JP2013128899A - Control method of co2 recovery apparatus - Google Patents

Control method of co2 recovery apparatus Download PDF

Info

Publication number
JP2013128899A
JP2013128899A JP2011281224A JP2011281224A JP2013128899A JP 2013128899 A JP2013128899 A JP 2013128899A JP 2011281224 A JP2011281224 A JP 2011281224A JP 2011281224 A JP2011281224 A JP 2011281224A JP 2013128899 A JP2013128899 A JP 2013128899A
Authority
JP
Japan
Prior art keywords
concentration
absorption liquid
organic acid
amount
alkanolamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011281224A
Other languages
Japanese (ja)
Inventor
Miho Yamahara
美穂 山原
Koichi Yokoyama
公一 横山
成仁 ▲高▼本
Naruhito Takamoto
Jun Shimamura
潤 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011281224A priority Critical patent/JP2013128899A/en
Publication of JP2013128899A publication Critical patent/JP2013128899A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a COrecovery apparatus, by which a composition of absorption liquid is controlled to be constant by quantitatively analyzing the degree of deterioration in amine absorption liquid and by supplying the absorption liquid or an oxidation inhibiting substance in accordance with the analysis value.SOLUTION: In this control method of the COrecovery apparatus, a product of the molal quantity of a produced inorganic acid and inorganic ionic valence and the molal quantity of a produced organic acid are calculated based on measured concentration of the organic acid and inorganic acid in a lean absorption liquid after removal of COin a regeneration column 13; an alkanolamine with molal quantity equal to the sum thereof is added to the absorption liquid to control the concentration of the alkanolamine in an absorbing column 1 into the prescribed range; the concentration of the oxidation inhibiting substance is controlled within the prescribed range by adding an oxidation inhibiting agent from a tank 33 when the measured value of the concentration of the organic acid has increased by 10% or more than the previous value; and when the produced amount of the inorganic acid has exceeded the prescribed ratio of the absorption liquid, a part of the absorption liquid is drawn out of the absorbing column 1 and led to a reclaiming apparatus 24, to control the concentration of a heat stable amine salt within the prescribed range.

Description

本発明は、ボイラなどの燃焼装置の排ガス中から二酸化炭素を回収する排煙処理装置の制御方法に係るものである。   The present invention relates to a control method for a flue gas treatment apparatus that recovers carbon dioxide from exhaust gas from a combustion apparatus such as a boiler.

火力発電所等において、二酸化炭素(以下、CO)が石炭などの化石燃料の燃焼に伴って発生し、大気中のCO濃度を上昇させており、それに伴う気温の上昇により、各種の環境問題が生じると言われ、地球温暖化の防止のため、各国でCO放出量の削減対策が実施されてきている。火力発電所等の、酸素(O)や硫黄酸化物(SO)、窒素酸化物(NOx)を含んだ燃焼排ガスからCOを回収する方法として、現在、最も実用化に近い方法としてアルカノールアミン溶液によるCOの吸収方法が挙げられ、1990年代から盛んに検討されている(例えば特許文献1)。これに関して、CO2回収に適したアルカノールアミンの種類の検討(例えば特許文献2及び3)や硫黄酸化物を含む排ガスへの適用条件の検討(例えば特許文献4)が行われている。また、これらのアルカノールアミンは排ガス中に含まれるOやSO、NOにより劣化することも知られており(例えば特許文献5及び6)、アミン濃度の低下や熱安定性アミン塩の増加を引き起こす。装置を安定して運転するためには、これらによる劣化の度合いを測定、制御する必要がある。これに関して、硫酸イオン濃度の測定値から、リクレーミング装置を用いて熱安定性アミン塩濃度を制御する方法(特許文献7など)が知られている。さらに、吸収液に酸化抑制剤を添加して溶存酸素による酸化劣化を防止する方法(例えば特許文献8)が知られている。 In thermal power plants and the like, carbon dioxide (hereinafter referred to as CO 2 ) is generated with the combustion of fossil fuels such as coal, increasing the concentration of CO 2 in the atmosphere. It is said that problems will occur, and measures to reduce CO 2 emissions have been implemented in each country to prevent global warming. As a method for recovering CO 2 from combustion exhaust gas containing oxygen (O 2 ), sulfur oxide (SO X ), and nitrogen oxide (NOx), such as a thermal power plant, alkanol is the most practical method at present. A method for absorbing CO 2 using an amine solution is mentioned, and has been actively studied since the 1990s (for example, Patent Document 1). In this regard, studies on types of alkanolamines suitable for CO 2 recovery (for example, Patent Documents 2 and 3) and conditions for application to exhaust gas containing sulfur oxides (for example, Patent Document 4) have been conducted. Further, these alkanolamines are also known to be deteriorated by O 2 , SO X , NO X contained in exhaust gas (for example, Patent Documents 5 and 6), and decrease in amine concentration and increase in heat-stable amine salt. cause. In order to operate the apparatus stably, it is necessary to measure and control the degree of deterioration due to these. In this regard, a method of controlling the thermostable amine salt concentration using a reclaiming device from a measured value of the sulfate ion concentration (Patent Document 7, etc.) is known. Furthermore, a method for preventing oxidative deterioration due to dissolved oxygen by adding an oxidation inhibitor to the absorbing solution (for example, Patent Document 8) is known.

特許第3529855号Japanese Patent No. 3529855 特許第2871334号Japanese Patent No. 2871334 特開2009−6275号公報JP 2009-6275 A 特許第3529855号Japanese Patent No. 3529855 特許第3739437号Japanese Patent No. 3739437 特開2011-104580号公報JP 2011-104580 A 特許第3529855号Japanese Patent No. 3529855 特許第3739437号Japanese Patent No. 3739437

上記従来技術では、アミン吸収液の硫酸塩化による劣化度合を評価し、熱安定性アミン塩濃度を制御することは可能と思われるが、酸化による劣化は評価できないため、酸化抑制剤の補充量制御等には対応できない。更に、硫酸塩化についても、アルカノールアミンと反応せず、単に吸収液中に溶解した硫酸イオンあるいは硝酸イオンが含まれていると、硫酸塩化された吸収液の濃度をより過剰に評価することとなり、精度のよい制御ができないという課題がある。   In the above-mentioned conventional technology, it is considered possible to evaluate the degree of deterioration due to sulfation of the amine absorption liquid and control the thermostable amine salt concentration. However, since deterioration due to oxidation cannot be evaluated, the replenishment control of the oxidation inhibitor is controlled. It cannot respond to etc. Furthermore, regarding sulfation, if sulfate ions or nitrate ions that do not react with the alkanolamine are simply contained in the absorption solution, the concentration of the sulfated absorption solution will be evaluated more excessively. There is a problem that accurate control cannot be performed.

上記の課題を解決するため、本願で特許請求される発明は以下のとおりである。
(1)COを含有するガスを、酸化抑制剤を含み、アルカノールアミンを主成分とするCO吸収液と接触させてCOを除去する吸収塔、COを吸収した吸収液(以下、リッチ吸収液という)を加熱してCOを回収する再生塔、該再生塔でCOを除去された吸収液(以下、リーン吸収液という)の冷却とリッチ吸収液の加熱を同時に行う熱交換器、及び熱安定性アミン塩濃度を低減するリクレーミング装置を備えるCO吸収装置において、リーン吸収液中の有機酸と無機酸の濃度を一定時間間隔で分析し、該有機酸と無機酸の濃度から無機酸の生成モル量と無機イオン価数の積及び有機酸の生成モル量を計算し、その和と等モル量のアルカノールアミンを吸収液に添加することによりアルカノールアミン濃度を所定範囲に制御し、有機酸濃度の一定時間間隔の分析値が前回の値より10パーセント以上増加した場合に酸化抑制剤を添加することにより酸化抑制剤濃度を所定範囲に制御し、無機酸の生成量が吸収液量の所定割合を超えた場合に、吸収塔から吸収液の一部を抜出してリクレーミング装置に導入し、熱安定性アミン塩を除去することにより熱安定性アミン塩濃度を所定範囲に制御することを特徴とするCO回収装置の制御方法。
(2)熱交換器よりも吸収塔側のリーン吸収液中の有機酸と無機酸の濃度を分析することを特徴とする(1)記載の方法。
(3)前記有機酸濃度の増加量が前回より10パーセント以上増加した場合に添加する酸化抑制剤の量を吸収液量の0.1〜1重量パーセントとする(1)記載の方法。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) a gas containing CO 2, include oxidation inhibitors, absorption tower to remove CO 2 in contact with CO 2 absorbing solution mainly composed of alkanolamine, absorbent having absorbed CO 2 (hereinafter, regeneration tower to recover CO 2 by heating of the rich absorption liquid) absorption liquid removed of CO 2 in the regeneration tower (hereinafter, at the same time the heat exchange for heating the cooling and the rich absorption liquid of the lean absorption liquid) In a CO 2 absorber equipped with a reclaiming device for reducing the concentration of the thermostable amine salt, the concentration of the organic acid and the inorganic acid in the lean absorbent is analyzed at regular time intervals, and the concentration of the organic acid and the inorganic acid The product of the molar amount of the inorganic acid and the inorganic ionic valence and the molar amount of the organic acid formed are calculated, and the alkanolamine concentration is controlled within a predetermined range by adding the sum and equimolar amount of the alkanolamine to the absorbent. If the analysis value of the organic acid concentration at a certain time interval increases more than 10% from the previous value, the oxidation inhibitor concentration is controlled within a predetermined range by adding the oxidation inhibitor, and the amount of inorganic acid produced is When a certain percentage of the absorption liquid amount is exceeded, a part of the absorption liquid is extracted from the absorption tower and introduced into the reclaiming device, and the heat-stable amine salt concentration is removed to control the heat-stable amine salt concentration within a predetermined range. A control method for a CO 2 recovery device.
(2) The method according to (1), wherein the concentration of the organic acid and the inorganic acid in the lean absorbent on the absorption tower side of the heat exchanger is analyzed.
(3) The method according to (1), wherein the amount of the oxidation inhibitor added when the increase amount of the organic acid concentration is increased by 10% or more from the previous time is 0.1 to 1 weight percent of the absorption liquid amount.

本発明によれば、有機酸、無機酸それぞれを自動的に分析し、その分析値に応じて吸収液や酸化抑制物質を供給することで、吸収液の組成を一定に制御することができる。また、無機酸の濃度を分析することで、熱安定性アミン塩濃度の制御も行うことができる。   According to the present invention, the composition of the absorption liquid can be controlled to be constant by automatically analyzing each of the organic acid and the inorganic acid and supplying the absorption liquid and the oxidation inhibitor according to the analysis value. Moreover, the thermostable amine salt concentration can be controlled by analyzing the concentration of the inorganic acid.

本発明の系統図。The systematic diagram of this invention.

本発明に用いるアルカノールアミンとは、モノエタノールアミン(以下、MEA、分子量61.08)、2−(メチルアミノ)エタノール(以下、MAE、分子量:75.12)、2−(エチルアミノ)エタノール(以下、EAE、分子量:89.14)、2−アミノ−2−メチル−1−プロパノール(以下、AMP、分子量:89.14)、2−(イソプロピルアミノ)エタノール(以下、IPAE、分子量:103.16)のようなアルコール性水酸基を1つ含有するアミン類及び/またはこれらの混合物である。   The alkanolamine used in the present invention includes monoethanolamine (hereinafter referred to as MEA, molecular weight 61.08), 2- (methylamino) ethanol (hereinafter referred to as MAE, molecular weight: 75.12), 2- (ethylamino) ethanol ( Hereinafter, EAE, molecular weight: 89.14), 2-amino-2-methyl-1-propanol (hereinafter, AMP, molecular weight: 89.14), 2- (isopropylamino) ethanol (hereinafter, IPAE, molecular weight: 103.14). 16) amines containing one alcoholic hydroxyl group and / or mixtures thereof.

また、酸化抑制剤は、下記の構造式(A)で表されるメルカプトイミダゾール類及び/又は構造式(B)で表されるメルカプトベンズイミダゾール類の中の1種または2種以上の有機硫黄化合物である。

Figure 2013128899
The oxidation inhibitor is one or more organic sulfur compounds in mercaptoimidazoles represented by the following structural formula (A) and / or mercaptobenzimidazoles represented by the structural formula (B). It is.
Figure 2013128899

また、分析装置としては、ガスクロマトグラフィー、液クロマトグラフィー、イオンクロマトグラフィーやICP等、既存の測定機器を用いることができる。1台でも、2台以上でもよい。   Moreover, as an analyzer, existing measuring instruments such as gas chromatography, liquid chromatography, ion chromatography and ICP can be used. One or two or more may be used.

また、分析は、連続的でもよいし、一定の間隔を置いてでもよい。
また、脱炭酸処理の対象となる二酸化炭素含有ガスの圧力は加圧であっても、常圧であってもよく、また、温度は低温であっても、高温であってもよく、特に制限はない。好ましくは、常圧の燃焼排ガスである。
In addition, the analysis may be continuous or at regular intervals.
Further, the pressure of the carbon dioxide-containing gas to be decarboxylated may be pressurized or normal pressure, and the temperature may be a low temperature or a high temperature. There is no. Preferably, it is an atmospheric pressure combustion exhaust gas.

また、熱安定性アミン塩濃度を低減する手段とは、リクレーミング、イオン交換、電気透析などである。
また、有機酸とはギ酸、酢酸、酪酸のようなカルボン酸や、シュウ酸である。
また、無機酸とは亜硝酸イオン、硝酸イオン、亜硫酸イオン、硫酸イオンである。
[作用]
上記のアルカノールアミンの水溶液を二酸化炭素回収装置のCO吸収液として用いると、該吸収液中のアルカノールアミンが燃焼排ガス中のOやNOx、SOx等の酸化成分によって一部が酸化・分解する。
Means for reducing the thermostable amine salt concentration include reclaiming, ion exchange, electrodialysis and the like.
Organic acids are carboxylic acids such as formic acid, acetic acid and butyric acid, and oxalic acid.
In addition, inorganic acids are nitrite ions, nitrate ions, sulfite ions, and sulfate ions.
[Action]
When the above aqueous solution of alkanolamine is used as the CO 2 absorbent of the carbon dioxide recovery device, the alkanolamine in the absorbent is partially oxidized / decomposed by oxidizing components such as O 2 , NOx, and SOx in the combustion exhaust gas. .

例えば、アルカノールアミンとして、MEA(HNCOH)を例にすると、化学式(1)および化学式(2)で示される酸化反応により、有機酸であるシュウ酸((COOH))や、酢酸(CHCOOH)がそれぞれ生成する。
NCOH+2O→NH+(COOH)+HO (1)
NCOH+1/2O→NH+CHCOOH (2)
MAE、EAE、AMP、IPAEのようなアルコール性水酸基を1つ含有するアミン類及び/またはこれらの混合物も、酸化反応により同様に有機酸を生成する。
For example, when MEA (H 2 NC 2 H 4 OH) is taken as an example of alkanolamine, oxalic acid ((COOH) 2 ), which is an organic acid, is produced by an oxidation reaction represented by chemical formulas (1) and (2). , Acetic acid (CH 3 COOH) is produced.
H 2 NC 2 H 4 OH + 2O 2 → NH 3 + (COOH) 2 + H 2 O (1)
H 2 NC 2 H 4 OH + 1 / 2O 2 → NH 3 + CH 3 COOH (2)
Amines containing one alcoholic hydroxyl group, such as MAE, EAE, AMP, and IPAE, and / or mixtures thereof, similarly generate organic acids by oxidation reaction.

化学式(1)、(2)で示されるように、アルコール性水酸基を1つ含有するアルカノールアミンの場合は、1分子につき有機酸1分子が生成する。よって、有機酸の生成量がアルカノールアミンの酸化分解量に等しい。   As shown by the chemical formulas (1) and (2), in the case of an alkanolamine containing one alcoholic hydroxyl group, one molecule of organic acid is generated per molecule. Therefore, the production amount of the organic acid is equal to the oxidative decomposition amount of the alkanolamine.

また、吸収液は、SOxとの反応により、下記化学式(3)〜(7)に示すように、熱安定性アミン塩を生成する。
SO2+H2O=H2SO3 (3)
2SO3+1/2O2=H2SO4 (4)
2SO3+2RNHCHR’CH2OH=[RNH2CHR’CH2OH]2SO3 (5)
[RNH2CHR’CH2OH]2SO3+1/2O2=[RNH2CHR’CH2OH]2SO4 (6)
2SO4+2RNHCHR’CH2OH=[RNH2CHR’CH2OH]2SO4 (7)
上記の(3)から(7)で示されるように、アルカノールアミン2分子につき熱安定性アミン塩1分子が生成する。よって、亜硫酸イオンと硫酸イオンの分析値の和の2倍が、アルカノールアミンの消失量に等しい。
Further, the absorbing solution generates a heat-stable amine salt by reaction with SOx as shown in the following chemical formulas (3) to (7).
SO 2 + H 2 O = H 2 SO 3 (3)
H 2 SO 3 + 1 / 2O 2 = H 2 SO 4 (4)
H 2 SO 3 + 2RNHCHR′CH 2 OH = [RNH 2 CHR′CH 2 OH] 2 SO 3 (5)
[RNH 2 CHR′CH 2 OH] 2 SO 3 + 1 / 2O 2 = [RNH 2 CHR′CH 2 OH] 2 SO 4 (6)
H 2 SO 4 + 2RNHCHR′CH 2 OH = [RNH 2 CHR′CH 2 OH] 2 SO 4 (7)
As shown in (3) to (7) above, one thermostable amine salt molecule is formed for every two alkanolamine molecules. Therefore, twice the sum of the analytical values of sulfite ion and sulfate ion is equal to the disappearance amount of alkanolamine.

また、吸収液は、NOxとの反応により、下記化学式(8)〜(10)に示すように、熱安定性アミン塩を生成する。
2NO2+H2O=HNO2+HNO3 (8)
HNO2+RNHCHR’CH2OH=[RNH2CHR’CH2OH]NO2 (9)
HNO3+RNHCHR’CH2OH=[RNH2CHR’CH2OH]NO3 (10)
上記の(8)から(10)で示されるように、アルカノールアミン1分子につき熱安定性アミン塩1分子が生成する。よって、亜硝酸イオンと硝酸イオンの分析値の等量が、アルカノールアミンの消失量に等しい。
Further, the absorbing solution generates a heat-stable amine salt by reaction with NOx as shown in the following chemical formulas (8) to (10).
2NO 2 + H 2 O = HNO 2 + HNO 3 (8)
HNO 2 + RNHCHR′CH 2 OH = [RNH 2 CHR′CH 2 OH] NO 2 (9)
HNO 3 + RNHCHR′CH 2 OH = [RNH 2 CHR′CH 2 OH] NO 3 (10)
As shown in the above (8) to (10), one molecule of heat-stable amine salt is generated per one molecule of alkanolamine. Therefore, the equivalent amount of the analytical value of nitrite ion and nitrate ion is equal to the disappearance amount of alkanolamine.

したがって、吸収液中の有機酸と無機酸の濃度を測定することにより、吸収液の劣化度合を評価できる。その連続的または一定間隔の測定値によって、アルカノールアミン濃度の減少量、および熱安定性アミン塩の増加量を同時に求めることができる。さらに、有機酸の増加量の変化によって酸化抑制剤の減少を知ることができる。   Therefore, the degree of deterioration of the absorbing solution can be evaluated by measuring the concentration of the organic acid and the inorganic acid in the absorbing solution. The amount of decrease in the alkanolamine concentration and the amount of increase in the heat-stable amine salt can be determined simultaneously by the continuous or regular measurement values. Furthermore, the decrease in the oxidation inhibitor can be known by the change in the increase amount of the organic acid.

以下、図1を参照して本発明の制御方法を説明する。
本発明に用いるCO回収装置は、CO含有ガスをアルカノールアミンを主成分とするCO吸収液と接触させてCOを除去する吸収塔1と、COを吸収した吸収液(以下、リッチ吸収液という)を加熱してCOを回収する再生塔13と、該再生塔でCOを除去された吸収液(以下、リーン吸収液という)の冷却とリッチ吸収液の加熱を同時に行う熱交換器22と、熱安定性アミン塩濃度を低減するリクレーミング装置24とを備え、さらにアルカノールアミン及びその酸化抑制剤の供給量の抑制のために設けられた、アルカノールアミン貯蔵タンク29と、酸化抑制剤貯蔵タンク30と、前記タンク29及び30にそれぞれ弁31及び32を介して接続された攪拌タンク33と、該攪拌タンク33の吸収液を弁34を介して吸収塔1に供給するラインと、再生塔13から吸収塔1に循環させる吸収液の一部を抜き出してその成分を分析する分析装置27と、該分析装置27の分析値及びリクレーマー装置24の蒸気量を計測値に応じて前記貯蔵タンク29及び30の弁31及び32、並びに吸収塔に新たな吸収液及び酸化抑制剤を供給するラインの弁34を適性値に制御する制御系統とから構成される。
Hereinafter, the control method of the present invention will be described with reference to FIG.
CO 2 recovery apparatus for use in the present invention, a CO 2 containing gas is contacted with the CO 2 absorbing solution mainly composed of an alkanolamine and the absorption tower 1 to remove CO 2, absorbent having absorbed CO 2 (hereinafter, performing a regeneration tower 13 to recover CO 2 by heating of the rich absorption liquid) absorption liquid removed of CO 2 in the regeneration tower (hereinafter, the heating of the cooling and the rich absorption liquid of the lean absorption liquid) simultaneously An alkanolamine storage tank 29 provided with a heat exchanger 22 and a reclaiming device 24 for reducing the heat-stable amine salt concentration, and further provided for suppressing the supply of alkanolamine and its oxidation inhibitor, and oxidation An inhibitor storage tank 30, a stirring tank 33 connected to the tanks 29 and 30 via valves 31 and 32, respectively, and a line for supplying the absorption liquid of the stirring tank 33 to the absorption tower 1 via the valve 34; ,Regeneration Analyzing device 27 for extracting a part of the absorption liquid circulated from the absorber 13 to the absorption tower 1 and analyzing its components, and the storage tank according to the measured value of the analysis value of the analyzing device 27 and the vapor amount of the reclaimer device 24 The control system is configured to control the valves 31 and 32 of 29 and 30 and the valve 34 of the line for supplying new absorption liquid and oxidation inhibitor to the absorption tower to appropriate values.

熱安定性アミン塩濃度を低減する手段として設けられるリクレーミング装置24には、蒸気供給弁35を介して蒸気が供給されるが、その供給量はアルカノールアミン及び酸化抑制剤の供給弁31及び32と関連させて制御される。すなわち、上記の測定値を基に、図1のアルカノールアミン及び酸化抑制剤供給口32、およびリクレーミング装置24への蒸気供給弁35を操作し、吸収液中のアルカノールアミン、酸化抑制剤および熱安定性アミン塩の濃度が最適値になるように制御する。すなわち、システム内の吸収液中のアルカノールアミン濃度の減少分だけ、新たなアルカノールアミンを供給する。また、アルカノールアミンの酸化反応によって生成する有機酸の濃度の時間変化の勾配がそれまでとは異なって増加した場合には、タンク33からアルカノールアミンと酸化抑制剤の混合溶液を供給する。また、無機酸濃度の分析値に比例して、熱安定性アミン塩化したアルカノールアミンの割合も増加するため、無機酸の分析値が吸収量の10重量パーセントが熱安定性アミン塩化している値以上になると、CO回収量が減少する。そのため、熱安定性アミン塩の濃度が10重量パーセントを越えた場合は、熱安定性アミン塩濃度が5重量パーセント以下になるように蒸気供給弁35を調整し、リクレーミング装置24に蒸気を供給する。 Steam is supplied to the reclaiming device 24 provided as a means for reducing the heat-stable amine salt concentration via the steam supply valve 35, and the supply amount thereof is the supply valves 31 and 32 for the alkanolamine and the oxidation inhibitor. Controlled in relation. That is, based on the above measured values, the alkanolamine and oxidation inhibitor supply port 32 of FIG. 1 and the steam supply valve 35 to the reclaiming device 24 are operated, and the alkanolamine, oxidation inhibitor and thermal stability in the absorption liquid are operated. The concentration of the neutral amine salt is controlled so as to be an optimum value. That is, new alkanolamine is supplied by the amount of decrease in the alkanolamine concentration in the absorbing solution in the system. Further, when the gradient of the time change of the concentration of the organic acid produced by the oxidation reaction of alkanolamine increases unlike before, a mixed solution of alkanolamine and oxidation inhibitor is supplied from the tank 33. In addition, the proportion of heat-stable amine salified alkanolamine increases in proportion to the analytical value of inorganic acid concentration, so the analytical value of inorganic acid is the value that 10% by weight of the absorbed amount is heat-stable amine salified. It becomes equal to or larger than, CO 2 recovery amount decreases. Therefore, when the concentration of the heat-stable amine salt exceeds 10 weight percent, the steam supply valve 35 is adjusted so that the heat-stable amine salt concentration is 5 weight percent or less, and steam is supplied to the reclaiming device 24. .

前記設定値は、本発明の効果を見出すために任意に設定可能な値であり、本明細書に記載の値に限定されるものではない。   The set value is a value that can be arbitrarily set in order to find the effect of the present invention, and is not limited to the value described in this specification.

吸収液中のアルカノールアミン濃度及び熱安定性アミン塩濃度をさらに精度よく制御するためには、アミン吸収液中に熱安定性アミン塩を形成せずに存在する溶存SOx、溶存NOxが高温により放出され少なくなる、再生塔後流且つ吸収塔前流で、また高温による分析装置の不具合を避けられる熱交換器より吸収塔側の吸収液を分析するとよい。   In order to control the alkanolamine concentration and heat-stable amine salt concentration in the absorbing solution with higher accuracy, dissolved SOx and dissolved NOx that exist without forming a heat-stable amine salt in the amine absorbing solution are released at high temperatures. Therefore, the absorption liquid on the absorption tower side may be analyzed from the heat exchanger which can be avoided, and the downstream of the regeneration tower and the upstream of the absorption tower, and avoiding the failure of the analyzer due to high temperature.

図1の装置は、アルカノールアミンを含む吸収液を酸素、二酸化炭素、NOx、SOxを含む被処理ガス11と接触せしめる吸収塔1と、二酸化炭素を吸収した該吸収液を加熱し、二酸化炭素18を回収する再生塔13からなり、かつ吸収塔1で二酸化炭素を回収した吸収液の少なくとも一部を再生塔13に搬送し、かつ再生塔13で二酸化炭素を遊離した吸収液の少なくとも一部を吸収塔1に二酸化炭素の吸収液として搬送し、さらに前述の吸収塔1から再生塔13に搬送する吸収液と再生塔13から吸収塔1に搬送する吸収液との熱交換器22からなり、二酸化炭素の吸収液が再生塔13から熱交換器22を通り吸収塔1に戻るラインに設けられたサンプリング口36より吸収液を抜き出し、該吸収液中の有機酸、無機酸の濃度を分析装置27で測定し、これらの物質の濃度の増加に応じて、アルカノールアミンを吸収液の添加弁32より添加し、また有機酸の増加に応じて酸化抑制剤を攪拌タンク33に加えて、前記アルカノールアミンと共に添加弁32より添加し、また無機酸の濃度の増加に応じて、蒸気供給ライン33から蒸気をリクレーミング装置24に供給して二酸化炭素の吸収液組成を調整する。   The apparatus of FIG. 1 heats an absorption tower 1 for bringing an absorption liquid containing alkanolamine into contact with a gas to be treated 11 containing oxygen, carbon dioxide, NOx, and SOx, and heating the absorption liquid that has absorbed carbon dioxide. At least a part of the absorption liquid from which the carbon dioxide was recovered by the absorption tower 1, and at least a part of the absorption liquid from which the carbon dioxide was released by the regeneration tower 13 Conveyed as an absorption liquid of carbon dioxide to the absorption tower 1, further comprising a heat exchanger 22 between the absorption liquid conveyed from the absorption tower 1 to the regeneration tower 13 and the absorption liquid conveyed from the regeneration tower 13 to the absorption tower 1, The absorption liquid is extracted from the sampling port 36 provided in the line where the absorption liquid of carbon dioxide passes from the regeneration tower 13 through the heat exchanger 22 and returns to the absorption tower 1, and the concentration of the organic acid and inorganic acid in the absorption liquid is analyzed. Measured at 27 and according to the increase in the concentration of these substances The alkanolamine is added from the addition valve 32 of the absorption liquid, and the oxidation inhibitor is added to the stirring tank 33 according to the increase of the organic acid, and is added from the addition valve 32 together with the alkanolamine. In accordance with the increase, steam is supplied from the steam supply line 33 to the reclaiming device 24 to adjust the carbon dioxide absorption liquid composition.

CO吸収装置において二酸化炭素の吸収液組成の調整装置を用いることにより、吸収液中のアルカノールアミン濃度、酸化抑制剤濃度、熱安定性アミン塩濃度を制御することができる。 By using a carbon dioxide absorbent composition adjusting device in the CO 2 absorber, the alkanolamine concentration, oxidation inhibitor concentration, and heat-stable amine salt concentration in the absorbent can be controlled.

CO12%のほかO、N、SO、NOを含有する燃焼排ガス2m3/h、を塔径50mm、充填層高さ1.4mの吸収塔へ燃焼排ガス供給口3より供給し、2-メルカプトベンズイミダゾールを2.5重量%、MAEを35重量%含む水溶液と、液ガス比3.0で向流接触させてCOを吸収した。塔上部に設置してある水洗部25で飛散アミンを補集し、排ガスは塔頂のガス排出口4から系外に排出した。吸収塔1から出るCOを豊富に含む吸収液(リッチ吸収液)は液出口ラインから再生塔13に供給され、リボイラ23で加熱して再生され、再生した吸収液は、供給口5から吸収塔1に戻される。 Combustion exhaust gas 2m 3 / h containing O 2 , N 2 , SO x , NO x in addition to CO 2 12% is supplied from the combustion exhaust gas supply port 3 to an absorption tower having a tower diameter of 50 mm and a packed bed height of 1.4 m. CO 2 was absorbed by countercurrent contact with an aqueous solution containing 2.5% by weight of 2-mercaptobenzimidazole and 35% by weight of MAE at a liquid gas ratio of 3.0. Scattered amine was collected in the water washing section 25 installed at the top of the tower, and the exhaust gas was discharged out of the system from the gas outlet 4 at the top of the tower. Absorbing liquid rich in CO 2 (rich absorbing liquid) coming out from the absorption tower 1 is supplied to the regeneration tower 13 from the liquid outlet line, regenerated by heating with the reboiler 23, and the regenerated absorbent is absorbed from the supply port 5. Return to Tower 1.

主な実験条件は吸収塔入口ガス及び液温度は30℃、再生塔入口液温度は100℃、再生塔液温度は最高110℃であった。循環液量は7Lであった。
定常状態に達した後、熱交換器22を介して吸収塔1に戻される吸収液をサンプリング口36から抜出し、液中の有機酸、無機酸(亜硫酸及び硫酸、亜硝酸および硝酸)の濃度をイオンクロマトグラフで測定したところ、それぞれ24.1mmol/L、3.54mmol/L、2.08mmol/Lであった。これらの測定量から、次の関係式でアミンの劣化度合を求めた。
The main experimental conditions were absorption tower inlet gas and liquid temperature of 30 ° C., regeneration tower inlet liquid temperature of 100 ° C., and regeneration tower liquid temperature of up to 110 ° C. The amount of circulating fluid was 7L.
After reaching a steady state, the absorption liquid returned to the absorption tower 1 through the heat exchanger 22 is withdrawn from the sampling port 36, and the concentration of organic acid and inorganic acid (sulfurous acid and sulfuric acid, nitrous acid and nitric acid) in the liquid is determined. When measured by ion chromatography, they were 24.1 mmol / L, 3.54 mmol / L, and 2.08 mmol / L, respectively. From these measured amounts, the degree of deterioration of the amine was determined by the following relational expression.

(1)分解アミンのモル量=有機酸のモル量
(2)熱安定性アミン塩のモル量=(亜硫酸イオンモル量+硫酸イオンモル量)×2+(亜硝酸イオンモル量+硝酸イオンモル量)
この結果から、MAEの消失量を33.26mmol/Lと算出し、これを吸収塔1に供給した。6時間ごとに吸収液中の有機酸、無機酸濃度を測定した。なお、2回目以降のアミン添加量は、次の関係式より求めた。
(1) Mole amount of decomposed amine = Mole amount of organic acid
(2) Molar amount of heat-stable amine salt = (mol amount of sulfite ion + mol amount of sulfate ion) × 2 + (mol amount of nitrite ion + mol amount of nitrate ion)
From this result, the disappearance amount of MAE was calculated to be 33.26 mmol / L, and this was supplied to the absorption tower 1. The organic acid and inorganic acid concentrations in the absorbing solution were measured every 6 hours. The amount of amine added after the second time was determined from the following relational expression.

((1)、(2)の関係式より求めたアミン劣化量)−(前回の測定で求めたアミン劣化量)
また、有機酸の増加量を毎回記録し、n回目の有機酸増加量がn-1回目までの平均有機酸増加量より10%以上多かった場合、1重量パーセントの2-メルカプトベンズイミダゾールを添加した。また、無機酸濃度が10重量パーセントを超えた場合、リクレーミング装置24を運転した。
(Amine degradation amount obtained from the relational expression of (1) and (2))-(Amine degradation amount obtained in the previous measurement)
Also, the increase in organic acid is recorded every time, and if the increase in the nth organic acid is more than 10% higher than the average increase in organic acid up to the n-1th, 1 weight percent of 2-mercaptobenzimidazole is added. did. Also, when the inorganic acid concentration exceeded 10 weight percent, the reclaiming device 24 was operated.

実施例1のMAEの代わりに、2.5重量パーセントの2−メルカプトベンズイミダゾール、45重量パーセントのEAEを含んだ吸収液を用いた。他の条件は実施例1と同じである。   Instead of the MAE of Example 1, an absorbent containing 2.5 weight percent 2-mercaptobenzimidazole and 45 weight percent EAE was used. Other conditions are the same as in Example 1.

実施例1のMAEの代わりとして、2.5重量パーセントの2−メルカプトベンズイミダゾール、52重量パーセントのIPAEを含んだ吸収液を用いた。他の条件は実施例1と同じである。
実施例1〜3の結果を表1に示す。
As an alternative to the MAE of Example 1, an absorbent containing 2.5 weight percent 2-mercaptobenzimidazole and 52 weight percent IPAE was used. Other conditions are the same as in Example 1.
The results of Examples 1 to 3 are shown in Table 1.

Figure 2013128899
Figure 2013128899

実施例の条件では、アルカノールアミンと酸化抑制剤の濃度は初期値とほぼ同等の値を示し、熱安定性アミン塩の濃度を常に100mmol/L以下に制御することができた。
以上の結果から、本発明により二酸化炭素再生後の該吸収液中の有機酸、無機酸の濃度を測定することにより、劣化したアミン量を求めて該吸収液にアミン、酸化抑制剤を追加し、リクレーマーを制御することにより、吸収液組成を一定に制御することができることが実証された。
Under the conditions of the examples, the concentrations of the alkanolamine and the oxidation inhibitor showed values almost equal to the initial values, and the concentration of the heat-stable amine salt could always be controlled to 100 mmol / L or less.
From the above results, by measuring the concentration of the organic acid and inorganic acid in the absorption liquid after carbon dioxide regeneration according to the present invention, the amount of deteriorated amine was determined, and an amine and an oxidation inhibitor were added to the absorption liquid. It has been demonstrated that the composition of the absorbing solution can be controlled to be constant by controlling the reclaimer.

1…吸収塔、2…充填部、3…吸収塔燃焼排ガス供給口
4…脱CO2燃焼排ガス排出口、5…アミン化合物水溶液供給口、6…ノズル
7…水循環ポンプ、8…冷却器、9…ノズル
10…CO2吸収アミン化合物抜出ライン、11…被処理ガス
12…ブロワ、13…再生塔、14…ノズル、15…下部充填部
16…ポンプ、17…CO2分離器、18…排出CO2、19…冷却器、20…ノズル
21…還流水供給ライン、22…熱交換器、23…リボイラ、24…リクレーミング装置
25…水洗部、26…上部充填部、27…分析装置
28…制御装置、29…アルカノールアミン貯蔵タンク、30…酸化抑制剤貯蔵タンク
31…アルカノールアミン供給弁、32…酸化抑制剤供給弁、33…攪拌タンク
34…アルカノールアミン及び酸化抑制剤供給口、35…蒸気供給口、36…サンプリング口
1 ... absorption tower, 2 ... filling portion, 3 ... absorption tower combustion exhaust gas feed port 4 ... de CO 2 combustion exhaust gas outlet, 5 ... amine compound aqueous solution feed opening, 6 ... nozzle 7 ... water circulating pump, 8 ... cooler, 9 ... nozzle 10 ... CO 2 absorbing amine compound extraction line, 11 ... gas to be treated 12 ... blower, 13 ... regeneration tower, 14 ... nozzle, 15 ... lower filling portion 16 ... pump, 17 ... CO 2 separator, 18 ... exhaust CO 2 , 19 ... cooler, 20 ... nozzle 21 ... reflux water supply line, 22 ... heat exchanger, 23 ... reboiler, 24 ... reclaiming device 25 ... rinsing section, 26 ... upper filling section, 27 ... analyzer 28 ... control Apparatus 29 ... Alkanolamine storage tank 30 ... Oxidation inhibitor storage tank 31 ... Alkanolamine supply valve, 32 ... Oxidation inhibitor supply valve, 33 ... Stir tank 34 ... Alkanolamine and oxidation inhibitor supply port, 35 Steam supply port, 36 ... a sampling port

Claims (3)

COを含有するガスを、酸化抑制剤を含み、アルカノールアミンを主成分とするCO吸収液と接触させてCOを除去する吸収塔、COを吸収した吸収液(以下、リッチ吸収液という)を加熱してCOを回収する再生塔、該再生塔でCOを除去された吸収液(以下、リーン吸収液という)の冷却とリッチ吸収液の加熱を同時に行う熱交換器、及び熱安定性アミン塩濃度を低減するリクレーミング装置を備えるCO吸収装置において、リーン吸収液中の有機酸と無機酸の濃度を一定時間間隔で分析し、該有機酸と無機酸の濃度から無機酸の生成モル量と無機イオン価数の積及び有機酸の生成モル量を計算し、その和と等モル量のアルカノールアミンを吸収液に添加することによりアルカノールアミン濃度を所定範囲に制御し、有機酸濃度の一定時間間隔の分析値が前回の値より10パーセント以上増加した場合に酸化抑制剤を添加することにより酸化抑制剤濃度を所定範囲に制御し、無機酸の生成量が吸収液量の所定割合を超えた場合に、吸収塔から吸収液の一部を抜出してリクレーミング装置に導入し、熱安定性アミン塩を除去することにより熱安定性アミン塩濃度を所定範囲に制御することを特徴とするCO回収装置の制御方法。 The gas containing CO 2, include oxidation inhibitors, absorption tower to remove CO 2 in contact with CO 2 absorbing solution mainly composed of alkanolamine, absorbent having absorbed CO 2 (hereinafter, the rich absorbent solution regeneration tower to recover CO 2 by heating) of the absorption liquid that has been removed of CO 2 in the regeneration tower (hereinafter, the heat exchanger for heating the cooling and the rich absorption liquid of the lean absorption liquid) simultaneously, and In a CO 2 absorber equipped with a reclaiming device for reducing the heat-stable amine salt concentration, the concentration of the organic acid and the inorganic acid in the lean absorbent is analyzed at regular time intervals, and the concentration of the organic acid and the inorganic acid is calculated from the concentration of the organic acid and the inorganic acid. The product of the generated molar amount and the inorganic ionic valence and the generated molar amount of the organic acid are calculated, and the alkanolamine concentration is controlled within a predetermined range by adding an alkanolamine of the sum and equimolar amount to the absorbing solution, When the analytical value of the organic acid concentration at a certain time interval is increased by 10% or more from the previous value, the oxidation inhibitor concentration is controlled within a predetermined range by adding the oxidation inhibitor, and the amount of inorganic acid produced is the amount of absorbed liquid When a predetermined proportion of the above is exceeded, a part of the absorption liquid is extracted from the absorption tower and introduced into the reclaiming device, and the heat stable amine salt concentration is controlled to be within a predetermined range by removing the heat stable amine salt. A control method for a CO 2 recovery device. 熱交換器よりも吸収塔側のリーン吸収液中の有機酸と無機酸の濃度を分析することを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the concentration of the organic acid and the inorganic acid in the lean absorption liquid on the absorption tower side of the heat exchanger is analyzed. 前記有機酸濃度の増加量が前回より10パーセント以上増加した場合に添加する酸化抑制剤の量を吸収液量の0.1〜1重量パーセントとする請求項1記載の方法。 The method according to claim 1, wherein the amount of the oxidation inhibitor added when the increase amount of the organic acid concentration is increased by 10 percent or more from the previous time is 0.1 to 1 weight percent of the absorption liquid amount.
JP2011281224A 2011-12-22 2011-12-22 Control method of co2 recovery apparatus Pending JP2013128899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281224A JP2013128899A (en) 2011-12-22 2011-12-22 Control method of co2 recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281224A JP2013128899A (en) 2011-12-22 2011-12-22 Control method of co2 recovery apparatus

Publications (1)

Publication Number Publication Date
JP2013128899A true JP2013128899A (en) 2013-07-04

Family

ID=48906941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281224A Pending JP2013128899A (en) 2011-12-22 2011-12-22 Control method of co2 recovery apparatus

Country Status (1)

Country Link
JP (1) JP2013128899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970334A (en) * 2018-08-02 2018-12-11 中国科学技术大学 Regenerative system and application thereof for rich carbon amine liquid
CN114159932A (en) * 2020-09-11 2022-03-11 株式会社东芝 Acid gas removal control device, acid gas removal control method, and acid gas removal device
EP3978099A4 (en) * 2019-05-28 2023-06-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas treatment method, and gas treatment device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461749A (en) * 1983-03-21 1984-07-24 Phillips Petroleum Company Processing acid gases
JPH05123535A (en) * 1991-11-07 1993-05-21 Mitsubishi Heavy Ind Ltd Method for preventing deterioration of carbon dioxide-absorbing solution
JPH05245338A (en) * 1992-03-03 1993-09-24 Kansai Electric Power Co Inc:The Method for removing carbon dioxide and sulfur compounds in combustion exhaust gas
JPH0686911A (en) * 1992-09-09 1994-03-29 Mitsubishi Heavy Ind Ltd Method for simultaneous treatment of desulfurization and decarbonation
JPH06154554A (en) * 1992-11-17 1994-06-03 Kansai Electric Power Co Inc:The Method for controlling amine compound concentration in carbon dioxide-absorption liquid
JPH10507491A (en) * 1994-10-13 1998-07-21 カタケム・インコーポレーテツド Method for minimizing solvent degradation and corrosion in amine solvent treatment systems
JPH11137960A (en) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The Method for control liquid carbon dioxide absorbent and device therefor
JP2003093835A (en) * 2001-09-27 2003-04-02 Hitachi Ltd Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid
JP3529855B2 (en) * 1994-09-28 2004-05-24 東京電力株式会社 Method for treating carbon dioxide in gas to be treated and absorption liquid
JP2005254233A (en) * 2004-03-09 2005-09-22 Basf Ag Absorption medium having improved oxidation stability, and deacidification of fluid stream
JP3739437B2 (en) * 1995-06-23 2006-01-25 バブコック日立株式会社 Carbon dioxide absorbing liquid and method for absorbing carbon dioxide in gas to be treated using the absorbing liquid
JP2006527153A (en) * 2003-06-12 2006-11-30 カンソルブ・テクノロジーズ・インコーポレーテツド Method for recovering CO2 from a gas stream
US20110092355A1 (en) * 2009-10-19 2011-04-21 Mitsubishi Heavy Industries, Ltd. Reclaiming apparatus and reclaiming method
JP2011115709A (en) * 2009-12-02 2011-06-16 Toshiba Corp Carbon dioxide separating and recovery apparatus
JP2013520304A (en) * 2010-02-26 2013-06-06 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Removal of heat stable salts from organic solvents

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461749A (en) * 1983-03-21 1984-07-24 Phillips Petroleum Company Processing acid gases
JPH05123535A (en) * 1991-11-07 1993-05-21 Mitsubishi Heavy Ind Ltd Method for preventing deterioration of carbon dioxide-absorbing solution
JPH05245338A (en) * 1992-03-03 1993-09-24 Kansai Electric Power Co Inc:The Method for removing carbon dioxide and sulfur compounds in combustion exhaust gas
JPH0686911A (en) * 1992-09-09 1994-03-29 Mitsubishi Heavy Ind Ltd Method for simultaneous treatment of desulfurization and decarbonation
JPH06154554A (en) * 1992-11-17 1994-06-03 Kansai Electric Power Co Inc:The Method for controlling amine compound concentration in carbon dioxide-absorption liquid
JP3529855B2 (en) * 1994-09-28 2004-05-24 東京電力株式会社 Method for treating carbon dioxide in gas to be treated and absorption liquid
JPH10507491A (en) * 1994-10-13 1998-07-21 カタケム・インコーポレーテツド Method for minimizing solvent degradation and corrosion in amine solvent treatment systems
JP3739437B2 (en) * 1995-06-23 2006-01-25 バブコック日立株式会社 Carbon dioxide absorbing liquid and method for absorbing carbon dioxide in gas to be treated using the absorbing liquid
JPH11137960A (en) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The Method for control liquid carbon dioxide absorbent and device therefor
JP2003093835A (en) * 2001-09-27 2003-04-02 Hitachi Ltd Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid
JP2006527153A (en) * 2003-06-12 2006-11-30 カンソルブ・テクノロジーズ・インコーポレーテツド Method for recovering CO2 from a gas stream
JP2005254233A (en) * 2004-03-09 2005-09-22 Basf Ag Absorption medium having improved oxidation stability, and deacidification of fluid stream
US20110092355A1 (en) * 2009-10-19 2011-04-21 Mitsubishi Heavy Industries, Ltd. Reclaiming apparatus and reclaiming method
JP2011104580A (en) * 2009-10-19 2011-06-02 Mitsubishi Heavy Ind Ltd Reclaiming apparatus and reclaiming method
JP2011115709A (en) * 2009-12-02 2011-06-16 Toshiba Corp Carbon dioxide separating and recovery apparatus
JP2013520304A (en) * 2010-02-26 2013-06-06 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Removal of heat stable salts from organic solvents

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970334A (en) * 2018-08-02 2018-12-11 中国科学技术大学 Regenerative system and application thereof for rich carbon amine liquid
CN108970334B (en) * 2018-08-02 2020-10-27 中国科学技术大学 Regeneration system for carbon-rich amine liquid and application thereof
US11904270B2 (en) 2018-08-02 2024-02-20 University Of Science And Technology Of China Regeneration system for carbon-rich amine solutions and method for using the same
EP3978099A4 (en) * 2019-05-28 2023-06-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas treatment method, and gas treatment device
CN114159932A (en) * 2020-09-11 2022-03-11 株式会社东芝 Acid gas removal control device, acid gas removal control method, and acid gas removal device
AU2021229185B2 (en) * 2020-09-11 2023-08-31 Kabushiki Kaisha Toshiba Acid gas removal control apparatus, acid gas removal control method, and acid gas removing apparatus
US11865492B2 (en) 2020-09-11 2024-01-09 Kabushiki Kaisha Toshiba Acid gas removal control apparatus, acid gas removal control method, and acid gas removing apparatus

Similar Documents

Publication Publication Date Title
JP5507584B2 (en) Method and plant for amine emissions control
US9133407B2 (en) Systems and processes for removing volatile degradation products produced in gas purification
JP6057545B2 (en) Exhaust gas treatment equipment
Yang et al. Aqueous ammonia (NH3) based post combustion CO2 capture: A review
Lu et al. Absorption of carbon dioxide into aqueous blend of monoethanolamine and 1-butyl-3-methylimidazolium tetrafluoroborate
JP5627956B2 (en) Method and apparatus for treating exhaust gas containing carbon dioxide
KR100920116B1 (en) Highly efficient absorbents for acidic gas separation
JP2016507355A (en) Aqueous CO2 absorbent comprising 2-amino-2-methyl-1-propanol and 3-aminopropanol or 2-amino-2-methyl-1-propanol and 4-aminobutanol
ES2877641T3 (en) Process for the removal of acid gases from a fluid stream and the corresponding uses
JP2016000381A (en) Acidic gas treatment method and acidic gas treatment device
US8940261B2 (en) Contaminant-tolerant solvent and stripping chemical and process for using same for carbon capture from combustion gases
AU2008335280A1 (en) System and method for removal of an acidic component from a process stream
JP5697250B2 (en) Control method and control device for carbon dioxide removal device in combustion exhaust gas
JP2013128899A (en) Control method of co2 recovery apparatus
JP2016131917A (en) Recovery device and recovery method of carbon dioxide
US8486358B2 (en) Carbon dioxide capture method, with optimized acid wash section
JP2015097982A (en) Reclaiming method
JP2015085310A (en) Acidic gas removal method
KR20150030262A (en) Amine-containing scrubbing solution with ozone and/or hydrogen peroxide for absorbing carbon dioxide
KR20150036067A (en) Washing solution for the absorption of carbon dioxide with reduced formation of nitrosamines
JP2013184079A (en) Carbon dioxide recovery device
Spietz et al. Amine emissions and CO2 purity from carbon capture pilot plant at the Łaziska coal-fired power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124