JP2003093089A - Method for producing (s)-3-quinuclidinol - Google Patents

Method for producing (s)-3-quinuclidinol

Info

Publication number
JP2003093089A
JP2003093089A JP2001288722A JP2001288722A JP2003093089A JP 2003093089 A JP2003093089 A JP 2003093089A JP 2001288722 A JP2001288722 A JP 2001288722A JP 2001288722 A JP2001288722 A JP 2001288722A JP 2003093089 A JP2003093089 A JP 2003093089A
Authority
JP
Japan
Prior art keywords
gly
ala
val
leu
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001288722A
Other languages
Japanese (ja)
Inventor
Shinya Ito
伸哉 伊藤
Ryuhei Wakita
龍平 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001288722A priority Critical patent/JP2003093089A/en
Publication of JP2003093089A publication Critical patent/JP2003093089A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing (S)-3-quinuclidinol useful as an intermediate of physiologically active substances (e.g. medicaments). SOLUTION: This method for producing the (S)-3-quinuclidinol comprises making an enzyme (a) or (b) act on 3-quinuclidinone or a salt thereof, wherein the enzyme (a) is an enzyme having a specific amino acid sequence, and the enzyme (b) is an enzyme having an amino acid sequence where one or several amino acid(s) are deleted, substituted or added from/for/to the amino acid sequence in the enzyme (a) and also having the enzymatic activity of reducing 3-quinuclidinone into the objective (S)-3-quinuclidinol.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は(S)−3−キヌク
リジノールの製造法、詳しくは、3−キヌクリジノンま
たはその塩にある種の酵素を作用させることを特徴とす
る(S)−3−キヌクリジノールの製造法に関する。 【0002】 【従来の技術および発明が解決しようとする課題】キニ
ジン、キニン等、分子内にキヌクリジン環を有する数多
くの生理活性物質が知られている。(S)−3−キヌク
リジノールは、これらの生理活性物質(例えば医薬)の
中間体として有用な化合物であり、その工業的に有利な
製造法の開発が望まれている。 【0003】 【課題を解決するための手段】本発明者等は(S)−3
−キヌクリジノールの製造法を鋭意検討した結果、3−
キヌクリジノンまたはその塩を配列番号1で示されるア
ミノ酸配列を有する酵素又は配列番号1において1若し
くは数個のアミノ酸が欠失、置換若しくは付加されたア
ミノ酸配列からなり、かつ、3−キヌクリジノンを
(S)−3−キヌクリジノールに還元する酵素活性を有
する酵素を作用させることにより、(S)−3−キヌク
リジノールが得られることを見出し、本発明を完成し
た。 【0004】即ち、本発明は以下の発明を提供する。式
(1) 【化1】 で示される3−キヌクリジノンまたはその塩に下記a)
またはb)を作用させることを特徴とする式(2) 【化2】 で示される(S)−3−キヌクリジノールの製造法(以
下、本発明製造法と記す。)。 a)配列番号1で示されるアミノ酸配列を有する酵素。 b)配列番号1において1若しくは数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つ、3−キヌクリジノンを(S)−3−キヌクリジノー
ルに還元する酵素活性を有する酵素。 (以下、a)およびb)をあわせて本酵素と総称す
る。) 【0005】 【発明の実施の形態】本発明製造法に用いることができ
る配列番号1で示されるアミノ酸配列を有する酵素をコ
ードする遺伝子配列は配列番号2で示される(Appl. Mi
crobiol. Biotechnol (1999)52,386-392)。該酵素のア
ミノ酸配列をコードする塩基配列を有する遺伝子は、天
然に存在する遺伝子であっても、天然に存在する遺伝子
を変異処理(部分変異導入法、突然変異処理等)を行っ
たものであってもよい。 【0006】本酵素は例えば配列番号2で示される遺伝
子を含有し、該遺伝子が発現することによって配列番号
1で示されるアミノ酸配列を有する酵素を産生する微生
物を培養することにより製造することができる。配列番
号2で示される遺伝子を含有し、該遺伝子が発現するこ
とによって配列番号1で示されるアミノ酸配列を有する
酵素を産生する微生物は、天然に存在する微生物でも、
配列番号2で示される塩基配列を有する遺伝子を導入し
た形質転換微生物であっても良い。 【0007】ここで、配列番号2で示される塩基配列を
有する遺伝子を導入した形質転換微生物の作成法につい
て説明する。配列番号2で示される塩基配列を有する遺
伝子を導入する宿主細胞としては、例えば、Escherichi
a、Bacillus、Corynebacterium、Staphylococcus、Stre
ptomyces、Saccharomyces、Kluyveromyces及びAspergil
lus属に属する微生物があげられる。該遺伝子を宿主細
胞へ導入する方法は、宿主となる細胞に応じて通常用い
られる方法であれば特に限定されるものではなく、例え
ば、「Molecular Cloning: ALaboratory Manual 2nd ed
ition」(1989), Cold Spring Harbor LaboratoryPres
s、「Current Protocols in Molecular Biology」(198
7), John Wiley & Sons, Inc. ISBNO-471-50338-X等に
記載される塩化カルシウム法や、「Methods inElectrop
oration:Gene Pulser /E.coli Pulser System」 Bio-Ra
d Laboratories, (1993)等に記載されるエレクトロポレ
ーション法が挙げられる。 【0008】該遺伝子が導入された形質転換微生物は、
遺伝子を宿主細胞に導入する際に用いられるベクターに
含まれる選択マーカー遺伝子の表現型等を指標にして選
抜することができる。形質転換微生物が該遺伝子を保有
していることは、該形質転換微生物からベクターDNA
を調製した後、調製されたDNAについて、例えば「モ
レキュラー・クローニング」(J.Sambrookら、コールド
・スプリング・ハーバー、1989年)等に記載される通常
の方法(制限酵素部位の確認、塩基配列の解析、サザン
ハイブリダイゼーション等)を行うことにより確認する
ことができる。 【0009】次に、本発明製造法に用いられる本酵素を
製造するために配列番号2で示される遺伝子を含有し、
該遺伝子が発現することによって配列番号1で示される
アミノ酸配列を有する酵素を産生する微生物を培養する
方法について説明する。 【0010】該微生物を培養する為の培地としては、微
生物の培養に通常使用される炭素源や窒素源、有機塩や
無機塩等を適宜含む各種の培地を用いることができる。 【0011】炭素源としては、例えばグルコース、デキ
ストリン、シュークロース等の糖類、グリセロール等の
糖アルコール、フマル酸、クエン酸、ピルビン酸等の有
機酸、動植物油、糖蜜が挙げられる。これら炭素源の培
地への添加量は、培地全量に対し通常、0.1〜20%
(w/v)程度とするとよい。 【0012】窒素源としては、肉エキス、ペプトン、酵
母エキス、麦芽エキス、大豆粉、コーン・スティープ・
リカー(Corn Steep Liquor )、綿実粉、乾燥酵母、カ
ザミノ酸等の天然有機窒素源やアミノ酸類、硝酸ナトリ
ウム、塩化アンモニウム、硫酸アンモニウム、リン酸ア
ンモニウム等の無機酸のアンモニウム塩や硝酸塩、フマ
ル酸アンモニウム、クエン酸アンモニウム等の有機酸の
アンモニウム塩、尿素などの有機または無機窒素源等が
挙げられる。これらのうち有機酸のアンモニウム塩、天
然有機窒素源、アミノ酸類等は、多くの場合、炭素源と
しても使用することができる。窒素源の添加量は培地全
量に対し通常、0.1〜30%(w/v)程度とすると
よい。 【0013】有機塩や無機塩としては、カリウム、ナト
リウム、マグネシウム、鉄、マンガン、コバルト、亜鉛
等の塩化物、硫酸塩、酢酸塩、炭酸塩類およびリン酸塩
類を挙げることができ、具体的には、塩化ナトリウム、
塩化カリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マ
ンガン、塩化コバルト、硫酸亜鉛、硫酸銅、酢酸ナトリ
ウム、炭酸カルシウム、炭酸ナトリウム、リン酸水素一
カリウム、リン酸水素二カリウム等を挙げることができ
る。有機塩や無機塩の添加量は培地全量に対し通常、
0.0001〜5%(w/v)程度とするとよい。 【0014】さらに、tacプロモーター、trcプロモータ
ー、lacプロモーター等のアロラクトースで誘導される
タイプのプロモーターと本酵素をコードする遺伝子とが
機能可能な形で接続されてなる遺伝子が導入された宿主
細胞の場合には、該酵素の生産を誘導するための誘導剤
として、例えばisopropyl thio-β-D-galactoside(IPT
G)を培地中に少量加えてもよい。 【0015】培養は、微生物の培養に通常使用される方
法に準じて行うことができ、例えば試験管振盪式培養、
往復式振盪培養、ジャーファーメンター(Jar Fermente
r)培養、タンク培養等の液体培養、固体培養等の方法が
可能である。ジャーファーメンターを用いる場合には、
ジャーファーメンター内に無菌空気を導入する必要があ
り、通常、培養液容量の約0.1〜約2倍/分の通気条
件を用いる。培養温度は、35〜42℃の範囲が好まし
く、培地のpHとしては、約6〜約8の範囲が好まし
い。培養時間は、培養条件によって異なるが、通常約1
日間〜約5日間である。 【0016】本発明製造法には、例えば上記のようにし
て得られた本酵素を含有する菌体、菌体処理物、または
本酵素の精製物を用いることができる。 【0017】ここで菌体処理物としては、例えば、凍結
乾燥菌体、有機溶媒処理菌体、乾燥菌体、菌体摩砕物、
菌体の自己消化物、菌体の超音波処理物、菌体抽出物、
菌体のアルカリ処理物を挙げることができ、さらにこれ
ら通常用いられる方法で固定化したものがあげられる。 【0018】本酵素の精製物は例えば本酵素を有する微
生物の培養物から本酵素を精製することにより製造する
ことができきる。本酵素を有する微生物の培養物から本
酵素を精製する方法としては、通常のタンパク質の精製
において使用される方法を適用することができ、例えば
次のような方法を挙げることができる。まず、微生物の
培養物から遠心分離等により菌体を集めた後、これを超
音波処理、ダイノミル処理、フレンチプレス処理等の物
理的破砕方法、または界面活性剤もしくはリゾチーム等
の菌体溶菌酵素を用いる化学的破砕方法等によって破砕
する。得られた破砕液から遠心分離、メンブレンフィル
ターろ過等により不溶物を除去して無細胞抽出液を調製
し、これを陽イオン交換クロマトグラフィー、陰イオン
交換クロマトグラフィー、疎水クロマトグラフィー、ゲ
ルクロマトグラフィー等の分離精製方法を適宜用いて分
画することによって本還元酵素を精製することができ
る。クロマトグラフィーに使用する担体としては、例え
ば、カルボキシメチル(CM)基、DEAE基、フェニ
ル基もしくはブチル基等を導入したセルロース、デキス
トランまたはアガロース等の樹脂担体が挙げられる。市
販の担体充填済みカラムを用いることもでき、例えば、
Q-Sepharose FF、Phenyl-Sepharose HP(商品名、いず
れもアマシャム ファルマシア バイオテク社製)、T
SK−gel G3000SW(商品名、東ソー社製)
等が挙げられる。 【0019】続いて、本発明製造法について説明する。
本発明製造法において3−キヌクリジノンまたはその塩
を(S)−3−キヌクリジノールに変換する反応は3−
キヌクリジノンに本酵素を作用させることによって達成
される。 【0020】該反応に用いられる3−キヌクリジンの塩
としては、例えば塩酸塩等の無機酸の塩、酢酸塩等の有
機酸の塩が挙げられる。該反応は通常、水の存在下で行
われ、水は緩衝液の形態であってもよく、この場合に用
いられる緩衝剤としては、例えばリン酸ナトリウム、リ
ン酸カリウム等のリン酸アルカリ金属塩、酢酸ナトリウ
ム、酢酸カリウム等の酢酸のアルカリ金属塩が挙げられ
る。この場合のpHは反応が進行する範囲内で適宜変化
させることができる。 【0021】緩衝液を溶媒として用いる場合、その量は
3−キヌクリジノンまたはその塩1重量部に対して、通
常100重量部以下である。 【0022】反応温度は、本酵素の安定性、反応速度の
点から0〜70℃であり、好ましくは10〜40℃であ
る。 【0023】該反応は、水の他に有機溶媒の共存下に行
うこともできる。この場合の有機溶媒としては、例え
ば、テトラヒドロフラン、t−ブチルメチルエーテル、
イソプロピルエーテルなどのエーテル類、トルエン、ヘ
キサン、シクロヘキサン、ヘプタン、イソオクタン、デ
カンなどの炭化水素類、t−ブタノール、メタノール、
エタノール、イソプロパノール、n−ブタノールなどの
アルコール類、ジメチルスルホキサイドなどのスルホキ
サイド類、アセトンなどのケトン類、アセトニトリルな
どのニトリル類およびこれらの混合物が挙げられる。反
応に使用する有機溶媒の量は、3−キヌクリジノンまた
はその塩に対して通常は100重量倍以下であり、好ま
しくは70重量倍以下である。 【0024】該反応はさらに、補酵素(例えばNAD
H、NADPH)を加えて行うこともできる。反応に用
いられる補酵素の量は3−キヌクリジノンまたはその塩
に対して通常0.5重量倍以下、好ましくは0.1重量
倍以下である。反応に補酵素を加える場合、補酵素の効
率を高めるために、さらに以下のものを加えることが好
ましい。 1)ギ酸、グルコース、イソプロパノ−ル、2−ブタノ
ール、2−ペンタノ−ル、2−ヘキサノール、2−ヘプ
タノール、2−オクタノール等の化合物 この場合に用いられるこれらの化合物の量は3−キヌク
リジノンまたはその塩に対して100重量倍以下、好ま
しくは10重量倍以下である。 2)ギ酸脱水素酵素、グルコース脱水素酵素等の脱水素
酵素 この場合に用いられる脱水素酵素の量は、3−キヌクリ
ジノンまたはその塩に対して0.1重量倍以下、好まし
くは0.05重量倍以下である。 【0025】該反応は、例えば、水、3−キヌクリジノ
ンまたはその塩、本酵素及び必要に応じて補酵素、有機
溶媒等を混合し、攪拌、振盪することにより行うことが
できる。 【0026】反応の終点は例えば反応液中の原料化合物
の存在量を液体クロマトグラフィー、ガスクロマトグラ
フィー等により追跡することにより決定することができ
る。反応時間の範囲は、通常5分間〜4日間の範囲であ
る。 【0027】反応終了後は、例えば、反応液をヘキサ
ン、ヘプタン、tert−ブチルメチルエーテル、酢酸
エチル、トルエン等の有機溶媒で抽出し、有機層を乾燥
した後、濃縮することにより目的物を単離することがで
きる。目的物は、必要によりカラムクロマトグラフィー
等により精製することができる。 【0028】本発明製造法には、a)配列番号1で示さ
れるアミノ酸配列を有する酵素の代わりに、b)配列番
号1において1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列からなり、かつ、3−キ
ヌクリジノンを(S)−3−キヌクリジノールに還元す
る酵素活性を有する酵素を用いることもできる。この場
合は、例えば、配列番号2で示されるDNAに、例えば
DNAに点変異等を生じさせるための周知技術である、
部位特定変異誘導法;DNAを選択的に開裂し、次いで
選択されたヌクレオチドを除去又は付加し、DNAを連
結する方法;又はオリゴヌクレオチド変異誘導体法を施
すことにより作成できる、配列番号1において1若しく
は数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつ、3−キヌクリジノンを(S)
−3−キヌクリジノールに還元する酵素活性を有する酵
素をコードする遺伝子を作成し、前記と同様に形質転換
体の作成、培養、反応等を行い本発明製造法を行うこと
ができる。 【0029】 【実施例】以下、製造例等により本発明をさらに詳しく
説明するが、本発明はこれらの例に限定されるものでは
ない。 【0030】製造例 フラスコに液体培地(水1000mlにトリプトン10
g、酵母エキス5gおよび塩化ナトリウム5gを溶解
し、1N水酸化ナトリウム水溶液を滴下することにより
pH7.0とした。)900mlを入れ、滅菌した後、
アンピシリンを100μg/ml、isopropyl thio-β-
D-galactoside(IPTG)を0.4mMになるように加
え、ここに配列番号2で示されるDNAを含有するプラ
スミドpUAR(受託番号:FERM P−1812
7)でE. coli JM109株を常法により形質転換した形質
転換体E. coli JM109/pUAR株を前記組成の液体培地で培
養した培養液1mlを接種し、37℃で14時間振盪培
養した。この培養液を遠心分離(15000×g、15
分、4℃)して得られた菌体を50mMリン酸1カリウ
ム−リン酸2カリウムバッファー(pH7.0)30m
lに懸濁し、この懸濁液を遠心分離(15000×g、
15分、4℃)して洗浄菌体を得た。5%の2−プロパ
ノールを含む50mMリン酸1カリウム−リン酸2カリ
ウムバッファー(pH7.0)7.5mlにNAD
+7.5mgおよび前記洗浄菌体2.4gを加えた。こ
こに、79.5mg(0.50mmol)の3−キヌク
リジノン塩酸塩を加え、室温で4日間攪拌した。その
後、反応液に水3mlを注加攪拌し、次いで遠心分離し
た。得られた上澄液に炭酸ナトリウム5gを加え1分間
激しく振盪し、次いで酢酸エチル7.5mlを加えて1
分間激しく振盪した後、遠心分離した。得られた有機層
と水層とを分液し、水層に酢酸エチル7.5mlを加え
1分間激しく振盪した後、分液する操作を5回繰り返
し、得られた有機層を合わせて濃縮し、(S)−3−キ
ヌクリジノール10mgを得た。(化学純度76%、光
学純度100%e.e.) MS(EI,m/z) 127(M+)、112、9
8、42 【0031】なお、得られた(S)−3−キヌクリジノ
ールの絶対立体配置は、得られた化合物、市販の(R)
−3−キヌクリジノール及びラセミ体の3−キヌクリジ
ノールを光学活性カラムを用いたガスクロマトグラフィ
ー分析に付し、その結果より決定した。 【0032】化学純度分析条件 ガスクロマトグラフィー カラム:DB−1(信和加工) 0.53mmφ×30
m 膜圧1.5μm 注入口温度:120℃ カラム室温度:50℃(4℃/分)→170℃ 検出器温度:300℃ キャリアガス:ヘリウム 10ml/分 【0033】光学純度分析条件 ガスクロマトグラフィー カラム:ベータDEX120 0.25mmφ×30m
膜圧0.25μm 注入口温度:250℃ カラム室温度:140℃ 検出器(FID)温度:250℃ キャリアガス:ヘリウム 1ml/分 スプリット比1
/50 保持時間:S体=18.5分、R体=19.0分 【0034】 【発明の効果】本発明により、生理活性物質製造の中間
体として有用な(S)−3−キヌクリジノール化合物を
製造することできる。 【0035】 【配列表】 SEQUENCE LISTING <110> Sumitomo Chemical Co., Ltd. <120> Preparation of (S)-3-Quinuclidinol <130> P153361 <160> 2 <210> 1 <211> 385 <212> PRT <213> Corynebacterium sp. <400> 1 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 Arg 385 <210> 2 <211> 1158 <212> DNA <213> Corynebacterium sp. <220> <221> CDS <222> (1)..(1158) <400> 2 atg aag gcg atc cag tac acg cga atc ggc gcg gaa ccc gaa ctc acg 48 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 gag att ccc aaa ccc gag ccc ggt cca ggt gaa gtg ctc ctg gaa gtc 96 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 acc gct gct ggc gtc tgc cac tcg gac gac ttc atc atg agc ctg ccc 144 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 gaa gag cag tac acc tac ggc ctt ccg ctc acg ctc ggc cac gaa ggc 192 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 gca ggc aag gtc gcc gcc gtc ggc gag ggt gtc gaa ggt ctc gac atc 240 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 gga acc aat gtc gtc gtc tac ggg cct tgg ggt tgc ggc aac tgt tgg 288 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 cac tgc tca caa gga ctc gag aac tat tgc tct cgc gcc caa gaa ctc 336 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 gga atc aat cct ccc ggt ctc ggt gca ccc ggc gcg ttg gcc gag ttc 384 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 atg atc gtc gat tct cct cgc cac ctt gtc ccg atc ggt gac ctc gac 432 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 ccg gtc aag acg gtg ccg ctg acc gac gcc ggt ctg acg ccg tat cac 480 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 gcg atc aag cgt tct ctg ccg aaa ctt cgc gga ggc tcg tac gcg gtt 528 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 gtc att ggt acc ggc ggt ctc ggc cac gtc gct att cag ctc ctc cgc 576 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 cac ctc tcg gcg gca acg gtc atc gct ttg gac gtg agc gcg gac aag 624 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 ctc gaa ctg gca acc aag gta ggc gct cac gaa gtg gtt ctg tcc gac 672 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 aag gac gcg gcc gag aac gtc cgc aag atc act gga agt caa ggc gcc 720 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 gca ttg gtt ctc gac ttc gtc ggc tac cag ccc acc atc gac acc gcg 768 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 atg gct gtc gcc ggc gtc gga tca gac gtc acg atc gtc ggg atc ggg 816 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 gac ggc cag gcc cac gcc aaa gtc ggg ttc ttc caa agt cct tac gag 864 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 gct tcg gtg aca gtt ccg tat tgg ggt gcc cgc aac gag ttg atc gaa 912 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 ttg atc gac ctc gcc cac gcc ggc atc ttc gac atc ggc ggt gga gac 960 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 ctt cag tct cga caa cgg tgc cga agc gta tcg acg act ggc tgc cgg 1008 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 aac gct cag cgg ccg tgc ggt tgt ggt ccc tgg tct gta gta ccg aca 1056 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 gcg gta gaa cga cag cgg aaa aac act gat gcc cgg ccg aat tcg att 1104 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 cgg ccg ggc atc agt gtc aga aat tcg gtg tgc gct agc tgc acg cct 1152 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 cga tga 1158 Arg 385
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing (S) -3-quinuclidinol, and more particularly, to the action of a certain enzyme on 3-quinuclidinone or a salt thereof. The present invention relates to a method for producing (S) -3-quinuclidinol, which is a feature. 2. Description of the Related Art Numerous physiologically active substances having a quinuclidine ring in a molecule, such as quinidine and quinine, are known. (S) -3-quinuclidinol is a compound useful as an intermediate of these physiologically active substances (for example, drugs), and development of an industrially advantageous production method thereof is desired. [0003] The present inventors have proposed (S) -3.
-As a result of intensive studies on the production method of quinuclidinol, 3-
A quinuclidinone or a salt thereof is an enzyme having an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 1, and 3-quinuclidinone is represented by (S) The present inventors have found that (S) -3-quinuclidinol can be obtained by allowing an enzyme having an enzymatic activity to reduce -3-quinuclidinol to act, thereby completing the present invention. That is, the present invention provides the following inventions. Formula (1) 3-quinuclidinone or a salt thereof represented by the following a)
Or b) is acted upon to obtain formula (2) (S) -3-quinuclidinol represented by the following formula (hereinafter, referred to as the production method of the present invention). a) An enzyme having the amino acid sequence represented by SEQ ID NO: 1. b) An enzyme having an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 1 and having an enzymatic activity of reducing 3-quinuclidinone to (S) -3-quinuclidinol. (Hereinafter a) and b) are collectively referred to as the present enzyme. BEST MODE FOR CARRYING OUT THE INVENTION A gene sequence encoding an enzyme having the amino acid sequence represented by SEQ ID NO: 1 which can be used in the production method of the present invention is represented by SEQ ID NO: 2 (Appl. Mi)
crobiol. Biotechnol (1999) 52,386-392). The gene having the base sequence encoding the amino acid sequence of the enzyme may be a naturally occurring gene obtained by subjecting a naturally occurring gene to a mutation treatment (partial mutation introduction method, mutation treatment, etc.). You may. The present enzyme can be produced, for example, by culturing a microorganism containing the gene represented by SEQ ID NO: 2 and producing an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed. . A microorganism that contains the gene represented by SEQ ID NO: 2 and that produces an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed is a naturally occurring microorganism,
It may be a transformed microorganism into which a gene having the nucleotide sequence of SEQ ID NO: 2 has been introduced. Here, a method for preparing a transformed microorganism into which a gene having the nucleotide sequence of SEQ ID NO: 2 has been introduced will be described. As a host cell into which a gene having the nucleotide sequence represented by SEQ ID NO: 2 is introduced, for example, Escherichi
a, Bacillus, Corynebacterium, Staphylococcus, Stre
ptomyces, Saccharomyces, Kluyveromyces and Aspergil
Microorganisms belonging to the genus lus can be mentioned. Method for introducing the gene into a host cell is not particularly limited as long as the normal methods used depending on the cell as a host, for example, "Molecular Cloning: ALaboratory Manual 2 nd ed
ition "(1989), Cold Spring Harbor Laboratory Pres
s, `` Current Protocols in Molecular Biology '' (198
7), John Wiley & Sons, Inc. ISBNO-471-50338-X, etc.
oration: Gene Pulser /E.coli Pulser System '' Bio-Ra
d Laboratories, (1993) and the like. [0008] The transformed microorganism into which the gene has been introduced is
Selection can be performed using the phenotype of the selectable marker gene contained in the vector used when introducing the gene into the host cell as an index. The fact that the transformed microorganism has the gene means that the transformed microorganism
Is prepared, and the prepared DNA is subjected to a conventional method (confirmation of restriction enzyme site, nucleotide sequence, etc.) described in, for example, "Molecular cloning" (J. Sambrook et al., Cold Spring Harbor, 1989). Analysis, Southern hybridization, etc.). Next, to produce the enzyme used in the production method of the present invention, it contains the gene represented by SEQ ID NO: 2,
A method for culturing a microorganism that produces an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed will be described. [0010] As a medium for culturing the microorganism, there can be used various kinds of media which contain carbon sources and nitrogen sources, organic salts, inorganic salts and the like which are usually used for culturing microorganisms. Examples of the carbon source include sugars such as glucose, dextrin and sucrose, sugar alcohols such as glycerol, organic acids such as fumaric acid, citric acid and pyruvic acid, animal and vegetable oils, and molasses. The amount of these carbon sources added to the medium is usually 0.1 to 20% based on the total amount of the medium.
(W / v). Nitrogen sources include meat extract, peptone, yeast extract, malt extract, soy flour, corn steep,
Natural organic nitrogen sources and amino acids such as liquor (Corn Steep Liquor), cottonseed flour, dried yeast and casamino acid, ammonium salts and nitrates of inorganic acids such as sodium nitrate, ammonium chloride, ammonium sulfate and ammonium phosphate, and ammonium fumarate And ammonium salts of organic acids such as ammonium citrate, and organic or inorganic nitrogen sources such as urea. Of these, ammonium salts of organic acids, natural organic nitrogen sources, amino acids and the like can often be used as carbon sources. The amount of addition of the nitrogen source may be usually about 0.1 to 30% (w / v) based on the total amount of the medium. Examples of the organic and inorganic salts include chlorides, sulfates, acetates, carbonates and phosphates of potassium, sodium, magnesium, iron, manganese, cobalt, zinc and the like. Is sodium chloride,
Examples thereof include potassium chloride, magnesium sulfate, ferrous sulfate, manganese sulfate, cobalt chloride, zinc sulfate, copper sulfate, sodium acetate, calcium carbonate, sodium carbonate, monopotassium hydrogen phosphate, and dipotassium hydrogen phosphate. The amount of organic or inorganic salt added is usually
It is good to be about 0.0001-5% (w / v). Furthermore, a host cell into which a gene obtained by operably connecting a promoter of the type induced by allolactose, such as a tac promoter, a trc promoter, a lac promoter, and a gene encoding the present enzyme, is introduced. In some cases, as an inducer for inducing the production of the enzyme, for example, isopropyl thio-β-D-galactoside (IPT
G) may be added in a small amount to the medium. The culturing can be carried out according to a method usually used for culturing microorganisms.
Reciprocating shaking culture, Jar Fermente
r) Methods such as liquid culture such as culture and tank culture, and solid culture are possible. When using a jar fermenter,
It is necessary to introduce sterile air into the jar fermenter, and usually aeration conditions of about 0.1 to about 2 times / min of the volume of the culture solution are used. The culture temperature is preferably in the range of 35 to 42 ° C, and the pH of the medium is preferably in the range of about 6 to about 8. The culturing time varies depending on the culturing conditions, but is usually about 1 hour.
Days to about 5 days. In the production method of the present invention, for example, cells containing the present enzyme obtained as described above, processed cells thereof, or purified products of the present enzyme can be used. Here, the treated cells may be, for example, freeze-dried cells, organic solvent-treated cells, dried cells, crushed cells,
Autolysed cells of the cells, sonicated cells, cell extracts,
Alkali-treated cells can be mentioned, and those immobilized by these commonly used methods can also be mentioned. The purified product of the present enzyme can be produced, for example, by purifying the present enzyme from a culture of a microorganism having the present enzyme. As a method for purifying the present enzyme from a culture of a microorganism having the present enzyme, a method used in ordinary protein purification can be applied, and examples thereof include the following methods. First, cells are collected from the culture of the microorganism by centrifugation or the like, and then subjected to ultrasonic treatment, dynomill treatment, a physical crushing method such as French press treatment, or a cell lysing enzyme such as a surfactant or lysozyme. Crushing is performed according to the chemical crushing method used. Insoluble matter is removed from the obtained crushed liquid by centrifugation, filtration with a membrane filter, etc. to prepare a cell-free extract, which is then subjected to cation exchange chromatography, anion exchange chromatography, hydrophobic chromatography, gel chromatography, etc. The present reductase can be purified by fractionation using the separation and purification method described above as appropriate. Examples of the carrier used for chromatography include resin carriers such as cellulose, dextran, and agarose, into which a carboxymethyl (CM) group, a DEAE group, a phenyl group, a butyl group, or the like has been introduced. A commercially available carrier-packed column can also be used, for example,
Q-Sepharose FF, Phenyl-Sepharose HP (trade names, all manufactured by Amersham Pharmacia Biotech), T
SK-gel G3000SW (trade name, manufactured by Tosoh Corporation)
And the like. Next, the production method of the present invention will be described.
In the production method of the present invention, the reaction for converting 3-quinuclidinone or a salt thereof to (S) -3-quinuclidinol is 3-
This is achieved by allowing the present enzyme to act on quinuclidinone. Examples of the salt of 3-quinuclidine used in the reaction include salts of inorganic acids such as hydrochloride and salts of organic acids such as acetate. The reaction is usually performed in the presence of water, and water may be in the form of a buffer. In this case, examples of the buffer include alkali metal phosphates such as sodium phosphate and potassium phosphate. And alkali metal salts of acetic acid such as sodium acetate and potassium acetate. In this case, the pH can be appropriately changed within a range in which the reaction proceeds. When a buffer is used as a solvent, the amount is usually 100 parts by weight or less based on 1 part by weight of 3-quinuclidinone or a salt thereof. The reaction temperature is from 0 to 70 ° C, preferably from 10 to 40 ° C, in view of the stability and reaction rate of the enzyme. The reaction can be carried out in the presence of an organic solvent in addition to water. As the organic solvent in this case, for example, tetrahydrofuran, t-butyl methyl ether,
Ethers such as isopropyl ether, hydrocarbons such as toluene, hexane, cyclohexane, heptane, isooctane and decane, t-butanol, methanol,
Examples thereof include alcohols such as ethanol, isopropanol and n-butanol, sulfoxides such as dimethyl sulfoxide, ketones such as acetone, nitriles such as acetonitrile, and mixtures thereof. The amount of the organic solvent used in the reaction is usually 100 times by weight or less, preferably 70 times by weight or less, based on 3-quinuclidinone or a salt thereof. The reaction further comprises a coenzyme (eg, NAD
H, NADPH). The amount of coenzyme used in the reaction is usually 0.5 times by weight or less, preferably 0.1 times by weight or less, based on 3-quinuclidinone or a salt thereof. When a coenzyme is added to the reaction, it is preferable to further add the following in order to increase the efficiency of the coenzyme. 1) Compounds such as formic acid, glucose, isopropanol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol and 2-octanol The amount of these compounds used in this case is 3-quinuclidinone or It is 100 times by weight or less, preferably 10 times by weight or less based on the salt. 2) Dehydrogenases such as formate dehydrogenase and glucose dehydrogenase The amount of dehydrogenase used in this case is 0.1 weight times or less, preferably 0.05 weight times, based on 3-quinuclidinone or a salt thereof. Less than twice. The reaction can be carried out, for example, by mixing water, 3-quinuclidinone or a salt thereof, the present enzyme and, if necessary, a coenzyme, an organic solvent and the like, and stirring and shaking. The end point of the reaction can be determined, for example, by following the amount of the starting compound in the reaction solution by liquid chromatography, gas chromatography or the like. The range of the reaction time is usually from 5 minutes to 4 days. After completion of the reaction, for example, the reaction mixture is extracted with an organic solvent such as hexane, heptane, tert-butyl methyl ether, ethyl acetate, toluene, and the like, and the organic layer is dried and concentrated to isolate the desired product. Can be released. The target substance can be purified by column chromatography or the like, if necessary. In the production method of the present invention, a) an amino acid sequence having the amino acid sequence shown in SEQ ID NO: 1 instead of b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO. And an enzyme having an enzymatic activity of reducing 3-quinuclidinone to (S) -3-quinuclidinol. In this case, for example, a well-known technique for causing a point mutation or the like in the DNA shown in SEQ ID NO: 2, for example, in the DNA,
A site-directed mutagenesis method; a method of selectively cleaving DNA and then removing or adding selected nucleotides to ligate the DNA; or a method in which SEQ ID NO: 1 or It consists of an amino acid sequence in which several amino acids have been deleted, substituted or added, and has 3-quinuclidinone as (S)
A gene encoding an enzyme having an enzyme activity of reducing to -3-quinuclidinol is prepared, and a transformant is prepared, cultured, reacted, and the like in the same manner as described above to carry out the production method of the present invention. EXAMPLES The present invention will be described in more detail with reference to production examples and the like, but the present invention is not limited to these examples. Production Example A liquid medium (tryptone 10 in 1000 ml of water) was placed in a flask.
g, 5 g of yeast extract and 5 g of sodium chloride were dissolved, and pH was adjusted to 7.0 by dropwise addition of a 1N aqueous sodium hydroxide solution. ) Add 900ml and sterilize,
100 μg / ml ampicillin, isopropyl thio-β-
D-galactoside (IPTG) was added to 0.4 mM, and a plasmid pUAR containing the DNA shown in SEQ ID NO: 2 (Accession number: FERM P-1812) was added thereto.
The transformant E. coli JM109 / pUAR obtained by transforming the E. coli JM109 strain by the conventional method in 7) was inoculated with 1 ml of a culture solution cultured in a liquid medium having the above composition, and cultured with shaking at 37 ° C. for 14 hours. The culture was centrifuged (15000 × g, 15
For 30 minutes at 4 ° C.), and the obtained cells are treated with a 50 mM monopotassium phosphate-dipotassium phosphate buffer (pH 7.0) 30 m
l, and the suspension is centrifuged (15000 xg,
(15 minutes, 4 ° C.) to obtain washed cells. NAD was added to 7.5 ml of a 50 mM monopotassium phosphate-dipotassium phosphate buffer (pH 7.0) containing 5% of 2-propanol.
+ 7.5 mg and adding the washed cells 2.4 g. To this, 79.5 mg (0.50 mmol) of 3-quinuclidinone hydrochloride was added, and the mixture was stirred at room temperature for 4 days. Thereafter, 3 ml of water was poured into the reaction solution, stirred, and then centrifuged. 5 g of sodium carbonate was added to the resulting supernatant, and the mixture was vigorously shaken for 1 minute.
After vigorous shaking for minutes, it was centrifuged. The obtained organic layer and aqueous layer were separated, 7.5 ml of ethyl acetate was added to the aqueous layer, and the mixture was vigorously shaken for 1 minute. The operation of liquid separation was repeated 5 times, and the obtained organic layers were combined and concentrated. And 10 mg of (S) -3-quinuclidinol. (Chemical purity 76%, optical purity 100% ee) MS (EI, m / z) 127 (M + ), 112, 9
8, 42 The absolute configuration of the obtained (S) -3-quinuclidinol was determined by the obtained compound, commercially available (R)
-3-Quinuclidinol and racemic 3-quinuclidinol were subjected to gas chromatography analysis using an optically active column, and the results were determined. Chemical Purity Analysis Conditions Gas chromatography column: DB-1 (Shinwa processing) 0.53 mmφ × 30
m Membrane pressure 1.5 μm Inlet temperature: 120 ° C. Column chamber temperature: 50 ° C. (4 ° C./min)→170° C. Detector temperature: 300 ° C. Carrier gas: helium 10 ml / min Optical purity analysis gas chromatography Column: Beta DEX120 0.25mmφ × 30m
Membrane pressure 0.25 μm Inlet temperature: 250 ° C. Column chamber temperature: 140 ° C. Detector (FID) temperature: 250 ° C. Carrier gas: helium 1 ml / min Split ratio 1
/ 50 Retention time: S-form = 18.5 minutes, R-form = 19.0 minutes According to the present invention, a (S) -3-quinuclidinol compound useful as an intermediate for producing a physiologically active substance Can be manufactured. [Sequence List] SEQUENCE LISTING <110> Sumitomo Chemical Co., Ltd. <120> Preparation of (S) -3-Quinuclidinol <130> P153361 <160> 2 <210> 1 <211> 385 <212> PRT <213> Corynebacterium sp. <400> 1 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 Arg 385 <210> 2 <211> 1158 <212> DNA <213> Corynebacterium sp. <220><221> CDS <222> (1) .. (1158) <400> 2 atg aag gcg atc cag tac acg cga atc ggc gcg gaa ccc gaa ctc acg 48 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 gag att ccc aaa ccc gag ccc ggt cca ggt gaagt ctg gaa gtc 96 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 acc gct gct ggc gtc tgc cac tcg gac gac ttc atc atg agc ctg ccc 144 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 gaa gag cag tac acc tac ggc ctt ccg ctc acg ctc ggc cac gaa ggc 192 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 gca ggc aag gtc gcc gcc gtc ggc gag ggt gtc gaa ggt ctc gac atc 240 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 gga acc aat gtc gtc gtc tac ggg cct tgg ggt tgc ggc aac tgt tgg Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 cac tgc tca ca a gga ctc gag aac tat tgc tct cgc gcc caa gaa ctc 336 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 gga atc aat cct ccc ggt ctc ggt gca ccc ggc gcg ttg gcc gtt Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 atg atc gtc gat tct cct cgc cac ctt gtc ccg atc ggt gac ctc gac 432 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 ccg gtc aag acg gtg ccg ctg acc gac gcc ggt ctg acg ccg tat cac 480 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 gcg atc aag cgt tct ctg ccg aaa ctt cgc gga ggc tcg tac gcg gtt 528 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 gtc att ggt acc ggc ggt ctc ggc cac gtc gct att cag ctc ctc cgc Gly G Val I Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 cac ctc tcg gcg gca acg gtc atc gct ttg gac gtg agc gcg gac aag 624 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 ct c gaa ctg gca acc aag gta ggc gct cac gaa gtg gtt ctg tcc gac 672 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 aag gac gcg gcc gag aac gtc cgc aag atc act gga agt cagt ggc gcc 720 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 gca ttg gtt ctc gac ttc gtc ggc tac cag ccc acc atc gac acc gcg 768 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 atg gct gtc gcc ggc gtc gga tca gac gtc acg atc gtc ggg atc ggg 816 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 270 gac ggc cag gcc cac gcc aaa gtc ggg ttc ttc caa agt cct tac gag 864 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 gct tcg gtg aca gtt ccg tat tgg ggt gcc cgc aac gag ttg atcga Atta gga ttg atc ga Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 ttg atc gac ctc gcc cac gcc ggc atc ttc gac atc ggc ggt gga gac 960 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Gly 30 5 310 315 320 ctt cag tct cga caa cgg tgc cga agc gta tcg acg act ggc tgc cgg 1008 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 aac gct cag cgg ccg tgc ggt tgt ggt ccc tgg tct gta gta ccg aca 1056 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 gcg gta gaa cga cag cgg aaa aac act gat gcc cgg ccg aat tcg att 1104 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 cgg ccg ggc atc agt gtc aga aat tcg gtg tgc gct agc tgc acg cct 1152 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 380 cga tga 1158 Arg 385

Claims (1)

【特許請求の範囲】 【請求項1】3−キヌクリジノンまたはその塩に下記
a)またはb)を作用させることを特徴とする(S)−
3−キヌクリジノールの製造法。 a)配列番号1で示されるアミノ酸配列を有する酵素。 b)配列番号1において1若しくは数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つ、3−キヌクリジノンを(S)−3−キヌクリジノー
ルに還元する酵素活性を有する酵素。
[Claim 1] (S)-characterized by reacting the following a) or b) on 3-quinuclidinone or a salt thereof.
A method for producing 3-quinuclidinol. a) An enzyme having the amino acid sequence represented by SEQ ID NO: 1. b) An enzyme comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 1 and having an enzymatic activity of reducing 3-quinuclidinone to (S) -3-quinuclidinol.
JP2001288722A 2001-09-21 2001-09-21 Method for producing (s)-3-quinuclidinol Pending JP2003093089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288722A JP2003093089A (en) 2001-09-21 2001-09-21 Method for producing (s)-3-quinuclidinol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288722A JP2003093089A (en) 2001-09-21 2001-09-21 Method for producing (s)-3-quinuclidinol

Publications (1)

Publication Number Publication Date
JP2003093089A true JP2003093089A (en) 2003-04-02

Family

ID=19111320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288722A Pending JP2003093089A (en) 2001-09-21 2001-09-21 Method for producing (s)-3-quinuclidinol

Country Status (1)

Country Link
JP (1) JP2003093089A (en)

Similar Documents

Publication Publication Date Title
JP4510351B2 (en) Novel carbonyl reductase, its gene, and its use
KR20090033864A (en) Process for production of optically active alcohol
KR100511734B1 (en) Method for producing optically active compound
JP4809660B2 (en) 3-quinuclidinone reductase and method for producing (R) -3-quinuclidinol using the same
DE10218689A1 (en) ADH from Rhodococcus erythropolis
JPS6247520B2 (en)
US6781009B2 (en) Method for producing 4-cyano-3-oxobutanoate and 4-ctano-3-hydroxybutanoate
JP3703928B2 (en) Process for producing optically active N-benzyl-3-pyrrolidinol
JP4125543B2 (en) Alcohol dehydrogenase and method for producing optically active 3-quinuclidinol using the same
EP2179050A1 (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
JP2003093089A (en) Method for producing (s)-3-quinuclidinol
JP2008212144A (en) Alcohol dehydrogenase, gene encoding the same and method for producing optically active (r)-3-quinuclidinol using the same
JP2002233392A (en) Method for producing optically active 4-bromo-3- hydroxybutanoate
EP1476544B1 (en) Enone reductase
JPWO2005123921A1 (en) Novel glycerol dehydrogenase, its gene, and use thereof
JP2003000293A (en) Method for reducing 4-cyanoacetoacetate compound
KR20010041061A (en) Process for producing (r)-2-hydroxy-1-phenoxypropane derivatives
EP0751224B1 (en) Process for producing (r)-2-amino-1-phenylethanol or halogenated derivative thereof, process for producing optically active phenylserine or halogenated derivative thereof, and novel compound 3-(3-chlorophenyl)serine
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JP2002233394A (en) Method for producing optically active 3- hydroxypyrrolidine compound
JPH1094399A (en) Production of optically active alcohol using enzyme
CN114350631B (en) Glufosinate dehydrogenase mutant, engineering bacteria, immobilized cells and application
JP2936551B2 (en) Method for producing (R)-(+)-3-halolactic acid
JP3117790B2 (en) Method for producing L-α-aminoadipic acid
JP4270910B2 (en) Process for producing optically active 2-hydroxy-2-trifluoroacetic acids

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080128