されて4価のチタン塩へと変化しながら、結晶が生成・
成長する。この際、結晶構造中には一時的に2〜3.8価
のチタン原子と4価のチタン原子が共存する。この様な
状態で得られる本発明の酸化チタンは、4価のチタン塩
を用いた場合に生成するルチル型結晶構造とは異なり、
その結晶構造は完全なルチル型結晶構造を構築できず、
構造不整を伴った不完全な結晶構造をとる。さらに、焼
成することにより結晶構造中に残存する2〜3.8価のチ
タン原子が4価のチタン原子へと完全に酸化され、構造
不整の形成をより促進することによって、UV-A吸収作用
がより強くなる。なお、2〜3.8価のチタン塩とその他
のチタン塩(例えば4価のチタン塩)との混合物を加水
分解した場合にも、生成した酸化チタンが不整構造を伴
ったルチル型結晶構造を有し、UV-A吸収作用を有する限
り、本発明に包含される。
When the tetravalent titanium salt is hydrolyzed,
Titanium oxide having a rutile type crystal structure is produced. However, in the present invention, since a 2-3.8 valent titanium salt is hydrolyzed, a crystal is generated while the 2-3.8 valent titanium salt is gradually oxidized during the hydrolysis to a tetravalent titanium salt.
grow up. At this time, titanium atoms having a valence of 2 to 3.8 and titanium atoms having a valence of 4 are temporarily present in the crystal structure. The titanium oxide of the present invention obtained in such a state is different from the rutile type crystal structure produced when a tetravalent titanium salt is used,
Its crystal structure cannot build a perfect rutile type crystal structure,
It has an incomplete crystal structure with structural irregularities. Further, by firing, 2-to 3.8-valent titanium atoms remaining in the crystal structure are completely oxidized to tetra-valent titanium atoms, and by further promoting the formation of structural imperfections, the UV-A absorption action is further improved. Become stronger. Even when a mixture of a 2- to 3.8-valent titanium salt and another titanium salt (for example, a 4-valent titanium salt) is hydrolyzed, the produced titanium oxide has a rutile type crystal structure with an asymmetric structure. , As long as it has a UV-A absorbing action, it is included in the present invention.

【0019】この様にして得られた本発明の酸化チタン
はUV-A領域、好ましくは350〜400nm、さらに好ましくは
370〜400nmに吸収波長を有する。これは、通常の酸化チ
タンが有するエネルギーバンド(約3.0eV)の中に、そ
の結晶の構造不整に起因する新たなエネルギー順位が生
じ、UV-A領域の波長が吸収されることによると考えられ
る。さらに、本発明の酸化チタンは、通常の酸化チタン
が有するUV-B領域の波長の吸収能も備えている。
The titanium oxide of the present invention thus obtained is in the UV-A region, preferably 350 to 400 nm, more preferably
It has an absorption wavelength between 370 and 400 nm. This is thought to be due to the fact that a new energy level is generated in the energy band of ordinary titanium oxide (about 3.0 eV) due to the structural irregularity of the crystal, and the wavelength in the UV-A region is absorbed. . Furthermore, the titanium oxide of the present invention also has the ability to absorb wavelengths in the UV-B region that ordinary titanium oxide has.

【0020】また、本発明の酸化チタンは、紫外線吸収
能を有するため、粒子サイズに関わりなく使用すること
ができる。これに加え、粒子サイズを調製することによ
って、さらに紫外線遮蔽効果を備えることが可能であ
る。
Further, since the titanium oxide of the present invention has an ultraviolet absorbing ability, it can be used regardless of the particle size. In addition to this, it is possible to further provide an ultraviolet shielding effect by adjusting the particle size.

【0021】本発明の紫外線吸収及び/又は遮蔽剤は、
これまで金属酸化物紫外線吸収・遮蔽剤が用いられてい
た用途に使用可能であるし、従来の酸化チタンがUV-A吸
収能を持たないために使用できなかった用途にも使用可
能である。例えば、塗料、印刷インキ、プラスチック、
製紙、化繊、コンデンサー、食品添加物、化粧料の添加
剤として有用である。
The ultraviolet absorbing and / or shielding agent of the present invention comprises
It can be used for applications where metal oxide UV absorbers / screeners have been used up to now, and also for applications where conventional titanium oxide could not be used because it does not have UV-A absorption ability. For example, paint, printing ink, plastic,
It is useful as an additive for papermaking, synthetic fibers, capacitors, food additives, and cosmetics.

【0022】[0022]

【発明の効果】本発明の酸化チタンは、UV-B領域だけで
なくUV-A領域においても紫外線吸収能力を有し、化学的
に安定な化合物である。このため、従来のUV-A吸収剤に
代えてより安定なUV-A吸収剤として使用することができ
る。また、酸化チタンは、無害でこれまでにも顔料とし
て広く用いられているため、本発明の紫外線吸収及び/
又は遮蔽剤についても安全性が高いと考えられる。
INDUSTRIAL APPLICABILITY The titanium oxide of the present invention is a chemically stable compound having an ultraviolet absorbing ability not only in the UV-B region but also in the UV-A region. Therefore, it can be used as a more stable UV-A absorber instead of the conventional UV-A absorber. In addition, since titanium oxide is harmless and has been widely used as a pigment so far,
Alternatively, it is considered that the shielding agent is also highly safe.

【0023】[0023]

【実施例】6重量%に調整した三塩化チタン水溶液5.2k
gを98〜100℃に保ち、25%水酸化ナトリウム水溶液4.0k
gを約3時間かけて滴下して、反応液pHを6.5〜7.0に調
整した後、加熱を停止し、母液中で一夜室温で熟成し、
得られた沈殿を濾過、水洗し、80℃で乾燥した。さら
に、この沈殿を破砕し、粉末にした後、400℃で2時間
焼成して目的とする微黄色の酸化チタンを得た。得られ
た酸化チタン及び焼成前の酸化チタン並びに従来のルチ
ル型酸化チタンのX線回析測定を行った。得られた結果
を図1に示す。焼成前及び焼成後の酸化チタンは、いず
れもルチル型の結晶構造を有していることが認められ
た。
Example: Titanium trichloride aqueous solution 5.2k adjusted to 6% by weight
Keeping g at 98-100 ℃, 25% sodium hydroxide aqueous solution 4.0k
After dropwise adding g over about 3 hours to adjust the reaction solution pH to 6.5 to 7.0, heating is stopped, and the mixture is aged overnight in the mother liquor at room temperature.
The obtained precipitate was filtered, washed with water, and dried at 80 ° C. Further, this precipitate was crushed, made into a powder, and then calcined at 400 ° C. for 2 hours to obtain the desired pale yellow titanium oxide. The obtained titanium oxide, titanium oxide before firing, and conventional rutile titanium oxide were subjected to X-ray diffraction measurement. The obtained results are shown in FIG. It was confirmed that both the titanium oxide before firing and the titanium oxide after firing had a rutile type crystal structure.

【0024】次に、焼成酸化チタン及び従来のルチル型
酸化チタンを粉末状にし、ひまし油に懸濁した懸濁液の
波長250〜400nmにおける透過率を、分光光度計を用いて
測定した。得られた結果を図2に示す。
Next, the transmittance of the suspension of calcined titanium oxide and conventional rutile-type titanium oxide in powder form and suspended in castor oil at a wavelength of 250 to 400 nm was measured using a spectrophotometer. The obtained results are shown in FIG.

【0025】本発明の酸化チタンは通常の酸化チタンと
比較してUV-A領域を含む250〜400nmにおいて著しい紫外
線ブロック効果を示した。従来の酸化チタンも320nm付
近から350nm付近にかけて紫外線ブロックが確認される
が、これは紫外線遮蔽効果であることが従来から知られ
ている。そして、従来の酸化チタンは350nm付近から400
nmにかけて紫外線遮蔽効果が減少している。これに対
し、本発明の酸化チタンは350〜400nmにおいても350nm
未満とかわらず98%以上の紫外線ブロック効果を示して
いる。このように、本発明の酸化チタンは、従来の酸化
チタンの紫外線遮蔽効果が減少する紫外線領域において
も非常に高い紫外線ブロック効果を示すことから、紫外
線遮蔽効果に加えて紫外線吸収効果も備えていることが
確認される。そして、吸収波長帯(エネルギーバンド)
の差異は、個々の化合物の結晶又は分子構造に起因する
ものであるため、本発明の酸化チタンには、その結晶構
造中に、X線回析では現れない微視的な部分で従来のル
チル型酸化チタンの結晶構造とは異なる構造、すなわち
構造不整の存在が推察される。
The titanium oxide of the present invention showed a remarkable ultraviolet ray blocking effect in the range of 250 to 400 nm including the UV-A region, as compared with ordinary titanium oxide. In conventional titanium oxide, an ultraviolet block is confirmed from around 320 nm to around 350 nm, and it is conventionally known that this is an ultraviolet blocking effect. And conventional titanium oxide is 400 nm from around 350 nm.
The UV-shielding effect decreases over nm. In contrast, the titanium oxide of the present invention is 350 nm even at 350 to 400 nm.
It shows a UV blocking effect of 98% or more, though it is less than the above. As described above, the titanium oxide of the present invention exhibits a very high ultraviolet blocking effect even in the ultraviolet region where the conventional ultraviolet shielding effect of titanium oxide is reduced, and therefore, in addition to the ultraviolet shielding effect, it also has an ultraviolet absorbing effect. Is confirmed. And absorption wavelength band (energy band)
Since the difference between the two is caused by the crystal or molecular structure of each compound, in the titanium oxide of the present invention, the conventional rutile is present in the crystal structure in a microscopic portion that does not appear in the X-ray diffraction. It is assumed that there is a structure different from the crystal structure of type titanium oxide, that is, the presence of structural irregularity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の焼成前酸化チタン、焼成後酸化チタン
及び通常のルチル型酸化チタンのX線回析結果を示すグ
ラフである。横軸は「2θ[°]」を示し、縦軸は「強度
[cps]」を示す。
FIG. 1 is a graph showing the X-ray diffraction results of titanium oxide before firing, titanium oxide after firing and ordinary rutile type titanium oxide of the present invention. The horizontal axis shows “2θ [°]” and the vertical axis shows “strength”.
[cps] "is shown.

【図2】本発明の焼成後酸化チタン及び従来の酸化チタ
ンの250〜400nmにおける分光光度計測定結果を示すグラ
フである。横軸は「波長[nm]」を示し、縦軸は「吸収・
遮断率[%]」を示す。
FIG. 2 is a graph showing the spectrophotometer measurement results of titanium oxide after firing of the present invention and conventional titanium oxide at 250 to 400 nm. The horizontal axis shows "wavelength [nm]" and the vertical axis shows "absorption /
Blocking rate [%] ”is shown.

フロントページの続き (72)発明者 吉田 昭代 徳島県鳴門市大津町大幸字若宮ノ本20−14 Fターム(参考) 4C083 AB24 CC19 FF01 4G047 CA02 CB05 CC03 Continued front page    (72) Inventor Akiyo Yoshida             20-14 Wakamiya no Omoto, Otsu-cho, Naruto City, Tokushima Prefecture F-term (reference) 4C083 AB24 CC19 FF01                 4G047 CA02 CB05 CC03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】低原子価チタン塩を加水分解することによ
り、UV-A吸収能を有する酸化チタンの製造法。
1. A method for producing titanium oxide having a UV-A absorption ability by hydrolyzing a low-valent titanium salt.
【請求項2】低原子価チタン塩が3価チタン塩であるこ
とを特徴とする請求項1記載の酸化チタンの製造法。
2. The method for producing titanium oxide according to claim 1, wherein the low-valent titanium salt is a trivalent titanium salt.
【請求項3】加水分解により得られる加水分解物を、さ
らに焼成することを特徴とする請求項1記載の酸化チタ
ンの製造法。
3. The method for producing titanium oxide according to claim 1, wherein the hydrolyzate obtained by hydrolysis is further calcined.
【請求項4】低原子価チタン塩を加水分解することによ
り得られる、UV-A吸収能を有する酸化チタン。
4. A titanium oxide having a UV-A absorbing ability, which is obtained by hydrolyzing a low-valent titanium salt.
【請求項5】請求項4に記載の酸化チタンからなる紫外
線吸収及び/又は遮蔽剤。
5. An ultraviolet absorbing and / or shielding agent comprising the titanium oxide according to claim 4.
JP2001292945A 2001-09-26 2001-09-26 Ultraviolet absorbing and / or shielding agent and method for producing the same Expired - Fee Related JP4858665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292945A JP4858665B2 (en) 2001-09-26 2001-09-26 Ultraviolet absorbing and / or shielding agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292945A JP4858665B2 (en) 2001-09-26 2001-09-26 Ultraviolet absorbing and / or shielding agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003096437A true JP2003096437A (en) 2003-04-03
JP4858665B2 JP4858665B2 (en) 2012-01-18

Family

ID=19114822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292945A Expired - Fee Related JP4858665B2 (en) 2001-09-26 2001-09-26 Ultraviolet absorbing and / or shielding agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4858665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133895A1 (en) 2008-05-02 2009-11-05 ポーラ化成工業株式会社 Titania fine-particle composite and compositons coantining the titania fine-particle composite
CN101788465A (en) * 2010-03-03 2010-07-28 攀钢集团钢铁钒钛股份有限公司 Method for judging graying point in titanium dioxide production
CN102440342A (en) * 2010-10-14 2012-05-09 上海澎博钛白粉有限公司 Titanium white for food additive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256527A (en) * 1987-04-13 1988-10-24 Agency Of Ind Science & Technol Production of chromatic hydrous titanium oxide
JPH07242422A (en) * 1994-03-08 1995-09-19 Titan Kogyo Kk Fine particle-shaped acicular titanium oxide and production thereof
JP2000328251A (en) * 1999-05-11 2000-11-28 Tokuyama Corp Formation of titanium oxide coating film and solution for forming coating film
JP2001072419A (en) * 1999-06-30 2001-03-21 Sumitomo Chem Co Ltd Titanium oxide, photo-catalyst produced by using the oxide and photo-catalytic coating agent
JP2002255554A (en) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk Visible light responsive material and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256527A (en) * 1987-04-13 1988-10-24 Agency Of Ind Science & Technol Production of chromatic hydrous titanium oxide
JPH07242422A (en) * 1994-03-08 1995-09-19 Titan Kogyo Kk Fine particle-shaped acicular titanium oxide and production thereof
JP2000328251A (en) * 1999-05-11 2000-11-28 Tokuyama Corp Formation of titanium oxide coating film and solution for forming coating film
JP2001072419A (en) * 1999-06-30 2001-03-21 Sumitomo Chem Co Ltd Titanium oxide, photo-catalyst produced by using the oxide and photo-catalytic coating agent
JP2002255554A (en) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk Visible light responsive material and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133895A1 (en) 2008-05-02 2009-11-05 ポーラ化成工業株式会社 Titania fine-particle composite and compositons coantining the titania fine-particle composite
US8945520B2 (en) 2008-05-02 2015-02-03 Pola Chemical Industries Inc. Titania fine-particle composite and compositions containing the titania fine-particle composite
US9144541B2 (en) 2008-05-02 2015-09-29 Pola Chemical Industries Inc. Titania fine-particle composite and compositions containing the titania fine-particle composite
CN101788465A (en) * 2010-03-03 2010-07-28 攀钢集团钢铁钒钛股份有限公司 Method for judging graying point in titanium dioxide production
CN102440342A (en) * 2010-10-14 2012-05-09 上海澎博钛白粉有限公司 Titanium white for food additive

Also Published As

Publication number Publication date
JP4858665B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN100491477C (en) Method of preparing sericite ultraviolet radiation screening agent
CN107029762B (en) A kind of titanium dioxide/hydroxyapatite composite photocatalyst material, preparation method and application
US7060643B2 (en) Photo-functional powder and applications thereof
JPWO2003053576A1 (en) Highly active photocatalytic particles, method for producing the same, and use thereof
JPH05186221A (en) Method for preparing powdery titanium dioxide and said powdery titanium dioxide and its aqueous suspension
JP2017222783A5 (en) Heat ray shielding fine particle dispersion, heat ray shielding laminated transparent base material, and production method thereof
JPH02255532A (en) Production of rutile type titanium oxide sol
JP3949055B2 (en) Highly active photocatalyst
JP4606385B2 (en) Method for producing alkali-type titanium oxide sol
JP2687640B2 (en) Ultrafine zinc oxide powder having excellent ultraviolet absorption capacity and method for producing the same
JPH0113511B2 (en)
JP2008001774A (en) Ultraviolet light absorber and its use
CN104844829A (en) Preparation method of ultraviolet rejection attapulgite material
JP4327518B2 (en) Method for producing composite particles of titanium dioxide and condensed phosphate inactive as photocatalyst
JP2003327431A (en) Rutile type titanium dioxide fine grain and production method thereof
JP4858665B2 (en) Ultraviolet absorbing and / or shielding agent and method for producing the same
JPH11256133A (en) Ultraviolet light-screening agent and its production
JPH0339017B2 (en)
JPS63215520A (en) Neutral titania and production thereof
JP2007069093A (en) Rutile type titanium dioxide ultrafine particle photocatalyst
JP2006124243A (en) Method for manufacturing brookite titanium oxide and photocatalytic coating agent
JPH072522A (en) Production of titanium oxide film
JP3866076B2 (en) Cerium phosphate-titanium phosphate UV blocking agent and method for producing the same
JP3413431B2 (en) Flaky zinc oxide powder and method for producing the same
JP3505627B2 (en) Zinc phosphate UV absorber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4858665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees