JP2023148274A - Control method for amine-based absorbent - Google Patents

Control method for amine-based absorbent Download PDF

Info

Publication number
JP2023148274A
JP2023148274A JP2022056202A JP2022056202A JP2023148274A JP 2023148274 A JP2023148274 A JP 2023148274A JP 2022056202 A JP2022056202 A JP 2022056202A JP 2022056202 A JP2022056202 A JP 2022056202A JP 2023148274 A JP2023148274 A JP 2023148274A
Authority
JP
Japan
Prior art keywords
carbon dioxide
amine
absorption liquid
liquid
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022056202A
Other languages
Japanese (ja)
Inventor
充志 中村
Mitsuji Nakamura
幸輝 一坪
Yukiteru Ichinotsubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2022056202A priority Critical patent/JP2023148274A/en
Publication of JP2023148274A publication Critical patent/JP2023148274A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a control method for amine-based absorbent capable of more correctly judging the absorption performance for carbon dioxide by an amine-based absorbent.SOLUTION: Disclosed is an amine-based absorbent control method for circularly performing the operation of absorbing carbon dioxide from a flue gas and another operation of releasing carbon dioxide. The method comprises: a first measurement process of measuring the electric conductivity and oxidation reduction potential of carbon dioxide-absorbing amine-based absorbent (rich liquid); a second measurement process of measuring the above conductivity and potential of the carbon dioxide-discharged absorbent (lean liquid); a first determination process of determining whether or not the measured potentials of the rich and lean liquids satisfy the previously-set first condition for the same absorbent as such one; a second determination process of determining whether or not the measured potentials of both liquids satisfy the previously-set second condition; and an exchange process of exchanging the absorbent when at least either one of the first and second conditions is not satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、アミン系吸収液の管理方法に関する。 The present invention relates to a method for managing an amine-based absorption liquid.

地球温暖化を抑制するために、主たる温室効果ガスである二酸化炭素(CO)ガスを回収することが、近年益々重要となっている。多くの火力発電所やごみ処理場などにおいて、アミン系吸収液を用いて燃焼排ガスから二酸化炭素を分離回収するシステムが導入されている。 In order to suppress global warming, recovering carbon dioxide (CO 2 ) gas, the main greenhouse gas, has become increasingly important in recent years. Many thermal power plants, garbage treatment plants, etc. have introduced systems that separate and recover carbon dioxide from combustion exhaust gas using an amine-based absorption liquid.

アミン系吸収液は、長期間使用すると吸収性能が劣化するので、交換する必要がある。従来は、1年に1回などの所定の頻度で定期交換していた。しかし、定期交換では吸収性能が低下していなくても交換することになり、アミン系吸収液は高価であるので、コスト高をまねく。逆に、吸収性能が低下したアミン系吸収液を用い続けると、二酸化炭素を十分に分離回収できない。 Amine-based absorption liquids deteriorate in absorption performance when used for a long period of time, so they must be replaced. Conventionally, they were replaced regularly at a predetermined frequency, such as once a year. However, periodic replacement requires replacement even if the absorption performance has not deteriorated, and since amine-based absorbents are expensive, this leads to high costs. On the other hand, if an amine-based absorption liquid with reduced absorption performance is continued to be used, carbon dioxide cannot be sufficiently separated and recovered.

そこで、特許文献1から4には、アミン系吸収液などの吸収液の電気伝導率などを測定し、その測定結果に基づき吸収液の交換などの管理することが開示されている。これは、アミン系吸収液は、二酸化炭素を吸収すると、濃度が高くなり、電気伝導率が上昇することに基づいている。 Therefore, Patent Documents 1 to 4 disclose measuring the electrical conductivity of an absorbing liquid such as an amine-based absorbing liquid and managing the replacement of the absorbing liquid based on the measurement results. This is based on the fact that when an amine-based absorption liquid absorbs carbon dioxide, its concentration increases and its electrical conductivity increases.

特開2012-152731号公報Japanese Patent Application Publication No. 2012-152731 特開2013-186091号公報Japanese Patent Application Publication No. 2013-186091 特開2017-090120号公報Japanese Patent Application Publication No. 2017-090120 特開2019-081151号公報JP2019-081151A

しかしながら、燃焼排ガスは二酸化炭素ガス以外の酸性ガスや金属イオンも含んでおり、このような酸性ガスや金属イオンがアミン系吸収液に溶解すると、アミン系吸収液の電気伝導率は高くなる。そのため、電気伝導率だけでは、アミン系吸収液の二酸化炭素の吸収性能を判断することは困難であると考えられる。 However, the combustion exhaust gas also contains acidic gases and metal ions other than carbon dioxide gas, and when such acidic gases and metal ions are dissolved in the amine-based absorption liquid, the electrical conductivity of the amine-based absorption liquid increases. Therefore, it is considered difficult to judge the carbon dioxide absorption performance of an amine-based absorption liquid based only on the electrical conductivity.

本発明は、アミン系吸収液の二酸化炭素の吸収性能をより正確に判断することが可能な、アミン系吸収液の管理方法を提供することを目的とする。 An object of the present invention is to provide a method for managing an amine-based absorption liquid that allows more accurate determination of the carbon dioxide absorption performance of the amine-based absorption liquid.

本発明は、燃焼排ガスから二酸化炭素を吸収することと、前記二酸化炭素を放出することとを循環して行うアミン系吸収液の管理方法であって、前記二酸化炭素を吸収した前記アミン系吸収液の電気伝導率及び酸化還元電位を測定する第1の測定工程と、前記二酸化炭素を放出した前記アミン系吸収液の電気伝導率及び酸化還元電位を測定する第2の測定工程と、前記二酸化炭素を吸収した後と放出した後の前記アミン系吸収液の前記測定した電気伝導率が、前記アミン系吸収液と同じアミン系吸収液に対して予め定められた第1の条件を満たすか否かを判定する第1の判定工程と、前記二酸化炭素を吸収した後と放出した後の前記アミン系吸収液の前記測定した酸化還元電位が、当該アミン系吸収液と同じアミン系吸収液に対して予め定められた第2の条件を満たすか否かを判定する第2の判定工程と、前記第1の条件又は前記第2の条件の少なくとも何れかを満たさない場合、当該アミン系吸収液を交換する交換工程とを備えることを特徴とする。 The present invention provides a method for managing an amine-based absorption liquid by cycling between absorbing carbon dioxide from combustion exhaust gas and releasing the carbon dioxide, the amine-based absorption liquid having absorbed the carbon dioxide. a first measuring step of measuring the electrical conductivity and redox potential of the carbon dioxide; a second measuring step of measuring the electrical conductivity and redox potential of the amine-based absorption liquid that has released the carbon dioxide; Whether the measured electrical conductivity of the amine-based absorption liquid after absorbing and releasing the amine-based absorption liquid satisfies a first condition predetermined for the same amine-based absorption liquid as the amine-based absorption liquid. and a first determination step of determining whether the measured oxidation-reduction potential of the amine-based absorption liquid after absorbing and releasing the carbon dioxide is the same as the amine-based absorption liquid. a second determination step of determining whether a predetermined second condition is satisfied; and if at least either the first condition or the second condition is not satisfied, the amine-based absorption liquid is replaced. and a replacement step.

本発明によれば、二酸化炭素を吸収した後のアミン系吸収液(リッチ液)及び二酸化炭素を放出した後のアミン系吸収液(リーン液)の電気伝導率の測定結果と、リッチ液及びリーン液の酸化還元電位の測定結果とに基づいて、それぞれ独立した条件式により、アミン系吸収液を交換する。そのため、電気伝導率の測定結果だけではなく、二酸化炭素ガス以外の酸性ガスや金属イオンを多く吸収して酸化力が高くなったことにより二酸化炭素の吸収性能が低下したアミン系吸収液を、酸化還元電位の測定結果に基づいた第2の条件による判定により交換することが可能になる。 According to the present invention, the measurement results of the electrical conductivity of the amine-based absorption liquid (rich liquid) after absorbing carbon dioxide and the amine-based absorption liquid (lean liquid) after releasing carbon dioxide, the rich liquid and the lean liquid The amine-based absorption liquid is exchanged according to independent conditional expressions based on the measurement results of the redox potential of the liquid. Therefore, in addition to the measurement results of electrical conductivity, the amine-based absorption liquid, which absorbs a large amount of acidic gases other than carbon dioxide gas and metal ions and has a high oxidizing power, has a decreased carbon dioxide absorption performance. It becomes possible to replace the battery by making a determination based on the second condition based on the measurement result of the reduction potential.

本発明において、例えば、前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率の測定値の比と予め定められた閾値とに基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位の測定値の比と予め定められた閾値とに基づくものである。 In the present invention, for example, the first condition is based on the ratio of the measured electrical conductivity of the amine-based absorption liquid after absorbing the carbon dioxide and after releasing the carbon dioxide, and a predetermined threshold value. , the second condition is based on the ratio of the measured values of the redox potential of the amine-based absorption liquid after absorbing the carbon dioxide and after releasing the carbon dioxide, and a predetermined threshold value.

また、本発明において、例えば、前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率の測定値の差と予め定められた閾値と基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位の測定値の差と予め定められた閾値と基づくものとしてもよい。 Further, in the present invention, for example, the first condition is a difference between the measured values of the electrical conductivity of the amine-based absorption liquid after absorbing and releasing the carbon dioxide, and a predetermined threshold value. Based on this, the second condition may be based on a difference between the measured values of the redox potential of the amine-based absorption liquid after absorbing the carbon dioxide and after releasing the carbon dioxide, and a predetermined threshold value.

また、本発明において、例えば、前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率のそれぞれの測定値と予め定められた閾値とに基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位のそれぞれの測定値と予め定められた閾値とに基づくものとしてもよい。さらに、これら第1及び第2の条件を任意に組み合わせて用いてもよい。 Further, in the present invention, for example, the first condition is a predetermined threshold value and each measured value of the electrical conductivity of the amine-based absorption liquid after absorbing and releasing the carbon dioxide. According to good. Furthermore, these first and second conditions may be used in any combination.

本発明が実施される実施形態の一例である二酸化炭素分離回収システムを示す模式図。1 is a schematic diagram showing a carbon dioxide separation and recovery system that is an example of an embodiment in which the present invention is implemented. 二酸化炭素分離回収システムを模擬した試験装置を示す模式図。A schematic diagram showing a test device simulating a carbon dioxide separation and recovery system.

本発明が実施される実施形態の一例である二酸化炭素分離回収システム100について図1を参照して説明する、 A carbon dioxide separation and recovery system 100, which is an example of an embodiment in which the present invention is implemented, will be described with reference to FIG.

二酸化炭素分離回収システム100は、吸収塔10及び再生塔20を備えている。そして、アミン系吸収液(以下、単に吸収液ともいう)は、吸収塔10と再生塔20との間を循環する。具体的には、吸収塔10において二酸化炭素(CO)を吸収した吸収液(リッチ液)が再生塔20に供給され、再生塔20においてリッチ液から二酸化炭素成分が放出されて再生した吸収液(リーン液)が吸収塔10に供給される。 The carbon dioxide separation and recovery system 100 includes an absorption tower 10 and a regeneration tower 20. The amine-based absorption liquid (hereinafter also simply referred to as absorption liquid) is circulated between the absorption tower 10 and the regeneration tower 20. Specifically, the absorption liquid (rich liquid) that has absorbed carbon dioxide (CO 2 ) in the absorption tower 10 is supplied to the regeneration tower 20, and the carbon dioxide component is released from the rich liquid in the regeneration tower 20, thereby regenerating the regenerated absorption liquid. (lean liquid) is supplied to the absorption tower 10.

本実施形態において、アミン系吸収液は、二酸化炭素ガスと接触して吸収するアミン類の水溶液である吸収液であれば、特に限定されるものではない。アミン系吸収液は、例えば、モノエタノールアミン(MEA)、メタルジエタノールアミン(MDEA)、2-アミノ-2-メチル-1-プロパノール(AMP)、ピパラジン(PZ/PIPA)などである。 In this embodiment, the amine-based absorption liquid is not particularly limited as long as it is an aqueous solution of amines that contacts and absorbs carbon dioxide gas. Examples of the amine-based absorption liquid include monoethanolamine (MEA), metal diethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), and piparazine (PZ/PIPA).

吸収塔10には、二酸化炭素を含有する燃焼排ガスが供給される。吸収塔10において、燃焼排ガスとリーン液とが気液接触して、燃焼排ガスに含有される二酸化炭素を吸収液が吸収する。燃焼排ガスは、ボイラやガスタービンなどから排出されるガスや、石炭ガス化ガス、合成ガス、コークス炉ガス、石油ガス、天然ガスなどに含まれるガスである。 The absorption tower 10 is supplied with combustion exhaust gas containing carbon dioxide. In the absorption tower 10, the combustion exhaust gas and the lean liquid come into gas-liquid contact, and the absorption liquid absorbs carbon dioxide contained in the combustion exhaust gas. Combustion exhaust gas is gas emitted from boilers, gas turbines, etc., and gas contained in coal gasification gas, synthetic gas, coke oven gas, petroleum gas, natural gas, etc.

二酸化炭素を吸収したリッチ液は、吸収塔10の下部に溜まる。このリッチ液は、吸収塔10から排出され、ポンプ11により圧送されて、熱交換器30において再生塔20で再生されたリーン液と熱交換した後、再生塔20の上部からその内部に供給される。 The rich liquid that has absorbed carbon dioxide accumulates at the bottom of the absorption tower 10. This rich liquid is discharged from the absorption tower 10, pumped by the pump 11, exchanged heat with the lean liquid regenerated in the regeneration tower 20 in the heat exchanger 30, and then supplied from the upper part of the regeneration tower 20 into the inside thereof. Ru.

再生塔20において、リッチ液は二酸化炭素ガスを放出して、リーン液に再生される。再生塔20の内部に放出されたリッチ液は、加熱されながら、再生塔20の下部に落下する。加熱方法は限定されない。再生塔20において加熱されることにより、リッチ液中の二酸化炭素が二酸化炭素ガスとして放出される。このようにして、リッチ液は、再生塔20において加熱されることにより、大部分の二酸化炭素を放出して、リーン液となる。 リーン液から放出された二酸化炭素ガスは、リーン液から同時に蒸発する水蒸気と共に、再生塔20の上部から排出される。 In the regeneration tower 20, the rich liquid releases carbon dioxide gas and is regenerated into a lean liquid. The rich liquid discharged into the regeneration tower 20 falls to the lower part of the regeneration tower 20 while being heated. The heating method is not limited. By being heated in the regeneration tower 20, carbon dioxide in the rich liquid is released as carbon dioxide gas. In this way, the rich liquid is heated in the regeneration tower 20, releases most of the carbon dioxide, and becomes a lean liquid. The carbon dioxide gas released from the lean liquid is discharged from the upper part of the regeneration tower 20 along with the water vapor that evaporates from the lean liquid at the same time.

また、再生塔20の下部に溜まったリーン液の一部は、再生塔20から排出され、熱交換器30において吸収塔10から排出されたリッチ液と熱交換した後、ポンプ21により、冷却器22を介して、吸収塔10の上部からその内部に供給される。そして、このリーン液は、吸収塔10において再使用される。吸収塔10において、燃焼排ガスは、吸収液と接触して二酸化炭素を吸収された後、吸収液から蒸発する水蒸気と共に、吸収塔10の上部から排出される。 In addition, a part of the lean liquid accumulated in the lower part of the regeneration tower 20 is discharged from the regeneration tower 20, and after exchanging heat with the rich liquid discharged from the absorption tower 10 in the heat exchanger 30, it is transferred to the cooler by the pump 21. 22, it is supplied from the upper part of the absorption tower 10 into its interior. This lean liquid is then reused in the absorption tower 10. In the absorption tower 10, the combustion exhaust gas comes into contact with the absorption liquid and absorbs carbon dioxide, and then is discharged from the upper part of the absorption tower 10 together with water vapor evaporated from the absorption liquid.

本発明の実施形態に係るアミン系吸収液の管理方法は、例えば、上述した二酸化炭素分離回収システム100において、リッチ液を実際に採取して、その電気伝導率及び酸化還元電位を測定する第1の測定工程と、リーン液を実際に採取して、その電気伝導率及び酸化還元電位を測定する第2の測定工程とを備えている。 A method for managing an amine-based absorption liquid according to an embodiment of the present invention includes, for example, a first step in which a rich liquid is actually sampled and its electrical conductivity and redox potential are measured in the carbon dioxide separation and recovery system 100 described above. and a second measurement step of actually collecting the lean liquid and measuring its electrical conductivity and redox potential.

例えば、リッチ液は再生塔20の下部から熱交換器30に向けて排出される経路において採取すればよい。リーン液は、吸収塔10の下部から熱交換器30に向けて排出される経路において採取すればよい。ただし、採取箇所はこれらに限定されない。 For example, the rich liquid may be collected in a path discharged from the lower part of the regeneration tower 20 toward the heat exchanger 30. The lean liquid may be collected in a path discharged from the lower part of the absorption tower 10 toward the heat exchanger 30. However, the sampling locations are not limited to these.

アミン系吸収液は、二酸化炭素ガスの吸収によりプロトン化アミンやカルバメートアニオンなどのイオンが生成するので、電気伝導率が上昇する。そのため、リッチ液は、含有二酸化酸素濃度が高いため、電気伝導率が高い傾向にある。一方、リーン液は、含有二酸化酸素濃度が低いため、電気伝導率が低い傾向にある。 In the amine-based absorption liquid, ions such as protonated amines and carbamate anions are generated by absorbing carbon dioxide gas, so that the electrical conductivity increases. Therefore, the rich liquid tends to have high electrical conductivity because it has a high concentration of oxygen dioxide. On the other hand, lean liquids tend to have low electrical conductivity because they contain a low concentration of oxygen dioxide.

そのため、リッチ液の電気伝導率が高いほど、また、リッチ液とリーン液との電気伝導率の差が大きいほど、アミン系吸収液は二酸化炭素の吸収性能が優れていると考えられる。 Therefore, it is considered that the higher the electrical conductivity of the rich liquid is, or the larger the difference in electrical conductivity between the rich liquid and the lean liquid, the better the carbon dioxide absorption performance of the amine-based absorption liquid is.

一方、アミン系吸収液は、燃焼排ガスに含まれる二酸化炭素ガス以外の酸性ガスや金属イオンも二酸化炭素ガスと共に吸収するので、長期間に亘って使用されることにより酸化力が高くなり、酸化還元電位が上昇する。 On the other hand, amine-based absorption liquids absorb acidic gases and metal ions other than carbon dioxide gas contained in combustion exhaust gas along with carbon dioxide gas, so when used for a long period of time, their oxidizing power increases and redox Potential increases.

そのため、リッチ液の酸化還元電位、又はリーン液との酸化還元電位との差が大きいと、アミン系吸収液は二酸化炭素ガス以外の酸性ガスや金属イオンを多くは吸収しておらず、二酸化炭素の吸収性能が優れていると考えられる。 Therefore, if the difference between the redox potential of the rich liquid or the redox potential of the lean liquid is large, the amine-based absorption liquid will not absorb many acidic gases or metal ions other than carbon dioxide gas, and is considered to have excellent absorption performance.

そこで、これらの性質を利用し、リッチ液及びリーン液の電気伝導率とリッチ液及びリーン液の酸化還元電位とに関してそれぞれ独立した条件式を定め、これら条件式の少なくとも一方が満たされていないときは、吸収液を交換する必要があると考えることが可能であると、発明者は考えた。また、吸収液の種類により、電気伝導率及び酸化還元電位は異なる。 Therefore, by utilizing these properties, independent conditional expressions are established regarding the electrical conductivity of the rich liquid and the lean liquid and the oxidation-reduction potential of the rich liquid and the lean liquid, and when at least one of these conditional expressions is not satisfied, The inventor thought that it is possible to consider that the absorbent liquid needs to be replaced. Furthermore, the electrical conductivity and redox potential differ depending on the type of absorption liquid.

これらから、本発明の実施形態に係るアミン系吸収液の管理方法は、リッチ液及びリーン液の電気伝導率が、採取した吸収液と同じ吸収液に対して予め定められた第1の条件式を満たすか否かを判定する第1の判定工程と、リッチ液及びリーン液の酸化還元電位が、採取した吸収液と同じ吸収液に対して予め定められた第2の条件式を満たすか否かを判定する第2の判定工程と、第1の条件式又は第2の条件式の何れかを満たさない場合、吸収液を交換する交換工程と、を備えている。 From these, the method for managing amine-based absorption liquid according to the embodiment of the present invention is based on the first conditional expression in which the electric conductivity of the rich liquid and the lean liquid is predetermined for the absorption liquid that is the same as the sampled absorption liquid. a first determination step of determining whether the conditions are met; and a second conditional expression predetermined for the same absorption liquid as the sampled absorption liquid, in which the redox potentials of the rich liquid and the lean liquid are satisfied. and a replacement step of replacing the absorbing liquid if either the first conditional expression or the second conditional expression is not satisfied.

発明者は、図2を参照して、二酸化炭素分離回収システム100で使用されている吸収液と同じ吸収液の電気伝導率及び酸化還元電位と二酸化炭素ガスの吸収性能との関係を明らかにするために、二酸化炭素分離回収システム100を模擬した試験装置50を用いてバッチ試験を行った。 With reference to FIG. 2, the inventor clarifies the relationship between the electrical conductivity and redox potential of the same absorption liquid as the absorption liquid used in the carbon dioxide separation and recovery system 100, and the absorption performance of carbon dioxide gas. For this purpose, a batch test was conducted using a test device 50 simulating the carbon dioxide separation and recovery system 100.

ここでは、吸収液として、モノエタノールアミン(MEA)を30重量%含有する水溶液を用いた。そして、この吸収液のリッチ液とリーン液とをそれぞれ、実際の二酸化炭素分離回収システム100から、吸収液の使用継続期間がそれぞれ異なる時点において、実施例1から4の4回採取した。 Here, an aqueous solution containing 30% by weight of monoethanolamine (MEA) was used as the absorption liquid. Then, the rich liquid and lean liquid of this absorption liquid were each collected from the actual carbon dioxide separation and recovery system 100 four times in Examples 1 to 4 at different periods of continuous use of the absorption liquid.

そして、それぞれ、リッチ液とリーン液の電気伝導率及び酸化還元電位を測定した。電気伝導率は、市販の電気伝導率測定器などを用いて計測した。酸化還元電位は、市販の酸化還元電位(ORP)測定器を用いて測定した。なお、酸化還元電位は、白金電極と比較電極を一体化にした市販OPR測定用電極を用いて電位差計により測定してもよい。 Then, the electrical conductivity and redox potential of the rich liquid and lean liquid were measured, respectively. The electrical conductivity was measured using a commercially available electrical conductivity meter. The redox potential was measured using a commercially available redox potential (ORP) meter. Note that the oxidation-reduction potential may be measured with a potentiometer using a commercially available OPR measurement electrode that integrates a platinum electrode and a reference electrode.

200gの採取した吸収液を密閉容器51に入れた。そして、燃焼排ガスを模擬した混合ガスを収容したガスボンベ52から毎分2.0L、吸収液内に供給した。なお、混合ガスとして、工場排ガスを模擬して、二酸化炭素(CO)ガス20重量%、酸素(O)ガス10重量%、窒素ガス(N)ガス70重量%の混合ガスを用いた。そして、吸収工程においては、密閉容器51内の温度を40℃に維持した。これにより、混合ガス内の二酸化炭素を吸収液は吸収する。 200 g of the collected absorption liquid was placed in a closed container 51. A mixed gas simulating combustion exhaust gas was then supplied into the absorption liquid at a rate of 2.0 L per minute from a gas cylinder 52 containing a mixed gas simulating combustion exhaust gas. As the mixed gas, a mixed gas of 20% by weight of carbon dioxide (CO 2 ) gas, 10% by weight of oxygen (O 2 ) gas, and 70% by weight of nitrogen gas (N 2 ) gas was used to simulate factory exhaust gas. . In the absorption step, the temperature inside the closed container 51 was maintained at 40°C. Thereby, the absorption liquid absorbs carbon dioxide in the mixed gas.

その後、密閉容器51内の温度を120℃に維持すると共に、流量計53により放出されるガス流量を制御することにより、密閉容器51の内部圧力を0.2MPaに維持した。これにより、吸収液から二酸化炭素ガスが放出することになる。なお、密閉容器51内の温度や圧力は、実際の二酸化炭素分離回収システム100における吸収塔10及び再生塔20内の温度や圧力に準じている。 Thereafter, the temperature inside the closed container 51 was maintained at 120° C., and the internal pressure of the closed container 51 was maintained at 0.2 MPa by controlling the flow rate of gas released by the flow meter 53. This causes carbon dioxide gas to be released from the absorption liquid. Note that the temperature and pressure inside the closed container 51 are based on the temperature and pressure inside the absorption tower 10 and the regeneration tower 20 in the actual carbon dioxide separation and recovery system 100.

そして、放出されたガスに含まれる二酸化炭素の含有率をガス分析計54により計測した。さらに、二酸化炭素吸収率を(吸収前の二酸化炭素濃度-吸収後の二酸化炭素濃度)/(吸収前の二酸化炭素濃度)の算式により算出した。 Then, the content rate of carbon dioxide contained in the released gas was measured by the gas analyzer 54. Furthermore, the carbon dioxide absorption rate was calculated using the formula (carbon dioxide concentration before absorption - carbon dioxide concentration after absorption)/(carbon dioxide concentration before absorption).

実施例1から3は、二酸化炭素吸収率が95%以上であり、吸収液は、二酸化炭素ガスの吸収性能をまだ十分に有していると考えられる。一方、実施例4は、二酸化炭素吸収率が75%から80%であり、吸収液は、二酸化炭素ガスの吸収性能を既に十分に有しておらず、交換が必要であると考えられる。 In Examples 1 to 3, the carbon dioxide absorption rate was 95% or more, and it is considered that the absorption liquid still has sufficient carbon dioxide gas absorption performance. On the other hand, in Example 4, the carbon dioxide absorption rate was 75% to 80%, and it is considered that the absorption liquid already does not have sufficient carbon dioxide gas absorption performance and needs to be replaced.

そこで、これら実施例1から3と実施例4とを区別するために、(リッチ液の電気伝導率)-(リーン液の電気伝導率)によって求められる電気伝導率差が0.45[S/m]以上(第1の条件)であり、かつ、(リッチ液の酸化還元電位)-(リーン液の酸化還元電位)によって求められる酸化還元電位差が200[mV]以上(第2の条件)の場合は、吸収液の交換は不要であり、電気伝導率差が0.45[S/m]未満、又は、酸化還元電位差が200[mV]未満の場合は、吸収液の交換が必要であるとの条件式に基づく基準を設けることが可能であると考えられる。 Therefore, in order to distinguish Examples 1 to 3 and Example 4, the electrical conductivity difference calculated by (electrical conductivity of rich liquid) - (electrical conductivity of lean liquid) is 0.45 [S/ m] or more (first condition), and the redox potential difference obtained by (redox potential of rich liquid) - (redox potential of lean liquid) is 200 [mV] or more (second condition). If the difference in electrical conductivity is less than 0.45 [S/m] or the difference in redox potential is less than 200 [mV], it is necessary to replace the absorption liquid. It is considered possible to establish a standard based on the conditional expression.

また、{(リッチ液の電気伝導率)-(リーン液の電気伝導率)}/(リッチ液の電気伝導率)によって求められる電気伝導率差比が0.15以上(第1の条件)であり、かつ、{(リッチ液の酸化還元電位)-(リーン液の酸化還元電位)}(リッチ液の酸化還元電位)によって求められる酸化還元電位差比が5.0以上(第2の条件)の場合は、吸収液の交換は不要であり、電気伝導率差比が0.15未満、又は、酸化還元電位差比が5.0未満の場合は、吸収液の交換が必要であるとの条件式に基づく基準を設けることが可能であると考えられる。 In addition, the electrical conductivity difference ratio calculated by {(electrical conductivity of rich liquid) - (electrical conductivity of lean liquid)}/(electrical conductivity of rich liquid) is 0.15 or more (first condition). Yes, and the redox potential difference ratio determined by {(redox potential of rich liquid) - (redox potential of lean liquid)} (redox potential of rich liquid) is 5.0 or more (second condition). The conditional expression states that if the electric conductivity difference ratio is less than 0.15 or the oxidation-reduction potential difference ratio is less than 5.0, the absorption liquid needs to be replaced. It is considered possible to establish standards based on the following.

また、リッチ液の電気伝導率が3.2[S/m]以上(第1の条件)であり、かつ、リッチ液の酸化還元電位が-50[mV]以上(第2の条件)の場合は、吸収液の交換は不要であり、リッチ液の電気伝導率が3.2[S/m]未満、又は、リッチ液の酸化還元電位が-50[mV]未満の場合は、吸収液の交換が必要であるとの条件式に基づく基準を設けることが可能であると考えられる。なお、リッチ液に加えて、リーン液にも管理条件を設定してもよい。また、上記した管理条件を組み合わせてもよい。 In addition, when the electrical conductivity of the rich liquid is 3.2 [S/m] or more (first condition) and the oxidation-reduction potential of the rich liquid is -50 [mV] or more (second condition) There is no need to replace the absorption liquid.If the electrical conductivity of the rich liquid is less than 3.2 [S/m] or the redox potential of the rich liquid is less than -50 [mV], the absorption liquid should be replaced. It is considered possible to set a standard based on a conditional expression that indicates that replacement is necessary. In addition to the rich liquid, management conditions may also be set for the lean liquid. Furthermore, the management conditions described above may be combined.

なお、吸収液を交換する二酸化炭素吸収率の閾値は、実際の二酸化炭素分離回収システム100に応じて相違するが、例えば、85%とすればよい。そのため、実際の二酸化炭素分離回収システム100においてリッチ液及びリーン液を採取して試験を行う回数が増加するにつれて、吸収液を交換することが必要となるさらに良好な条件を定めることが可能となる。 Note that the threshold value of the carbon dioxide absorption rate for exchanging the absorption liquid varies depending on the actual carbon dioxide separation and recovery system 100, but may be set to 85%, for example. Therefore, as the number of times rich liquid and lean liquid are sampled and tested in the actual carbon dioxide separation and recovery system 100 increases, it becomes possible to define even better conditions under which it is necessary to replace the absorption liquid. .

Figure 2023148274000002
Figure 2023148274000002

10…吸収塔、 11…ポンプ、 20…再生塔、 21…ポンプ、 22…冷却器、 30…熱交換器、 50…試験装置、 51…密閉容器、 52…ガスボンベ、 53…流量計、 54…ガス分析計、 100…二酸化炭素分離回収システム。

10... Absorption tower, 11... Pump, 20... Regeneration tower, 21... Pump, 22... Cooler, 30... Heat exchanger, 50... Test device, 51... Sealed container, 52... Gas cylinder, 53... Flow meter, 54... Gas analyzer, 100...carbon dioxide separation and recovery system.

Claims (4)

燃焼排ガスから二酸化炭素を吸収することと、前記二酸化炭素を放出することとを循環して行うアミン系吸収液の管理方法であって、
前記二酸化炭素を吸収した前記アミン系吸収液の電気伝導率及び酸化還元電位を測定する第1の測定工程と、
前記二酸化炭素を放出した前記アミン系吸収液の電気伝導率及び酸化還元電位を測定する第2の測定工程と、
前記二酸化炭素を吸収した後と放出した後の前記アミン系吸収液の前記測定した電気伝導率が、前記アミン系吸収液と同じアミン系吸収液に対して予め定められた第1の条件を満たすか否かを判定する第1の判定工程と、
前記二酸化炭素を吸収した後と放出した後の前記アミン系吸収液の前記測定した酸化還元電位が、当該アミン系吸収液と同じアミン系吸収液に対して予め定められた第2の条件を満たすか否かを判定する第2の判定工程と、
前記第1の条件又は前記第2の条件の少なくとも何れかを満たさない場合、当該アミン系吸収液を交換する交換工程とを備えることを特徴とするアミン系吸収液の管理方法。
A method for managing an amine-based absorption liquid by cycling between absorbing carbon dioxide from combustion exhaust gas and releasing the carbon dioxide, the method comprising:
a first measurement step of measuring the electrical conductivity and redox potential of the amine-based absorption liquid that has absorbed the carbon dioxide;
a second measurement step of measuring the electrical conductivity and redox potential of the amine-based absorption liquid that has released the carbon dioxide;
The measured electrical conductivity of the amine-based absorption liquid after absorbing and releasing the carbon dioxide satisfies a first condition predetermined for the same amine-based absorption liquid as the amine-based absorption liquid. a first determination step of determining whether or not;
The measured redox potential of the amine-based absorption liquid after absorbing and releasing the carbon dioxide satisfies a second condition predetermined for the same amine-based absorption liquid as the amine-based absorption liquid. a second determination step of determining whether or not;
A method for managing an amine-based absorbent comprising the step of exchanging the amine-based absorbent when at least either the first condition or the second condition is not satisfied.
前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率の測定値の比と予め定められた閾値とに基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位の測定値の比と予め定められた閾値とに基づくことを特徴とする請求項1に記載のアミン系吸収液の管理方法。 The first condition is based on the ratio of the measured electrical conductivity of the amine-based absorption liquid after absorbing the carbon dioxide and after releasing the carbon dioxide, and a predetermined threshold value. is based on a predetermined threshold value and a ratio of measured values of the redox potential of the amine-based absorption liquid after absorbing the carbon dioxide and after releasing the carbon dioxide. How to manage amine-based absorption liquid. 前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率の測定値の差と予め定められた閾値と基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位の測定値の差と予め定められた閾値と基づくことを特徴とする請求項1に記載のアミン系吸収液の管理方法。 The first condition is based on the difference between the measured values of the electrical conductivity of the amine-based absorption liquid after absorbing and releasing the carbon dioxide, and a predetermined threshold value, and the second condition is based on a predetermined threshold value. , based on a predetermined threshold value and a difference between the measured values of the redox potential of the amine-based absorption liquid after absorbing and releasing the carbon dioxide. How to manage absorption liquid. 前記第1の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記電気伝導率のそれぞれの測定値と予め定められた閾値とに基づき、前記第2の条件は、前記二酸化炭素を吸収した後と放出させた後の前記アミン系吸収液の前記酸化還元電位のそれぞれの測定値と予め定められた閾値とに基づくことを特徴とする請求項1に記載のアミン系吸収液の管理方法。 The first condition is based on the measured values of the electrical conductivity of the amine-based absorption liquid after absorbing and releasing the carbon dioxide, and a predetermined threshold value, and the second condition is based on a predetermined threshold value. is based on respective measured values of the redox potential of the amine-based absorption liquid after absorbing and releasing the carbon dioxide, and a predetermined threshold value. How to manage amine-based absorption liquid.
JP2022056202A 2022-03-30 2022-03-30 Control method for amine-based absorbent Pending JP2023148274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022056202A JP2023148274A (en) 2022-03-30 2022-03-30 Control method for amine-based absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022056202A JP2023148274A (en) 2022-03-30 2022-03-30 Control method for amine-based absorbent

Publications (1)

Publication Number Publication Date
JP2023148274A true JP2023148274A (en) 2023-10-13

Family

ID=88287886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022056202A Pending JP2023148274A (en) 2022-03-30 2022-03-30 Control method for amine-based absorbent

Country Status (1)

Country Link
JP (1) JP2023148274A (en)

Similar Documents

Publication Publication Date Title
Idem et al. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants
Yang et al. Effects of SO2 on CO2 capture using a hollow fiber membrane contactor
CN104853830B (en) It is a kind of containing 2-amino-2-methyl-1-propanol and the aqueous CO of 3- aminopropanols or 2-amino-2-methyl-1-propanol and 4- amino butanols2Absorbent
US20130164204A1 (en) Solvent composition for carbon dioxide recovery
CN107106967B (en) Carbon capture solvents with alcohols and amines and methods of using such solvents
AU2014335404B2 (en) Reclaiming device and method, and device for recovering CO2 and/or H2S
JP2011000526A (en) Co2 recovering device and co2 recovering method
CN102879239A (en) Flue gas pre-treatment type sampling and analysis device and method for escaping ammonia of denitration system of power plant
JP2012236170A (en) Method and apparatus for regeneration of deteriorated absorbing liquid, and carbon dioxide recovery system using the same
Gao et al. Corrosion and degradation performance of novel absorbent for CO2 capture in pilot-scale
Mehrara et al. Using Taguchi method to determine optimum process conditions for flue gas desulfurization through an amine scrubber
Fang et al. Experimental study on CO2 absorption by aqueous ammonia solution at elevated pressure to enhance CO2 absorption and suppress ammonia vaporization
Papurello et al. Wood ash biomethane upgrading system: A case study
JP2003093835A (en) Regeneration method for gas absorbing liquid and regeneration system for gas absorbing liquid
JP2023148274A (en) Control method for amine-based absorbent
Zhou et al. Pilot testing of a non-aqueous solvent (NAS) CO2 capture process
Liu et al. Experimental study on energy consumption and performance of hydroxyethyl ethylenediamine solution for CO2 capture
Gao et al. China’s first pilot‐scale demonstration of post‐combustion CO2 capture from a natural‐gas‐fired power plant
CN103495339A (en) Control method for ammonia escape during ammonia-process carbon capture
Bunevska Characterization of a solvent for chemical absorption-based CO2 capture
Pradoo Oxidative Degradation of Diethanolamine Solvent Induced by Nitrogen Dioxide and Dissolved Materials in Post-Combustion Capture of CO 2 from Industrial Exhaust Gas Streams
Nyarko Effects of Flue Gas Impurities on Amine Stability in CO2Capture Process
EF1000 CHUKWU, MONDAY MORGAN
CN117959891A (en) Mixed alcohol amine absorbent for absorbing carbon dioxide contained in power plant flue gas
AZMI Physicochemical Properties and Solubility of Piperazine Activated Aqueous Solution of ß-Alanine As A Solvent for CO2 Capture