JP2003095732A - Method of producing electroconductive alumina ceramics - Google Patents

Method of producing electroconductive alumina ceramics

Info

Publication number
JP2003095732A
JP2003095732A JP2001285371A JP2001285371A JP2003095732A JP 2003095732 A JP2003095732 A JP 2003095732A JP 2001285371 A JP2001285371 A JP 2001285371A JP 2001285371 A JP2001285371 A JP 2001285371A JP 2003095732 A JP2003095732 A JP 2003095732A
Authority
JP
Japan
Prior art keywords
weight
oxide
porosity
volume resistivity
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001285371A
Other languages
Japanese (ja)
Inventor
Haruo Murayama
晴男 村山
Takashi Morita
敬司 森田
Hiroko Ueno
宏子 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001285371A priority Critical patent/JP2003095732A/en
Publication of JP2003095732A publication Critical patent/JP2003095732A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively produce electroconductive alumina ceramics which has high mechanical strength and high electrical conductivity. SOLUTION: Tin oxide (SnO2 ), titanium oxide (TiO2 ), or nickel oxide (NiO) of 5 to 40 wt.% in an inner percentage, and copper oxide (Cu2 O) of 0.1 to 10 wt.% is added to alumina (Al2 O3 ), and compacted and burned. The electroconductive alumina ceramics having a volume resistivity of 10<6> to 10<11> Ω.cm is produced.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は導電性アルミナセラ
ミックスの製造方法に係わり、特に機械的強度と導電性
を高めた導電性アルミナセラミックスに関する。 【0002】 【従来の技術】従来、静電気除去用部品、セラミックス
ヒーター、セラミックスセンサ等に導電性のアルミナセ
ラミックスが使用されている。このアルミナセラミック
スは、本来高い絶縁性を有しており、導電性(体積抵抗
率で10〜1011Ω・cm)を持たせるために、S
nO等の導電性付与材を添加する方法がなされてい
る。 【0003】しかしながら、本来絶縁材料であるアルミ
ナセラミックスに高い導電性を持たせるためには、Sn
等の導電性付与材をより多く添加しなければならな
いが、その場合、母材であるアルミナセラミックスの焼
結性を阻害し、焼結体内部に気孔が残り、機械的強度を
低下させる原因となる。その対策として、ホットプレス
による焼結やHIP処理などがあるが、生産性やコスト
の面から好ましくない。 【0004】 【発明が解決しようとする課題】そこで、機械的強度が
強く、導電性の高い導電性アルミナセラミックスを安価
に製造できる導電性アルミナセラミックスの製造方法が
要望されていた。 【0005】本発明は上述した事情を考慮してなされた
もので、機械的強度が強く、導電性の高い導電性アルミ
ナセラミックスを安価に製造できる導電性アルミナセラ
ミックスの製造方法を提供することを目的とする。 【0006】 【課題を解決するための手段】上記目的を達成するた
め、本発明の1つの態様によれば、アルミナ(Al
)を主成分とし、これに酸化錫(SnO)、酸化チ
タン(TiO)、もしくは、酸化ニッケル(NiO)
を内掛けで5〜40重量%、酸化銅(CuO)を0.
1〜10重量%添加し、成形し、焼成して、体積抵抗率
が10〜10 Ω・cmの導電性アルミナセラミッ
クスを製造することを特徴とする導電性アルミナセラミ
ックスの製造方法が提供される。これにより、機械的強
度が強く、導電性の高い導電性アルミナセラミックスを
安価に製造できる。 【0007】 【発明の実施の形態】以下、本発明に係わる導電性アル
ミナセラミックスの製造方法について説明する。 【0008】アルミナ(Al)粉末を主成分と
し、これに酸化錫(SnO)、酸化チタン(Ti
)、あるいは、酸化ニッケル(NiO)粉末の一種
類を内掛けで5〜40重量%、酸化銅(CuO)粉末
を0.1〜10重量%添加し、水中で混合し、成形助剤
を加えてスプレードライヤー等で造粒し、加圧成形や、
鋳込み成形、押出成形、射出成形などによりで成形体を
得る。 【0009】得られた成形体を必要に応じて脱脂後、空
気中、例えば、1400〜1600℃で焼成する。な
お、焼成雰囲気は空気中に限らず、非酸化雰囲気や還元
雰囲気であってもよい。 【0010】本発明に係わる導電性アルミナセラミック
スの製造方法は、ホットプレスによる焼結やHIP処理
を行わないので、生産性がよく、導電性アルミナセラミ
ックスを安価に製造することができる。 【0011】また、本発明に係わる導電性アルミナセラ
ミックスの製造方法を用いて製造されたセラミックス焼
結体は、アルミナ結晶の周りに酸化錫(SnO)、酸
化チタン(TiO)、あるいは、酸化ニッケル(Ni
O)の一種類、および酸化銅(CuO)が粒界として
存在し、この粒界同士がつながっていることによって導
電性が得られる。また、酸化銅は導電性を上げる効果と
ともに、焼結助剤として働き、酸化錫を添加しただけで
は焼結体内部に残存してしまう気孔を減少させる効果が
ある。 【0012】この場合、酸化錫の添加量が5重量%以下
では、十分な導電性の効果が得られない。一方、酸化錫
の添加量が40重量%以上では、気孔率が増加して緻密
な焼結体が得られない。また、酸化銅の添加量が0.1
重量%以下では焼結助剤としての効果が得られなくな
る。一方、10重量%以上では、気孔率は小さくなる
が、アルミナ含有量が少なくなるため、機械的強度が低
下するとともに体積抵抗率も低くなりすぎてしまう。 【0013】上記のように本発明に係わる導電性アルミ
ナセラミックスの製造方法により製造された導電性アル
ミナセラミックスは、体積抵抗率が10〜1011Ω
・cmとなり、帯電する静電気を速やかに逃がして除去
でき、静電気除去用部品、セラミックスヒーター、セラ
ミックスセンサ等への使用が可能となる。 【0014】 【実施例】(試験1)アルミナ(Al)粉末と酸
化錫(SnO)粉末と酸化銅(CuO)粉末を、表
1に示した割合で水中で混合し、成形用バインダーを加
えてスプレードライヤーにて造粒した。得られた造粒粉
を98.1MPa(1000kgf/cm)で板状に
成形した後、900℃で脱脂後、水素雰囲気中1500
℃で2時間焼結した。得られた焼結体の体積抵抗率、曲
げ強度、気孔率を測定した。結果を表1に示す。 【0015】 【表1】 【0016】実施例11、実施例12及び実施例13
は、いずれも体積抵抗率が10〜1011Ω・cmに
制御され、気孔率も小さく抑えられているので、大きな
曲げ強度が得られることがわかった。これに対して、酸
化錫(SnO)の添加量が1重量%と下限値5重量%
よりも小さい比較例11は、気孔率が小さく抑えられて
いるので、大きな曲げ強度が得られるが、体積抵抗率が
1014Ω・cmと10 〜1011Ω・cmの範囲を
外れ、導電性が低下することがわかった。また、酸化錫
(SnO)の添加量が50重量%と上限値40重量%
よりも大きい比較例12は、気孔率が大きくなり、大き
な曲げ強度が得られないことがわかった。 【0017】さらに、実施例12において、酸化銅(C
O)の添加量を範囲限界に変化させた実施例14、
実施例15はいずれも、体積抵抗率が10〜1011
Ω・cmに制御され、気孔率も小さく抑えられているの
で、大きな曲げ強度が得られることがわかった。これに
対して、酸化銅(CuO)の添加量が0.05重量%
と0.1重量%よりも小さい比較例13は、気孔率が大
きくなり、大きな曲げ強度が得られないことがわかっ
た。 【0018】また、酸化銅(CuO)の添加量が20
重量%と上限値の10重量%よりも大きい比較例14
は、気孔率が小さくなるが、機械的強度が低下するとと
もに、体積抵抗率も低くなりすぎてしまうことがわかっ
た。 【0019】(試験2)試験1の酸化錫(SnO)粉
末に代えて酸化チタン(TiO)を添加し、他の条件
は試験1と同様にした。結果を表2に示す。 【0020】 【表2】 【0021】実施例21、実施例22及び実施例23
は、いずれも体積抵抗率が10〜1011Ω・cmに
制御され、気孔率も小さく抑えられているので、大きな
曲げ強度が得られることがわかった。これに対して、酸
化チタン(TiO)の添加量が5重量%よりも小さい
比較例21は、気孔率が小さく抑えられているので、大
きな曲げ強度が得られるが、体積抵抗率が1013Ω・
cmと10〜1011Ω・cmの範囲を外れ、導電性
が低下することがわかった。また、酸化チタン(TiO
)の添加量が50重量%と上限値40重量%よりも大
きい比較例22は、気孔率が大きくなり、大きな曲げ強
度が得られないことがわかった。 【0022】さらに、実施例22において、酸化銅(C
O)の添加量を範囲限界に変化させた実施例24、
実施例25はいずれも、体積抵抗率が10〜1011
Ω・cmに制御され、気孔率も小さく抑えられているの
で、大きな曲げ強度が得られることがわかった。これに
対して、酸化銅(CuO)の添加量が0.05重量%
と下限値0.1重量%よりも小さい比較例23は、気孔
率が大きくなり、大きな曲げ強度が得られないことがわ
かった。 【0023】また、酸化銅(CuO)の添加量が20
重量%と上限値10重量%よりも大きい比較例24は、
気孔率が小さくなるが、機械的強度が低下するととも
に、体積抵抗率も低くなりすぎてしまうことがわかっ
た。 【0024】(試験3)試験1の酸化錫(SnO)粉
末に代えて酸化ニッケル(NiO)粉末を添加し、他の
条件は試験1と同様にした。結果を表3に示す。 【0025】 【表3】 【0026】実施例31、実施例32及び実施例33
は、いずれも体積抵抗率が10〜1011Ω・cmに
制御され、気孔率も小さく抑えられているので、大きな
曲げ強度が得られることがわかった。これに対して、酸
化ニッケル(NiO)の添加量が1重量%と下限値5重
量%よりも小さい比較例31は、気孔率が小さく抑えら
れているので、大きな曲げ強度が得られるが、体積抵抗
率が1013Ω・cmと10〜1011Ω・cmの範
囲を外れ、導電性が低下することがわかった。また、酸
化ニッケル(NiO)の添加量が50重量%と上限値4
0重量%よりも大きい比較例32は、気孔率が著しく大
きくなり、大きな曲げ強度が得られないことがわかっ
た。 【0027】さらに、実施例32において、酸化銅(C
O)の添加量を範囲限界に変化させた実施例34、
実施例35はいずれも、体積抵抗率が10〜1011
Ω・cmに制御され、気孔率は試験1及び試験2におけ
る各試料に比べて大きいが、本試験3の他の試料に比べ
て小さく抑えられ、大きな曲げ強度が得られることがわ
かった。これに対して、酸化銅(CuO)の添加量が
0.05重量%と下限値0.1重量%よりも小さい比較
例33は、気孔率が大きくなり、大きな曲げ強度が得ら
れないことがわかった。また、酸化銅(CuO)の添
加量が20重量%と上限値10重量%よりも大きい比較
例34は、気孔率が小さくなるが、機械的強度が低下す
るとともに、体積抵抗率も低くなりすぎてしまうことが
わかった。 【0028】 【発明の効果】本発明に係わる導電性アルミナセラミッ
クスの製造方法によれば、機械的強度が強く、導電性の
高い導電性アルミナセラミックスを安価に製造できる導
電性アルミナセラミックスの製造方法を提供することが
できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a conductive alumina ceramic.
In particular, mechanical strength and conductivity
The present invention relates to a conductive alumina ceramic having an improved level. [0002] 2. Description of the Related Art Conventionally, parts for removing static electricity, ceramics
Conductive alumina sensors for heaters, ceramic sensors, etc.
Lamix is used. This alumina ceramic
Is inherently highly insulating, and has high conductivity (volume resistance).
10 at the rate7-1011Ω · cm)
nO2There is a method of adding a conductivity-imparting material such as
You. However, aluminum, which is originally an insulating material,
In order to make the ceramics have high conductivity, Sn
O2Must add more conductivity-imparting material such as
However, in this case, the sintering of the alumina ceramic
Impairs the bondability and leaves pores inside the sintered body, reducing the mechanical strength
May cause a decrease. As a countermeasure, hot press
Sintering and HIP processing, but productivity and cost
It is not preferable from the aspect of. [0004] Therefore, the mechanical strength is
Strong, highly conductive conductive alumina ceramics at low cost
Method for producing conductive alumina ceramics
Was requested. [0005] The present invention has been made in view of the above circumstances.
Conductive aluminum with high mechanical strength and high conductivity
Conductive alumina ceramics that can produce ceramics at low cost
It is intended to provide a method for producing a mix. [0006] Means for Solving the Problems To achieve the above object,
According to one embodiment of the present invention, alumina (Al2O
3) As the main component, and tin oxide (SnO)2), Oxidation
Tan (TiO2) Or nickel oxide (NiO)
5 to 40% by weight of copper oxide (Cu2O).
1-10% by weight is added, molded, fired, and volume resistivity
Is 106-101 1Ω · cm conductive alumina ceramic
Conductive ceramics, characterized by the production of powder
A method for manufacturing a box is provided. This allows for mechanical strength
Highly conductive alumina ceramics with high conductivity
It can be manufactured at low cost. [0007] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a conductive aluminum alloy according to the present invention will be described.
A method for manufacturing a mineral ceramic will be described. Alumina (Al)2O3) Powder as the main component
And tin oxide (SnO)2), Titanium oxide (Ti
O2) Or a kind of nickel oxide (NiO) powder
5-40% by weight of copper oxide (Cu2O) powder
0.1 to 10% by weight and mixed in water to form a molding aid.
And granulate with a spray dryer, etc., and press molding,
Molding by casting, extrusion, injection molding, etc.
obtain. [0009] After the obtained molded body is degreased as required, it is emptied.
For example, firing at 1400 to 1600 ° C. in the air. What
Note that the firing atmosphere is not limited to air, but a non-oxidizing atmosphere or reduction
It may be an atmosphere. The conductive alumina ceramic according to the present invention
Sintering by hot press and HIP processing
Is not performed, so productivity is good and conductive alumina ceramic
Can be manufactured at low cost. Further, the conductive alumina ceramic according to the present invention is provided.
Ceramic firing manufactured using the mix manufacturing method
The consolidation consists of tin oxide (SnO) around the alumina crystals.2),acid
Titanium chloride (TiO2) Or nickel oxide (Ni
O) and copper oxide (Cu2O) as grain boundaries
Exists and is derived from the connection of these grain boundaries.
Electricity is obtained. Copper oxide has the effect of increasing conductivity.
Both work as sintering aids, just by adding tin oxide
Has the effect of reducing pores remaining inside the sintered body
is there. In this case, the amount of tin oxide added is 5% by weight or less.
In this case, a sufficient conductivity effect cannot be obtained. Meanwhile, tin oxide
If the amount of addition is more than 40% by weight, the porosity increases and the density increases.
No sintered body can be obtained. Further, the addition amount of copper oxide is 0.1
If it is less than 10% by weight, the effect as a sintering aid cannot be obtained.
You. On the other hand, at 10% by weight or more, the porosity becomes small.
But low mechanical strength due to low alumina content
And the volume resistivity becomes too low. As described above, the conductive aluminum according to the present invention
Conductive aluminum manufactured by the method of manufacturing ceramics
Mina ceramics have a volume resistivity of 106-1011Ω
・ Eliminates static electricity that is charged in cm and quickly escapes
Parts, parts for removing static electricity, ceramic heaters, ceramics
It can be used for a mix sensor or the like. [0014] EXAMPLES (Test 1) Alumina (Al2O3) Powder and acid
Tin oxide (SnO2) Powder and copper oxide (Cu2O) Powder
Mix in water at the ratio shown in 1 and add the molding binder.
And granulated with a spray dryer. Granulated powder obtained
98.1 MPa (1000 kgf / cm2) To plate
After molding, after degreasing at 900 ° C, 1500 in a hydrogen atmosphere
Sintered at 2 ° C. for 2 hours. Volume resistivity, curve of the obtained sintered body
Porosity and porosity were measured. Table 1 shows the results. [0015] [Table 1] Embodiments 11, 12, and 13
Have a volume resistivity of 106-1011Ω · cm
Controlled and porosity is small,
It was found that bending strength was obtained. In contrast, the acid
Tin oxide (SnO2) Is 1% by weight and the lower limit is 5% by weight
Comparative Example 11 is smaller in porosity,
Large bending strength can be obtained, but volume resistivity
1014Ω · cm and 10 6-1011Ω · cm range
It turned out that conductivity fell. Also, tin oxide
(SnO2) Is 50% by weight and the upper limit is 40% by weight.
Comparative Example 12 having a larger porosity than
It was found that a high bending strength could not be obtained. Further, in Example 12, copper oxide (C
u2Example 14 in which the addition amount of O) was changed to the range limit,
In Example 15, the volume resistivity was 106-1011
Ω · cm and the porosity is kept low
It was found that a large bending strength was obtained. to this
On the other hand, copper oxide (Cu2O) added amount is 0.05% by weight
And Comparative Example 13 smaller than 0.1% by weight has a large porosity.
It turns out that large bending strength cannot be obtained
Was. In addition, copper oxide (Cu2O) is 20
Comparative Example 14 in which the weight% is larger than the upper limit of 10 weight%.
Means that the porosity decreases, but the mechanical strength decreases.
It turns out that the volume resistivity is too low
Was. (Test 2) Tin oxide (SnO) in Test 12)powder
Instead of powder, titanium oxide (TiO2) Add other conditions
Was the same as in Test 1. Table 2 shows the results. [0020] [Table 2] Embodiments 21, 22, and 23
Have a volume resistivity of 106-1011Ω · cm
Controlled and porosity is small,
It was found that bending strength was obtained. In contrast, the acid
Titanium chloride (TiO2) Is less than 5% by weight
In Comparative Example 21, the porosity was suppressed to a small value.
Bending strength is obtained, but the volume resistivity is 10ThirteenΩ
cm and 106-1011Ω ・ cm out of range, conductive
Was found to decrease. In addition, titanium oxide (TiO 2)
2) Is 50% by weight, which is larger than the upper limit of 40% by weight.
Comparative Example 22 has a high porosity and a large bending strength.
It turned out that the degree could not be obtained. Further, in Example 22, copper oxide (C
u2Example 24 in which the addition amount of O) was changed to the range limit,
In Example 25, the volume resistivity was 106-1011
Ω · cm and the porosity is kept low
It was found that a large bending strength was obtained. to this
On the other hand, copper oxide (Cu2O) added amount is 0.05% by weight
And Comparative Example 23 smaller than the lower limit of 0.1% by weight
Rate and the large bending strength cannot be obtained.
won. Further, copper oxide (Cu2O) is 20
Comparative Example 24 in which the weight% and the upper limit of 10 wt% were larger than
The porosity decreases, but the mechanical strength decreases.
It turns out that the volume resistivity is too low
Was. (Test 3) Tin oxide (SnO) in Test 12)powder
Nickel oxide (NiO) powder is added instead of powder, and other
The conditions were the same as in Test 1. Table 3 shows the results. [0025] [Table 3] Embodiment 31, Embodiment 32 and Embodiment 33
Have a volume resistivity of 106-1011Ω · cm
Controlled and porosity is small,
It was found that bending strength was obtained. In contrast, the acid
1% by weight of nickel oxide (NiO) and lower limit of 5 weight
Comparative Example 31 in which the porosity is smaller than
High bending strength can be obtained, but volume resistance
Rate is 10ThirteenΩ · cm and 106-1011Ω ・ cm range
It was found that the surroundings were removed and the conductivity was lowered. Also acid
The addition amount of nickel oxide (NiO) is 50% by weight and the upper limit value 4
Comparative Example 32 in which the porosity is larger than 0% by weight is remarkably large.
It turns out that large bending strength cannot be obtained
Was. Further, in Example 32, copper oxide (C
u2Example 34 in which the addition amount of O) was changed to the range limit,
In Example 35, the volume resistivity was 106-1011
Ω · cm, and the porosity in Test 1 and Test 2
Is larger than each other sample, but compared to other samples in this test 3.
It can be seen that a large bending strength can be obtained
won. In contrast, copper oxide (Cu2O)
Comparison between 0.05% by weight and lower limit of 0.1% by weight
In Example 33, the porosity was increased and a large bending strength was obtained.
I knew it wasn't. In addition, copper oxide (Cu2O)
Comparison where the added amount is larger than 20% by weight and the upper limit of 10% by weight
Example 34 has lower porosity but lower mechanical strength.
And the volume resistivity may be too low
all right. [0028] According to the present invention, the conductive alumina ceramic according to the present invention is provided.
According to the manufacturing method of the box, the mechanical strength is strong,
An inexpensive method for producing highly conductive alumina ceramics
To provide a method for producing electrically conductive alumina ceramics
it can.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 宏子 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社秦野事業所内 Fターム(参考) 4G030 AA16 AA29 AA31 AA36 AA39 BA02 BA20 CA05 GA05 GA14 GA22 GA24 GA26 GA28    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroko Ueno             30 Toya, Hadano-shi, Kanagawa Toshiba Ceramics             KUSU Corporation Hadano Office F term (reference) 4G030 AA16 AA29 AA31 AA36 AA39                       BA02 BA20 CA05 GA05 GA14                       GA22 GA24 GA26 GA28

Claims (1)

【特許請求の範囲】 【請求項1】 アルミナ(Al)を主成分とし、
これに酸化錫(SnO)、酸化チタン(TiO)、
もしくは、酸化ニッケル(NiO)を内掛けで5〜40
重量%、酸化銅(CuO)を0.1〜10重量%添加
し、成形し、焼成して、体積抵抗率が10〜1011
Ω・cmの導電性アルミナセラミックスを製造すること
を特徴とする導電性アルミナセラミックスの製造方法。
Claims 1. An alumina (Al 2 O 3 ) as a main component,
In addition, tin oxide (SnO 2 ), titanium oxide (TiO 2 )
Alternatively, nickel oxide (NiO) is applied for 5 to 40
% By weight, 0.1 to 10% by weight of copper oxide (Cu 2 O) is added, molded, and fired to have a volume resistivity of 10 6 to 10 11.
A method for producing conductive alumina ceramics, comprising producing conductive alumina ceramics of Ω · cm.
JP2001285371A 2001-09-19 2001-09-19 Method of producing electroconductive alumina ceramics Withdrawn JP2003095732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285371A JP2003095732A (en) 2001-09-19 2001-09-19 Method of producing electroconductive alumina ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285371A JP2003095732A (en) 2001-09-19 2001-09-19 Method of producing electroconductive alumina ceramics

Publications (1)

Publication Number Publication Date
JP2003095732A true JP2003095732A (en) 2003-04-03

Family

ID=19108531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285371A Withdrawn JP2003095732A (en) 2001-09-19 2001-09-19 Method of producing electroconductive alumina ceramics

Country Status (1)

Country Link
JP (1) JP2003095732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446067B2 (en) 2005-12-20 2008-11-04 Sanyo Electric Co., Ltd. Ceramic green sheet and ceramic substrate
JP2013144833A (en) * 2012-01-16 2013-07-25 Shimane Prefecture Ceramic spraying material, forming method for ceramic spraying film, and functional ceramic spraying film
JP2017048073A (en) * 2015-08-31 2017-03-09 国立大学法人 香川大学 Ceramic sintered body and production method therefor, and member made of said ceramic sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446067B2 (en) 2005-12-20 2008-11-04 Sanyo Electric Co., Ltd. Ceramic green sheet and ceramic substrate
JP2013144833A (en) * 2012-01-16 2013-07-25 Shimane Prefecture Ceramic spraying material, forming method for ceramic spraying film, and functional ceramic spraying film
JP2017048073A (en) * 2015-08-31 2017-03-09 国立大学法人 香川大学 Ceramic sintered body and production method therefor, and member made of said ceramic sintered body

Similar Documents

Publication Publication Date Title
KR100444229B1 (en) Nonreducible dielectric ceramic composition
WO2008038538A1 (en) Barium titanate semiconductor porcelain composition and ptc device utilizing the same
TW201043593A (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
CA1285002C (en) Ferrite-ceramic composite and method of manufacturing the same
CN104387049A (en) Leadless piezoelectric ceramic and method for preparing leadless piezoelectric ceramic by virtue of low-temperature liquid phase sintering
JP2003095732A (en) Method of producing electroconductive alumina ceramics
JP2000281440A (en) Dielectric ceramic composition
JPS625603A (en) Ceramic moisture sensor
JP2014099431A (en) Composite ptc thermistor member
JP2005123141A (en) Conductive paste and piezoelectric ceramic electronic component
Murakami et al. Microanalysis of grain boundary on low-temperature sintered Pb (Zr, Ti) O3 ceramics with complex oxide additives
JP2016219467A (en) Ptc thermistor member and ptc thermistor element
JP2010111560A (en) Zinc oxide sintered compact and sputtering target using the same
JP2001163674A (en) Silicon nitride sintered compact and method of producing the same
JPH0945581A (en) Laminated capacitor
JPH0629140B2 (en) Piezoelectric element material and manufacturing method thereof
JP2015030641A (en) Gas sensor element, and gas sensor
WO2013100071A1 (en) Tin-oxide refractory
JP2926827B2 (en) Dielectric porcelain composition
JP5324889B2 (en) Sputtering target and manufacturing method thereof
JP3389830B2 (en) High dielectric constant porcelain composition
JPH08119720A (en) Alumina ceramic and its production
JP6426416B2 (en) Piezoelectric ceramic and method of manufacturing the same
JP2803320B2 (en) Dielectric porcelain composition
JP2000154059A (en) Production of piezoelectric ceramics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091113