JP2003093835A - Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid - Google Patents

Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid

Info

Publication number
JP2003093835A
JP2003093835A JP2001295351A JP2001295351A JP2003093835A JP 2003093835 A JP2003093835 A JP 2003093835A JP 2001295351 A JP2001295351 A JP 2001295351A JP 2001295351 A JP2001295351 A JP 2001295351A JP 2003093835 A JP2003093835 A JP 2003093835A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorption
absorption liquid
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001295351A
Other languages
Japanese (ja)
Inventor
Yasuo Yoshii
泰雄 吉井
Atsushi Morihara
森原  淳
Hiroshi Kawagoe
博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001295351A priority Critical patent/JP2003093835A/en
Publication of JP2003093835A publication Critical patent/JP2003093835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To regenerate a desulfurization liquid for absorbing a sulfur compound or carbon dioxide contained in combustion gas. SOLUTION: The deterioration sate of gas absorbing liquid is discriminated from the concentration of negative ions in the gas absorbing liquid. If the gas absorbing liquid is discriminated to be deteriorated, a chemical agent for reducing negative ions in the gas absorbing liquid is supplied or the amount of the gas absorbing liquid circulating from a regeneration column to an absorption column is increased. The deterioration state of the gas absorbing liquid can be simply discriminated in a real time and the gas absorbing liquid can be regenerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガスに含ま
れるガス状の硫黄化合物又は二酸化炭素を除去するため
に使用されるガス吸収液の再生方法及びガス吸収再生シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a gas absorbing liquid used for removing a gaseous sulfur compound or carbon dioxide contained in a combustion exhaust gas and a gas absorbing regeneration system.

【0002】本発明は、特に石炭や重質油等の炭化水素
を燃料とする燃焼ガスに含まれる硫黄化合物、特に硫化
水素(以下、H2S と省略する)を吸収するガス吸収液
を再生するのに適したガス吸収液再生方法とガス吸収再
生システムに係る。
The present invention regenerates a gas absorbing liquid that absorbs a sulfur compound, especially hydrogen sulfide (hereinafter abbreviated as H 2 S) contained in combustion gas using hydrocarbon such as coal or heavy oil as a fuel. The present invention relates to a gas absorption liquid regeneration method and a gas absorption regeneration system suitable for

【0003】本発明は、特に脱硫液の性能を低下させる
熱安定性アミン(以下HSASと省略する)の形成要因
となる陰イオンを定量分析し、この濃度がある値に達し
たら陰イオン濃度を減少させる薬剤をガス吸収液へ供給
するか、または陰イオン濃度を減少させる陰イオン除去
装置にガス吸収液を流通させるようにしたガス吸収液再
生方法及びガス吸収液再生システムに関する。
In particular, the present invention quantitatively analyzes the anion which is a factor for forming a thermostable amine (hereinafter abbreviated as HSAS) which deteriorates the performance of the desulfurization liquid, and when this concentration reaches a certain value, the anion concentration is determined. The present invention relates to a gas absorbing liquid regenerating method and a gas absorbing liquid regenerating system in which a reducing agent is supplied to a gas absorbing liquid or a gas absorbing liquid is circulated through an anion removing device that reduces anion concentration.

【0004】[0004]

【従来の技術】[Prior art]

【化1】 [Chemical 1]

【0005】ガス化炉内で石炭を空気または酸素により
ガス化すると、生成ガス中に硫黄化合物としてH2S が
含まれ、これを低減するためにガス化炉後流に湿式脱硫
装置を設置する。この湿式脱硫装置では吸収塔にて、脱
硫液であるアミン溶液を供給し、式(1)に示すような
反応により、ガス中のH2S を脱硫液中に吸収する。液
中に吸収されたH2SはHS-にイオン化され、アミン液
は陽イオン化される。脱硫液中に他のイオンが存在しな
い時は、湿式脱硫装置の再生塔にて脱硫液を約110℃
に加熱することで、液中に吸収されたH2S は脱離させ
脱硫液を再生する。しかし、例えば式(2)に示すよう
に、一酸化炭素(CO)と水が反応にしてギ酸(HCO
OH)が生成すると、脱硫液中でイオン化してギ酸イオ
ンを生成する。ギ酸イオンは陽イオン化したアミンイオ
ンとイオン結合してHSASを形成する。HSASはイ
オン結合が強いため、脱硫液を加熱しても再生できない
ようになる。アミン溶液が再生されないと新たにガス中
のH2Sを吸収できないようになり、脱硫装置出口のH2
S 濃度は増大し性能が低下する。そこで式(4)に示
すように脱硫液中に強塩基の中和剤を供給して、HSA
S中のプロトンを引き抜きアミン脱硫液を再生する。こ
の時生成する灰分は脱硫液中から取り除く。
When coal is gasified with air or oxygen in the gasification furnace, H 2 S is contained as a sulfur compound in the produced gas, and a wet desulfurization device is installed downstream of the gasification furnace in order to reduce this. . In this wet desulfurization device, an amine solution which is a desulfurization liquid is supplied to an absorption tower, and H 2 S in the gas is absorbed in the desulfurization liquid by a reaction as shown in formula (1). The H 2 S absorbed in the liquid is ionized to HS , and the amine liquid is cationized. When no other ions are present in the desulfurization solution, the desulfurization solution is heated to about 110 ° C in the regeneration tower of the wet desulfurization device.
By heating to 2, the H 2 S absorbed in the liquid is desorbed and the desulfurization liquid is regenerated. However, for example, as shown in formula (2), carbon monoxide (CO) and water react to form formic acid (HCO).
When OH) is produced, it is ionized in the desulfurization liquid to produce formate ions. The formate ion ionically bonds with the cationized amine ion to form HSAS. Since HSAS has a strong ionic bond, it cannot be regenerated even if the desulfurization liquid is heated. When amine solution does not play new it will not be able to absorb the H 2 S in the gas desulfurizer outlet H 2
The S concentration increases and the performance decreases. Therefore, as shown in formula (4), a strong base neutralizing agent is supplied to the desulfurization solution to produce HSA.
The proton in S is extracted to regenerate the amine desulfurization solution. The ash generated at this time is removed from the desulfurization liquid.

【0006】従来のガス吸収液の劣化検知方法、特に脱
硫液の劣化検知方法としては、劣化した脱硫液を脱硫装
置から抜き取り、この脱硫液を数時間、還流した後に、
標準アルカリ溶液により滴定しHSASを定量する方法
であった。吸収液の活性劣化を検出する従来技術の一例
は、特開平11−5017号公報,特開平11−137
956号公報,特開平8−89756号公報及び特開平
6−201589号公報等に見られる。
As a conventional method for detecting deterioration of a gas absorbing liquid, particularly a method for detecting deterioration of a desulfurization liquid, a deteriorated desulfurization liquid is taken out from a desulfurization device, and after the desulfurization liquid is refluxed for several hours,
This was a method of quantifying HSAS by titrating with a standard alkaline solution. An example of a conventional technique for detecting the activity deterioration of the absorbent is disclosed in JP-A-11-5017 and JP-A-11-137.
956, JP-A-8-89756, JP-A-6-201589 and the like.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、脱硫
液が劣化し脱硫装置からのH2S 濃度が増大する前に、
脱硫液の劣化状態をリアルタイムで検知し、脱硫液が劣
化したと判定された場合は、脱硫液を再生する方法、ま
たはこのガス吸収液再生装置を備えたガス吸収再生シス
テムを提供することにある。
It is an object of the present invention to prevent the desulfurization liquor from degrading and increasing the H 2 S concentration from the desulfurization unit.
It is to provide a method for regenerating the desulfurization liquid when the deterioration state of the desulfurization liquid is detected in real time and it is determined that the desulfurization liquid has deteriorated, or a gas absorption regeneration system equipped with this gas absorption liquid regeneration device. .

【0008】[0008]

【課題を解決するための手段】アミン脱硫液に石炭ガス
化ガスを流通した時、脱硫液中に吸収される陰イオンを
定量分析したところ、ギ酸イオン,チオシアンイオン,
塩素イオン、等が最も多く吸収されることがわかった。
これらのイオンの中で脱硫液中に最も多く吸収され、か
つ測定可能なイオンを一成分だけ選べば、簡易的かつ連
続的に脱硫液中の熱安定性アミン濃度を予測することが
できる。
[Means for Solving the Problems] Quantitative analysis of anions absorbed in the desulfurization liquid when a coal gasification gas was passed through the amine desulfurization liquid revealed that formate ion, thiocyanate ion,
It was found that chlorine ions, etc. were absorbed most.
By selecting only one component of these ions that is most absorbed in the desulfurization solution and can be measured, the concentration of the thermostable amine in the desulfurization solution can be predicted simply and continuously.

【0009】本発明のガス吸収液再生方法とガス吸収再
生システムでは、特に石炭ガス化ガスを脱硫液に通気し
た時に、脱硫液中の濃度が顕著に増大する陰イオンを連
続的に測定することで熱安定性アミン濃度を予測して管
理し、熱安定性アミン濃度が管理値に達したら中和剤を
供給して脱硫液を再生する方法を提供する。陰イオン濃
度の計測に関する具体的な手段としては、既存の塩化物
イオン複合電極により塩素イオンを連続的に測定し、ま
たはフッ化物イオン複合電極によりふっ素イオンを連続
的に測定する等の方法がある。また劣化した脱硫液の再
生方法の具体的な手段としては、水酸化カリウム等の強
いアルカリ性物質を供給してHSASを中和分解する
か、または劣化した脱硫液を電気透析装置へ流通させ
て、劣化脱硫液中の陰イオンを脱硫液から除去する方法
等がある。
In the method for regenerating a gas absorbing solution and the system for regenerating a gas absorbing solution of the present invention, in particular, when the coal gasification gas is passed through the desulfurizing solution, the anion whose concentration in the desulfurizing solution remarkably increases is continuously measured. The method provides a method for predicting and controlling the heat stable amine concentration, and supplying a neutralizing agent when the heat stable amine concentration reaches a control value to regenerate the desulfurization liquid. As a specific means for measuring the anion concentration, there is a method such as continuously measuring chlorine ions with an existing chloride ion composite electrode or continuously measuring fluorine ions with a fluoride ion composite electrode. . In addition, as a specific means of regenerating the deteriorated desulfurization solution, a strong alkaline substance such as potassium hydroxide is supplied to neutralize and decompose HSAS, or the deteriorated desulfurization solution is circulated to an electrodialysis device, There is a method of removing anions in the deteriorated desulfurization liquid from the desulfurization liquid.

【0010】本発明はH2Sを吸収する脱硫液の再生方
法だけではなく、CO2 を吸収する液の劣化状態を検知
する方法にも適用することができる。
The present invention can be applied not only to a method for regenerating a desulfurizing solution that absorbs H 2 S, but also to a method for detecting a deteriorated state of a solution that absorbs CO 2 .

【0011】[0011]

【発明の実施の形態】次に、図1〜図5を参照して、本
発明の実施例を示す。 (ガス吸収液再生装置を備えたガス吸収システムの実施
例1)図1は、本発明によるガス吸収液再生装置を備え
たガス吸収システムの一実施例を示す系統図である。図
1において、ガス化設備8の後流に湿式脱硫装置が設置
してある。湿式脱硫装置は吸収塔9と再生塔10から構
成される。ガス化設備8から生成される粗製ガスは、吸
収塔9の内部に設置された複数の棚段を通過し、脱硫液
と向流接触することで、ガス中のH2Sは脱硫液中に化
学吸収される。H2S が除去された精製ガスは、吸収塔
9の塔頂から排出される。脱硫液3は脱硫液循環ポンプ
7によって吸収塔上部から供給される。脱硫液の液温度
は液液熱交換器18において40℃に冷却される。H2
S を吸収した脱硫液3は吸収塔9の底部から抜き出さ
れ、液液熱交換器18において、40℃から100℃程
度に加熱された後、再生塔10の上部へ供給される。再
生塔10に供給された脱硫液3は、底部からの高温蒸気
と向流接触し、加熱されることで脱硫液3中のH2Sを
脱離する。吸収液に吸収されなかった硫黄は、硫黄回収
装置13により回収される。更に脱硫液3は保温器6に
導かれ、ここでは加熱用蒸気により更に加熱され、脱硫
液3内に残存したH2S を脱離する。保温器6内の脱硫
液3の温度は、加熱用の蒸気量を弁11で制御すること
で、約150℃近辺に制御する。符号15,17は脱硫
液抜き出し弁を示し、符号16は廃脱硫液タンクを示し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to FIGS. (Embodiment 1 of Gas Absorption System with Gas Absorption Liquid Regeneration Device) FIG. 1 is a system diagram showing an embodiment of a gas absorption system with a gas absorption liquid regeneration device according to the present invention. In FIG. 1, a wet desulfurization device is installed downstream of the gasification equipment 8. The wet desulfurization device comprises an absorption tower 9 and a regeneration tower 10. The crude gas generated from the gasification equipment 8 passes through a plurality of trays installed inside the absorption tower 9 and comes into countercurrent contact with the desulfurization liquid, so that H 2 S in the gas is converted into the desulfurization liquid. It is chemically absorbed. The purified gas from which H 2 S has been removed is discharged from the top of the absorption tower 9. The desulfurization liquid 3 is supplied from the upper part of the absorption tower by the desulfurization liquid circulation pump 7. The liquid temperature of the desulfurization liquid is cooled to 40 ° C. in the liquid-liquid heat exchanger 18. H 2
The desulfurization liquid 3 having absorbed S 2 is withdrawn from the bottom of the absorption tower 9, heated in the liquid-liquid heat exchanger 18 to about 40 ° C. to 100 ° C., and then supplied to the upper part of the regeneration tower 10. The desulfurization liquid 3 supplied to the regeneration tower 10 comes into countercurrent contact with high-temperature steam from the bottom and is heated to desorb H 2 S in the desulfurization liquid 3. Sulfur that has not been absorbed by the absorption liquid is recovered by the sulfur recovery device 13. Further, the desulfurization liquid 3 is guided to the heat retaining device 6 where it is further heated by the heating steam to desorb H 2 S remaining in the desulfurization liquid 3. The temperature of the desulfurization liquid 3 in the warmer 6 is controlled to about 150 ° C. by controlling the amount of steam for heating with the valve 11. Reference numerals 15 and 17 denote desulfurization liquid withdrawal valves, and reference numeral 16 denotes a waste desulfurization liquid tank.

【0012】保温器6の底部からは計測用の脱硫液3を
抜き出し、冷却器12により高温の脱硫液3を冷却し、
計測用脱硫液タンク19に捕集する。計測用脱硫液タン
ク19にはイオン複合電極1が設置してあり、脱硫液3
のイオン濃度をモニター2により測定する。このイオン
複合電極では塩素イオン,ギ酸イオン,チオシアンイオ
ンを測定する。イオン複合電極1の使用温度範囲は約5
0℃以下であるので、その温度範囲まで脱硫液を冷却す
る。場合によっては、このイオン複合電極が水素イオン
濃度計、つまりpHメータで代用されることもある。イ
オン複合電極で測定したイオン濃度値が増大して、ある
レベルまで達し、脱硫液が劣化したと判断されたら、中
和剤タンク4の出口弁5を開き、中和剤を吸収塔9内へ
供給する。中和剤タンク4に設置された液面レベル計1
4により中和剤供給量を把握する。
The desulfurization liquid 3 for measurement is drawn out from the bottom of the heat retaining device 6, and the high temperature desulfurization liquid 3 is cooled by the cooler 12.
It is collected in the desulfurization liquid tank 19 for measurement. An ion composite electrode 1 is installed in the desulfurization liquid tank 19 for measurement, and the desulfurization liquid 3
The ion concentration of is measured by the monitor 2. Chloride ions, formate ions, and thiocyanate ions are measured with this ion composite electrode. The operating temperature range of the ion composite electrode 1 is about 5
Since the temperature is 0 ° C. or lower, the desulfurization liquid is cooled to that temperature range. In some cases, the ion composite electrode may be replaced with a hydrogen ion concentration meter, that is, a pH meter. When it is determined that the ion concentration value measured by the ion composite electrode has increased to a certain level and the desulfurization solution has deteriorated, the outlet valve 5 of the neutralizing agent tank 4 is opened and the neutralizing agent is introduced into the absorption tower 9. Supply. Liquid level meter 1 installed in the neutralizer tank 4
Figure out the amount of supply of the neutralizing agent.

【0013】図2に脱硫液中の陰イオン濃度の経時変化
を示す。図には脱硫液中の全HSASの重量割合とこれが液
中の各陰イオンからどのような割合で形成されたかを示
した。この結果は、石炭をガス化したガスを有機物であ
るアミン脱硫液に流通した時の、ガス流通時間と各時間
のアミン脱硫液中の陰イオン濃度の定量分析結果から求
めた。図からわかるようにギ酸イオン,チオシアンイオ
ン,塩素イオンから形成されるHSAS量が時間ととも
に増大することがわかった。特にギ酸イオンにより形成
されるHSAS割合が最も高く、次にチオシアンイオン
によるもの、続いて塩素イオンによるものが多い事が実
験的に証明された。これらの値はガス精製装置を構成す
る各機器の性能が異なれば違うと予想されるが、同じガ
ス精製装置では各イオンから形成されるHSASの割合
は同じになると考えられる。よって、あらかじめガス精
製装置の試運転期間等に、ガス吸収液中の主な陰イオン
濃度とHSAS濃度の相関を評価しておけば、これらの
イオンの中で脱硫液中に最も多く吸収され、かつ測定可
能なイオンを一成分だけ選べば、簡易的かつリアルタイ
ムに脱硫液中のHSAS濃度を予測できることとなる。
HSAS濃度がその管理値に達したら、脱硫液へ中和剤
を供給して、これを式(4)の反応により中和する。 (ガス吸収液再生装置を備えたガス吸収システムの実施
例2)図3は、本発明によるガス吸収再生システムの実
施例2の構成を示す系統図である。ここでは再生塔10
出口のガス中のギ酸濃度を連続分析可能な改良型のガス
用陰イオンモニター20により測定する。ガス用陰イオ
ンモニター20の測定原理は大気圧化学イオン化法と質
量分析法を組み合わせたものである。ガス中のギ酸をコ
ロナ放電を用いた大気圧化学イオン化法により選択的に
イオン化する。次にイオン化されたギ酸を含むガスを質
量分析部へ導き、質量数分離を実施した後、ギ酸イオン
をマススペクトルとして検出する。このマススペクトル
によりギ酸の定量化をする。ギ酸の沸点は約100℃
で、再生塔出口ガス温度は約110℃であるので充分に
気化する。この値が管理値に到達したら脱硫液が劣化し
たと判断し、中和剤タンク4の出口弁5を開き、中和剤
を吸収塔9内へ供給する。 (ガス吸収液再生装置を備えたガス吸収システムの実施
例3)図4は、本発明によるガス吸収再生システムの実
施例3の構成を示す系統図である。ここでは脱硫液中の
陰イオン濃度を測定し、その値が管理値に近づいたら脱
硫液の循環量を増大して脱硫性能を維持する。その間、
中和剤を供給して脱硫液中の陰イオン濃度を低下させ
る。これまでの湿式脱硫装置のプラント試験において、
脱硫液の循環量(L)と吸収塔9に流入するガス量
(G)の比、つまりL/Gが大きくなるにつれて、硫化
水素の吸収率が増大することがわかっている。これは脱
硫液とガスの接触が良くなるためである。そこで脱硫液
3のイオン濃度をイオン複合電極1で測定し、イオン濃
度値から脱硫液が劣化したと判断されたら、制御用パソ
コン21を操作して脱硫液循環ポンプ7の出力を上げ、
脱硫液循環量を増大することで、吸収塔9での硫化水素
吸収率を向上させ、目標値を達成させる。 (ガス吸収液再生装置を備えたガス吸収システムの実施
例4)図5は、本発明によるガス吸収再生システムの実
施例4の構成を示す系統図である。ここでは脱硫液中の
陰イオン濃度を測定し、その値が管理値に近づいたら脱
硫液循環ポンプ23を駆動して脱硫液活性化装置22に
脱硫液を供給し、劣化した脱硫液から陰イオンを除去す
ることで脱硫液を再生し、再生した脱硫液を吸収塔9の
入口に戻す。以上により脱硫装置の性能を維持すること
ができる。
FIG. 2 shows the changes over time in the anion concentration in the desulfurization solution. The figure shows the weight ratio of total HSAS in the desulfurization liquid and the ratio of the total HSAS formed from each anion in the liquid. This result was obtained from the quantitative analysis result of the gas flow time and the anion concentration in the amine desulfurization liquid at each time when the gas obtained by gasifying coal was passed through the amine desulfurization liquid which was an organic substance. As can be seen from the figure, the amount of HSAS formed from formate ion, thiocyanate ion, and chloride ion increased with time. In particular, it was experimentally proved that the ratio of HSAS formed by formate ion was the highest, followed by thiocyan ion, and then chloride ion. It is expected that these values will be different if the performance of each device constituting the gas purification device is different, but in the same gas purification device, the proportion of HSAS formed from each ion will be the same. Therefore, if the correlation between the main anion concentration in the gas absorption liquid and the HSAS concentration is evaluated in advance during the trial run of the gas purification device, etc., most of these ions are absorbed in the desulfurization liquid, and If only one measurable ion is selected, the HSAS concentration in the desulfurization solution can be predicted easily and in real time.
When the HSAS concentration reaches the control value, a neutralizing agent is supplied to the desulfurization liquid, and this is neutralized by the reaction of the formula (4). (Embodiment 2 of Gas Absorption System with Gas Absorption Liquid Regeneration Device) FIG. 3 is a system diagram showing the configuration of Embodiment 2 of the gas absorption and regeneration system according to the present invention. Regeneration tower 10 here
The formic acid concentration in the gas at the outlet is measured by an improved gas anion monitor 20 capable of continuous analysis. The measurement principle of the gas anion monitor 20 is a combination of atmospheric pressure chemical ionization and mass spectrometry. Formic acid in gas is selectively ionized by atmospheric pressure chemical ionization using corona discharge. Next, the gas containing the ionized formic acid is introduced to the mass spectrometric section, mass number separation is performed, and then the formate ion is detected as a mass spectrum. The mass spectrum is used to quantify formic acid. The boiling point of formic acid is about 100 ℃
Since the temperature of the gas at the outlet of the regeneration tower is about 110 ° C, the gas is sufficiently vaporized. When this value reaches the control value, it is determined that the desulfurization liquid has deteriorated, the outlet valve 5 of the neutralizer tank 4 is opened, and the neutralizer is supplied into the absorption tower 9. (Embodiment 3 of Gas Absorption System Equipped with Gas Absorption Liquid Regeneration Device) FIG. 4 is a system diagram showing the configuration of Embodiment 3 of the gas absorption regeneration system according to the present invention. Here, the anion concentration in the desulfurization liquid is measured, and when the value approaches the control value, the circulation amount of the desulfurization liquid is increased to maintain the desulfurization performance. in the meantime,
A neutralizing agent is supplied to reduce the anion concentration in the desulfurization liquid. In the past plant test of wet desulfurization equipment,
It is known that the absorption rate of hydrogen sulfide increases as the ratio of the circulation amount (L) of the desulfurization liquid to the gas amount (G) flowing into the absorption tower 9, that is, L / G, increases. This is because the contact between the desulfurization liquid and the gas is improved. Therefore, the ion concentration of the desulfurization liquid 3 is measured by the ion composite electrode 1, and if it is judged from the ion concentration value that the desulfurization liquid has deteriorated, the control personal computer 21 is operated to increase the output of the desulfurization liquid circulation pump 7,
By increasing the circulation amount of the desulfurization liquid, the absorption rate of hydrogen sulfide in the absorption tower 9 is improved and the target value is achieved. (Fourth Embodiment of Gas Absorption System with Gas Absorbing Liquid Regeneration Device) FIG. 5 is a system diagram showing a configuration of a fourth embodiment of the gas absorption and regeneration system according to the present invention. Here, the anion concentration in the desulfurization liquid is measured, and when the value approaches the control value, the desulfurization liquid circulation pump 23 is driven to supply the desulfurization liquid to the desulfurization liquid activation device 22 so that the anions are removed from the deteriorated desulfurization liquid. The desulfurization liquid is regenerated by removing the regenerated desulfurization liquid, and the regenerated desulfurization liquid is returned to the inlet of the absorption tower 9. As described above, the performance of the desulfurization device can be maintained.

【0014】[0014]

【発明の効果】本発明によれば、ガス吸収液の劣化状態
を吸収液中の陰イオン濃度、または水素イオン濃度から
簡易にかつリアルタイムで判定し、再生して、吸収性能
を維持することができる。
According to the present invention, the deterioration state of the gas absorbing solution can be easily and in real time determined from the anion concentration or the hydrogen ion concentration in the absorbing solution and regenerated to maintain the absorption performance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すガス吸収再生システムの
系統図である。
FIG. 1 is a system diagram of a gas absorption / regeneration system showing an embodiment of the present invention.

【図2】本発明の実施例によって得られた脱硫液中の劣
化成分の経時変化を示す系統図である。
FIG. 2 is a system diagram showing a time-dependent change of a deterioration component in a desulfurization liquid obtained according to an example of the present invention.

【図3】本発明の他の実施例を示すガス吸収再生システ
ムの系統図である。
FIG. 3 is a system diagram of a gas absorption / regeneration system showing another embodiment of the present invention.

【図4】本発明によるガス吸収再生システムの更に他の
実施例を示す系統図である。
FIG. 4 is a system diagram showing still another embodiment of the gas absorption / regeneration system according to the present invention.

【図5】本発明によるガス吸収再生システムの他の実施
例を示す系統図である。
FIG. 5 is a system diagram showing another embodiment of the gas absorption / regeneration system according to the present invention.

【符号の説明】[Explanation of symbols]

1…イオン複合電極、2…モニター、3…脱硫液、4…
中和剤タンク、5…出口弁、6…保温器、7…脱硫液循
環ポンプ、8…ガス化設備、9…吸収塔、10…再生
塔、11…加熱蒸気用弁、12…冷却器、13…硫黄回
収装置、14…液面レベル計、15,17…脱硫液抜き
出し弁、16…廃脱硫液タンク、18…液液熱交換器、
19…計測用脱硫液タンク、20…ガス用陰イオンモニ
ター、21…制御用パソコン、22…脱硫液活性化装
置、23…脱硫液循環ポンプ。
1 ... Ion composite electrode, 2 ... Monitor, 3 ... Desulfurization liquid, 4 ...
Neutralizer tank, 5 ... Exit valve, 6 ... Incubator, 7 ... Desulfurization liquid circulation pump, 8 ... Gasification equipment, 9 ... Absorption tower, 10 ... Regeneration tower, 11 ... Heating steam valve, 12 ... Cooler, 13 ... Sulfur recovery device, 14 ... Liquid level gauge, 15, 17 ... Desulfurization liquid withdrawing valve, 16 ... Waste desulfurization liquid tank, 18 ... Liquid-liquid heat exchanger,
19 ... Desulfurization liquid tank for measurement, 20 ... Anion monitor for gas, 21 ... Control personal computer, 22 ... Desulfurization liquid activation device, 23 ... Desulfurization liquid circulation pump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川越 博 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4D002 AA03 AA09 BA02 BA12 CA02 CA13 DA32 EA02 EA05 EA08 GA02 GA03 GB06 GB20 4D020 AA03 AA04 BA16 BB03 BC01 CB18 CC09 CC10 CC20 DA01 DA02 DB05 DB09 DB20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Kawagoe             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. F-term (reference) 4D002 AA03 AA09 BA02 BA12 CA02                       CA13 DA32 EA02 EA05 EA08                       GA02 GA03 GB06 GB20                 4D020 AA03 AA04 BA16 BB03 BC01                       CB18 CC09 CC10 CC20 DA01                       DA02 DB05 DB09 DB20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】燃焼排ガス中から硫黄化合物、または二酸
化炭素を吸収除去するためのガス吸収液の再生方法であ
って、前記ガス吸収液中に含まれるイオンの濃度を測定
してガス吸収液の劣化状態を検知し、前記ガス吸収液が
劣化されたと判断されたならば前記ガス吸収液中の陰イ
オン濃度を減少させることを特徴とするガス吸収液再生
方法。
1. A method for regenerating a gas absorbing solution for absorbing and removing a sulfur compound or carbon dioxide from combustion exhaust gas, which comprises measuring the concentration of ions contained in the gas absorbing solution to obtain a gas absorbing solution. A method for regenerating a gas absorbing solution, which comprises detecting a deterioration state and, if it is determined that the gas absorbing solution is deteriorated, decreasing an anion concentration in the gas absorbing solution.
【請求項2】請求項1において、前記ガス吸収液中の陰
イオン濃度を減少させる方法が、前記ガス吸収液へ薬剤
を供給するか、または前記ガス吸収液を前記陰イオン濃
度を減少させる陰イオン除去装置に流通させるか、また
は前記ガス吸収液へ薬剤を供給したのち前記陰イオン濃
度を減少させる陰イオン除去装置に流通させるか、のい
ずれかであることを特徴とするガス吸収液再生方法。
2. The method for reducing the anion concentration in the gas absorbing solution according to claim 1, wherein a drug is supplied to the gas absorbing solution or the anion concentration in the gas absorbing solution is decreased. A method for regenerating a gas-absorbing liquid, characterized in that the gas-absorbing liquid is circulated through an ion removing device, or is supplied to the gas-absorbing liquid through an anion removing device that reduces the anion concentration after supplying a drug to the gas-absorbing liquid. .
【請求項3】請求項1において、前記ガス吸収液中に含
まれるイオンの酸解離定数が前記硫黄化合物、または二
酸化炭素の酸解離定数よりも小さいことを特徴とするガ
ス吸収液再生方法。
3. The method for regenerating a gas absorbing solution according to claim 1, wherein an acid dissociation constant of ions contained in the gas absorbing solution is smaller than an acid dissociation constant of the sulfur compound or carbon dioxide.
【請求項4】請求項1において、前記ガス吸収液中に含
まれるイオンがギ酸イオン,チオシアンイオン,塩素イ
オン,フッ素イオン,酢酸イオン,グリコール酸イオ
ン,シュウ酸イオン,硫酸イオン,水素イオンであるこ
とを特徴とするガス吸収液再生方法。
4. The ion contained in the gas absorbing solution according to claim 1, being formate ion, thiocyanate ion, chlorine ion, fluorine ion, acetate ion, glycolate ion, oxalate ion, sulfate ion, and hydrogen ion. A method for regenerating a gas absorbing solution, which is characterized in that
【請求項5】燃焼排ガスをガス吸収液に接触させること
で該ガスに含まれる硫黄化合物または二酸化炭素を吸収
除去するガス吸収装置とガス吸収液の劣化検知装置及び
ガス吸収液再生装置を備えたガス吸収再生システムであ
って、前記ガス吸収装置が燃焼排ガスをガス吸収液に接
触させることで該排ガス中より硫黄化合物または二酸化
炭素を吸収除去する吸収塔と、該吸収塔内の底部に溜ま
ったガス吸収液を導入して高温下で該吸収液中から吸収
したガスを脱離する再生塔と、該吸収塔と該再生塔との
間でガス吸収液を循環させる循環手段とを有し、前記ガ
ス吸収液劣化検知装置が前記再生塔から抜き出された吸
収液に対してイオン濃度を測定するように設置され、該
ガス吸収液劣化検知装置において、前記ガス吸収液が劣
化したと判定されたならば、前記ガス吸収液に薬剤を供
給して前記ガス吸収液中の陰イオン濃度を減少させる
か、または前記ガス吸収液を陰イオン除去装置に流通す
ることで前記陰イオン濃度を減少させるか、または前記
再生塔から前記吸収塔へ循環する吸収液の量を増大する
かのいずれかによりガス吸収液を再生する前記ガス吸収
液再生装置を備えたことを特徴とするガス吸収再生シス
テム。
5. A gas absorbing device for absorbing and removing a sulfur compound or carbon dioxide contained in the gas by bringing the combustion exhaust gas into contact with the gas absorbing liquid, a deterioration detecting device for the gas absorbing liquid, and a gas absorbing liquid regenerating device. A gas absorption / regeneration system, wherein the gas absorption device absorbs and removes a sulfur compound or carbon dioxide from the exhaust gas by bringing the combustion exhaust gas into contact with the gas absorption liquid, and the gas is collected at the bottom of the absorption tower. A regeneration tower for introducing a gas absorption liquid to desorb the absorbed gas from the absorption liquid at high temperature, and a circulation means for circulating the gas absorption liquid between the absorption tower and the regeneration tower, The gas absorption liquid deterioration detection device is installed so as to measure the ion concentration of the absorption liquid extracted from the regeneration tower, and the gas absorption liquid deterioration detection device determines that the gas absorption liquid has deteriorated. If so, whether a chemical is supplied to the gas absorbing solution to reduce the anion concentration in the gas absorbing solution, or the anion concentration is reduced by circulating the gas absorbing solution through an anion removing device. Or a gas absorption liquid regenerator for regenerating the gas absorption liquid by increasing the amount of the absorption liquid circulated from the regeneration tower to the absorption tower.
【請求項6】燃焼排ガスをガス吸収液に接触させること
で該ガスに含まれる硫黄化合物または二酸化炭素を吸収
除去するガス吸収装置とガス吸収液劣化検知装置及びガ
ス吸収液再生装置を備えたガス吸収再生システムであっ
て、前記ガス吸収装置が燃焼排ガスをガス吸収液に接触
させることで該排ガス中より硫黄化合物または二酸化炭
素を吸収除去する吸収塔と、該吸収塔内の底部に溜まっ
たガス吸収液を導入して高温下で該吸収液中から吸収し
たガスを脱離する再生塔と、該吸収塔と該再生塔との間
でガス吸収液を循環させる循環手段とを有し、前記ガス
吸収液劣化検知装置が前記再生塔の出口に、該再生塔か
ら排出されるガス中に含まれるイオン濃度を測定するよ
うに設置され、該ガス吸収液劣化検知装置において、前
記ガス吸収液が劣化したと判定されたならば、前記ガス
吸収液に薬剤を供給して前記ガス吸収液中の陰イオン濃
度を減少させるか、または前記ガス吸収液を陰イオン除
去装置に流通することで前記陰イオン濃度を減少させる
か、または前記再生塔から前記吸収塔へ循環する吸収液
の量を増大する前記ガス吸収液再生装置を備えたことを
特徴とするガス吸収再生システム。
6. A gas provided with a gas absorption device for absorbing and removing a sulfur compound or carbon dioxide contained in the gas by bringing the combustion exhaust gas into contact with the gas absorption liquid, a gas absorption liquid deterioration detection device, and a gas absorption liquid regeneration device. An absorption regeneration system, wherein the gas absorption device absorbs and removes a sulfur compound or carbon dioxide from the exhaust gas by bringing the combustion exhaust gas into contact with a gas absorption liquid, and the gas accumulated at the bottom of the absorption tower. A regeneration tower for introducing an absorption liquid to desorb the absorbed gas from the absorption liquid at high temperature, and a circulation means for circulating the gas absorption liquid between the absorption tower and the regeneration tower, A gas absorption liquid deterioration detection device is installed at the outlet of the regeneration tower so as to measure the ion concentration contained in the gas discharged from the regeneration tower, and in the gas absorption liquid deterioration detection device, the gas absorption liquid is Inferior If it is determined that the chemicals are supplied to the gas absorbing solution to reduce the concentration of anions in the gas absorbing solution, or the gas absorbing solution is passed through the anion removing device to remove the anions. A gas absorption / regeneration system comprising the gas absorption liquid regenerator for decreasing the concentration or increasing the amount of the absorption liquid circulated from the regeneration tower to the absorption tower.
JP2001295351A 2001-09-27 2001-09-27 Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid Pending JP2003093835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295351A JP2003093835A (en) 2001-09-27 2001-09-27 Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295351A JP2003093835A (en) 2001-09-27 2001-09-27 Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid

Publications (1)

Publication Number Publication Date
JP2003093835A true JP2003093835A (en) 2003-04-02

Family

ID=19116802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295351A Pending JP2003093835A (en) 2001-09-27 2001-09-27 Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid

Country Status (1)

Country Link
JP (1) JP2003093835A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
JP2011005367A (en) * 2009-06-23 2011-01-13 Mitsubishi Heavy Ind Ltd Co2 recovering apparatus and method
JP2011179340A (en) * 2010-02-26 2011-09-15 Denso Corp Abnormality diagnostic device for exhaust emission control device
US8137441B2 (en) 2007-03-14 2012-03-20 Mitsubishi Heavy Industries Ltd. CO2 recovery system and waste-product removing method
JP2012130879A (en) * 2010-12-22 2012-07-12 Kurita Water Ind Ltd Amine liquid regeneration method and apparatus
CN103127815A (en) * 2013-02-19 2013-06-05 浙江大学 Method of improving trapping performance of sulfur dioxide through halide sulfur function
JP2013128899A (en) * 2011-12-22 2013-07-04 Babcock Hitachi Kk Control method of co2 recovery apparatus
WO2013132962A1 (en) * 2012-03-09 2013-09-12 三菱重工業株式会社 Degradation product-concentration measurement device, and acidic gas removal device
US8663363B2 (en) 2009-06-17 2014-03-04 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and method
US9084959B2 (en) 2011-02-28 2015-07-21 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and operation control method of CO2 recovering apparatus
CN104923036A (en) * 2015-06-09 2015-09-23 河南师范大学 Method for catching sulfur dioxide by adopting halogenated carboxylic acid ion liquid
KR20160076914A (en) * 2014-12-23 2016-07-01 이영상 Upgrade system for biogas

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
US8137441B2 (en) 2007-03-14 2012-03-20 Mitsubishi Heavy Industries Ltd. CO2 recovery system and waste-product removing method
US8663363B2 (en) 2009-06-17 2014-03-04 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and method
EP2269713B1 (en) * 2009-06-17 2017-05-24 Mitsubishi Heavy Industries, Ltd. CO2 recovering method
JP2011005367A (en) * 2009-06-23 2011-01-13 Mitsubishi Heavy Ind Ltd Co2 recovering apparatus and method
JP2011179340A (en) * 2010-02-26 2011-09-15 Denso Corp Abnormality diagnostic device for exhaust emission control device
DE102011004795B4 (en) * 2010-02-26 2017-07-13 Denso Corporation Anomaly diagnosis device for an exhaust gas purification device
JP2012130879A (en) * 2010-12-22 2012-07-12 Kurita Water Ind Ltd Amine liquid regeneration method and apparatus
US9084959B2 (en) 2011-02-28 2015-07-21 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and operation control method of CO2 recovering apparatus
JP2013128899A (en) * 2011-12-22 2013-07-04 Babcock Hitachi Kk Control method of co2 recovery apparatus
JP2013186091A (en) * 2012-03-09 2013-09-19 Mitsubishi Heavy Ind Ltd Degradation product concentration measurement device, and acidic gas removal device
KR20140108591A (en) * 2012-03-09 2014-09-11 미츠비시 쥬고교 가부시키가이샤 Degradation product-concentration measurement device, and acidic gas removal device
CN104160268A (en) * 2012-03-09 2014-11-19 三菱重工业株式会社 Degradation product-concentration measurement device, and acidic gas removal device
WO2013132962A1 (en) * 2012-03-09 2013-09-12 三菱重工業株式会社 Degradation product-concentration measurement device, and acidic gas removal device
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device
AU2013228777B2 (en) * 2012-03-09 2015-12-17 Mitsubishi Heavy Industries, Ltd. Degradation product-concentration measurement device, and acidic gas removal device
KR101661406B1 (en) * 2012-03-09 2016-10-10 미츠비시 쥬고교 가부시키가이샤 Degradation product-concentration measurement device, and acidic gas removal device
CN103127815A (en) * 2013-02-19 2013-06-05 浙江大学 Method of improving trapping performance of sulfur dioxide through halide sulfur function
KR101697734B1 (en) * 2014-12-23 2017-02-15 (주)이에스씨아이 Upgrade system for biogas
KR20160076914A (en) * 2014-12-23 2016-07-01 이영상 Upgrade system for biogas
CN104923036A (en) * 2015-06-09 2015-09-23 河南师范大学 Method for catching sulfur dioxide by adopting halogenated carboxylic acid ion liquid

Similar Documents

Publication Publication Date Title
JP5383339B2 (en) Concentration management method for CO2 absorbent used in CO2 recovery equipment
KR101746235B1 (en) Energy saving method and apparatus for carbon dioxide capture in power plant
US9157353B2 (en) Carbon dioxide capturing system and method of operating same
JP2003093835A (en) Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid
EP3042712B1 (en) Recovery unit for recovering co2 and/or h2s
EP2823876B1 (en) System for chemically absorbing carbon dioxide in combustion exhaust gas
AU2012309539B2 (en) CO2 recovery device and CO2 recovery method
JP2685247B2 (en) How to remove ammonia
WO2014030388A1 (en) Co2 recovery device and co2 recovery method
JP2014124590A (en) Operation method of boiler system
JP5243595B2 (en) Improved alkanolamine for CO2 removal from gas streams
JP2010069371A (en) Apparatus for recovering carbon dioxide in coal boiler exhaust gas in thermal power plant and method for recovering carbon dioxide
Deiana et al. CO2 capture and amine solvent regeneration in Sotacarbo pilot plant
JP2012236170A (en) Method and apparatus for regeneration of deteriorated absorbing liquid, and carbon dioxide recovery system using the same
JPH05146625A (en) Removal of acidic gas from combustion exhaust gas
Zheng et al. Analysis and evaluation of the energy saving potential of the CO2 chemical absorption process
EP2998012B1 (en) Method for operating a gas absorption and regeneration apparatus
JP2010100491A (en) Device and method for carbon dioxide recovery
EP2804691A1 (en) Control of a chilled ammonia process for co2 removal from a flue gas
US20130064748A1 (en) METHOD AND APPARATUS FOR CAPTURING SOx IN A FLUE GAS PROCESSING SYSTEM
JP2019081151A (en) Acidic gas recovery method and system
CN103608087A (en) Method for reducing regeneration energy
AU2021229185B2 (en) Acid gas removal control apparatus, acid gas removal control method, and acid gas removing apparatus
JP2023148274A (en) Control method for amine-based absorbent
JP4052166B2 (en) Gas treatment method and system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612