JP2003092926A - Lightweight biodegradable soil and method for producing the same - Google Patents

Lightweight biodegradable soil and method for producing the same

Info

Publication number
JP2003092926A
JP2003092926A JP2001291323A JP2001291323A JP2003092926A JP 2003092926 A JP2003092926 A JP 2003092926A JP 2001291323 A JP2001291323 A JP 2001291323A JP 2001291323 A JP2001291323 A JP 2001291323A JP 2003092926 A JP2003092926 A JP 2003092926A
Authority
JP
Japan
Prior art keywords
mass
biodegradable
parts
polyester resin
biodegradable polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291323A
Other languages
Japanese (ja)
Inventor
Kazue Ueda
一恵 上田
Fumio Matsuoka
文夫 松岡
Kazunobu Yamada
和信 山田
Shigeru Hayase
茂 早瀬
Takuma Yano
拓磨 矢野
Kazuko Yoshimura
和子 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001291323A priority Critical patent/JP2003092926A/en
Publication of JP2003092926A publication Critical patent/JP2003092926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide soil comprising a lightweight biodegradable polyester resin excellent in mechanical strength, and having no anxiety of causing bad influence upon growth of plants. SOLUTION: The lightweight biodegradable soil comprises a biodegradable polyester containing >=50 mol% of an α- and/or β-hydroxycarboxylic acid unit, and has apparent specific gravity of <=0.9 g/cm<3> . The method for producing the soil comprises the process of foaming 100 pts.mass of the biodegradable polyester resin containing >=50 mol% of the α- and/or β-hydroxycarboxylic acid unit using 0.01-30 pts.mass of a pyrolytic foaming agent or volatile foaming agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は生分解性を有し、軽
量かつ機械的強度に優れ、植物の生育に悪影響を及ぼさ
ない生分解性ポリエステル樹脂からなる土壌に関する。
TECHNICAL FIELD The present invention relates to a soil composed of a biodegradable polyester resin which has biodegradability, is lightweight and has excellent mechanical strength, and does not adversely affect the growth of plants.

【0002】[0002]

【従来の技術】植物の生育やガーデニング・庭園作り・
農作業などに用いられる砂、土、石および岩等の土壌に
ついては、運搬や植え替え、屋上への設置といったさま
ざまな場面で、軽量化の要求が強い。従来は、比較的比
重の低い珪藻土や鹿沼土など天然のもののほか、黒曜石
や真珠岩パーライトを加工したもの、多孔質ガラスビー
ズや発泡スチロールなど人工的なものなどが使われてき
た。
[Prior Art] Plant growth, gardening, gardening,
With regard to soil such as sand, soil, stones and rocks used for agricultural work, there is a strong demand for weight reduction in various situations such as transportation, replanting and installation on the rooftop. In the past, natural materials such as diatomaceous earth and Kanuma soil, which have a relatively low specific gravity, as well as processed obsidian and pearlite perlite, artificial materials such as porous glass beads and styrofoam have been used.

【0003】これらのうち、珪藻土や鹿沼土など天然の
もの、黒曜石や真珠岩および多孔質ガラスビーズは、比
重が十分に低くないという問題点があった。また、発泡
スチロールなどのように樹脂を発泡させた人工的なもの
は、比重は十分低く、軽量化はできるものの、土壌中に
長期にわたって残存し、不要になった場合にゴミとして
土壌中に取り残されることになり、環境面などで問題が
あった。
Of these, natural ones such as diatomaceous earth and Kanuma soil, obsidian, pearlite and porous glass beads have a problem that their specific gravities are not sufficiently low. In addition, artificial materials such as Styrofoam foamed with resin have a low specific gravity and can be lightened, but they remain in the soil for a long time and are left in the soil as garbage when they are no longer needed. There was a problem in terms of environment.

【0004】そこで近年、生分解性樹脂を使用した軽量
土壌が作られるようになった。しかしながら、たとえば
特開平7−26262号公報には、グリコールと脂肪族
二塩基酸から合成された粒状物が発泡体であるときに軽
量化が図られることが開示されているが、グリコールと
脂肪族二塩基酸から合成された生分解性樹脂は強度が十
分に高くなく、特に発泡倍率が高くなった場合に問題と
なるものであった。
Therefore, in recent years, lightweight soil using a biodegradable resin has been produced. However, for example, Japanese Patent Application Laid-Open No. 7-26262 discloses that the weight reduction is achieved when the granular material synthesized from glycol and an aliphatic dibasic acid is a foam. The biodegradable resin synthesized from dibasic acid does not have sufficiently high strength, which is a problem particularly when the expansion ratio is high.

【0005】これ以外に、セルロースを用いた軽量土壌
が特開2000−86793号公報、2000−344
926号公報、2001−211741号公報に開示さ
れているが、これらは炭化させる必要があったり、基本
骨格がセルロースであるため、虫などに侵されやすいな
どの欠点を有していた。
In addition to this, a lightweight soil using cellulose is disclosed in JP-A-2000-86793 and 2000-344.
Although disclosed in Japanese Patent Nos. 926 and 2001-211741, these have drawbacks such as needing to be carbonized, and a basic skeleton being cellulose, which makes them susceptible to insects and the like.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決しようとするものであり、生分解性を有し、軽
量であり、かつ機械的強度に優れ、植物の生育に悪影響
を及ぼさない生分解性ポリエステル樹脂からなる土壌を
提供することにある。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems and is biodegradable, lightweight, and excellent in mechanical strength, which adversely affects the growth of plants. It is to provide a soil composed of a biodegradable polyester resin that does not extend.

【0007】[0007]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意研究を重ねた結果、α−及
び/又はβ−ヒドロキシカルボン酸単位を50モル%以
上含有する生分解性ポリエステル樹脂を溶融混練して作
製した、みかけ比重が0.9g/cm3以下の軽量化さ
れた生分解性土壌が問題を解決することを見いだし、本
発明に到達した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the inventors of the present invention have found that α- and / or β-hydroxycarboxylic acid units are contained in an amount of 50 mol% or more. The inventors have found that a lightweight biodegradable soil having an apparent specific gravity of 0.9 g / cm 3 or less, which is produced by melt-kneading a degradable polyester resin, solves the problem and has reached the present invention.

【0008】すなわち本発明の要旨は、次のとおりであ
る。 (1)α−及び/又はβ−ヒドロキシカルボン酸単位を
50モル%以上含有する生分解性ポリエステル樹脂から
なり、みかけ比重が0.9g/cm3以下であることを
特徴とする生分解性軽量土壌。 (2)α−ヒドロキシカルボン酸単位が、D−乳酸及び
/又はL−乳酸であることを特徴とする上記(1)記載
の生分解性軽量土壌。 (3)α−及び/又はβ−ヒドロキシカルボン酸単位を
50モル%以上含有する生分解性ポリエステル樹脂10
0質量部を、熱分解型発泡剤又は揮発型発泡剤0.01
〜30質量部により発泡させることを特徴とする上記
(1)又は(2)記載の生分解性軽量土壌の製造方法。 (4)生分解性ポリエステル樹脂100質量部を、架橋
剤0.01〜10質量部により架橋させた後、発泡させ
ることを特徴とする上記(3)記載の生分解性軽量土壌
の製造方法。
That is, the gist of the present invention is as follows. (1) Biodegradable lightweight, which is made of a biodegradable polyester resin containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units and has an apparent specific gravity of 0.9 g / cm 3 or less. soil. (2) The biodegradable lightweight soil according to (1) above, wherein the α-hydroxycarboxylic acid unit is D-lactic acid and / or L-lactic acid. (3) Biodegradable polyester resin 10 containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units
0 parts by mass of a pyrolytic foaming agent or a volatile foaming agent 0.01
The method for producing a biodegradable lightweight soil according to the above (1) or (2), which comprises foaming with 30 to 30 parts by mass. (4) The method for producing a biodegradable lightweight soil according to the above (3), wherein 100 parts by mass of the biodegradable polyester resin is crosslinked with 0.01 to 10 parts by mass of a crosslinking agent and then foamed.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いる生分解性ポリエステル樹脂は、α−及び
/又はβ−ヒドロキシカルボン酸単位を50モル%以上
含有する必要がある。α−及び/又はβ−ヒドロキシカ
ルボン酸単位が50モル%未満であると、得られる生分
解性軽量土壌の機械的強度が低いものとなる。α−及び
/又はβ−ヒドロキシカルボン酸単位の例としては、D
−乳酸、L−乳酸、又はこれらの混合物、グリコール
酸、3−ヒドロキシ酪酸、3−ヒロドキシ吉草酸、3−
ヒドロキシカプロン酸等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The biodegradable polyester resin used in the present invention must contain 50 mol% or more of α- and / or β-hydroxycarboxylic acid units. When the α- and / or β-hydroxycarboxylic acid unit is less than 50 mol%, the resulting biodegradable lightweight soil has low mechanical strength. Examples of α- and / or β-hydroxycarboxylic acid units include D
-Lactic acid, L-lactic acid, or a mixture thereof, glycolic acid, 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-
Examples thereof include hydroxycaproic acid.

【0010】従って本発明に用いる生分解性ポリエステ
ル樹脂として好ましいのは、ポリ乳酸、ポリグリコール
酸、ポリ(3−ヒドロキシ酪酸)、ポリ(3−ヒロドキ
シ吉草酸)、ポリ(3−ヒドロキシカプロン酸)、及び
これらの共重合体、及びこれらの混合物等である。これ
らの中で、ポリ乳酸は成形加工性に優れ、また低コスト
で入手容易であるため、さらに好ましい。
Therefore, the biodegradable polyester resin used in the present invention is preferably polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (3-hydroxyvaleric acid), poly (3-hydroxycaproic acid). , And copolymers thereof, and mixtures thereof. Among these, polylactic acid is more preferable because it has excellent moldability, is low in cost, and is easily available.

【0011】ここで用いられる生分解性ポリエステル樹
脂は通常公知の溶融重合法で、あるいはさらに固相重合
法を併用して製造される。また、ポリ(3−ヒドロキシ
酪酸)及びポリ(3−ヒロドキシ吉草酸)等については
微生物による生産も可能である。
The biodegradable polyester resin used here is usually produced by a known melt polymerization method, or in combination with a solid phase polymerization method. In addition, poly (3-hydroxybutyric acid) and poly (3-hydroxyvaleric acid) can be produced by microorganisms.

【0012】本発明に用いる生分解性ポリエステル樹脂
には、ポリ(α−及び/又はβ−ヒドロキシカルボン
酸)の耐熱性を大幅に損ねない範囲で、必要に応じてそ
の他の生分解性樹脂成分を共重合ないしは混合すること
もできる。その他の生分解性樹脂としては、ポリ(エチ
レンサクシネート)やポリ(ブチレンサクシネート)等
に代表されるジオールとジカルボン酸からなる脂肪族ポ
リエステル、ポリ(ε−カプロラクトン)に代表される
ポリ(ω−ヒドロキシアルカノエート)、さらに芳香族
成分を含んでいても生分解を示すポリ(ブチレンサクシ
ネート−co−ブチレンテレフタレート)や(ブチレン
アジペート−co−ブチレンテレフタレート)の他、ポ
リエステルアミド、ポリエステルカーボネート、デンプ
ンなどの多糖類等が挙げられる。
The biodegradable polyester resin used in the present invention contains, if necessary, other biodegradable resin components within a range that does not significantly impair the heat resistance of poly (α- and / or β-hydroxycarboxylic acid). Can be copolymerized or mixed. Other biodegradable resins include aliphatic polyesters composed of dicarboxylic acids and diols represented by poly (ethylene succinate) and poly (butylene succinate), and poly (ω-caprolactone) represented by poly (ε-caprolactone). -Hydroxyalkanoate), poly (butylene succinate-co-butylene terephthalate) and (butylene adipate-co-butylene terephthalate), which are biodegradable even if they contain an aromatic component, as well as polyesteramide, polyester carbonate, starch And the like.

【0013】本発明で用いる生分解性ポリエステル樹脂
の分子量としては特に制限はないが、重量平均分子量が
3万以上、100万以下であることが好ましく、さらに
は5万以上、100万以下であることが好ましい。重量
平均分子量が3万未満である場合には樹脂の溶融粘度が
低すぎるので好ましくない。逆に、これが100万を超
える場合には樹脂の成形性が急速に低下するので好まし
くない。
The molecular weight of the biodegradable polyester resin used in the present invention is not particularly limited, but the weight average molecular weight is preferably 30,000 or more and 1,000,000 or less, and more preferably 50,000 or more and 1,000,000 or less. It is preferable. When the weight average molecular weight is less than 30,000, the melt viscosity of the resin is too low, which is not preferable. On the contrary, if it exceeds 1,000,000, the moldability of the resin is rapidly lowered, which is not preferable.

【0014】本発明において、軽量な土壌を製造する方
法としては、生分解性ポリエステル樹脂を発泡させ、多
孔体化する方法が望ましい。孔は使用条件によって独立
気泡にも連通孔にも調整することが可能である。具体的
に軽量土壌を得る方法として、(1)生分解性ポリエス
テル樹脂から微粒子を作製後、水や有機溶剤などを含浸
させ、圧力や温度を変化させて発泡させて得る方法、
(2)混練機を用いて生分解性ポリエステル樹脂を溶融
混練し、これに分解型発泡剤や揮発型発泡剤を添加して
発泡させ、次いで土壌として必要な大きさに調整する方
法がある。特に後者の方法は、押出機型装置を用いて必
要な径の発泡ストランドを調製し、次いでこれを必要な
長さに切断すれば、連続的に軽量土壌を生産できること
から望ましい方法である。
In the present invention, as a method for producing lightweight soil, a method of foaming a biodegradable polyester resin to form a porous body is desirable. The holes can be adjusted to be independent bubbles or communicating holes depending on the usage conditions. Specifically, as a method for obtaining lightweight soil, (1) a method of producing fine particles from a biodegradable polyester resin, impregnating them with water, an organic solvent or the like, and foaming them by changing pressure or temperature,
(2) There is a method in which a biodegradable polyester resin is melt-kneaded using a kneading machine, a decomposable foaming agent or a volatile foaming agent is added to the mixture to foam, and then the soil is adjusted to a size required. In particular, the latter method is a desirable method because a lightweight soil can be continuously produced by preparing a foamed strand having a required diameter by using an extruder type device and then cutting the foamed strand into a required length.

【0015】上記分解型発泡剤の例としては、アゾジカ
ルボンアミドやバリウムアゾジカルボキシレートに代表
されるアゾ化合物、N,N’−ジニトロソペンタメチレ
ンテトラミンに代表されるニトロソ化合物、4,4’−
オキシビス(ベンゼンスルホニルヒドラジド)やヒドラ
ジカルボンアミドに代表されるヒドラジン化合物、ある
いは炭酸水素ナトリウムなどの無機化合物などを挙げる
ことが出来る。
Examples of the decomposition type foaming agent include azo compounds represented by azodicarbonamide and barium azodicarboxylate, nitroso compounds represented by N, N'-dinitrosopentamethylenetetramine, and 4,4 '. −
Examples thereof include hydrazine compounds represented by oxybis (benzenesulfonylhydrazide) and hydradicarbonamide, and inorganic compounds such as sodium hydrogen carbonate.

【0016】また、揮発型発泡剤を用いる場合は、押出
機途中から注入して発泡させる方法が有効である。この
場合の発泡剤としては、窒素、二酸化炭素、水等の無機
化合物や、メタン、エタン、ブタンなどの炭化水素化合
物、フロン化合物、エタノールやメタノール等のアルコ
ール類に代表される有機溶媒などを挙げることが出来
る。発泡剤の使用量は、生分解性ポリエステル樹脂10
0質量部に対し0.01〜30質量部であることが好ま
しい。発泡剤の添加量が30質量部を超えると、破泡し
やすい場合があり、またコスト高になるので好ましくな
い。
When a volatile foaming agent is used, it is effective to inject it from the middle of the extruder to foam it. Examples of the foaming agent in this case include inorganic compounds such as nitrogen, carbon dioxide and water, hydrocarbon compounds such as methane, ethane and butane, freon compounds and organic solvents represented by alcohols such as ethanol and methanol. You can The amount of foaming agent used is 10 biodegradable polyester resin.
It is preferably 0.01 to 30 parts by mass with respect to 0 parts by mass. If the amount of the foaming agent added is more than 30 parts by mass, the foaming may be liable to occur and the cost becomes high, which is not preferable.

【0017】生分解性ポリエステル樹脂の発泡において
は、生分解性ポリエステル樹脂をそのまま用いてもよい
が、気泡を細かくする場合や、高発泡率にする場合など
は、架橋したり、他の超高分子量ポリマーを添加しても
よい。架橋剤としては、特に限定されないが、多価イソ
シアネート化合物、(メタ)アクリレート化合物、多価
カルボン酸化合物、多価エポキシ化合物などが挙げられ
る。架橋に際して、過酸化物を併用してもかまわない。
また、透水性や保水性を持たせるため、連通孔を作製す
るためには、架橋剤や過酸化物をできるだけ減らすこと
が好ましい。
In the foaming of the biodegradable polyester resin, the biodegradable polyester resin may be used as it is, but when the cells are made finer or the foaming rate is made higher, it may be cross-linked or other ultra high. A molecular weight polymer may be added. The cross-linking agent is not particularly limited, but examples thereof include polyvalent isocyanate compounds, (meth) acrylate compounds, polyvalent carboxylic acid compounds, and polyvalent epoxy compounds. Upon crosslinking, a peroxide may be used together.
Further, it is preferable to reduce the amount of the cross-linking agent and the peroxide as much as possible in order to make the communicating holes in order to have water permeability and water retention.

【0018】架橋剤を配合する場合、その量は生分解性
ポリエステル100質量部に対して0.01〜10質量
部、好ましくは0.05〜5質量部である。10質量部
を超える場合には架橋の度合いが強すぎて、操業性に支
障が出るため好ましくない。
When a cross-linking agent is added, the amount thereof is 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, based on 100 parts by mass of the biodegradable polyester. If the amount exceeds 10 parts by mass, the degree of crosslinking is too strong and the operability is impaired, which is not preferable.

【0019】過酸化物の配合量は生分解性ポリエステル
樹脂100質量部に対して0.01〜10質量部、好ま
しくは0.1〜5質量部である。10質量部を超える場
合には未反応部分が多くなり、コスト面で好ましくな
い。なお、架橋剤/過酸化物により変性したポリ乳酸の
生分解性は本範囲内であれば、若干分解速度が低下する
が、生分解性が損なわれるわけではない。
The blending amount of the peroxide is 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin. If it exceeds 10 parts by mass, the unreacted portion increases, which is not preferable in terms of cost. If the biodegradability of the polylactic acid modified with the crosslinking agent / peroxide falls within this range, the decomposition rate will slightly decrease, but the biodegradability will not be impaired.

【0020】本発明の生分解性軽量土壌のみかけ比重
は、その用途によって最適値は異なるが、軽量化の効果
を持たせるためには0.9g/cm3以下でなければな
らない。好ましくは0.01〜0.8g/cm3の範囲
であり、より好ましくは0.02〜0.7g/cm3
範囲である。0.01g/cm3よりもみかけ比重が低
いと、風にとばされるなどするため好ましくない。みか
け比重は、発泡剤の濃度と発泡条件によってコントロー
ルすることができる。
The apparent specific gravity of the biodegradable lightweight soil of the present invention varies depending on its use, but it must be 0.9 g / cm 3 or less in order to have the effect of weight reduction. The range is preferably 0.01 to 0.8 g / cm 3 , and more preferably 0.02 to 0.7 g / cm 3 . An apparent specific gravity of less than 0.01 g / cm 3 is not preferable because it is blown by the wind. The apparent specific gravity can be controlled by the concentration of the foaming agent and the foaming conditions.

【0021】本発明の生分解性軽量土壌の圧縮強度は、
10%変形時において0.3〜20MPaであることが
望ましい。0.3MPaよりも低い10%変形時圧縮強
度では、土や石として使用しているときに破壊される可
能性があり、植物体の支持が困難になる場合がある。2
0MPaよりも大きな値にすることは困難である。ま
た、圧縮弾性率は50MPa〜2GPaであることが望
ましい。50MPa未満では、使用上の強度面で問題が
あり、2GPaよりも大きくすると、もろくなって好ま
しくない。
The compressive strength of the biodegradable lightweight soil of the present invention is
It is preferably 0.3 to 20 MPa at the time of 10% deformation. If the compressive strength at 10% deformation is lower than 0.3 MPa, it may be broken when used as soil or stone, and it may be difficult to support the plant body. Two
It is difficult to make the value larger than 0 MPa. Further, the compressive elastic modulus is preferably 50 MPa to 2 GPa. When it is less than 50 MPa, there is a problem in strength in use, and when it is more than 2 GPa, it becomes brittle, which is not preferable.

【0022】本発明において、生分解性ポリエステル樹
脂にはその特性を大きく損なわない限りにおいて、顔
料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、
滑剤、離型剤、帯電防止剤、充填材等を添加することも
可能である。熱安定剤や酸化防止剤としては、たとえば
ヒンダードフェノール類、リン化合物、ヒンダードアミ
ン、イオウ化合物、銅化合物、アルカリ金属のハロゲン
化物あるいはこれらの混合物を使用することができる。
無機充填材としては、タルク、炭酸カルシウム、炭酸亜
鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシ
ウム、ケイ酸カルシウム、アルミン酸ナトリウム、アル
ミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグ
ネシウム、ガラスバルーン、カーボンブラック、酸化亜
鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイ
ト、金属繊維、金属ウイスカー、セラミックウイスカ
ー、チタン酸カリウム、窒化ホウ素、グラファイト、ガ
ラス繊維、炭素繊維等が挙げられる。有機充填材として
は、澱粉、セルロース微粒子、木粉、おから、モミ殻、
フスマ等の天然に存在するポリマーやこれらの変性品が
挙げられる。
In the present invention, the biodegradable polyester resin is a pigment, a heat stabilizer, an antioxidant, a weatherproofing agent, a flame retardant, a plasticizer, as long as its characteristics are not significantly impaired.
It is also possible to add a lubricant, a release agent, an antistatic agent, a filler and the like. As the heat stabilizer and antioxidant, for example, hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, halides of alkali metals, or a mixture thereof can be used.
As the inorganic filler, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, Examples thereof include zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fibers, metal whiskers, ceramic whiskers, potassium titanate, boron nitride, graphite, glass fibers and carbon fibers. Organic fillers include starch, cellulose fine particles, wood flour, okara, fir shell,
Examples include naturally occurring polymers such as bran and modified products thereof.

【0023】なお、本発明の生分解性ポリエステル樹脂
に、他の熱可塑性樹脂や上記充填材等を混合する方法は
特に限定されるものではなく、通常の加熱溶融後、例え
ば、従来より知られている一軸押出機、二軸押出機、ロ
ール混練機、ブラベンダー等を用いる混練法によって混
練するとよい。また、スタティックミキサーやダイナミ
ックミキサーを併用することも効果的である。
The method of mixing the other biodegradable polyester resin of the present invention with other thermoplastic resins, the above-mentioned fillers, etc. is not particularly limited, and is usually known after heating and melting, for example. The kneading may be performed by a kneading method using a single-screw extruder, a twin-screw extruder, a roll kneader, a Brabender or the like. It is also effective to use a static mixer or a dynamic mixer together.

【0024】[0024]

【実施例】以下本発明を実施例によりさらに具体的に説
明するが、本発明は実施例のみに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

【0025】実施例及び比較例の評価に用いた測定法は
次のとおりである。 (1)分子量:示差屈折率検出器を備えたゲル浸透クロ
マトグラフィ(GPC)装置(島津製作所製)を用い、
テトラヒドロフランを溶出液として40℃で標準ポリス
チレン換算で求めた。 (2)圧縮強度および弾性率:JIS K7220に準
じて、圧縮強度測定器(インテスコ社製)にて測定し
た。 (3)みかけ比重:得られた発泡体を水中に浸漬した際
に増加する体積で、発泡体の質量を割って算出した。 (4)発泡倍率:得られた発泡体を水中に浸漬した際に
増加する体積と、発泡体の質量と樹脂の真密度から求ま
る体積との比から算出した。
The measuring methods used in the evaluation of Examples and Comparative Examples are as follows. (1) Molecular weight: using a gel permeation chromatography (GPC) device (manufactured by Shimadzu Corporation) equipped with a differential refractive index detector,
Tetrahydrofuran was used as an eluent and determined at 40 ° C. in terms of standard polystyrene. (2) Compressive strength and elastic modulus: Measured with a compressive strength measuring device (manufactured by Intesco) according to JIS K7220. (3) Apparent specific gravity: Calculated by dividing the mass of the foam by the volume that increases when the obtained foam is immersed in water. (4) Foaming ratio: Calculated from the ratio of the volume increased when the obtained foam was immersed in water and the volume of the foam and the volume obtained from the true density of the resin.

【0026】実施例1 発泡核剤としてタルク(林化成製、平均粒径2.5μ
m)0.5質量部を添加したポリ乳酸(カーギルダウ製
NatureWorks4030D、重量平均分子量2
0万、L体99%、D体1%:樹脂A)100質量部
を、成形機(池貝製二軸押出成形機PCM−30、ダイ
ス直径4mm×3孔、押出ヘッド温度;200℃、ダイ
出口温度;180℃)に供給した。成形機途中からポン
プを用いて、架橋剤としてポリエチレングリコールジメ
タクリレート(日本油脂製:PEGM)、及び過酸化物
としてジ−t−ブチルパーオキサイド(日本油脂製)を
それぞれ0.5質量部注入し、押出し、ペレット状に加
工した。この架橋樹脂ペレットをいったん乾燥した後、
発泡剤として液化炭酸ガスを用い、成形機(池貝製二軸
押出成形機PCM−30、吐出孔径1mmΦ、押出溶融
温度;200℃、ダイ出口温度;160℃)を用い、連
続発泡ストランドを作製した。吐出した発泡ストランド
は、カッターで3mmの長さにカットした。得られた発
泡ペレットのみかけ比重、発泡倍率を表1に示した。
Example 1 Talc as a foaming nucleating agent (Hayashi Kasei Co., Ltd., average particle diameter 2.5 μm)
m) Polylactic acid added with 0.5 part by mass (NaturWorks 4030D manufactured by Cargill Dow, weight average molecular weight 2)
100,000 parts by weight of 100,000, L-body 99%, D-body 1%: Resin A, a molding machine (a twin-screw extruder PCM-30 manufactured by Ikegai, die diameter 4 mm x 3 holes, extrusion head temperature; 200 ° C, die) Outlet temperature; 180 ° C.). Using a pump in the middle of the molding machine, 0.5 parts by mass of polyethylene glycol dimethacrylate (made by NOF Corporation: PEGM) as a crosslinking agent and 0.5 parts by mass of di-t-butyl peroxide (made by NOF Corporation) as a peroxide were respectively injected. , Extruded and processed into pellets. After drying this crosslinked resin pellet once,
Liquefied carbon dioxide was used as a foaming agent, and a continuous foamed strand was produced using a molding machine (Ikegai biaxial extrusion molding machine PCM-30, discharge hole diameter 1 mmΦ, extrusion melting temperature; 200 ° C., die outlet temperature: 160 ° C.). . The discharged foamed strand was cut into a length of 3 mm with a cutter. Table 1 shows the apparent specific gravity and the expansion ratio of the obtained expanded pellets.

【0027】実施例2 架橋剤及び過酸化物をそれぞれ樹脂100質量部に対し
て0.1質量部、および0.2質量部となるよう注入し
た以外は実施例1と同様の実験を行った。
Example 2 The same experiment as in Example 1 was conducted except that the cross-linking agent and the peroxide were injected in amounts of 0.1 parts by mass and 0.2 parts by mass with respect to 100 parts by mass of the resin, respectively. .

【0028】実施例3 架橋剤としてヘキサメチレンジイソシアネート(和光純
薬製:HMDI)を用いた以外は実施例2と同様の実験
を行った。
Example 3 The same experiment as in Example 2 was carried out except that hexamethylene diisocyanate (HMDI manufactured by Wako Pure Chemical Industries, Ltd.) was used as a crosslinking agent.

【0029】実施例4 架橋剤および過酸化物をまったく用いなかった以外は実
施例1と同様の実験を行った。
Example 4 The same experiment as in Example 1 was carried out except that no crosslinking agent or peroxide was used.

【0030】実施例5〜8 樹脂Aのかわりに、ポリ乳酸(カーギルダウ製Natu
reWorks4060D、重量平均分子量18万、L
体90%、D体10%:樹脂B)を用いた以外は実施例
1〜4と同様の実験を行った。
Examples 5 to 8 Instead of resin A, polylactic acid (Naturu manufactured by Cargill Dow) was used.
reWorks4060D, weight average molecular weight 180,000, L
The same experiment as in Examples 1 to 4 was performed except that 90% of body and 10% of body D: resin B) were used.

【0031】実施例9〜12 樹脂Aのかわりに、ポリ乳酸(カーギルダウ製Natu
reWorks5039B、重量平均分子量18万、L
体80%、D体20%:樹脂C)を用いた以外は実施例
1〜4と同様の実験を行った。
Examples 9 to 12 Instead of the resin A, polylactic acid (Naturu manufactured by Cargill Dow) was used.
reWorks5039B, weight average molecular weight 180,000, L
The same experiment as in Examples 1 to 4 was carried out except that 80% body and 20% D body: resin C) were used.

【0032】実施例13〜16 生分解性ポリエステル樹脂として、樹脂A80質量部と
ポリブチレンサクシネート(昭和高分子製ビオノーレ1
010、重量平均分子量16万:PBS)20質量部を
用いた以外は実施例1〜4と同様の実験を行った。
Examples 13 to 16 As a biodegradable polyester resin, 80 parts by mass of resin A and polybutylene succinate (Bionore 1 manufactured by Showa High Polymer Co., Ltd.) were used.
The same experiment as in Examples 1 to 4 was performed except that 20 parts by mass of 010 and a weight average molecular weight of 160,000: PBS) were used.

【0033】実施例17 実施例1で得られた架橋樹脂ペレット100質量部を用
い、発泡剤として化学熱分解型のアゾジカルボンアミド
系発泡剤(永和化成製SW7)を3質量部添加し、成形
機(池貝製二軸押出成形機PCM−30、吐出孔径3m
mΦ、押出溶融温度;210℃、ダイ出口温度;150
℃)を用い、連続発泡ストランドを作製し、実施例1と
同様にして発泡ペレットを得た。
Example 17 Using 100 parts by mass of the crosslinked resin pellet obtained in Example 1, 3 parts by mass of a chemically pyrolyzable azodicarbonamide type foaming agent (SW7 manufactured by Eiwa Kasei) was added as a foaming agent and molded. Machine (Ikegai twin-screw extruder PCM-30, discharge hole diameter 3m
mΦ, extrusion melting temperature; 210 ° C., die exit temperature; 150
(° C) was used to prepare a continuous foamed strand, and foamed pellets were obtained in the same manner as in Example 1.

【0034】比較例1〜4 生分解性ポリエステル樹脂として樹脂A20質量部とP
BS80質量部を用いた以外は実施例1〜4と同様の実
験を行った。
Comparative Examples 1 to 4 20 parts by mass of resin A and P as biodegradable polyester resin
The same experiment as in Examples 1 to 4 was carried out except that 80 parts by mass of BS was used.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例で得られた発泡ペレットは、圧縮強
度・弾性率に優れ、軽量化が図られていた。一方、比較
例で得られた発泡ペレットは、生分解性ポリエステル樹
脂に含有するヒドロキシカルボン酸単位が少ないため、
圧縮強度・弾性率に劣るものであった。
The expanded pellets obtained in the examples were excellent in compressive strength and elastic modulus, and were intended to be lightweight. On the other hand, the foamed pellets obtained in Comparative Example, because the hydroxycarboxylic acid unit contained in the biodegradable polyester resin is small,
It was inferior in compressive strength and elastic modulus.

【0037】[0037]

【発明の効果】本発明によれば、生分解性を有し、軽量
であり、機械的強度に優れ、また、植物の生育に悪影響
を及ぼすことがなく、大きさに応じて種々の砂、石、岩
等として用いることができる土壌を提供することが可能
となる。
According to the present invention, it has biodegradability, is lightweight, has excellent mechanical strength, does not adversely affect the growth of plants, and has various types of sand depending on its size. It becomes possible to provide soil that can be used as stones, rocks, and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早瀬 茂 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 矢野 拓磨 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 吉村 和子 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 2B022 AA05 BA01 BA21 BB01 4F074 AA67 AA68 BA01 BA13 BA31 BA32 BB02 BB03 BB12 BB28 CA22 CB52 CC04Y CC06X CC22X DA24 DA59    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeru Hayase             23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd.             Shikisha Central Research Institute (72) Inventor Takuma Yano             23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd.             Shikisha Central Research Institute (72) Inventor Kazuko Yoshimura             23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd.             Shikisha Central Research Institute F term (reference) 2B022 AA05 BA01 BA21 BB01                 4F074 AA67 AA68 BA01 BA13 BA31                       BA32 BB02 BB03 BB12 BB28                       CA22 CB52 CC04Y CC06X                       CC22X DA24 DA59

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 α−及び/又はβ−ヒドロキシカルボン
酸単位を50モル%以上含有する生分解性ポリエステル
樹脂からなり、みかけ比重が0.9g/cm 3以下であ
ることを特徴とする生分解性軽量土壌。
1. α- and / or β-hydroxycarboxylic acid
Biodegradable polyester containing 50 mol% or more of acid units
Made of resin with an apparent specific gravity of 0.9 g / cm 3Below
Biodegradable lightweight soil characterized by the following.
【請求項2】 α−ヒドロキシカルボン酸単位が、D−
乳酸及び/又はL−乳酸であることを特徴とする請求項
1記載の生分解性軽量土壌。
2. An α-hydroxycarboxylic acid unit is D-
The biodegradable lightweight soil according to claim 1, which is lactic acid and / or L-lactic acid.
【請求項3】 α−及び/又はβ−ヒドロキシカルボン
酸単位を50モル%以上含有する生分解性ポリエステル
樹脂100質量部を、熱分解型発泡剤又は揮発型発泡剤
0.01〜30質量部により発泡させることを特徴とす
る請求項1又は2記載の生分解性軽量土壌の製造方法。
3. A thermal decomposition type foaming agent or a volatile type foaming agent 0.01 to 30 parts by mass, 100 parts by mass of a biodegradable polyester resin containing 50 mol% or more of α- and / or β-hydroxycarboxylic acid units. The method for producing a biodegradable lightweight soil according to claim 1 or 2, wherein the method is used for foaming.
【請求項4】 生分解性ポリエステル樹脂100質量部
を、架橋剤0.01〜10質量部により架橋させた後、
発泡させることを特徴とする請求項3記載の生分解性軽
量土壌の製造方法。
4. After crosslinking 100 parts by mass of the biodegradable polyester resin with 0.01 to 10 parts by mass of a crosslinking agent,
The method for producing a biodegradable lightweight soil according to claim 3, wherein foaming is performed.
JP2001291323A 2001-09-25 2001-09-25 Lightweight biodegradable soil and method for producing the same Pending JP2003092926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291323A JP2003092926A (en) 2001-09-25 2001-09-25 Lightweight biodegradable soil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291323A JP2003092926A (en) 2001-09-25 2001-09-25 Lightweight biodegradable soil and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003092926A true JP2003092926A (en) 2003-04-02

Family

ID=19113492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291323A Pending JP2003092926A (en) 2001-09-25 2001-09-25 Lightweight biodegradable soil and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003092926A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112287A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
JP2007119564A (en) * 2005-10-27 2007-05-17 Kaneka Corp Method for producing polyhydroxyalkanoate resin extrusion foam and extrusion foam obtained by the production method
WO2010008445A3 (en) * 2008-06-25 2010-03-11 Metabolix, Inc. Branched pha compositions, methods for their production, and use in applications
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
US10113060B2 (en) 2012-06-05 2018-10-30 Cj Cheiljedang Corporation Biobased rubber modified biodegradable polymer blends
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
US11091632B2 (en) 2015-11-17 2021-08-17 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112287A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
US8076381B2 (en) 2005-04-14 2011-12-13 Kaneka Corporation Polyhydroxyalkanoate-based resin foamed particle, molded article comprising the same and process for producing the same
JP5014127B2 (en) * 2005-04-14 2012-08-29 株式会社カネカ Polyhydroxyalkanoate resin expanded particles, molded product thereof, and method for producing the expanded resin particles
JP2007119564A (en) * 2005-10-27 2007-05-17 Kaneka Corp Method for producing polyhydroxyalkanoate resin extrusion foam and extrusion foam obtained by the production method
WO2010008445A3 (en) * 2008-06-25 2010-03-11 Metabolix, Inc. Branched pha compositions, methods for their production, and use in applications
US9034989B2 (en) 2008-06-25 2015-05-19 Metabolix, Inc. Branched PHA compositions, methods for their production, and use in applications
US10113060B2 (en) 2012-06-05 2018-10-30 Cj Cheiljedang Corporation Biobased rubber modified biodegradable polymer blends
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
US11091632B2 (en) 2015-11-17 2021-08-17 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates

Similar Documents

Publication Publication Date Title
US10253150B2 (en) Method for producing expandable granulates containing polylactic acid
KR101711252B1 (en) Biodegradable polymer foam and method for preparing the same
JP2007169394A (en) Method for producing polylactic acid resin expanded particle for in-mold expansion molding
JP5339857B2 (en) Resin composition for foaming biodegradable flame retardant polyester, foam obtained therefrom, and molded product thereof
CN107057303A (en) A kind of blending and modifying aromatic polyester microcellular foam material and preparation method thereof
US6573308B1 (en) Biologically degradable foamed material particles
JP2003092926A (en) Lightweight biodegradable soil and method for producing the same
JP3880375B2 (en) Biodegradable polyester resin composition, method for producing the same, and foam obtained therefrom
EP1947127B1 (en) Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
JP2013018959A (en) Process for enabling secondary expansion of expandable bead
EP2267066A1 (en) Aliphatic polyester resin foam, flower arrangement holder made of the foam, and processes for production of both
JP3886767B2 (en) Biodegradable polyester resin composition, method for producing the same, and foam obtained therefrom
JP4960122B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2003253107A (en) Polyester resin composition and use for the same
JP2002020526A (en) Expandable resin beads
JP2011213820A (en) Polylactic acid resin composition and polylactic acid resin foamed article formed from the same
JP2003238789A (en) Biodegradable polyester resin composition, manufacturing method, therefor and foam obtained therefrom
EP2543489A2 (en) Process for enabling secondary expansion of expandable beads
JP2003286360A (en) Biodegradable polyester resin foamed material and its manufacturing method
JP2004143269A (en) Thermoplastic resin foamed particle, its molding and method for producing the foamed particle
JP4733345B2 (en) Aliphatic polyester resin foam and method for producing the same
JP2003082150A (en) Polylactic acid expandable resin particle
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
Malucelli Biodegradable Foams
KR100401184B1 (en) Biodegradable polyurethane capsules and manufacturing method thereof