JP2003092287A - Ashing method - Google Patents

Ashing method

Info

Publication number
JP2003092287A
JP2003092287A JP2001284373A JP2001284373A JP2003092287A JP 2003092287 A JP2003092287 A JP 2003092287A JP 2001284373 A JP2001284373 A JP 2001284373A JP 2001284373 A JP2001284373 A JP 2001284373A JP 2003092287 A JP2003092287 A JP 2003092287A
Authority
JP
Japan
Prior art keywords
plasma
ashing
insulating film
interlayer insulating
msq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284373A
Other languages
Japanese (ja)
Inventor
Eiichi Soda
栄一 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001284373A priority Critical patent/JP2003092287A/en
Priority to KR1020020052352A priority patent/KR20030025174A/en
Priority to US10/237,053 priority patent/US20030054656A1/en
Priority to TW091120537A priority patent/TW559889B/en
Publication of JP2003092287A publication Critical patent/JP2003092287A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76808Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/7681Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving one or more buried masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76811Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving multiple stacked pre-patterned masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/101Forming openings in dielectrics
    • H01L2221/1015Forming openings in dielectrics for dual damascene structures
    • H01L2221/1031Dual damascene by forming vias in the via-level dielectric prior to deposition of the trench-level dielectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress damage to an interlayer insulating film when photoresist is etched by using N2 /H2 . SOLUTION: A reformed layer which has resistance to N2 /H2 plasma, is formed at an exposed part of the interlayer insulating film by using N2 plasma (process 1). The photoresist is removed by using N2 /H2 plasma (process 2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、層間絶縁膜上に形
成されたフォトレジストをプラズマを用いて除去するア
ッシング方法に関する。以下、窒素と水素との混合ガス
のプラズマを「N /Hプラズマ」、窒素ガスのプラ
ズマを「Nプラズマ」と表記する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is formed on an interlayer insulating film.
The removed photoresist is removed by using plasma.
Regarding the sashing method. Below, mixed gas of nitrogen and hydrogen
Plasma of "N Two/ HTwoPlasma ", nitrogen gas plastic
Zuma is "NTwoIt is written as "plasma".

【0002】[0002]

【従来の技術】近年の半導体製造技術では、微細化技術
の進展によって、配線の間隔がますます狭くなってい
る。その結果、配線間容量が増加してしまうので、これ
を防ぐために低誘電率層間絶縁膜(low−k材料)が
注目されている。そのようなlow−k材料の一つとし
てMSQが知られている。MSQとは、SiOのSi
原子に結合する四つのO原子のうち一つをメチル基CH
で置換した物質であり、(CH−SiO3/2)n
と表記される。
2. Description of the Related Art In recent semiconductor manufacturing technology, wiring intervals are becoming narrower due to the progress of miniaturization technology. As a result, the inter-wiring capacitance increases, and therefore, a low dielectric constant interlayer insulating film (low-k material) is receiving attention in order to prevent this. MSQ is known as one of such low-k materials. MSQ is SiO 2 Si
One of four O atoms bonded to an atom is a methyl group CH
3 is a substance substituted with 3 , and is (CH 3 —SiO 3/2 ) n
Is written.

【0003】従来、フォトレジストをマスクにしてMS
Qをエッチングした後に、フォトレジストをアッシング
するには、Oプラズマ又はN/Hプラズマを用い
ていた。
Conventionally, MS is used with a photoresist as a mask.
O 2 plasma or N 2 / H 2 plasma was used to ash the photoresist after etching Q.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
アッシング方法では、アッシング後のMSQの側壁がオ
ーバーハング形状となるため、次工程のCu埋め込みが
できなくなることがあった。これに加え、MSQの膜変
質によって誘電率が上昇するという問題もあった。
However, in the conventional ashing method, the side wall of the MSQ after ashing has an overhang shape, and thus Cu filling in the next step may not be possible. In addition to this, there is also a problem that the dielectric constant increases due to the alteration of the MSQ film.

【0005】その理由は、アッシングガスがMSQ内に
拡散することにより、CH基が脱離してSiO骨格が
収縮するので、オーバーハング形状となったり誘電率が
上昇したりするから、と考えられる。
It is considered that the reason is that the ashing gas diffuses into the MSQ, the CH 3 group is desorbed and the SiO skeleton contracts, resulting in an overhang shape or an increase in the dielectric constant. .

【0006】[0006]

【発明の目的】そこで、本発明の目的は、フォトレジス
トをN/Hプラズマを用いて除去する際に、層間絶
縁膜の損傷を抑制できるアッシング方法を提供すること
にある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an ashing method capable of suppressing damage to an interlayer insulating film when removing a photoresist using N 2 / H 2 plasma.

【0007】[0007]

【課題を解決するための手段】本発明は、一部が露出し
た層間絶縁膜の上に形成されたフォトレジストをN
プラズマを用いて除去するアッシング方法におい
て、予め、層間絶縁膜の露出部分に、N/Hプラズ
マに耐え得る改質層をNプラズマを用いて形成してお
くことを特徴とするものである(請求項1)。
According to the present invention, a photoresist formed on a partially exposed interlayer insulating film is N 2 /
In the ashing process for removing with H 2 plasma, previously, the exposed portion of the interlayer insulating film, a modified layer that can withstand the N 2 / H 2 plasma, characterized in that to be formed with a N 2 plasma (Claim 1).

【0008】層間絶縁膜としては、CH基又はH原子
を有する材料、特にMSQ、HSQ、MHSQ等が適当
である(請求項2〜6)。また、フォトレジストをN
/H プラズマを用いて除去する際に、層間絶縁膜を0
〜80℃に保持してもよく(請求項6)、N/H
圧力を1.33〜13.3Pa(10〜100mTor
r)としてもよい(請求項7)。
CH is used as the interlayer insulating film.ThreeGroup or H atom
Suitable materials with, especially MSQ, HSQ, MHSQ, etc.
(Claims 2 to 6). In addition, the photoresist is NTwo
/ H TwoWhen removing it using plasma, the interlayer insulating film is
It may be maintained at -80 ° C (claim 6), NTwo/ HTwoof
The pressure is 1.33 to 13.3 Pa (10 to 100 mTorr)
It may be r) (Claim 7).

【0009】層間絶縁膜の一例としてMSQについて説
明する。MSQは、半導体デバイスのCu配線間に用い
られるlow‐k絶縁膜である。本発明は、フォトレジ
ストをマスクにしてMSQをエッチングした後に、MS
Qに膜ダメージを与えることなく、フォトレジストをア
ッシングする方法である。すなわち最初に、MSQをN
プラズマで処理することにより、CH基がCNに置
換された薄い改質層を形成する。次に、フォトレジスト
をN/Hプラズマでアッシングする。このとき、N
/Hプラズマと改質層との反応性は低い。よって、
改質層がMSQの保護膜となることにより、N/H
プラズマがMSQ内部まで拡散しないので、膜ダメージ
の抑制が可能になる。
MSQ will be described as an example of the interlayer insulating film. MSQ is a low-k insulating film used between Cu wirings of a semiconductor device. According to the present invention, after etching the MSQ using the photoresist as a mask,
This is a method of ashing the photoresist without damaging the film on Q. That is, first, MSQ is set to N
Treatment with 2 plasma forms a thin modified layer in which CH 3 groups are replaced by CN. Next, the photoresist is ashed with N 2 / H 2 plasma. At this time, N
The reactivity between the 2 / H 2 plasma and the modified layer is low. Therefore,
Since the modified layer serves as a protective film for MSQ, N 2 / H 2
Since plasma does not diffuse to the inside of the MSQ, it is possible to suppress film damage.

【0010】[0010]

【発明の実施の形態】図1は、本発明に係るアッシング
方法の一実施形態を示す工程図である。被処理基板に
は、一部が露出した層間絶縁膜上に、フォトレジストが
形成されている。まず、層間絶縁膜の露出部分に、N
/Hプラズマに耐え得る改質層をNプラズマを用い
て形成する(工程1)。続いて、フォトレジストをN
/Hプラズマを用いて除去する(工程2)。
1 is a process diagram showing an embodiment of an ashing method according to the present invention. On the substrate to be processed, a photoresist is formed on the partially exposed interlayer insulating film. First, N 2 is formed on the exposed portion of the interlayer insulating film.
A modified layer capable of withstanding / H 2 plasma is formed using N 2 plasma (step 1). Subsequently, the photoresist is changed to N 2
/ H 2 plasma is used for removal (step 2).

【0011】以下、層間絶縁膜がMSQである場合につ
いて、具体的に説明する。本実施形態では、MSQの溝
及びビアエッチング後のフォトレジストアッシングを二
つの工程で行う。工程1ではNプラズマを、工程2で
はN/Hプラズマをそれぞれ用いる。
The case where the interlayer insulating film is MSQ will be specifically described below. In the present embodiment, the photoresist ashing after the MSQ groove and via etching is performed in two steps. In step 1, N 2 plasma is used, and in step 2, N 2 / H 2 plasma is used.

【0012】MSQのCH基はアッシング方法によっ
てダメージを受けることがある。そのCH基のダメー
ジ膜厚を観察するため、アッシング後にフォトレジスト
を塗布し、断面サンプルを作成し、フッ酸で側壁ダメー
ジ層を選択的に溶解する。本実施形態では、側壁ダメー
ジ膜厚がエッチング後と同等であったので、アッシング
によるダメージを抑制できることがわかる。
The CH 3 group of MSQ may be damaged by the ashing method. In order to observe the damaged film thickness of the CH 3 group, a photoresist is applied after ashing, a cross-section sample is prepared, and the sidewall damage layer is selectively dissolved with hydrofluoric acid. In the present embodiment, the sidewall damage film thickness was the same as that after etching, so it can be seen that damage due to ashing can be suppressed.

【0013】アッシング装置としては、ダウンフロー型
表面波プラズマアッシャー、ICP(inductive couple
d plasma)型プラズマアッシャー、二周波RIE(reac
tiveion etching)型エッチャー、ICP型エッチャー
などいずれの装置を利用してもよい。また、バイアスパ
ワーを印加してもよい。
As an ashing device, a downflow type surface wave plasma asher, an ICP (inductive couple)
d plasma) type plasma asher, dual frequency RIE (reac
Any device such as a tiveion etching type etcher or an ICP type etcher may be used. Also, bias power may be applied.

【0014】[0014]

【実施例1】図2は、本発明に係るアッシング方法の実
施例1を示す断面図である。図3は、アッシング方法を
除き実施例1と同じ条件とした比較例を示す断面図であ
る。以下、この図面に基づき説明する。
Embodiment 1 FIG. 2 is a sectional view showing Embodiment 1 of the ashing method according to the present invention. FIG. 3 is a cross-sectional view showing a comparative example under the same conditions as in Example 1 except for the ashing method. Hereinafter, description will be given with reference to this drawing.

【0015】本実施例は、ミドルファースト方法でのデ
ュアルダマシン作成方法に本発明を適用したものであ
る。まず、配線であるCu1上に、50nmのSiC
(ビアストッパー)2、300nmのMSQ(ビア層間
膜)3、50nmのSiC(溝ストッパー)4を順次成
膜する。続いて、ARC(anti reflective coat:反射
防止膜)5、KrFレジスト6を順次塗布し、0.18
μm径のビアを露光及び現像する。続いて、KrFレジ
スト6をマスクとして、ARC5及びSiC4をドライ
エッチングする。このエッチングには、二周波RIEエ
ッチャー及びCF、Ar、Oガスプラズマを用い
る。SiC4のビアエッチング後、MSQ3の一部が露
出する(図2[1])。続いて、KrFレジスト6及び
ARC5をアッシングする。このとき、MSQ3の露出
部分にダメージを与えることなくアッシングする必要が
あるので、本発明に係るアッシング方法を用いる。
In this embodiment, the present invention is applied to a dual damascene forming method by the middle first method. First, 50 nm of SiC is formed on the wiring Cu1.
(Via stopper) 2, MSQ (via interlayer film) 3 having a thickness of 300 nm, and SiC (groove stopper) 4 having a thickness of 50 nm are sequentially formed. Subsequently, an ARC (anti reflective coat) 5 and a KrF resist 6 are sequentially applied to form a 0.18 film.
The via having a diameter of μm is exposed and developed. Then, the ARC 5 and the SiC 4 are dry-etched using the KrF resist 6 as a mask. A dual-frequency RIE etcher and CF 4 , Ar, and O 2 gas plasma are used for this etching. After the via etching of SiC4, a part of MSQ3 is exposed (FIG. 2 [1]). Then, the KrF resist 6 and the ARC 5 are ashed. At this time, the ashing method according to the present invention is used because it is necessary to ash without damaging the exposed portion of the MSQ3.

【0016】続いて、KrFレジスト6のアッシング後
に有機剥離液処理を行い、300nmのMSQ7(溝層
間膜)、50nmのSiC8(ハードマスク)を順次成
膜する。続いて、ARC9、KrFレジスト10を順次
塗布し、L/S(line/space)=0.18μm/0.1
8μmの溝を露光する。続いて、KrFレジスト10を
マスクとして、ARC9、SiC8、MSQ7をドライ
エッチングする。ARC9、SiC8のエッチングガス
にはCF、Ar、Oを用い、溝MSQ7のエッチン
グガスにはC、Ar、Nを用いる。溝MSQ7
のエッチングはSiC4のストッパーで止まるが、引き
続きビアMSQ3をエッチングすることにより、図2
[2]のような構造となる。
Subsequently, an organic stripping solution treatment is performed after the ashing of the KrF resist 6 to sequentially form a 300 nm MSQ7 (groove interlayer film) and a 50 nm SiC8 (hard mask). Subsequently, ARC9 and KrF resist 10 are sequentially applied, and L / S (line / space) = 0.18 μm / 0.1
The groove of 8 μm is exposed. Then, the ARC 9, SiC 8 and MSQ 7 are dry-etched using the KrF resist 10 as a mask. CF 4 , Ar, and O 2 are used as the etching gas for ARC9 and SiC8, and C 4 F 8 , Ar, and N 2 are used as the etching gas for the groove MSQ7. Groove MSQ7
Although the etching of Fig. 2 is stopped by the stopper of SiC4, by subsequently etching the via MSQ3,
The structure is as shown in [2].

【0017】続いて、KrFレジスト6及びARC5を
アッシングする。このとき、MSQ3,7の側壁が露出
していることから、これらにダメージを与えることなく
アッシングする必要があるので、本発明に係るアッシン
グ方法を用いる。その結果、図2[3]に示すような、
ダメージのないMSQ3,7が得られる。一方、従来の
アッシング方法では、図3に示すように、MSQ3,7
がダメージを受けてオーバーハング形状となっている
Then, the KrF resist 6 and the ARC 5 are ashed. At this time, since the side walls of the MSQs 3 and 7 are exposed, it is necessary to ash them without damaging them, so the ashing method according to the present invention is used. As a result, as shown in FIG.
You can get MSQ3,7 without damage. On the other hand, in the conventional ashing method, as shown in FIG.
Has been damaged and has become an overhang shape

【0018】図4は、本実施例で使用するアッシャーを
示す構成図である。ソース源は、誘導結合プラズマ(I
CP)である。アッシングガスは、ガス導入ライン11
を通って供給される。ソースRF電源13からコイル1
2に高周波電力が供給されると、誘導結合プラズマが発
生する。被処理基板としてのウエハー15は、真空チャ
ンバー17内のステージ16上に固定される。ステージ
16の温度は可変(−20℃〜250℃)である。プラ
ズマはダウンフローによりウエハー15まで到達するの
で、アッシング処理が可能になる。アッシング後の反応
生成物及びガスは、排気ライン14を通って排気され
る。
FIG. 4 is a block diagram showing the asher used in this embodiment. The source is an inductively coupled plasma (I
CP). The ashing gas is the gas introduction line 11
Supplied through. Source RF power supply 13 to coil 1
When high-frequency power is supplied to 2, inductively coupled plasma is generated. A wafer 15 as a substrate to be processed is fixed on a stage 16 in a vacuum chamber 17. The temperature of the stage 16 is variable (-20 ° C to 250 ° C). Since the plasma reaches the wafer 15 by the downflow, the ashing process can be performed. The reaction product and gas after ashing are exhausted through the exhaust line 14.

【0019】本実施例でのアッシング条件を以下に示
す。 工程1:13.3Pa(100mTorr)/ソースパ
ワー2500W/バイアスパワー300W/N500
sccm/20℃/60sec 工程2:13.3Pa(100mTorr)/ソースパ
ワー2500W/バイアスパワー500W/N450
sccm+H50sccm/20℃/200sec
The ashing conditions in this embodiment are shown below. Step 1: 13.3Pa (100mTorr) / Source Power 2500W / bias power 300 W / N 2 500
sccm / 20 ° C./60 sec Step 2: 13.3 Pa (100 mTorr) / source power 2500 W / bias power 500 W / N 2 450
sccm + H 2 50sccm / 20 ℃ / 200sec

【0020】図5は、MSQの構造を示す図である。M
SQは、Si‐O鎖にCH基が結合した構造になって
いる。アッシングによってCH基が脱離した場合に、
ダメージが発生すると考えられる。
FIG. 5 is a diagram showing the structure of the MSQ. M
SQ has a structure in which a CH 3 group is bonded to the Si-O chain. When the CH 3 group is eliminated by ashing,
It is thought that damage will occur.

【0021】ここでアッシングによるダメージ層を観察
する方法について説明する。まず、溝及びビアアッシン
グ後の図2[2]の状態において、フォトレジストを塗
布して埋め込む。続いて、断面サンプルを作成し、これ
を希釈フッ酸にて浸析する。ダメージ層は、MSQ中の
CH基が脱離しているためにSiO構造に近くなっ
ているので、フッ酸に対する溶解速度がMSQより大き
い。すなわち、ダメージ層が速く溶解するため、ダメー
ジの有無が観察可能となる。
Here, a method of observing a damaged layer due to ashing will be described. First, in the state of FIG. 2 [2] after the groove and via ashing, a photoresist is applied and embedded. Then, a cross-section sample is created and this is immersed in diluted hydrofluoric acid. Since the damaged layer is close to the SiO 2 structure due to the elimination of the CH 3 group in MSQ, the dissolution rate in hydrofluoric acid is higher than that in MSQ. That is, since the damaged layer dissolves quickly, the presence or absence of damage can be observed.

【0022】断面SEM観察によって溝側壁のダメージ
膜厚を見積もった結果を、図6に示す。エッチング後
(リファレンス)、Oアッシング後、N/Hアッ
シング後、N+N/Hアッシング後で比較した場
合、O及びN/Hでは、エッチング後よりもダメ
ージ膜厚が増加している。これに対し、N+N/H
では、エッチング後から変化がないので、アッシング
によるダメージを受けていないことが分かる。
Damage to the side wall of the groove by SEM observation of the cross section
The results of estimating the film thickness are shown in FIG. After etching
(Reference), OTwoAfter ashing, NTwo/ HTwoUp
After Sing, NTwo+ NTwo/ HTwoWhen comparing after ashing
If OTwoAnd NTwo/ HTwoThen, it ’s worse than after etching.
The film thickness is increasing. On the other hand, NTwo+ NTwo/ H
TwoSince there is no change after etching, ashing
You can see that it has not been damaged by.

【0023】これは、工程1のNプラズマによって、
CH基がCNに置換した薄い改質層が形成されたた
め、と考えられる。工程2のN/Hプラズマでアッ
シングするときに、N/Hプラズマと改質層との反
応性は低い。よって、改質層はMSQの保護膜となるこ
とにより、N/HプラズマがMSQ内部まで拡散し
ないので、膜ダメージの抑制が可能となる。
This is due to the N 2 plasma of step 1,
It is considered that this is because a thin modified layer in which the CH 3 group was substituted with CN was formed. When performing ashing with N 2 / H 2 plasma in step 2, the reactivity between the N 2 / H 2 plasma and the modified layer is low. Therefore, since the modified layer serves as a protective film for MSQ, N 2 / H 2 plasma does not diffuse into the inside of MSQ, so that film damage can be suppressed.

【0024】また、実際の形状サンプルに本実施例のア
ッシング条件を適用した結果、MSQ3,7において、
膜ダメージが発生した場合に発生するオーバーハングは
見られなかった。また、同時にフォトレジストも除去で
きるので、本実施例の有効性が確認された。
Further, as a result of applying the ashing conditions of this embodiment to an actual shape sample, as a result, in MSQ3,7,
No overhang occurred when the film was damaged. Further, since the photoresist can be removed at the same time, the effectiveness of this embodiment was confirmed.

【0025】[0025]

【実施例2】図7は、本発明に係るアッシング方法の実
施例2を示す断面図である。以下、この図面に基づき説
明する。
Second Embodiment FIG. 7 is a sectional view showing a second embodiment of the ashing method according to the present invention. Hereinafter, description will be given with reference to this drawing.

【0026】本実施例は、他のデュアルダマシン作成方
法であるビアファースト方法に本発明を適用したもので
ある。まず、配線であるCu18の上に、50nmのS
iC(ビアストッパー)19、300nmのMSQ(ビ
ア層間膜)20、50nmのSiC(溝ストッパー)2
1、300nmのMSQ(溝層間膜)22、50nmの
SiC(ハードマスク)23を順次成膜する。続いて、
ARC24、KrFレジスト25を順次塗布し、0.1
8μm径のビアを露光及び現像によりパターニングす
る。続いて、KrFレジスト25をマスクとして、AR
C24、SiC23、MSQ22、SiC21、MSQ
20をドライエッチングすることにより、ビアを形成す
る。エッチング装置には、二周波RIEエッチャーを使
用する。ARC24、SiC23,21のエッチングガ
スはCF、Ar、Oであり、MSQ22,20のエ
ッチングガスはC、Ar、Nである。ビアエッ
チング後の形状を、図7[1]に示す。
In this embodiment, the present invention is applied to the via first method, which is another method for making a dual damascene. First, on the Cu18 which is the wiring, S of 50 nm
iC (via stopper) 19, 300 nm MSQ (via interlayer film) 20, 50 nm SiC (groove stopper) 2
An MSQ (groove interlayer film) 22 having a thickness of 1,300 nm and a SiC (hard mask) 23 having a thickness of 50 nm are sequentially formed. continue,
ARC24 and KrF resist 25 are applied in order, and then 0.1
A via having a diameter of 8 μm is patterned by exposure and development. Then, using the KrF resist 25 as a mask, AR
C24, SiC23, MSQ22, SiC21, MSQ
A via is formed by dry etching 20. A dual frequency RIE etcher is used for the etching device. ARC24, etching gas SiC23,21 is CF 4, Ar, are O 2, the etching gas MSQ22,20 is C 4 F 8, Ar, N 2. The shape after via etching is shown in FIG. 7 [1].

【0027】続いて、KrFレジスト25及びARC2
4をアッシングする。このとき、MSQ22,20の側
壁が露出しているので、実施例1と同じアッシング条件
を適用する。そのため、MSQ22,20に膜ダメージ
を与えることなく、アッシングが可能である。続いて、
KrFレジスト26を塗布し、L/S=0.18μm/
0.18μmの溝を露光及び現像によりパターニングす
る。続いて、KrFレジスト26をマスクとして、Si
C23、MSQ22をドライエッチングすることによ
り、溝を形成する。ここで、露光不良により、再度フォ
トリソグラフィをする場合(PR再工事)、アッシング
時にMSQ22,20の側壁が露出しているので、実施
例1と同じアッシング条件を適用する(図7[2])。
Subsequently, KrF resist 25 and ARC2
Ashing 4. At this time, since the sidewalls of the MSQs 22 and 20 are exposed, the same ashing conditions as in Example 1 are applied. Therefore, ashing can be performed without damaging the MSQs 22 and 20. continue,
Apply KrF resist 26, L / S = 0.18 μm /
A 0.18 μm groove is patterned by exposure and development. Then, using the KrF resist 26 as a mask, Si
A groove is formed by dry etching C23 and MSQ22. Here, when photolithography is performed again due to poor exposure (PR rework), since the sidewalls of the MSQs 22 and 20 are exposed during ashing, the same ashing conditions as in Example 1 are applied (FIG. 7 [2]). .

【0028】SiC23のエッチングガスはCF、A
r、Oであり、MSQ22のエッチングガスはC
、Ar、Nである。溝エッチング後の形状を図7
[3]に示す。MSQ22の溝及びMSQ20のビアが
露出しているので、実施例1と同じアッシング条件を適
用する。これにより、MSQ22,20に膜ダメージを
与えることなく、KrFレジスト26をアッシングでき
る。
The etching gas for SiC23 is CF 4 , A
r, O 2 and the etching gas of MSQ22 is C 4 F
8 , Ar and N 2 . Figure 7 shows the shape after groove etching.
It is shown in [3]. Since the groove of MSQ22 and the via of MSQ20 are exposed, the same ashing conditions as in Example 1 are applied. As a result, the KrF resist 26 can be ashed without damaging the MSQs 22 and 20.

【0029】[0029]

【実施例3】図8は、本発明に係るアッシング方法の実
施例3を示す断面図である。以下、この図面に基づき説
明する。
Third Embodiment FIG. 8 is a sectional view showing a third embodiment of the ashing method according to the present invention. Hereinafter, description will be given with reference to this drawing.

【0030】本実施例は、他のデュアルダマシン作成方
法であるデュアルハードマスク方法に本発明を適用した
ものである。まず、配線であるCu18の上に、50n
mのSiC(ビアストッパー)19、300nmのMS
Q(ビア層間膜)20、50nmのSiC(溝ストッパ
ー)21、300nmのMSQ(溝層間膜)22、50
nmのSiC(下層ハードマスク)23、120nmの
SiN(上層ハードマスク)27を順次成膜する。続い
て、ARC24、KrFレジスト25を順次塗布し、L
/S=0.18μm/0.18μmの溝を露光及び現像す
ることによりパターニングする。続いて、KrFレジス
ト25をマスクとしてSiN27をドライエッチングし
(図8[1])、ARC24、KrFレジスト25をア
ッシングする。ここでは、まだMSQ22が露出してい
ないので、アッシングは通常の高温Oプラズマで構わ
ない。
In this embodiment, the present invention is applied to a dual hard mask method which is another dual damascene manufacturing method. First, 50n on the Cu18 which is the wiring
m SiC (via stopper) 19, 300 nm MS
Q (via interlayer film) 20, 50 nm SiC (groove stopper) 21, 300 nm MSQ (groove interlayer film) 22, 50
nm (lower layer hard mask) 23 and 120 nm SiN (upper layer hard mask) 27 are sequentially formed. Subsequently, the ARC 24 and the KrF resist 25 are sequentially applied, and L
Patterning is performed by exposing and developing a groove of /S=0.18 μm / 0.18 μm. Subsequently, the SiN 27 is dry-etched using the KrF resist 25 as a mask (FIG. 8 [1]), and the ARC 24 and the KrF resist 25 are ashed. Here, since the MSQ 22 has not been exposed yet, the ashing may be performed using normal high temperature O 2 plasma.

【0031】続いて、ARC24、KrFレジスト28
を塗布し、0.18μmのビアを露光及び現像によりパ
ターニングする。続いて、KrFレジスト28をマスク
として、SiC23、MSQ22、SiC21、MSQ
20をドライエッチングすることにより、ビアを形成す
る(図8[2])。続いて、KrFレジスト28及びA
RC24をアッシングする。このとき、MSQ22,2
0の側壁が露出しているので、実施例1と同じアッシン
グ条件を適用する。これにより、MSQ22,20に膜
ダメージを与えることなく、アッシングが可能となる。
Then, the ARC 24 and the KrF resist 28 are formed.
And 0.18 μm vias are exposed and developed to be patterned. Then, using the KrF resist 28 as a mask, SiC23, MSQ22, SiC21, MSQ
A via is formed by dry etching 20 (FIG. 8 [2]). Then, KrF resist 28 and A
Ashing RC24. At this time, MSQ22, 2
Since the side wall of 0 is exposed, the same ashing conditions as in Example 1 are applied. This enables ashing without damaging the MSQs 22 and 20.

【0032】続いて、SiN(上層ハードマスク)27
をマスクとして、SiC23、MSQ22、SiC21
及びSiC19をドライエッチングして溝を形成し、デ
ュアルダマシン構造を作成する(図8[3])。
Subsequently, SiN (upper layer hard mask) 27
As a mask, SiC23, MSQ22, SiC21
Then, the SiC 19 is dry-etched to form a groove to form a dual damascene structure (FIG. 8 [3]).

【0033】[0033]

【他の実施例】MSQに代えてHSQ又はMHSQを用
いた場合も、同様の効果が得られた。HSQとは、Si
のSi原子に結合する四つのO原子のうち一つをH
原子で置換したlow−k材料であり、(H−SiO
3/2)nと表記される。MHSQとは、SiOのS
i原子に結合する四つのO原子のうち一つをCH基又
はH原子で置換したlow−k材料であり、(CH
H−SiO3/2)nと表記される。
Other Embodiments Similar effects were obtained when HSQ or MHSQ was used instead of MSQ. HSQ is Si
One of the four O atoms bonded to the Si atom of O 2 is H
It is a low-k material that has been replaced with atoms, and
3/2 ) n. MHSQ is S of SiO 2 .
a low-k material in which one of four O atoms bonded to an i atom is replaced with a CH 3 group or an H atom, and (CH 3 ,
H-SiO 3/2 ) n.

【0034】また、ストッパーSiCの代わりにSi
N、SiON、SiCNを用いた場合や、デュアルハー
ドマスクの材質をSiO、SiN、SiON、Si
C、SiCNのどれか二つの組み合わせにした場合や、
フォトレジストをKrFレジストの代わりにArFレジ
ストとした場合においても同様の効果が得られた。
Further, instead of the stopper SiC, Si is used.
When N, SiON, or SiCN is used, or the material of the dual hard mask is SiO 2 , SiN, SiON, or Si.
In the case of combining any two of C and SiCN,
Similar effects were obtained when ArF resist was used as the photoresist instead of KrF resist.

【0035】[0035]

【発明の効果】本発明に係るアッシング方法によれば、
層間絶縁膜の露出部分にN/Hプラズマに耐え得る
改質層をNプラズマを用いて形成した後、フォトレジ
ストをN/Hプラズマを用いて除去することによ
り、N/Hプラズマに対して改質層が層間絶縁膜の
保護膜として働くので、フォトレジスト除去時の層間絶
縁膜のダメージを抑制できる。
According to the ashing method of the present invention,
After the modified layer can withstand N 2 / H 2 plasma to the exposed portion of the interlayer insulating film formed using a N 2 plasma, by removing the photoresist with a N 2 / H 2 plasma, N 2 / Since the modified layer acts as a protective film for the interlayer insulating film against H 2 plasma, damage to the interlayer insulating film when removing the photoresist can be suppressed.

【0036】層間絶縁膜としてCH基又はH原子を有
する材料、特にMSQ、HSQ、MHSQ等を採用した
場合は、Nプラズマによって、CH基又はH原子が
CNに置換した薄い改質層が形成される。一方、この改
質層は、N/Hプラズマとの反応性が低いので、層
間絶縁膜の保護膜となる。したがって、N/Hプラ
ズマが層間絶縁膜の内部まで拡散しないので、層間絶縁
膜のダメージを抑制できる。
When a material having a CH 3 group or H atom, particularly MSQ, HSQ, MHSQ, etc. is adopted as the interlayer insulating film, a thin modified layer in which the CH 3 group or H atom is replaced by CN by N 2 plasma Is formed. On the other hand, this modified layer has a low reactivity with N 2 / H 2 plasma and therefore serves as a protective film for the interlayer insulating film. Therefore, the N 2 / H 2 plasma does not diffuse into the interlayer insulating film, so that damage to the interlayer insulating film can be suppressed.

【0037】フォトレジストをN/Hプラズマを用
いて除去する際に、層間絶縁膜を0〜80℃に保持した
場合、又はN/Hの圧力を1.33〜13.3Pa
とした場合は、層間絶縁膜のダメージを更に抑制でき
る。なぜなら、一般に低温化又は低圧化するほど、層間
絶縁膜のダメージが低減するからである。このときの上
限値は、これ以上に高温又は高圧になるとダメージの低
減が僅少になって、実用的でなくなる値である。下限値
は、これ以下に低温又は低圧になると反応速度が遅くな
って、実用的でなくなる値である。
When the photoresist is removed using N 2 / H 2 plasma, the interlayer insulating film is held at 0 to 80 ° C., or the N 2 / H 2 pressure is 1.33 to 13.3 Pa.
In that case, damage to the interlayer insulating film can be further suppressed. This is because generally, the lower the temperature or the lower the pressure, the less the damage to the interlayer insulating film. The upper limit value at this time is a value at which the reduction in damage becomes negligible when the temperature becomes higher or the pressure becomes higher than this value, which is not practical. The lower limit value is a value at which the reaction rate becomes slower at lower temperatures or lower pressures, and is not practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアッシング方法の一実施形態を示
す工程図である。
FIG. 1 is a process chart showing an embodiment of an ashing method according to the present invention.

【図2】本発明に係るアッシング方法の実施例1を示す
断面図であり、図2[1]〜図2[3]の順に工程が進
行する。
FIG. 2 is a cross-sectional view showing a first embodiment of an ashing method according to the present invention, in which the steps proceed in the order of FIGS. 2 [1] to 2 [3].

【図3】アッシング方法を除き実施例1と同じ条件とし
た比較例を示す断面図である。
FIG. 3 is a cross-sectional view showing a comparative example under the same conditions as in Example 1 except for the ashing method.

【図4】実施例で使用するアッシャーを示す構成図であ
る。
FIG. 4 is a configuration diagram showing an asher used in an example.

【図5】MSQの構造を示す図である。FIG. 5 is a diagram showing a structure of MSQ.

【図6】アッシング方法とダメージ膜厚との関係を示す
グラフである。
FIG. 6 is a graph showing a relationship between an ashing method and a damaged film thickness.

【図7】本発明に係るアッシング方法の実施例2を示す
断面図であり、図7[1]〜図7[3]の順に工程が進
行する。
FIG. 7 is a cross-sectional view showing a second embodiment of the ashing method according to the present invention, in which the steps proceed in the order of FIGS. 7 [1] to 7 [3].

【図8】本発明に係るアッシング方法の実施例3を示す
断面図であり、図8[1]〜図8[3]の順に工程が進
行する。
FIG. 8 is a cross-sectional view showing a third embodiment of the ashing method according to the present invention, in which the steps proceed in the order of FIGS. 8 [1] to 8 [3].

【符号の説明】[Explanation of symbols]

3,7,20,22 MSQ(層間絶縁膜) 6,13,25,26,28 KrFレジスト(フォト
レジスト)
3,7,20,22 MSQ (interlayer insulating film) 6,13,25,26,28 KrF resist (photoresist)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H096 AA25 LA08 LA30 5F004 AA09 BA04 BA20 DA01 DA23 DA24 DA25 DA26 DB00 EA03 EA07 EA14 EA22 EA23 EA28 5F033 KK11 MM02 QQ09 QQ25 QQ28 QQ37 QQ90 RR01 RR06 RR08 RR23 RR25 TT02 TT04 TT06 TT07 5F046 MA12    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H096 AA25 LA08 LA30                 5F004 AA09 BA04 BA20 DA01 DA23                       DA24 DA25 DA26 DB00 EA03                       EA07 EA14 EA22 EA23 EA28                 5F033 KK11 MM02 QQ09 QQ25 QQ28                       QQ37 QQ90 RR01 RR06 RR08                       RR23 RR25 TT02 TT04 TT06                       TT07                 5F046 MA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一部が露出した層間絶縁膜の上に形成さ
れたフォトレジストを窒素と水素との混合ガスのプラズ
マを用いて除去するアッシング方法において、 予め、前記層間絶縁膜の露出部分に、前記混合ガスのプ
ラズマに耐え得る改質層を窒素ガスのプラズマを用いて
形成しておく、 ことを特徴とするアッシング方法。
1. An ashing method of removing a photoresist formed on a partially exposed interlayer insulating film by using plasma of a mixed gas of nitrogen and hydrogen, wherein an exposed portion of the interlayer insulating film is previously formed. An ashing method, characterized in that a modified layer that can withstand the plasma of the mixed gas is formed by using plasma of nitrogen gas.
【請求項2】 前記層間絶縁膜がCH基を有する材料
からなる、 請求項1記載のアッシング方法。
2. The ashing method according to claim 1, wherein the interlayer insulating film is made of a material having a CH 3 group.
【請求項3】 前記層間絶縁膜がH原子を有する材料か
らなる、 請求項1記載のアッシング方法。
3. The ashing method according to claim 1, wherein the interlayer insulating film is made of a material having H atoms.
【請求項4】 前記層間絶縁膜がMSQ(methyl silse
squioxane)からなる、 請求項1記載のアッシング方法。
4. The interlayer insulating film is MSQ (methyl silse).
squioxane), The ashing method according to claim 1.
【請求項5】 前記層間絶縁膜がHSQ(hydrogen sil
sesquioxane)からなる、 請求項1記載のアッシング方法。
5. The interlayer insulating film is HSQ (hydrogen sil
sesquioxane), The ashing method according to claim 1.
【請求項6】 前記層間絶縁膜がMHSQ(methyl hyd
rogen silsesquioxane)からなる、 請求項1記載のアッシング方法。
6. The interlayer insulating film is MHSQ (methyl hyd).
rogen silsesquioxane), The ashing method according to claim 1.
【請求項7】 前記フォトレジストを前記混合ガスのプ
ラズマを用いて除去する際に、前記層間絶縁膜を0〜8
0℃に保持する、 請求項1、2、3、4、5又は6記載のアッシング方
法。
7. When the photoresist is removed by using the plasma of the mixed gas, the interlayer insulating film is removed from 0 to 8
The ashing method according to claim 1, 2, 3, 4, 5 or 6, which is maintained at 0 ° C.
【請求項8】 前記フォトレジストを前記混合ガスのプ
ラズマを用いて除去する際に、当該混合ガスの圧力を
1.33〜13.3Paとする、 請求項1、2、3、4、5又は6記載のアッシング方
法。
8. The pressure of the mixed gas is set to 1.33 to 13.3 Pa when the photoresist is removed by using the plasma of the mixed gas, and the pressure is set to 1.33 to 13.3 Pa. 6. The ashing method according to 6.
JP2001284373A 2001-09-19 2001-09-19 Ashing method Pending JP2003092287A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001284373A JP2003092287A (en) 2001-09-19 2001-09-19 Ashing method
KR1020020052352A KR20030025174A (en) 2001-09-19 2002-08-31 Method for manufacturing semiconductor device including two-step ashing process of N2 plasma gas and N2/H2 plasma gas
US10/237,053 US20030054656A1 (en) 2001-09-19 2002-09-09 Method for manufacturing semiconductor device including two-step ashing process of N2 plasma gas and N2/H2 plasma gas
TW091120537A TW559889B (en) 2001-09-19 2002-09-09 Method for manufacturing semiconductor device including two-step ashing process of N2 plasma gas and N2/H2 plasma gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284373A JP2003092287A (en) 2001-09-19 2001-09-19 Ashing method

Publications (1)

Publication Number Publication Date
JP2003092287A true JP2003092287A (en) 2003-03-28

Family

ID=19107705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284373A Pending JP2003092287A (en) 2001-09-19 2001-09-19 Ashing method

Country Status (4)

Country Link
US (1) US20030054656A1 (en)
JP (1) JP2003092287A (en)
KR (1) KR20030025174A (en)
TW (1) TW559889B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083935A1 (en) * 2002-04-03 2003-10-09 Nec Corporation Semiconductor device and its manufacturing method
JP2004252054A (en) * 2003-02-19 2004-09-09 Tokyo Electron Ltd Method for treating substrate
JP2006049798A (en) * 2004-07-02 2006-02-16 Tokyo Electron Ltd Manufacturing method of semiconductor device having groove wiring or connecting hole
JP2006073722A (en) * 2004-09-01 2006-03-16 Shibaura Mechatronics Corp Ashing method and ashing device
JP2006286775A (en) * 2005-03-31 2006-10-19 Tokyo Electron Ltd Etching method
JP2007019187A (en) * 2005-07-06 2007-01-25 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method of semiconductor integrated device
JP2008277859A (en) * 2008-07-03 2008-11-13 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device, and semiconductor integrated circuit device
JP2009170901A (en) * 2008-01-14 2009-07-30 Toshiba Corp Protection of sidewall of trench by carbon-rich layer in semiconductor device
US8278763B2 (en) 2006-05-17 2012-10-02 Nec Corporation Semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759098B2 (en) * 2000-03-20 2004-07-06 Axcelis Technologies, Inc. Plasma curing of MSQ-based porous low-k film materials
US7091612B2 (en) * 2003-10-14 2006-08-15 Infineon Technologies Ag Dual damascene structure and method
US7125792B2 (en) * 2003-10-14 2006-10-24 Infineon Technologies Ag Dual damascene structure and method
JP2005277375A (en) * 2004-02-27 2005-10-06 Nec Electronics Corp Semiconductor device manufacturing method
JP2005260060A (en) * 2004-03-12 2005-09-22 Semiconductor Leading Edge Technologies Inc Resist removing apparatus and resist removing method, and semiconductor device manufactured by using the method
JP2005268312A (en) * 2004-03-16 2005-09-29 Semiconductor Leading Edge Technologies Inc Resist removing method and semiconductor device manufactured using same
KR101138075B1 (en) * 2004-12-29 2012-04-24 매그나칩 반도체 유한회사 Method for Forming Dual Damascene Pattern
US7344993B2 (en) * 2005-01-11 2008-03-18 Tokyo Electron Limited, Inc. Low-pressure removal of photoresist and etch residue
JP4559973B2 (en) * 2006-01-13 2010-10-13 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
EP2263252B1 (en) * 2008-04-11 2013-10-09 SanDisk 3D LLC Methods for etching carbon nano-tube films for use in non-volatile memories
US20120289043A1 (en) * 2011-05-12 2012-11-15 United Microelectronics Corp. Method for forming damascene trench structure and applications thereof
CN103531531B (en) * 2012-07-05 2016-08-03 中芯国际集成电路制造(上海)有限公司 A kind of method being used for producing the semiconductor devices
US8871639B2 (en) * 2013-01-04 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
CN104282619B (en) * 2013-07-03 2017-11-03 中芯国际集成电路制造(上海)有限公司 The forming method of silicon hole
US11215918B2 (en) 2019-07-30 2022-01-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of critical dimension control by oxygen and nitrogen plasma treatment in EUV mask

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845914A (en) * 1994-05-16 1996-02-16 Texas Instr Inc <Ti> Method of removing resist form semiconductor wafer with substrate and resist removing device
JPH10209118A (en) * 1997-01-28 1998-08-07 Sony Corp Ashing method
JP2000183040A (en) * 1998-12-15 2000-06-30 Canon Inc Resist ashing method after etching with organic interlayer insulating film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065173A (en) * 1998-01-09 1999-08-05 윤종용 Method of forming Suji film for semiconductor device manufacturing
EP1032026B1 (en) * 1999-02-19 2008-09-17 Axcelis Technologies, Inc. Method of photoresist ash residue removal
JP3544340B2 (en) * 1999-05-07 2004-07-21 新光電気工業株式会社 Method for manufacturing semiconductor device
US6358841B1 (en) * 1999-08-23 2002-03-19 Taiwan Semiconductor Manufacturing Company Method of copper CMP on low dielectric constant HSQ material
US6284657B1 (en) * 2000-02-25 2001-09-04 Chartered Semiconductor Manufacturing Ltd. Non-metallic barrier formation for copper damascene type interconnects
JP3403373B2 (en) * 2000-05-26 2003-05-06 松下電器産業株式会社 Method for etching organic film, method for manufacturing semiconductor device, and method for forming pattern
US6528432B1 (en) * 2000-12-05 2003-03-04 Advanced Micro Devices, Inc. H2-or H2/N2-plasma treatment to prevent organic ILD degradation
KR100430472B1 (en) * 2001-07-12 2004-05-10 삼성전자주식회사 Method for forming wiring using dual damacine process
US6583046B1 (en) * 2001-07-13 2003-06-24 Advanced Micro Devices, Inc. Post-treatment of low-k dielectric for prevention of photoresist poisoning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845914A (en) * 1994-05-16 1996-02-16 Texas Instr Inc <Ti> Method of removing resist form semiconductor wafer with substrate and resist removing device
JPH10209118A (en) * 1997-01-28 1998-08-07 Sony Corp Ashing method
JP2000183040A (en) * 1998-12-15 2000-06-30 Canon Inc Resist ashing method after etching with organic interlayer insulating film

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083935A1 (en) * 2002-04-03 2003-10-09 Nec Corporation Semiconductor device and its manufacturing method
US7482694B2 (en) 2002-04-03 2009-01-27 Nec Coporation Semiconductor device and its manufacturing method
JP2004252054A (en) * 2003-02-19 2004-09-09 Tokyo Electron Ltd Method for treating substrate
JP2006049798A (en) * 2004-07-02 2006-02-16 Tokyo Electron Ltd Manufacturing method of semiconductor device having groove wiring or connecting hole
JP2006073722A (en) * 2004-09-01 2006-03-16 Shibaura Mechatronics Corp Ashing method and ashing device
US8524102B2 (en) 2004-09-01 2013-09-03 Shibaura Mechatronics Corporation Ashing method and ashing device
JP4588391B2 (en) * 2004-09-01 2010-12-01 芝浦メカトロニクス株式会社 Ashing method and ashing apparatus
JP4515309B2 (en) * 2005-03-31 2010-07-28 東京エレクトロン株式会社 Etching method
JP2006286775A (en) * 2005-03-31 2006-10-19 Tokyo Electron Ltd Etching method
JP2007019187A (en) * 2005-07-06 2007-01-25 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method of semiconductor integrated device
US11062938B2 (en) 2005-07-06 2021-07-13 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US10796953B2 (en) 2005-07-06 2020-10-06 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US11600522B2 (en) 2005-07-06 2023-03-07 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US10600683B2 (en) 2005-07-06 2020-03-24 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US8487412B2 (en) 2005-07-06 2013-07-16 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US8518821B2 (en) 2005-07-06 2013-08-27 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US10141257B2 (en) 2005-07-06 2018-11-27 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US8581415B2 (en) 2005-07-06 2013-11-12 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US8704373B2 (en) 2005-07-06 2014-04-22 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US9391022B2 (en) 2005-07-06 2016-07-12 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US9899316B2 (en) 2005-07-06 2018-02-20 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US8278763B2 (en) 2006-05-17 2012-10-02 Nec Corporation Semiconductor device
JP5168142B2 (en) * 2006-05-17 2013-03-21 日本電気株式会社 Semiconductor device
US8018023B2 (en) 2008-01-14 2011-09-13 Kabushiki Kaisha Toshiba Trench sidewall protection by a carbon-rich layer in a semiconductor device
JP2009170901A (en) * 2008-01-14 2009-07-30 Toshiba Corp Protection of sidewall of trench by carbon-rich layer in semiconductor device
JP2008277859A (en) * 2008-07-03 2008-11-13 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device, and semiconductor integrated circuit device

Also Published As

Publication number Publication date
KR20030025174A (en) 2003-03-28
TW559889B (en) 2003-11-01
US20030054656A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP2003092287A (en) Ashing method
KR101082993B1 (en) Separation-material composition for photo-resist and manufacturing methods of semiconductor device
JP3287406B2 (en) Method for manufacturing semiconductor device
JP2006013190A (en) Method of manufacturing semiconductor device
US7611994B2 (en) Fine patterning method for semiconductor device
JP2003504693A (en) Photoresist removal process using forming gas plasma
JP4677407B2 (en) Method for manufacturing semiconductor device having organic antireflection film (ARC)
JP2006128543A (en) Method for manufacturing electronic device
JP2006128542A (en) Method for manufacturing electronic device
US20030190807A1 (en) Method for manufacturing semiconductor device
JP2006148122A (en) Method for removing residue from metal structure on semiconductor substrate
JP4994566B2 (en) Manufacturing method of dual damascene wiring of microelectronic device using hybrid type low dielectric constant material and inorganic filler not containing carbon
JP4523351B2 (en) Manufacturing method of semiconductor device
JPH0786255A (en) Method for forming aluminum-based metallic pattern
JP5493165B2 (en) Manufacturing method of semiconductor device
KR101037485B1 (en) Method for Forming Metal Line of Semiconductor Device
JP4651956B2 (en) Interlayer dielectric film dry etching method
JP2003282704A (en) Method of manufacturing semiconductor device with dual-damacene
JP2006156591A (en) Method for manufacturing semiconductor device
JP3683570B2 (en) Manufacturing method of semiconductor device
JP2001284327A (en) Dry etching method, semiconductor device and method of manufacturing the same
JP2005129946A (en) Post plasma clean process for a hardmask
JPH05109673A (en) Manufacture of semiconductor device
KR100613353B1 (en) Method for forming copper wiring of semiconductor device using single damascene process
KR100652285B1 (en) Method for removing photoresist residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116