JP2003090958A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2003090958A
JP2003090958A JP2001285414A JP2001285414A JP2003090958A JP 2003090958 A JP2003090958 A JP 2003090958A JP 2001285414 A JP2001285414 A JP 2001285414A JP 2001285414 A JP2001285414 A JP 2001285414A JP 2003090958 A JP2003090958 A JP 2003090958A
Authority
JP
Japan
Prior art keywords
lens
group
refractive power
lens group
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285414A
Other languages
Japanese (ja)
Other versions
JP3753038B2 (en
JP2003090958A5 (en
Inventor
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001285414A priority Critical patent/JP3753038B2/en
Priority to US10/244,406 priority patent/US6693750B2/en
Publication of JP2003090958A publication Critical patent/JP2003090958A/en
Publication of JP2003090958A5 publication Critical patent/JP2003090958A5/ja
Application granted granted Critical
Publication of JP3753038B2 publication Critical patent/JP3753038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens capable of realizing vibration-proof photographing while maintaining excellent optical performance. SOLUTION: This zoom lens is equipped with a 1st lens group G1 having positive refractive power, a 2nd lens group G2 having negative refractive power, a 3rd lens group G3 having positive refractive power, and a 4th lens group G4 having positive refractive power in order from an object side. In the zoom lens, power is varied by moving the 2nd and the 3rd lens groups G2 and G3 along an optical axis, and the 4th lens group G4 is constituted of a front group G4f having positive refractive power, a middle group G4m having negative refractive power and a rear group G4r having positive refractive power in order from the object side, then the middle group G4m is made eccentric in a perpendicular direction to the optical axis so as to displace an image forming position, whereby vibration-proof correction is performed and a specified condition is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1眼レフレックスカメ
ラや電子スチルカメラなどに好適な防振補正可能なズー
ムレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens which is suitable for a single-lens reflex camera, an electronic still camera and the like and which is capable of performing image stabilization.

【0002】[0002]

【従来の技術】従来、この種の光学系には、特開平2−
234115号公報や特開平9−325269号公報に
開示されているように、一部のレンズもしくはレンズ群
を光軸に対して垂直に偏心させることにより結像位置を
補正する光学系が使用されている。
2. Description of the Related Art Conventionally, an optical system of this type has been disclosed in Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Laid-Open No. 234115 and Japanese Patent Laid-Open No. 9-325269, an optical system is used that corrects an image-forming position by decentering a part of a lens or a lens group perpendicularly to an optical axis. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
2−234115号公報に開示された光学系では、ズー
ムレンズのマスターレンズ全体を光軸に対して垂直に精
度良く制御するには、駆動アクチュエーターの大型化が
避けられず実用的でない。また、特開平2−23411
5号公報に開示された光学系では、結像性能までは言及
していなかった。さらに、特開平9−325269号公
報に開示されている光学系は、マスターレンズの一部分
で防振補正する為、駆動アクチュエーターも小型にでき
収差補正も良好であったが、FNOが4でありスポーツ
写真などの使用には不向きであった。
However, in the optical system disclosed in JP-A-2-234115, in order to accurately control the entire master lens of the zoom lens perpendicularly to the optical axis, the drive actuator It is not practical because it cannot be enlarged. In addition, JP-A-2-23411
The optical system disclosed in Japanese Patent No. 5 does not mention the imaging performance. Further, since the optical system disclosed in Japanese Patent Laid-Open No. 9-325269 corrects the image stabilization with a part of the master lens, the drive actuator can be downsized and the aberration can be corrected well, but the FNO is 4 and the sports It was not suitable for use with photographs.

【0004】本発明は、このような問題に鑑みてなされ
たものであり、優れた光学性能を維持しつつ防振撮影が
可能なズームレンズ、特に望遠端焦点距離が180mm
以上、変倍比が2倍以上、FNOが3以下である大口径
比内焦望遠ズームレンズの提供を目的とする。
The present invention has been made in view of the above problems, and is a zoom lens capable of performing image stabilization photography while maintaining excellent optical performance, particularly a focal length at the telephoto end of 180 mm.
As described above, an object is to provide a large aperture ratio in-focus telephoto zoom lens having a zoom ratio of 2 or more and an FNO of 3 or less.

【0005】[0005]

【課題を解決する為の手段】上記目的を達成する為に、
本発明では、物体側から順に、正屈折力を有する第1レ
ンズ群G1、負屈折力を有する第2レンズ群G2、正屈
折力を有する第3レンズ群G3、正屈折力を有する第4
レンズ群G4とを備え、前記第2レンズ群G2と前記第
3レンズ群G3とを光軸に沿って移動させて変倍を行う
4群アフォーカルズームレンズにおいて、前記第4レン
ズ群G4は、物体側より順に、正屈折力を有する前群G
4f、負屈折力を有する中群G4m、正屈折力を有する
後群G4rより構成し、前記中群G4mを光軸と垂直な
方向に偏心させて結像位置を変位する構成とし、前記前
群G4fは、正屈折力のレンズ1個と負屈折力のレンズ
1個を含み、前記中群G4mは、正屈折力のレンズ1個
と負屈折力のレンズ2個を含み、前記後群G4rは、正
屈折力のレンズ2個と負屈折力のレンズ1個を含み、前
記第4レンズ群G4の焦点距離をF4、前記前群G4f
の焦点距離をF4f、前記中群G4mの焦点距離をF4
m、前記後群G4rの焦点距離をF4rとする場合、 0.70<|(F4×F4m)/(F4f×F4r)|
<1.20 の条件を満足する事を特徴とするズームレンズを提供す
る。
[Means for Solving the Problems] In order to achieve the above object,
In the present invention, in order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group having a positive refractive power.
A lens group G4 is provided, and the second lens group G2 and the third lens group G3 are moved along the optical axis to perform zooming.
In the 4-group afocal zoom lens, the fourth lens group G4 includes, in order from the object side, a front group G having a positive refractive power.
4f, a middle group G4m having a negative refractive power, and a rear group G4r having a positive refractive power, the middle group G4m is decentered in a direction perpendicular to the optical axis to displace the image forming position, and the front group G4f includes one lens having positive refracting power and one lens having negative refracting power, the middle group G4m includes one lens having positive refracting power and two lenses having negative refracting power, and the rear group G4r includes , Including two lenses having positive refracting power and one lens having negative refracting power, the focal length of the fourth lens group G4 is F4, the front group G4f
Is F4f, and the focal length of the middle group G4m is F4.
m, where F4r is the focal length of the rear group G4r: 0.70 <| (F4 × F4m) / (F4f × F4r) |
Provided is a zoom lens which satisfies the condition of <1.20.

【0006】また、本発明のズームレンズでは、前記第
4レンズ群G4を構成するレンズのd線における平均屈
折率をNdとする場合、 0.008<F4/(F4f×F4r×Nd)<0.0
15 の条件を満足する事が好ましい。
Further, in the zoom lens of the present invention, when the average refractive index at the d-line of the lenses constituting the fourth lens group G4 is Nd, 0.008 <F4 / (F4f × F4r × Nd) <0 .0
It is preferable that the condition 15 is satisfied.

【0007】また、本発明のズームレンズでは、前記前
群G4fの最大有効径をΦf、前記中群G4mの最大有
効径をΦmとする場合、 0.40<|(Φf×F4r)/(F4×Φm)|<
0.80 の条件を満足する事が好ましい。
In the zoom lens of the present invention, when the maximum effective diameter of the front group G4f is Φf and the maximum effective diameter of the middle group G4m is Φm, 0.40 <| (Φf × F4r) / (F4 × Φm) | <
It is preferable to satisfy the condition of 0.80.

【0008】また、本発明のズームレンズでは、望遠端
焦点距離をFt、前記第1レンズ群G1の焦点距離をF
1、前記第2レンズ群G2と第3レンズ群G3の望遠端
焦点距離時の合成焦点距離をF23tとする場合、 0.70<|(Ft×F23t×F4m)/(F1×F4
f×F4r)|<1.20 の条件を満足する事が好ましい。
In the zoom lens of the present invention, the focal length at the telephoto end is Ft, and the focal length of the first lens group G1 is Ft.
1. When the combined focal length of the second lens group G2 and the third lens group G3 at the telephoto end focal length is F23t, 0.70 <| (Ft × F23t × F4m) / (F1 × F4
It is preferable to satisfy the condition of f × F4r) | <1.20.

【0009】また、本発明のズームレンズでは、前記前
群G4fは、正屈折力のレンズ2個と負屈折力のレンズ
1個より成り、前記後群G4rは、正屈折力のレンズ2
個と負屈折力のレンズ1個より成る事が好ましい。
In the zoom lens according to the present invention, the front group G4f is composed of two lenses having positive refractive power and one lens having negative refractive power, and the rear group G4r is composed of the lens 2 having positive refractive power.
It is preferable that it is composed of one lens and one lens of negative refractive power.

【0010】また、本発明のズームレンズでは、前記正
屈折力を有する第1レンズ群G1は、像面に対して光軸
方向に固定である前群G1fと可動である後群G1rと
で構成し、前記後群G1rが光軸方向に移動することに
より近距離合焦を行うことが好ましい。
In the zoom lens according to the present invention, the first lens group G1 having the positive refractive power is composed of a front group G1f which is fixed in the optical axis direction with respect to the image plane and a rear group G1r which is movable. However, it is preferable to perform short-distance focusing by moving the rear group G1r in the optical axis direction.

【0011】[0011]

【実施の形態】以下本発明の実施の形態を、添付図面に
基づいて説明する。実施の形態において、本発明の大口
径比内焦望遠ズームレンズは、図1の様に、物体側から
順に、正屈折力を有する第1レンズ群G1、負屈折力を
有する第2レンズ群G2、正屈折力を有する第3レンズ
群G3、正屈折力を有する第4レンズ群G4とを備え、
前記第2レンズ群G2と前記第3レンズ群G3とを光軸
に沿って移動させて変倍を行う4群アフォーカルズーム
レンズにおいて、前記第4レンズ群G4は、物体側より
順に、正屈折力を有する前群G4f、負屈折力を有する
中群G4m、正屈折力を有する後群G4rより構成し、
前記中群G4mを光軸と垂直な方向に偏心させて結像位
置を変位(以後、防振と称する)する構成とし、前記前
群G4fは、正屈折力のレンズ1個と負屈折力のレンズ
1個を含み、前記中群G4mは、正屈折力のレンズ1個
と負屈折力のレンズ2個を含み、前記後群G4rは、正
屈折力のレンズ2個と負屈折力のレンズ1個を含み、前
記第4レンズ群G4の焦点距離をF4、前記前群G4f
の焦点距離をF4f、前記中群G4mの焦点距離をF4
m、前記後群G4rの焦点距離をF4rとする場合、 0.70<|(F4×F4m)/(F4f×F4r)|<1.20 (1) の条件を満足する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the embodiment, the large-aperture-ratio in-focus telephoto zoom lens of the present invention includes, as shown in FIG. 1, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, in order from the object side. A third lens group G3 having a positive refracting power and a fourth lens group G4 having a positive refracting power,
In a four-group afocal zoom lens that performs zooming by moving the second lens group G2 and the third lens group G3 along the optical axis, the fourth lens group G4 includes positive refraction in order from the object side. A front group G4f having power, a middle group G4m having negative refracting power, and a rear group G4r having positive refracting power,
The middle group G4m is decentered in a direction perpendicular to the optical axis to displace the image forming position (hereinafter referred to as image stabilization). The front group G4f includes one lens having a positive refractive power and one having a negative refractive power. The middle group G4m includes one lens, one lens having positive refracting power and two lenses having negative refracting power, and the rear group G4r includes two lenses having positive refracting power and lens 1 having negative refracting power. The focal length of the fourth lens group G4 is F4, and the front group G4f is
Is F4f, and the focal length of the middle group G4m is F4.
m, where F4r is the focal length of the rear group G4r, the condition of 0.70 <| (F4 × F4m) / (F4f × F4r) | <1.20 (1) is satisfied.

【0012】条件式(1)の上限値を上回ると、結像面
の平坦性が悪化し好ましくない。条件式(1)の下限値
を下回ると、防振による球面収差の変動が大きくなり好
ましくない。ここで、好ましくは、上限値を1.10と
すれば、前記中群G4m外径と防振による球面収差変動
とのバランスが良好に出来る。また、好ましくは、下限
値を0.85とすれば、前記中群G4m外径と防振によ
る球面収差変動とのバランスが良好に出来る。
If the upper limit of conditional expression (1) is exceeded, the flatness of the image plane is deteriorated, which is not preferable. When the value goes below the lower limit of conditional expression (1), the spherical aberration fluctuates significantly due to image stabilization, which is not preferable. Here, preferably, if the upper limit value is set to 1.10, a good balance between the outer diameter of the middle group G4m and the variation of spherical aberration due to image stabilization can be achieved. Further, preferably, if the lower limit value is set to 0.85, it is possible to achieve a good balance between the outer diameter of the middle group G4m and the variation of spherical aberration due to image stabilization.

【0013】次に、良好なる防振性能を得る為には、前
記中群G4mを構成するレンズのd線における平均屈折
率をNdとする場合、 0.008<F4/(F4f×F4r×Nd)<0.015 (2) の条件を満足する事が好ましい。
Next, in order to obtain a good image stabilizing performance, 0.008 <F4 / (F4f × F4r × Nd), where Nd is the average refractive index of the lenses constituting the middle group G4m at the d-line. ) <0.015 (2) It is preferable to satisfy the condition.

【0014】条件式(2)の上限値を上回ると、防振に
よる結像性能劣化が画面周辺で大きくなり好ましくな
い。条件式(2)の下限値を下回ると、前記中群G4m
の外径が大きくなり、防振補正レンズ群である前記中群
G4mのレンズ重量が重くなるので好ましくない。ここ
で、好ましくは、上限値を0.012とすれば、防振に
よる結像性能劣化と防振レンズ群重量とのバランスが良
好に出来る。また、好ましくは、下限値を0.010と
すれば、防振による結像性能劣化と防振レンズ群重量と
のバランスが良好に出来る。
If the upper limit of conditional expression (2) is exceeded, the deterioration of the image-forming performance due to image stabilization becomes large around the screen, which is not preferable. When falling below the lower limit of conditional expression (2), the middle group G4m
Is large, and the lens weight of the middle group G4m, which is the image stabilization lens group, is heavy, which is not preferable. Here, if the upper limit value is set to 0.012, it is possible to achieve a good balance between the deterioration of the imaging performance due to image stabilization and the weight of the image stabilization lens group. Further, preferably, if the lower limit value is set to 0.010, a good balance between deterioration of the imaging performance due to image stabilization and the weight of the image stabilization lens group can be achieved.

【0015】次に、防振レンズ群を含む前記第4レンズ
群のレンズ外径とレンズ群屈折力の関係は、前記前群G
4fの最大有効径をΦf、前記中群G4mの最大有効径
をΦmとする場合、 0.40<|(Φf×F4r)/(F4×Φm)|<0.80 (3) の条件を満足する事が好ましい。
Next, the relationship between the lens outer diameter of the fourth lens group including the image stabilizing lens group and the lens group refracting power is as follows.
When the maximum effective diameter of 4f is Φf and the maximum effective diameter of the middle group G4m is Φm, the condition of 0.40 <| (Φf × F4r) / (F4 × Φm) | <0.80 (3) is satisfied. It is preferable to do.

【0016】条件式(3)の上限値を上回ると、望遠端
焦点距離におけるディストーションが正に大きくなり好
ましくない。条件式(3)の下限値を下回ると第4レン
ズ群全体のテレフォト比(望遠比)が大きくなり、光学
系全体の全長が長くなり好ましくない。さらに、前記中
群G4mの外径が大きくなり、防振補正レンズ群である
前記中群G4mのレンズ重量が重くなるので、やはり好
ましくない。ここで、好ましくは、上限値は0.70が
好ましい。また、好ましくは、下限値は0.50が好ま
しい。
If the upper limit of conditional expression (3) is exceeded, the distortion at the telephoto end focal length becomes positively large, which is not preferable. When the value goes below the lower limit of conditional expression (3), the telephoto ratio (telephoto ratio) of the entire fourth lens group becomes large, and the overall length of the entire optical system becomes long, which is not preferable. Furthermore, the outer diameter of the middle group G4m becomes large, and the lens weight of the middle group G4m, which is the image stabilization lens group, becomes heavy, which is also undesirable. Here, the upper limit is preferably 0.70. Further, the lower limit value is preferably 0.50.

【0017】次に、良好なる各レンズ群の屈折力配置を
示す。
Next, the favorable refractive power arrangement of each lens group will be shown.

【0018】望遠端撮影時の焦点距離をFt、前記第1
レンズ群G1の焦点距離をF1、前記第2レンズ群G2
と第3レンズ群G3の望遠端撮影時の合成焦点距離をF
23tとする場合、 0.70<|(Ft×F23t×F4m)/(F1×F4f×F4r)|<1.20 ・・(4) の条件を満足する事が好ましい。
The focal length at the telephoto end shooting is Ft,
The focal length of the lens group G1 is F1, and the second lens group G2 is
And the combined focal length of the third lens group G3 at the telephoto end shooting at F
In the case of 23t, it is preferable that the condition of 0.70 <| (Ft × F23t × F4m) / (F1 × F4f × F4r) | <1.20 (4) is satisfied.

【0019】条件式(4)の上限値を上回ると、第2レ
ンズ群より像面側に配置した各レンズ群の有効径が大き
くなり、鏡筒全体が太くなる為好ましくない。また、全
光学系の全長も長くなり好ましくない。条件式(4)の
下限値を下回ると、ズーミングによる球面収差の変動が
大きくなり好ましくない。ここで、好ましくは、上限値
を1.00とすれば、光学系全長、太さと、収差とのバ
ランスが良好となる。また、好ましくは、下限値を0.
90とすれば、光学系全長、太さと、収差とのバランス
が良好となる。 (実施例)以下本発明の実施の形態にかかる実施例を、
添付図面に基づいて説明する。実施例において、本発明
の大口径比内焦望遠ズームレンズは、図1、図8、図1
5、図22に示す様に、物体側から順に、正屈折力を有
する第1レンズ群G1、負屈折力を有する第2レンズ群
G2、正屈折力を有する第3レンズ群G3、正屈折力を
有する第4レンズ群G4とを備え、前記第2レンズ群G
2と前記第3レンズ群G3とを光軸に沿って移動させて
変倍を行い、前記第4レンズ群G4は、物体側より順
に、正屈折力を有する前群G4f、負屈折力を有する中
群G4m、正屈折力を有する後群G4rより構成し、前
記中群G4mを光軸と垂直な方向に偏心させて結像位置
を変位することにより、防振補正を行う構成としてい
る。
If the upper limit of conditional expression (4) is exceeded, the effective diameter of each lens unit disposed closer to the image side than the second lens unit becomes large, and the lens barrel as a whole becomes thick, which is not preferable. In addition, the total length of the entire optical system becomes long, which is not preferable. When the value goes below the lower limit of the conditional expression (4), fluctuation of spherical aberration due to zooming becomes large, which is not preferable. Here, preferably, if the upper limit value is set to 1.00, the balance between the total length and thickness of the optical system and the aberration becomes good. Further, preferably, the lower limit value is 0.
When it is 90, the balance between the total length and thickness of the optical system and the aberration becomes good. (Example) Hereinafter, an example according to the embodiment of the present invention,
It will be described with reference to the accompanying drawings. In Examples, the large-aperture-ratio in-focus telephoto zoom lens of the present invention is shown in FIGS.
5, as shown in FIG. 22, in order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and the positive refractive power. And a second lens group G4 having
2 and the third lens group G3 are moved along the optical axis to perform zooming, and the fourth lens group G4 has, in order from the object side, a front group G4f having a positive refractive power and a negative refractive power. It is configured by a middle group G4m and a rear group G4r having a positive refractive power, and the middle group G4m is decentered in the direction perpendicular to the optical axis to displace the image forming position to perform image stabilization.

【0020】また、前記正屈折力を有する第1レンズ群
G1を、像面Iに対して光軸方向に固定である前群G1
fと可動である後群G1rとで構成し、前記後群G1r
が光軸方向に移動する事により近距離合焦を行ってい
る。 (実施例1)図1は本発明の第1実施例にかかる大口径
比内焦望遠ズームレンズの構成を示す図であり、広角端
焦点距離かつ無限遠合焦状態における各レンズ群の位置
を示している。図示の大口径比内焦望遠ズームレンズ
は、物体側から順に、物体側に凸形状のメ二スカス負レ
ンズL11と物体側に凸形状のメ二スカス正レンズL1
2との接合負レンズ、物体側に凸面形状のメ二スカス正
レンズL13とから成る第1レンズ群G1の前群G1f
と、物体側に凸形状のメ二スカス負レンズL14、物体
側に凸形状のメニスカス正レンズL15から成る第1レ
ンズ群G1の後群G1rと、像面側に強い凹面を向けた
両凹レンズL21、両凹レンズL22と両凸レンズL2
3との接合正レンズ、物体側に強い凹面を向けた両凹レ
ンズL24から成る第2レンズ群G2と、物体側に凹形
状のメニスカス正レンズL31、両凸レンズL32と物
体側に凹形状のメニスカス負レンズL33の接合正レン
ズから成る第3レンズ群G3と、開口絞りS1、物体側
に凸形状のメ二スカス負レンズL41と両凸レンズL4
2との接合正レンズ、物体側に凸形状のメ二スカス正レ
ンズL43、間隔を大きく空けて視野絞りS2から成る
第4レンズ群G4の前群G4fと、両凸レンズL44と
両凹レンズL45の接合負レンズ、両凹レンズL46か
ら成る第4レンズ群G4の中群G4mと、視野絞りS
3、物体側に凹形状のメニスカス正レンズL47、両凸
レンズL48と物体側に凹面形状のメニスカス負レンズ
L49の接合正レンズから成る第4レンズ群G4の後群
G4rより構成している。
The first lens group G1 having the positive refracting power is fixed in the optical axis direction with respect to the image plane I.
f and a movable rear group G1r, and the rear group G1r
Is moving in the direction of the optical axis for focusing at a short distance. (Embodiment 1) FIG. 1 is a diagram showing the structure of a large aperture ratio in-focus telephoto zoom lens according to the first embodiment of the present invention, showing the position of each lens group in the wide-angle end focal length and infinity in-focus condition. ing. The illustrated large aperture ratio in-focus telephoto zoom lens includes a meniscus negative lens L11 having a convex shape on the object side and a meniscus positive lens L1 having a convex shape on the object side in order from the object side.
The front lens group G1f of the first lens group G1 including a negative lens cemented to 2 and a meniscus positive lens L13 having a convex surface on the object side.
And a rear lens group G1r of the first lens group G1 including a convex meniscus negative lens L14 on the object side and a convex meniscus positive lens L15 on the object side, and a biconcave lens L21 having a strong concave surface on the image side. , Biconcave lens L22 and biconvex lens L2
A second lens group G2 including a positive lens cemented with 3 and a biconcave lens L24 having a strong concave surface facing the object side, a positive meniscus lens L31 having a concave shape on the object side, a biconvex lens L32, and a meniscus negative shape having a concave shape on the object side. The third lens group G3 including a cemented positive lens of the lens L33, the aperture stop S1, the meniscus negative lens L41 having a convex shape on the object side, and the biconvex lens L4.
2 is a positive lens cemented to the object side, a meniscus positive lens L43 having a convex shape on the object side, a front group G4f of a fourth lens group G4 including a field stop S2 with a large spacing, and a biconvex lens L44 and a biconcave lens L45. A middle lens group G4m including a negative lens and a biconcave lens L46, and a field stop S4.
3, a rear lens group G4r of a fourth lens group G4 including a cemented positive lens having a concave meniscus positive lens L47 on the object side, a biconvex lens L48, and a concave meniscus negative lens L49 on the object side.

【0021】表1に、本発明の実施例1の諸元表の値を
示す。表1において、Fはレンズ全系の焦点距離を、F
NOはFナンバーを、βは撮影倍率を、Bfはバックフ
ォーカスを、D0は物体から第1レンズ群G1中レンズ
L11の物体側面までの距離(撮影距離)をそれぞれ表
している。さらに、左端の数字は物体から各レンズ面の
順序を、rは各レンズ面の曲率半径を、dは各レンズ面
間隔を、ndおよびνはそれぞれd線(λ=587.6
nm)に対する媒質の屈折率およびアッベ数を示し、空
気の屈折率1.000000は省略してある。Φfは前
記前群G4fの最大有効径、Φrは前記中群G4mの最
大有効径を示している。
Table 1 shows the values in the specifications table of the first embodiment of the present invention. In Table 1, F is the focal length of the entire lens system,
NO represents the F number, β represents the photographing magnification, Bf represents the back focus, and D0 represents the distance from the object to the object side surface of the lens L11 in the first lens group G1 (shooting distance). Furthermore, the leftmost number is the order of the lens surfaces from the object, r is the radius of curvature of each lens surface, d is the distance between the lens surfaces, and nd and ν are d lines (λ = 587.6).
(nm) and the Abbe number of the medium are shown, and the refractive index of air of 1.0000000 is omitted. Φf represents the maximum effective diameter of the front group G4f, and Φr represents the maximum effective diameter of the middle group G4m.

【0022】表中、条件対応値は表5に各実施例の場合
をまとめて示してある。
In the table, the values corresponding to the conditions are summarized in Table 5 for each of the examples.

【0023】上述の符号の意味するところは、他の実施
例の表においても同様である。
The meanings of the above-mentioned symbols are the same in the tables of other embodiments.

【0024】また、諸元表の焦点距離、曲率半径、面間
隔その他の長さの単位は一般に「mm」が使われるが、
光学系は比例拡大または比例縮小しても同等の光学性能
が得られるので、これに限られるものではない。
The unit of the focal length, radius of curvature, surface spacing and other lengths in the specification table is generally "mm",
The optical system is not limited to this, because the same optical performance can be obtained even if the optical system is enlarged or reduced proportionally.

【0025】[0025]

【表1】 F=71.40〜194.00 FNO=2.9 r d ν nd Φ 1) 136.2696 2.2000 46.58 1.804000 2) 65.9210 9.0000 82.52 1.497820 3) 184.6175 0.1000 4) 73.1041 8.9000 82.52 1.497820 5) 435.0246(d5=可変) 6) 65.0851 1.8000 23.78 1.846660 7) 51.8175 1.9200 8) 63.2160 8.7000 60.09 1.640000 9) 1772.4929(d9=可変) 10)-1067.2040 1.9000 52.67 1.741000 11) 34.3923 6.8350 12) -61.8566 1.8000 70.41 1.487490 13) 39.4340 7.0000 25.43 1.805180 14) -223.2401 1.8030 15) -64.5266 1.9000 39.59 1.804400 16) 872.3457(d16=可変) 17) -599.1428 3.9000 82.52 1.497820 18) -73.5485 0.2000 19) 93.8405 8.0000 82.52 1.497820 20) -48.5670 2.0000 52.67 1.741000 21) -149.5043(d21=可変) 22>(開口絞り) 1.0000 23) 117.0055 2.0000 25.43 1.805180 Φf=37.4 24) 44.6950 7.0000 55.52 1.696800 25) -325.3499 0.1000 26) 76.1777 3.5000 65.47 1.603000 27) 152.3247 19.0000 28)(視野絞り)1.6216 29) 376.5966 3.8000 23.78 1.846660 Φm=30.4 30) -57.8860 1.5000 52.67 1.741000 31) 50.0430 3.9000 32) -246.5579 1.5000 52.67 1.741000 33) 102.2448 2.6784 34)(視野絞り) 4.0000 35) -427.7771 4.0000 82.52 1.497820 36) -58.2736 0.1000 37) 68.1118 7.5000 52.67 1.741000 38) -60.1400 2.0000 23.78 1.846660 39) -641.0882 Bf (合焦時における可変間隔) 無限遠 F、β 71.4000 105.0000 194.0000 D0 ∞ ∞ ∞ d5 14.15950 14.15950 14.15950 d9 2.52314 17.06549 31.15139 d16 34.06279 25.29743 1.96176 d21 7.92945 2.15247 11.40223 Bf 66.21049 66.21049 66.21049 至近距離 F、β -0.06001 -0.08825 -0.16473 D0 1241.9566 1241.9566 1241.9566 d5 4.43994 4.43994 4.43994 d9 12.24271 26.78505 40.87095 d16 34.06279 25.29743 1.96176 d21 7.92945 2.15247 11.40223 Bf 66.21049 66.21049 66.21049 (防振補正移動量) 無限遠 F、β 71.4000 135.0000 194.0000 G4m 0.257 0.378 0.706 像面 -0.374 -0.550 -1.026 至近距離 F、β -0.06001 -0.08825 -0.16473 G4m 0.324 0.477 0.890 像面 -0.471 -0.693 -1.294 (条件対応値) レンズ諸元 Ft 196.0000 F1 99.1163 F23t -56.8024 F4 110.8427 F4f 94.9170 F4m -46.9447 F4r 55.9165 Φf 37.4 Φm 30.4 nd1 1.84666 nd2 1.74100 nd3 1.74100 Nd 1.77622 条件式(1) |F4・F4m/(F4f・F4r)| 0.98 条件式(2) F4/(F4f・F4r・Nd) 0.012 条件式(3) |Φf・F4r/(F4・Φm)| 0.62 条件式(4) |Ft・F23t・F4m/(F1・F4f・F4r)| 0.99 第2図〜第4図はそれぞれ広角端、中間、望遠端焦点距
離の順番とした無限遠状態における諸収差図、第5図〜
第7図はそれぞれ広角端、中間、望遠端焦点距離の順番
とした至近距離(R=1500mm)合焦状態における
諸収差図である。これにより、本発明による大口径比内
焦望遠ズームレンズは、通常使用時はもとより、防振補
正の際も非常に良好な結像性能を達成している事は明ら
かである。
[Table 1] F = 71.40 to 194.00 FNO = 2.9 rd ν νnd Φ 1) 136.2696 2.2000 46.58 1.804000 2) 65.9210 9.0000 82.52 1.497820 3) 184.6175 0.1000 4) 73.1041 8.9000 82.52 1.497820 5) 435.0246 (d5 = 6) 65.0851 1.8000 23.78 1.846660 7) 51.8175 1.9200 8) 63.2160 8.7000 60.09 1.640000 9) 1772.4929 (d9 = variable) 10) -1067.2040 1.9000 52.67 1.741000 11) 34.3923 6.8350 12) -61.8566 1.8000 70.41 1.487490 13) 39.4340 7.0000 25.43 1.43 14) -223.2401 1.8030 15) -64.5266 1.9000 39.59 1.804400 16) 872.3457 (d16 = variable) 17) -599.1428 3.9000 82.52 1.497820 18) -73.5485 0.2000 19) 93.8405 8.0000 82.52 1.497820 20) -48.5670 2.0000 52.67 1.741000 21) -149.5043 ( d21 = variable) 22> (aperture stop) 1.0000 23) 117.0055 2.0000 25.43 1.805180 Φf = 37.4 24) 44.6950 7.0000 55.52 1.696800 25) -325.3499 0.1000 26) 76.1777 3.5000 65.47 1.603000 27) 152.3247 19.0000 28) (field stop) 1.6216 29) 376.5966 3.8000 23.78 1.846660 Φm = 30.4 30) -57.8860 1.5000 52.67 1 .741000 31) 50.0430 3.9000 32) -246.5579 1.5000 52.67 1.741000 33) 102.2448 2.6784 34) (field diaphragm) 4.0000 35) -427.7771 4.0000 82.52 1.497820 36) -58.2736 0.1000 37) 68.1118 7.5000 52.67 1.741000 38) -60.1400 2.0000 23.78 1.846660 39 ) -641.0882 Bf (variable distance when focused) infinity F, β 71.4000 105.0000 194.0000 D0 ∞ ∞ ∞ d5 14.15950 14.15950 14.15950 d9 2.52314 17.06549 31.15139 d16 34.06279 25.29743 1.96176 d21 7.92945 2.15247 11.40223 Bf 66.21049, Bf 66.21049, Bf 66.21049. 0.06001 -0.08825 -0.16473 D0 1241.9566 1241.9566 1241.9566 d5 4.43994 4.43994 4.43994 d9 12.24271 26.78505 40.87095 d16 34.06279 25.29743 1.96176 d21 7.92945 2.15247 11.40223 Bf 66.21049 0.6. -0.374 -0.550 -1.026 Close range F, β -0.06001 -0.08825 -0.16473 G4m 0.324 0.477 0.890 Image plane -0.471 -0.693 -1.294 (Values corresponding to conditions) Lenses Ft 196.0000 F1 99.1163 F23t -56.8024 F4 110.8427 F4f 94.9170 F4m -46.9447 F4r 55.9165 Φf 37.4 Φm 30.4 nd1 1.84666 nd2 1.74100 nd3 1.74100 Nd 1.77622 Conditional expression (1) | F4 ・ F4m / (F4 0.98) | F4 / (F4f ・ F4r ・ Nd) 0.012 Conditional expression (3) | Φf ・ F4r / (F4 ・ Φm) | 0.62 Conditional expression (4) | Ft ・ F23t ・ F4m / (F1 ・ F4f ・ F4r) | 0.99 Second 4 to 4 are graphs showing various aberrations in the infinite state in which the focal lengths at the wide-angle end, the middle, and the telephoto end are arranged in this order, and FIGS.
FIG. 7 is a diagram of various aberrations in the in-focus state at the closest distance (R = 1500 mm) in the order of the wide-angle end, the middle, and the telephoto end focal length. As a result, it is apparent that the large aperture ratio in-focus telephoto zoom lens according to the present invention achieves very good imaging performance not only during normal use but also during image stabilization.

【0026】各収差図において、Yは像高を、NAは開
口数を、dはd線(λ=587.6nm)を、gはg線
(λ=435.6nm)を、CはC線(λ=656.3
nm)を、FはF線(λ=486.1nm)をそれぞれ
示している。なお、非点収差を示す収差図において実線
はサジタル像面を示し、破線はメリディオナル像面を示
している。また、倍率色収差を示す収差図はd線を基準
として示されている。
In each aberration diagram, Y is the image height, NA is the numerical aperture, d is the d line (λ = 587.6 nm), g is the g line (λ = 435.6 nm), and C is the C line. (Λ = 656.3
nm) and F indicates the F line (λ = 486.1 nm). In the aberration diagram showing astigmatism, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. Further, the aberration diagram showing the chromatic aberration of magnification is shown with reference to the d line.

【0027】他の実施例の収差図においても同様であ
る。 (実施例2)図8は本発明の第2実施例にかかる大口径
比内焦望遠ズームレンズの構成を示す図であり、広角端
焦点距離かつ無限遠合焦状態における各レンズ群の位置
を示している。図示の大口径比内焦望遠ズームレンズ
は、物体側から順に、物体側に凸形状のメ二スカス負レ
ンズL11と物体側に凸形状のメ二スカス正レンズL1
2との接合負レンズ、物体側に凸面形状のメ二スカス正
レンズL13とから成る第1レンズ群G1の前群G1f
と、物体側に凸形状のメ二スカス負レンズL14、物体
側に凸形状のメニスカス正レンズL15から成る第1レ
ンズ群G1の後群G1rと、像面側に強い凹面を向けた
両凹レンズL21、両凹レンズL22と両凸レンズL2
3との接合正レンズ、物体側に強い凹面を向けた両凹レ
ンズL24から成る第2レンズ群G2と、物体側に凹形
状のメニスカス正レンズL31、両凸レンズL32と物
体側に凹形状のメニスカス負レンズL33の接合正レン
ズから成る第3レンズ群G3と、開口絞りS1、物体側
に凸形状のメ二スカス負レンズL41と両凸レンズL4
2との接合正レンズ、物体側に凸形状のメ二スカス正レ
ンズL43、間隔を大きく空けて視野絞りS2から成る
第4レンズ群G4の前群G4fと、両凸レンズL44と
両凹レンズL45の接合負レンズ、両凹レンズL46か
ら成る第4レンズ群G4の中群G4mと、視野絞りS
3、両凸レンズL47、両凸レンズL48と物体側に強
い凹面を向けた両凹レンズL49の接合正レンズから成
る第4レンズ群G4の後群G4rより構成している。
The same applies to the aberration diagrams of the other examples. (Embodiment 2) FIG. 8 is a view showing the arrangement of a large aperture ratio in-focus telephoto zoom lens according to the second embodiment of the present invention, showing the positions of the respective lens groups in the wide-angle end focal length and infinity in-focus condition. ing. The illustrated large aperture ratio in-focus telephoto zoom lens includes a meniscus negative lens L11 having a convex shape on the object side and a meniscus positive lens L1 having a convex shape on the object side in order from the object side.
The front lens group G1f of the first lens group G1 including a negative lens cemented to 2 and a meniscus positive lens L13 having a convex surface on the object side.
And a rear lens group G1r of the first lens group G1 including a convex meniscus negative lens L14 on the object side and a convex meniscus positive lens L15 on the object side, and a biconcave lens L21 having a strong concave surface on the image side. , Biconcave lens L22 and biconvex lens L2
A second lens group G2 including a positive lens cemented with 3 and a biconcave lens L24 having a strong concave surface facing the object side, a positive meniscus lens L31 having a concave shape on the object side, a biconvex lens L32, and a meniscus negative shape having a concave shape on the object side. The third lens group G3 including a cemented positive lens of the lens L33, the aperture stop S1, the meniscus negative lens L41 having a convex shape on the object side, and the biconvex lens L4.
2 is a positive lens cemented to the object side, a meniscus positive lens L43 having a convex shape on the object side, a front group G4f of a fourth lens group G4 including a field stop S2 with a large spacing, and a biconvex lens L44 and a biconcave lens L45. A middle lens group G4m including a negative lens and a biconcave lens L46, and a field stop S4.
3, a biconvex lens L47, a biconvex lens L48, and a rear group G4r of a fourth lens group G4 including a cemented positive lens of a biconcave lens L49 having a strong concave surface facing the object side.

【0028】表2に、本発明の実施例2の諸元表の値を
示す。
Table 2 shows the values of the specifications table of the second embodiment of the present invention.

【0029】[0029]

【表2】 F=71.40〜194.00 FNO=2.9 r d ν nd Φ 1) 126.3773 2.2000 46.58 1.804000 2) 65.7766 9.0000 82.52 1.497820 3) 159.5964 0.1000 4) 73.8770 8.9000 82.52 1.497820 5) 451.9658(d5=可変) 6) 67.1317 1.8000 23.78 1.846660 7) 51.9368 1.9200 8) 60.7960 8.7000 60.09 1.640000 9) 1565.8593(d9=可変) 10)-1112.7902 1.9000 52.67 1.741000 11) 34.3494 6.8350 12) -62.3446 1.8000 70.41 1.487490 13) 38.8362 7.0000 25.43 1.805180 14) -193.0012 1.8030 15) -63.6864 1.9000 39.59 1.804400 16) 540.0800(d16=可変) 17)-1202.2321 3.9000 82.52 1.497820 18) -76.5701 0.2000 19) 90.1566 8.0000 82.52 1.497820 20) -48.0656 2.0000 52.67 1.741000 21) -122.4072(d21=可変) 22>(開口絞り) 1.0000 23) 129.6536 2.0000 25.43 1.805180 Φf=36.53 24) 45.4526 7.0000 55.52 1.696800 25)-1801.6164 0.1000 26) 82.8502 3.5000 65.47 1.603000 27) 216.6834 16.0000 28)(視野絞り) 4.5189 29) 335.1253 3.8000 23.78 1.846660 Φm=30.10 30) -64.4592 1.5000 52.67 1.741000 31) 51.9884 3.9000 32) -251.8830 1.5000 52.32 1.754999 33) 110.1392 4.7734 34)(視野絞り) 4.0000 35) 201.3765 4.0000 47.10 1.623741 36) -72.0797 0.1000 37) 72.9037 7.5000 52.67 1.741000 38) -66.5189 2.0000 23.78 1.846660 39) 302.5105 Bf (合焦時における可変間隔) 無限遠 F、β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ d5 13.31963 13.31963 13.31963 d9 2.58690 17.43453 31.12481 d16 33.75993 24.90255 1.83433 d21 8.30728 2.31703 11.69497 Bf 64.53453 64.53453 64.53452 至近距離 F、β -0.06001 -0.08825 -0.16473 D0 1241.9624 1241.9624 1241.9624 d5 3.60012 3.60012 3.60012 d9 12.30641 27.15404 40.84432 d16 33.75993 24.90255 1.83433 d21 8.30728 2.31703 11.69497 Bf 64.53713 64.54015 64.53534 (防振補正移動量) 無限遠 F、β 71.4000 135.0000 194.0000 G4m 0.271 0.399 0.744 像面 -0.374 -0.550 -1.026 至近距離 F、β -0.06003 -0.08827 -0.16478 G4m 0.342 0.502 0.939 像面 -0.471 -0.693 -1.294 (条件対応値) レンズ諸元 Ft 196.0000 F1 99.1163 F23t -64.4749 F4 121.2375 F4f 115.2040 F4m -49.5136 F4r 55.9165 Φf 36.6 Φm 30.1 nd1 1.84666 nd2 1.74100 nd3 1.75500 Nd 1.78089 条件式(1) |F4・F4m/(F4f・F4r)| 0.93 条件式(2) F4/(F4f・F4r・Nd) 0.011 条件式(3) |Φf・F4r/(F4・Φm)| 0.56 条件式(4) |Ft・F23t・F4m/(F1・F4f・F4r)| 0.98 第9図〜第11図はそれぞれ広角端、中間、望遠端焦点
距離の順番とした無限遠状態における諸収差図、第12
図〜第14図はそれぞれ広角端、中間、望遠端焦点距離
の順番とした至近距離(R=1500mm)合焦状態に
おける諸収差図である。これにより、本発明による大口
径比内焦望遠ズームレンズは、通常使用時はもとより、
防振補正の際も非常に良好な結像性能を達成している事
は明らかである。 (実施例3)図15は本発明の第3実施例にかかる大口
径比内焦望遠ズームレンズの構成を示す図であり、広角
端焦点距離かつ無限遠合焦状態における各レンズ群の位
置を示している。図示の大口径比内焦望遠ズームレンズ
は、物体側から順に、物体側に凸形状のメ二スカス負レ
ンズL11と物体側に凸形状のメ二スカス正レンズL1
2との接合負レンズ、物体側に凸面形状のメ二スカス正
レンズL13とから成る第1レンズ群G1の前群G1f
と、物体側に凸形状のメ二スカス負レンズL14、物体
側に凸形状のメニスカス正レンズL15から成る第1レ
ンズ群G1の後群G1rと、物体側に凸形状のメニスカ
ス負レンズL21、両凹レンズL22と両凸レンズL2
3との接合正レンズ、物体側に凹形状のメニスカス負レ
ンズL24から成る第2レンズ群G2と、開口絞りS
1、両凸レンズL31、両凸レンズL32と両凹レンズ
L33の接合正レンズから成る第3レンズ群G3と、物
体側に凸形状のメ二スカス負レンズL41と両凸レンズ
L42との接合正レンズ、物体側に凸形状のメ二スカス
正レンズL43、間隔を大きく空けて視野絞りS2から
成る第4レンズ群G4の前群G4fと、両凸レンズL4
4と両凹レンズL45の接合負レンズ、両凹レンズL4
6から成る第4レンズ群G4の中群G4mと、視野絞り
S3、両凸レンズL47、両凸レンズL48と物体側に
凹面形状のメニスカス負レンズL49の接合正レンズか
ら成る第4レンズ群G4の後群G4rより構成してい
る。
[Table 2] F = 71.40 to 194.00 FNO = 2.9 rd ν ν nd Φ 1) 126.3773 2.2000 46.58 1.804000 2) 65.7766 9.0000 82.52 1.497820 3) 159.5964 0.1000 4) 73.8770 8.9000 82.52 1.497820 5) 451.9658 (d5 = 6) 67.1317 1.8000 23.78 1.846660 7) 51.9368 1.9200 8) 60.7960 8.7000 60.09 1.640000 9) 1565.8593 (d9 = variable) 10) -1112.7902 1.9000 52.67 1.741000 11) 34.3494 6.8350 12) -62.3446 1.8000 70.41 1.487490 13) 38.8362 7.0000 25.43 1. 14) -193.0012 1.8030 15) -63.6864 1.9000 39.59 1.804400 16) 540.0800 (d16 = variable) 17) -1202.2321 3.9000 82.52 1.497820 18) -76.5701 0.2000 19) 90.1566 8.0000 82.52 1.497820 20) -48.0656 2.0000 52.67 1.741000 21) -122.4072 ( d21 = variable) 22> (aperture diaphragm) 1.0000 23) 129.6536 2.0000 25.43 1.805180 Φf = 36.53 24) 45.4526 7.0000 55.52 1.696800 25) -1801.6164 0.1000 26) 82.8502 3.5000 65.47 1.603000 27) 216.6834 16.0000 28) (field diaphragm) 4.5189 29) 335.1253 3.8000 23.78 1.846660 Φm = 30.10 30) -64.4592 1.5000 52.6 7 1.741000 31) 51.9884 3.9000 32) -251.8830 1.5000 52.32 1.754999 33) 110.1392 4.7734 34) (Field diaphragm) 4.0000 35) 201.3765 4.0000 47.10 1.623741 36) -72.0797 0.1000 37) 72.9037 7.5000 52.67 1.741000 38) -66.5189 2.0000 23.78 1.846660 39) 302.5105 Bf (Variable distance when focused) Infinity F, β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ ∞ d5 13.31963 13.31963 13.31963 d9 2.58690 17.43453 31.12481 d16 33.75993 24.90255 1.83433 df21.30745 2.31703 11.69497 Bf 64.5353 -53. 0.08825 -0.16473 D0 1241.9624 1241.9624 1241.9624 d5 3.60012 3.60012 3.60012 d9 12.30641 27.15404 40.84432 d16 33.75993 24.90255 1.83433 d21 8.30728 2.31703 11.69497 Bf 64.53713 64.54015 64.0.344m 0.340000. -0.550 -1.026 Close range F, β -0.06003 -0.08827 -0.16478 G4m 0.342 0.502 0.939 Image plane -0.471 -0.693 -1.294 (Values corresponding to conditions) Len Specifications Ft 196.0000 F1 99.1163 F23t -64.4749 F4 121.2375 F4f 115.2040 F4m -49.5136 F4r 55.9165 Φf 36.6 Φm 30.1 nd1 1.84666 nd2 1.74100 nd3 1.75500 Nd 1.78089 Conditional expression (1) | F4 ・ F4F3f / r4 (4) / F4m / 4 (F4f / r4) (2) F4 / (F4f ・ F4r ・ Nd) 0.011 Conditional expression (3) | Φf ・ F4r / (F4 ・ Φm) | 0.56 Conditional expression (4) | Ft ・ F23t ・ F4m / (F1 ・ F4f ・ F4r) | 0.98 FIGS. 9 to 11 are various aberration diagrams in the infinite state in which the focal lengths at the wide-angle end, the middle, and the telephoto end are arranged in this order, and FIG.
FIG. 14 to FIG. 14 are graphs showing various aberrations in the in-focus state at the closest distance (R = 1500 mm) in the order of the wide-angle end, the middle, and the telephoto end focal length. As a result, the large aperture ratio in-focus telephoto zoom lens according to the present invention is
It is clear that a very good imaging performance is achieved even in the image stabilization. (Embodiment 3) FIG. 15 is a diagram showing the structure of a large aperture ratio in-focus telephoto zoom lens according to a third embodiment of the present invention, showing the positions of the respective lens groups in the wide-angle end focal length and infinity in-focus condition. ing. The illustrated large aperture ratio in-focus telephoto zoom lens includes a meniscus negative lens L11 having a convex shape on the object side and a meniscus positive lens L1 having a convex shape on the object side in order from the object side.
The front lens group G1f of the first lens group G1 including a negative lens cemented to 2 and a meniscus positive lens L13 having a convex surface on the object side.
A rear lens group G1r of the first lens group G1 including a convex meniscus negative lens L14 on the object side, a convex meniscus positive lens L15 on the object side, and a meniscus negative lens L21 on the object side. Concave lens L22 and biconvex lens L2
3, a second lens group G2 including a positive meniscus negative lens L24 having a concave shape on the object side, and an aperture stop S.
1. biconvex lens L31, third lens group G3 composed of cemented positive lens of biconvex lens L32 and biconcave lens L33, cemented positive lens of meniscus negative lens L41 convex on the object side and biconvex lens L42, object side A convex meniscus positive lens L43, a front group G4f of a fourth lens group G4 composed of a field stop S2 with a large spacing, and a biconvex lens L4.
4 and biconcave lens L45 cemented negative lens, biconcave lens L4
A rear group of a fourth lens group G4 composed of a middle group G4m of a fourth lens group G4 composed of 6 and a field stop S3, a biconvex lens L47, a biconvex lens L48 and a cemented positive lens of a meniscus negative lens L49 having a concave surface on the object side. It is composed of G4r.

【0030】表3に、本発明の実施例3の諸元表の値を
示す。
Table 3 shows the values in the specifications table of the third embodiment of the present invention.

【0031】[0031]

【表3】 F=71.40〜194.00 FNO=2.9 r d ν nd Φ 1) 109.0944 2.2000 46.58 1.804000 2) 55.0918 10.0000 82.52 1.497820 3) 135.5123 0.1000 4) 65.5193 11.0000 82.52 1.497820 5) 878.5311(d5=可変) 6) 59.8131 1.8000 23.78 1.846660 7) 47.9430 1.9200 8) 59.3584 8.7000 60.09 1.640000 9) 1206.2633(d9=可変) 10) 1053.7403 1.9000 52.67 1.741000 11) 31.2921 7.5000 12) -69.6566 1.8000 70.41 1.487490 13) 35.4608 7.0000 25.43 1.805180 14) -419.3723 2.5000 15) -56.2072 1.9000 39.59 1.804400 16)-2565.1581(d16=可変) 17>(開口絞り) 3.0000 18) 687.5841 5.0000 69.98 1.518601 19) -74.6081 0.2000 20) 75.9721 8.0000 82.52 1.497820 21) -56.4588 2.0000 52.67 1.741000 22) 878.4289(d22=可変) 23) 113.7215 2.0000 25.43 1.805180 Φf=38.8 24) 45.3259 7.0000 55.52 1.696800 25) -307.1976 0.1000 26) 75.0582 3.5000 65.47 1.603000 27) 156.8938 15.0000 28)(視野絞り) 4.4821 29) 2411.5564 3.8000 23.78 1.846660 Φm=28.8 30) -46.0408 1.5000 52.67 1.741000 31) 51.6170 3.9000 32) -331.9035 1.5000 48.04 1.716999 33) 88.9391 2.2442 34)(視野絞り) 3.8000 35) 814.4461 4.0000 82.52 1.497820 36) -65.2212 0.1000 37) 66.7128 7.5000 52.67 1.741000 38) -60.5069 2.0000 23.78 1.846660 39) -682.7106 Bf (合焦時における可変間隔) 無限遠 F、β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ d5 11.75253 11.75253 11.75253 d9 1.19540 12.93312 24.62715 d16 39.76191 30.17697 3.78764 d22 4.19534 2.04255 16.73787 Bf 73.81741 73.81741 73.81741 至近距離 F、β -0.05994 -0.08815 -0.16455 D0 1235.2254 1235.2254 1235.2254 d5 3.48889 3.48889 3.48889 d9 9.45904 21.19676 32.89078 d16 39.76191 30.17697 3.78763 d22 4.19534 2.04255 16.73787 Bf 73.81741 73.81741 73.81741 (防振補正移動量) 無限遠 F、β 71.4000 135.0000 194.0000 G4m 0.226 0.332 0.619 像面 -0.374 -0.550 -1.026 至近距離 F、β -0.06001 -0.08825 -0.16473 G4m 0.285 0.419 0.782 像面 -0.472 -0.694 -1.296 (条件対応値) レンズ諸元 Ft 196.0000 F1 89.3190 F23t -47.3622 F4 105.1234 F4f 90.0000 F4m -44.5975 F4r 53.1207 Φf 38.8 Φm 29.8 nd1 1.84666 nd2 1.74100 nd3 1.71700 Nd 1.76822 条件式(1) |F4・F4m/(F4f・F4r)| 0.98 条件式(2) F4/(F4f・F4r・Nd) 0.012 条件式(3) |Φf・F4r/(F4・Φm)| 0.66 条件式(4) |Ft・F23t・F4m/(F1・F4f・F4r)| 0.97 第16図〜第18図はそろぞれ広角端、中間、望遠端焦
点距離の順番とした無限遠状態における諸収差図、第1
9図〜第21図はそろぞれ広角端、中間、望遠端焦点距
離の順番とした至近距離(R=1500mm)合焦状態
における諸収差図である。これにより、本発明による大
口径比内焦望遠ズームレンズは、通常使用時はもとよ
り、防振補正の際も非常に良好な結像性能を達成してい
る事は明らかである。 (実施例4)図22は本発明の第4実施例にかかる大口
径比内焦望遠ズームレンズの構成を示す図であり、広角
端焦点距離かつ無限遠合焦状態における各レンズ群の位
置を示している。図示の大口径比内焦望遠ズームレンズ
は、物体側から順に、物体側に凸形状のメ二スカス負レ
ンズL11と物体側に凸形状のメ二スカス正レンズL1
2との接合負レンズ、物体側に凸面形状のメ二スカス正
レンズL13とから成る第1レンズ群G1の前群G1f
と、物体側に凸形状のメ二スカス負レンズL14、物体
側に凸形状の正メニスカスレンズL15から成る第1レ
ンズ群G1の後群G1rと、像面側に強い凹面を向けた
両凹レンズL21、両凹レンズL22と両凸レンズL2
3との接合正レンズ、物体側に凹形状のメニスカス負レ
ンズL24から成る第2レンズ群G2と、物体側に凹形
状のメニスカス正レンズL31、両凸レンズL32と物
体側に凹形状のメニスカス負レンズL33の接合正レン
ズから成る第3レンズ群G3と、開口絞りS1、物体側
に凸形状のメ二スカス負レンズL41と両凸レンズL4
2との接合正レンズ、物体側に凸形状のメ二スカス正レ
ンズL43、間隔を大きく空けて視野絞りS2から成る
第4レンズ群G4の前群G4fと、両凸レンズL44と
両凹レンズL45の接合負レンズ、両凹レンズL46か
ら成る第4レンズ群G4の中群G4mと、視野絞りS
3、物体側に凹形状のメニスカス正レンズL47、両凸
レンズL48と物体側に凹面形状のメニスカス負レンズ
L49の接合正レンズから成る第4レンズ群G4の後群
G4rより構成している。
[Table 3] F = 71.40 to 194.00 FNO = 2.9 rd ν nd Φ 1) 109.0944 2.2000 46.58 1.804000 2) 55.0918 10.0000 82.52 1.497820 3) 135.5123 0.1000 4) 65.5193 11.0000 82.52 1.497820 5) 878.5311 (d5 = 6) 59.8131 1.8000 23.78 1.846660 7) 47.9430 1.9200 8) 59.3584 8.7000 60.09 1.640000 9) 1206.2633 (d9 = variable) 10) 1053.7403 1.9000 52.67 1.741000 11) 31.2921 7.5000 12) -69.6566 1.8000 70.41 1.487490 13) 35.4608 7.0000 25.43 1.805180 14) ) -419.3723 2.5000 15) -56.2072 1.9000 39.59 1.804400 16) -2565.1581 (d16 = variable) 17> (aperture diaphragm) 3.0000 18) 687.5841 5.0000 69.98 1.518601 19) -74.6081 0.2000 20) 75.9721 8.0000 82.52 1.497820 21) -56.4588 2.0000 52.67 1.741000 22) 878.4289 (d22 = variable) 23) 113.7215 2.0000 25.43 1.805180 Φf = 38.8 24) 45.3259 7.0000 55.52 1.696800 25) -307.1976 0.1000 26) 75.0582 3.5000 65.47 1.603000 27) 156.8938 15.0000 28) (field diaphragm) 4.4821 29) 2411.5564 3.8000 23.78 1.846660 Φm = 28.8 30) -46.0408 1.5000 52.6 7 1.741000 31) 51.6170 3.9000 32) -331.9035 1.5000 48.04 1.716999 33) 88.9391 2.2442 34) (Field diaphragm) 3.8000 35) 814.4461 4.0000 82.52 1.497820 36) -65.2212 0.1000 37) 66.7128 7.5000 52.67 1.741000 38) -60.5069 2.0000 23.78 1.846660 39) -682.7106 Bf (variable distance when focused) Infinity F, β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ d5 11.75253 11.75253 11.75253 d9 1.19540 12.93312 24.62715 d16 39.76191 30.17697 3.78764 d22 4.19534 2.04255 16.73787 Bf 73.81741 73,817. -0.08815 -0.16455 D0 1235.2254 1235.2254 1235.2254 d5 3.48889 3.48889 3.48889 d9 9.45904 21.19676 32.89078 d16 39.76191 30.17697 3.78763 d22 4.19534 2.04255 16.73787 Bf 73.81741 73.81741 73.81741 73.81741 73.81741 73.81741 73.81741 74.4000. 0.374 -0.550 -1.026 Close range F, β -0.06001 -0.08825 -0.16473 G4m 0.285 0.419 0.782 Image plane -0.472 -0.694 -1.296 (Values corresponding to conditions) Lens Original Ft 196.0000 F1 89.3190 F23t -47.3622 F4 105.1234 F4f 90.0000 F4m -44.5975 F4r 53.1207 Φf 38.8 Φm 29.8 nd1 1.84666 nd2 1.74100 nd3 1.71700 Nd 1.76822 Conditional expression (1) | F4 ・ F4m / (F4f8 ・ F4f8F4 ・ 8) ) F4 / (F4f ・ F4r ・ Nd) 0.012 Conditional expression (3) | Φf ・ F4r / (F4 ・ Φm) | 0.66 Conditional expression (4) | Ft ・ F23t ・ F4m / (F1 ・ F4f ・ F4r) | 0.97 No. FIGS. 16 to 18 are aberration charts in the infinity state in which the focal lengths at the wide-angle end, the middle, and the telephoto end are arranged in this order.
FIG. 9 to FIG. 21 are various aberration diagrams in the in-focus state at the close-up distance (R = 1500 mm) in the order of the wide-angle end, the middle, and the telephoto end focal length. As a result, it is apparent that the large aperture ratio in-focus telephoto zoom lens according to the present invention achieves very good imaging performance not only during normal use but also during image stabilization. (Embodiment 4) FIG. 22 is a diagram showing the structure of a large aperture ratio in-focus telephoto zoom lens according to a fourth embodiment of the present invention, showing the positions of the respective lens groups in the wide-angle end focal length and infinity in-focus condition. ing. The illustrated large aperture ratio in-focus telephoto zoom lens includes a meniscus negative lens L11 having a convex shape on the object side and a meniscus positive lens L1 having a convex shape on the object side in order from the object side.
The front lens group G1f of the first lens group G1 including a negative lens cemented to 2 and a meniscus positive lens L13 having a convex surface on the object side.
A rear lens group G1r of the first lens group G1 including a convex meniscus negative lens L14 on the object side and a convex positive meniscus lens L15 on the object side, and a biconcave lens L21 having a strong concave surface on the image side. , Biconcave lens L22 and biconvex lens L2
A second lens group G2 composed of a positive lens cemented with 3 and a negative meniscus negative lens L24 on the object side, a positive meniscus lens L31 concave on the object side, a biconvex lens L32 and a negative meniscus negative lens on the object side. A third lens group G3 including a cemented positive lens L33, an aperture stop S1, a meniscus negative lens L41 having a convex shape on the object side, and a biconvex lens L4.
2 cemented positive lens, a meniscus positive lens L43 having a convex shape on the object side, a front group G4f of a fourth lens group G4 composed of a field stop S2 with a large spacing, and a cemented biconvex lens L44 and biconcave lens L45. A middle lens group G4m including a negative lens and a biconcave lens L46, and a field stop S4.
3, a rear lens group G4r of a fourth lens group G4 including a positive meniscus lens L47 having a concave shape on the object side, a biconvex lens L48 and a cemented positive lens having a negative meniscus lens L49 having a concave surface shape on the object side.

【0032】表4に、本発明の実施例4の諸元表の値を
示す。
Table 4 shows the values in the specifications table of the fourth embodiment of the present invention.

【0033】[0033]

【表4】 F=71.40〜194.00 FNO=2.9 r d ν nd Φ 1) 112.7919 2.2000 46.58 1.804000 2) 61.3912 10.0000 82.52 1.497820 3) 152.6280 0.1000 4) 70.7792 9.5000 82.52 1.497820 5) 490.0069(d5=可変) 6) 65.8897 1.8000 23.78 1.846660 7) 50.2390 1.9200 8) 58.8118 8.7000 60.09 1.640000 9) 1374.5711(d9=可変) 10)-1062.4201 1.9000 52.67 1.741000 11) 31.8517 6.8350 12) -57.1143 1.8000 70.41 1.487490 13) 38.1561 7.0000 25.43 1.805180 14) -212.6685 1.8030 15) -63.9088 1.9000 39.59 1.804400 16)-1030.2355(d16=可変) 17)-8754.5308 3.9000 82.52 1.497820 18) -95.7952 0.2000 19) 106.0199 8.0000 82.52 1.497820 20) -53.8938 2.0000 52.67 1.741000 21) -168.9201(d21=可変) 22>(開口絞り) 1.0000 23) 108.4963 2.0000 25.43 1.805180 Φf=37.4 24) 39.3588 7.0000 55.52 1.696800 25) -284.6682 0.1000 26) 72.8187 3.5000 46.54 1.804109 27) 112.6497 19.0000 28)(視野絞り) 1.4631 29) 376.5966 3.8000 23.78 1.846660 Φm=26.8 30) -57.8860 1.5000 52.67 1.741000 31) 50.0430 3.9000 32) -246.5579 1.5000 52.67 1.741000 33) 102.2448 2.7087 34)(視野絞り) 4.0000 35) -996.3581 4.0000 82.52 1.497820 36) -63.7397 0.1000 37) 68.7664 7.5000 52.67 1.741000 38) -63.3264 2.0000 23.78 1.846660 39) -580.2262 (合焦時における可変間隔) 無限遠 F、β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ d5 12.68549 12.68549 12.68549 d9 3.33478 15.78418 28.06737 d16 39.14669 29.08243 1.82331 d21 8.16563 5.78049 20.75642 Bf 66.58874 66.58874 66.58874 至近距離 F、β -0.06006 -0.08833 -0.16487 D0 1235.4488 1235.4488 1235.4488 d5 3.55394 3.55394 3.55394 d9 12.46633 24.91574 37.19892 d16 39.14669 29.08243 1.82331 d21 8.16563 5.78049 20.75642 Bf 66.58874 66.58874 66.58874 (防振補正移動量) 無限遠 F、β 71.4000 135.0000 194.0000 G4m 0.256 0.376 0.701 像面 -0.374 -0.550 -1.026 至近距離 F、β -0.06001 -0.08825 -0.16473 G4m 0.323 0.475 0.886 像面 -0.472 -0.694 -1.295 (条件対応値) レンズ諸元 Ft 196.0000 F1 94.0200 F23t -50.7126 F4 105.7238 F4f 90.0000 F4m -46.9447 F4r 55.9165 Φf 36.4 Φm 30.4 nd1 1.84666 nd2 1.74100 nd3 1.74100 Nd 1.77622 条件式(1) |F4・F4m/(F4f・F4r)| 0.99 条件式(2) F4/(F4f・F4r・Nd) 0.012 条件式(3) |Φf・F4r/(F4・Φm)| 0.63 条件式(4) |Ft・F23t・F4m/(F1・F4f・F4r)| 0.99 第23図〜第25図はそれぞれ広角端、中間、望遠端焦
点距離の順番とした無限遠状態における諸収差図、第2
6図〜第28図はそれぞれ広角端、中間、望遠端焦点距
離の順番とした至近距離(R=1500mm)合焦状態
における諸収差図である。これにより、本発明による大
口径比内焦望遠ズームレンズは、通常使用時はもとよ
り、防振補正の際も非常に良好な結像性能を達成してい
る事は明らかである。
[Table 4] F = 71.40 to 194.00 FNO = 2.9 rd ν nd Φ 1) 112.7919 2.2000 46.58 1.804000 2) 61.3912 10.0000 82.52 1.497820 3) 152.6280 0.1000 4) 70.7792 9.5000 82.52 1.497820 5) 490.0069 (d5 = 6) 65.8897 1.8000 23.78 1.846660 7) 50.2390 1.9200 8) 58.8118 8.7000 60.09 1.640000 9) 1374.5711 (d9 = variable) 10) -1062.4201 1.9000 52.67 1.741000 11) 31.8517 6.8350 12) -57.1143 1.8000 70.41 1.487490 13) 38.1561 7.0000 25.43 1.43 14) -212.6685 1.8030 15) -63.9088 1.9000 39.59 1.804400 16) -1030.2355 (d16 = variable) 17) -8754.5308 3.9000 82.52 1.497820 18) -95.7952 0.2000 19) 106.0199 8.0000 82.52 1.497820 20) -53.8938 2.0000 52.67 1.741000 21) -168.9201 (D21 = variable) 22> (aperture diaphragm) 1.0000 23) 108.4963 2.0000 25.43 1.805180 Φf = 37.4 24) 39.3588 7.0000 55.52 1.696800 25) -284.6682 0.1000 26) 72.8187 3.5000 46.54 1.804109 27) 112.6497 19.0000 28) (field diaphragm) 1.4631 29 ) 376.5966 3.8000 23.78 1.846660 Φm = 26.8 30) -57.8860 1.5000 52. 67 1.741000 31) 50.0430 3.9000 32) -246.5579 1.5000 52.67 1.741000 33) 102.2448 2.7087 34) (field diaphragm) 4.0000 35) -996.3581 4.0000 82.52 1.497820 36) -63.7397 0.1000 37) 68.7664 7.5000 52.67 1.741000 38) -63.3264 2.0000 23.78 1.846660 39 ) -580.2262 (Variable distance when focusing) Infinity F, β 71.40000 105.00000 196.00000 D0 ∞ ∞ ∞ d5 12.68549 12.68549 12.68549 d9 3.33478 15.78418 28.06737 d16 39.14669 29.08243 1.82331 β21 close to 66.5886 66, 5.78049 20.75642 Bf66 66.58866. -0.08833 -0.16487 D0 1235.4488 1235.4488 1235.4488 d5 3.55394 3.55394 3.55394 d9 12.46633 24.91574 37.19892 d16 39.14669 29.08243 1.82331 d21 8.16563 5.78049 20.75642 Bf 66.58874 0.60 0000 0000. 0.374 -0.550 -1.026 Close range F, β -0.06001 -0.08825 -0.16473 G4m 0.323 0.475 0.886 Image plane -0.472 -0.694 -1.295 (Values corresponding to conditions) Lens Former Ft 196.0000 F1 94.0200 F23t -50.7126 F4 105.7238 F4f 90.0000 F4m -46.9447 F4r 55.9165 Φf 36.4 Φm 30.4 nd1 1.84666 nd2 1.74100 nd3 1.74100 Nd 1.77622 Conditional formula (1) | F4 ・ F4m / (F4f ・ F4f0.99) ) F4 / (F4f ・ F4r ・ Nd) 0.012 Conditional expression (3) | Φf ・ F4r / (F4 ・ Φm) | 0.63 Conditional expression (4) | Ft ・ F23t ・ F4m / (F1 ・ F4f ・ F4r) | 0.99 23 to 25 are various aberration diagrams in the infinite state in which the focal lengths at the wide-angle end, the middle, and the telephoto end are arranged in this order, and FIG.
FIGS. 6 to 28 are various aberration diagrams in the in-focus state at the close-up distance (R = 1500 mm) in the order of the wide-angle end, the middle, and the telephoto end focal length. As a result, it is apparent that the large aperture ratio in-focus telephoto zoom lens according to the present invention achieves very good imaging performance not only during normal use but also during image stabilization.

【0034】なお、上述の実施例において、鏡筒の外径
方向寸法が大きくなる事を厭わなければ、第4レンズ群
G4の前群G4fで防振補正する事も可能である。
In the above-described embodiment, if the size of the lens barrel in the outer diameter direction is increased, it is possible to perform image stabilization with the front group G4f of the fourth lens group G4.

【0035】[0035]

【発明の効果】以上説明したように、本発明のズームレ
ンズによれば、優れた光学性能を維持しつつ防振撮影が
可能である。また、本発明のズームレンズによれば、無
限遠状態から至近距離合焦状態にわたり優れた結像性能
を維持できる。さらに、本発明のズームレンズによれ
ば、合焦レンズ群と変倍レンズ群と防振レンズ群とが独
立しているので、単純なメカ構造とする事ができる為、
振動や落下による衝撃にも強い構造とする事ができる。
As described above, according to the zoom lens of the present invention, it is possible to perform vibration-proof shooting while maintaining excellent optical performance. Further, according to the zoom lens of the present invention, excellent image forming performance can be maintained from the infinity state to the close-range in-focus state. Further, according to the zoom lens of the present invention, since the focusing lens group, the variable power lens group, and the anti-vibration lens group are independent, a simple mechanical structure can be obtained.
It is possible to have a structure that is resistant to vibration and impact due to dropping.

【図面の簡単な説明】[Brief description of drawings]

【図 1】本発明の第1実施例にかかる大口径比内焦望
遠ズームレンズの構成図を示す図である。
FIG. 1 is a diagram showing a configuration of a large aperture ratio in-focus telephoto zoom lens according to Example 1 of the present invention.

【図 2】本発明の第1実施例の広角端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 2 is a diagram of various types of aberration in the wide-angle end focal length and infinity in-focus state according to the first embodiment of the present invention.

【図 3】本発明の第1実施例の中間焦点距離かつ無限
遠合焦状態における諸収差図である。
FIG. 3 is a diagram of various types of aberration in the first embodiment of the present invention when focused on an intermediate focal length and at infinity.

【図 4】本発明の第1実施例の望遠端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 4 is a diagram of various types of aberration in the telephoto end focal length and the infinity in-focus state according to the first embodiment of the present invention.

【図 5】本発明の第1実施例の広角端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 5 is a diagram showing various aberrations of the first embodiment of the present invention at the wide-angle end focal length and in the closest focusing state.

【図 6】本発明の第1実施例の中間焦点距離かつ至近
合焦状態における諸収差図である。
FIG. 6 is a diagram of various types of aberration in the first embodiment of the present invention at the intermediate focal length and in the closest focusing state.

【図 7】本発明の第1実施例の望遠端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 7 is a diagram showing various aberrations of the first embodiment of the present invention at the telephoto end focal length and in a close-up in-focus state.

【図 8】本発明の第2実施例にかかる大口径比内焦望
遠ズームレンズの構成図を示す図である。
FIG. 8 is a diagram showing a configuration of a large aperture ratio in-focus telephoto zoom lens according to Example 2 of the present invention.

【図 9】本発明の第2実施例の広角端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 9 is a diagram showing various aberrations of the second embodiment of the present invention at the wide-angle end focal length and in focus at infinity.

【図 10】本発明の第2実施例の中間焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 10 is a diagram of various types of aberration in the second embodiment of the present invention when focused on an intermediate focal length and at infinity.

【図11】本発明の第2実施例の望遠端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 11 is a diagram of various types of aberration in the telephoto end focal length and the infinity in-focus state of the second embodiment of the present invention.

【図12】本発明の第2実施例の広角端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 12 is a diagram showing various aberrations of the second embodiment of the present invention at the wide-angle end focal length and in the closest focusing state.

【図13】本発明の第2実施例の中間焦点距離かつ至近
合焦状態における諸収差図である。
FIG. 13 is a diagram of various types of aberration in the second embodiment of the present invention at the intermediate focal length and in the closest focusing state.

【図14】本発明の第2実施例の望遠端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 14 is a diagram of various types of aberration in the telephoto end focal length and the closest focusing state according to the second example of the present invention.

【図15】本発明の第3実施例にかかる大口径比内焦望
遠ズームレンズの構成図を示す図である。
FIG. 15 is a diagram showing a configuration of a large aperture ratio in-focus telephoto zoom lens according to Example 3 of the present invention.

【図16】本発明の第3実施例の広角端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 16 is a diagram of various types of aberration of the third embodiment of the present invention at the wide-angle end focal length and infinity.

【図17】本発明の第3実施例の中間焦点距離かつ無限
遠合焦状態における諸収差図である。
FIG. 17 is a diagram of various types of aberration in the third embodiment of the present invention with an intermediate focal length and infinity in focus.

【図18】本発明の第3実施例の望遠端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 18 is a diagram of various types of aberration in the telephoto end focal length and the infinity in-focus state according to the third embodiment of the present invention.

【図19】本発明の第3実施例の広角端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 19 is a diagram showing various aberrations of the third embodiment of the present invention at the wide-angle end focal length and in the closest focusing state.

【図20】本発明の第3実施例の中間焦点距離かつ至近
合焦状態における諸収差図である。
FIG. 20 is a diagram of various types of aberration in the third embodiment of the present invention at the intermediate focal length and in the closest focusing state.

【図21】本発明の第3実施例の望遠端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 21 is a diagram of various types of aberration in the telephoto end focal length and the closest focusing state according to the third example of the present invention.

【図22】本発明の第4実施例にかかる大口径比内焦望
遠ズームレンズの構成図を示す図である。
FIG. 22 is a diagram showing a configuration diagram of a large aperture ratio in-focus telephoto zoom lens according to Example 4 of the present invention.

【図23】本発明の第4実施例の広角端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 23 is a diagram of various types of aberration of the fourth embodiment of the present invention at the wide-angle end focal length and infinity.

【図24】本発明の第4実施例の中間焦点距離かつ無限
遠合焦状態における諸収差図である。
FIG. 24 is a diagram of various types of aberration in the fourth embodiment of the present invention with an intermediate focal length and infinity in focus.

【図25】本発明の第4実施例の望遠端焦点距離かつ無
限遠合焦状態における諸収差図である。
FIG. 25 is a diagram of various types of aberration in the fourth embodiment of the present invention at the telephoto end focal length and infinity in focus.

【図26】本発明の第4実施例の広角端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 26 is a diagram of various types of aberration of the fourth embodiment of the present invention at the wide-angle end focal length and in the closest focusing state.

【図27】本発明の第4実施例の中間焦点距離かつ至近
合焦状態における諸収差図である。
FIG. 27 is a diagram of various types of aberration in the fourth embodiment of the present invention at the intermediate focal length and in the closest focusing state.

【図28】本発明の第4実施例の望遠端焦点距離かつ至
近合焦状態における諸収差図である。
FIG. 28 is a diagram of various types of aberration in the fourth embodiment of the present invention at the telephoto end focal length and in the closest focusing state.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 G4 第4レンズ群 G1f 第1レンズ群の前群 G1r 第1レンズ群の後群 G4f 第4レンズ群の前群 G4m 第4レンズ群の中群 G4r 第4レンズ群の後群 S1 開口絞り S2 視野絞り S3 視野絞り I 像面 G1 first lens group G2 Second lens group G3 Third lens group G4 4th lens group G1f Front group of the first lens group G1r Rear group of first lens group G4f Front group of fourth lens group G4m Middle group of 4th lens group G4r Rear group of 4th lens group S1 aperture stop S2 Field stop S3 Field stop I image plane

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA02 KA03 MA18 NA07 PA15 PA16 PB20 QA02 QA06 QA07 QA17 QA21 QA25 QA37 QA39 QA41 QA45 RA31 RA32 SA23 SA27 SA29 SA32 SA63 SA64 SA72 SA75 SB06 SB15 SB24 SB31    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H087 KA02 KA03 MA18 NA07 PA15                       PA16 PB20 QA02 QA06 QA07                       QA17 QA21 QA25 QA37 QA39                       QA41 QA45 RA31 RA32 SA23                       SA27 SA29 SA32 SA63 SA64                       SA72 SA75 SB06 SB15 SB24                       SB31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、正屈折力を有する第1レ
ンズ群G1、負屈折力を有する第2レンズ群G2、正屈
折力を有する第3レンズ群G3、正屈折力を有する第4
レンズ群G4とを備え、前記第2レンズ群G2と前記第
3レンズ群G3とを光軸に沿って移動させて変倍を行う
4群アフォーカルズームレンズにおいて、 前記第4レンズ群G4は、物体側より順に、正屈折力を
有する前群G4f、負屈折力を有する中群G4m、正屈
折力を有する後群G4rより構成し、 前記中群G4mを光軸と垂直な方向に偏心させて結像位
置を変位する構成とし、 前記前群G4fは、正屈折力のレンズ1個と負屈折力の
レンズ1個を含み、 前記中群G4mは、正屈折力のレンズ1個と負屈折力の
レンズ2個を含み、 前記後群G4rは、正屈折力のレンズ2個と負屈折力の
レンズ1個を含み、 前記第4レンズ群G4の焦点距離をF4、前記前群G4
fの焦点距離をF4f、前記中群G4mの焦点距離をF
4m、前記後群G4rの焦点距離をF4rとする場合、 以下の条件を満足する事を特徴とするズームレンズ。 0.70<|(F4×F4m)/(F4f×F4r)|
<1.20
1. A first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a fourth lens group having a positive refractive power in order from the object side.
A lens group G4 is provided, and the second lens group G2 and the third lens group G3 are moved along the optical axis to perform zooming.
In the 4-group afocal zoom lens, the fourth lens group G4 is composed of, in order from the object side, a front group G4f having a positive refractive power, a middle group G4m having a negative refractive power, and a rear group G4r having a positive refractive power. A configuration in which the middle group G4m is decentered in a direction perpendicular to the optical axis to displace the image forming position, and the front group G4f includes one lens having a positive refracting power and one lens having a negative refracting power, The middle group G4m includes one lens having positive refracting power and two lenses having negative refracting power, and the rear group G4r includes two lenses having positive refracting power and one lens having negative refracting power, and the fourth group The focal length of the lens group G4 is F4, and the front group G4 is
The focal length of f is F4f, and the focal length of the middle group G4m is F4.
The zoom lens is characterized by satisfying the following conditions when the focal length of the rear group G4r is 4 m and F4r. 0.70 <| (F4 × F4m) / (F4f × F4r) |
<1.20
【請求項2】前記第4レンズ群G4を構成するレンズの
d線における平均屈折率をNdとする場合、 以下の条件を満足する事を特徴とする、請求項1記載の
ズームレンズ。 0.008<F4/(F4f×F4r×Nd)<0.0
15
2. The zoom lens according to claim 1, wherein the following conditions are satisfied when the average refractive index at the d-line of the lenses constituting the fourth lens group G4 is Nd. 0.008 <F4 / (F4f × F4r × Nd) <0.0
15
【請求項3】前記前群G4fの最大有効径をΦf、前記
中群G4mの最大有効径をΦmとする場合、 以下の条件を満足する事を特徴とする、請求項1または
2記載のズームレンズ。 0.40<|(Φf×F4r)/(F4×Φm)|<
0.80
3. The zoom according to claim 1, wherein the following conditions are satisfied when the maximum effective diameter of the front group G4f is Φf and the maximum effective diameter of the middle group G4m is Φm. lens. 0.40 <| (Φf × F4r) / (F4 × Φm) | <
0.80
【請求項4】望遠端焦点距離をFt、前記第1レンズ群
G1の焦点距離をF1、前記第2レンズ群G2と第3レ
ンズ群G3の望遠端焦点距離時の合成焦点距離をF23
tとする場合、 以下の条件を満足する事を特徴とする、請求項1ないし
3記載のズームレンズ。 0.70<|(Ft×F23t×F4m)/(F1×F4
f×F4r)|<1.20
4. The telephoto end focal length is Ft, the focal length of the first lens group G1 is F1, and the combined focal length of the second lens group G2 and the third lens group G3 at the telephoto end focal length is F23.
The zoom lens according to claim 1, wherein the following condition is satisfied when t is set. 0.70 <| (Ft × F23t × F4m) / (F1 × F4
f × F4r) | <1.20
【請求項5】前記前群G4fは、正屈折力のレンズ2個
と負屈折力のレンズ1個より成り、前記後群G4rは、
正屈折力のレンズ2個と負屈折力のレンズ1個より成る
事を特徴とする、請求項1ないし4記載のズームレン
ズ。
5. The front group G4f is composed of two lenses having positive refractive power and one lens having negative refractive power, and the rear group G4r is
5. The zoom lens according to claim 1, comprising two lenses having positive refracting power and one lens having negative refracting power.
【請求項6】前記正屈折力を有する第1レンズ群G1
は、像面に対して光軸方向に固定である前群G1fと可
動である後群G1rとで構成し、 前記後群G1rが光軸方向に移動することにより近距離
合焦を行うことを特徴とする、請求項1ないし5記載の
ズームレンズ。
6. A first lens group G1 having the positive refractive power.
Is composed of a front group G1f which is fixed in the optical axis direction with respect to the image plane and a rear group G1r which is movable. The rear group G1r moves in the optical axis direction to perform short-distance focusing. The zoom lens according to claim 1, wherein the zoom lens is a zoom lens.
JP2001285414A 2001-09-19 2001-09-19 Zoom lens Expired - Fee Related JP3753038B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001285414A JP3753038B2 (en) 2001-09-19 2001-09-19 Zoom lens
US10/244,406 US6693750B2 (en) 2001-09-19 2002-09-17 Zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285414A JP3753038B2 (en) 2001-09-19 2001-09-19 Zoom lens

Publications (3)

Publication Number Publication Date
JP2003090958A true JP2003090958A (en) 2003-03-28
JP2003090958A5 JP2003090958A5 (en) 2005-10-27
JP3753038B2 JP3753038B2 (en) 2006-03-08

Family

ID=19108564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285414A Expired - Fee Related JP3753038B2 (en) 2001-09-19 2001-09-19 Zoom lens

Country Status (1)

Country Link
JP (1) JP3753038B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140969A (en) * 2003-11-06 2005-06-02 Canon Inc Zoom lens and imaging apparatus having the same
JP2007212830A (en) * 2006-02-10 2007-08-23 Pentax Corp Telephoto zoom lens system
JP2008216480A (en) * 2007-03-01 2008-09-18 Tamron Co Ltd Telephoto zoom lens
JP2011070220A (en) * 2010-12-20 2011-04-07 Fujifilm Corp Variable magnification optical system with vibration-proof function and imaging apparatus incorporating the variable magnification optical system
JP2011158630A (en) * 2010-01-29 2011-08-18 Tamron Co Ltd Anti-vibration zoom lens optical system
US8031411B2 (en) 2008-06-05 2011-10-04 Samsung Electronics Co., Ltd. Telephoto zoom lens
JP2012058620A (en) * 2010-09-10 2012-03-22 Tamron Co Ltd Zoom lens
JP2012118097A (en) * 2010-11-29 2012-06-21 Sigma Corp Large-aperture telephoto zoom lens having vibration control function
US8405906B2 (en) 2007-10-02 2013-03-26 Nikon Corporation Zoom lens system, optical apparatus, and method for manufacturing zoom lens system
JP2014132364A (en) * 2014-04-08 2014-07-17 Tamron Co Ltd Anti-shake zoom lens optical system
JP2015092300A (en) * 2015-02-19 2015-05-14 株式会社シグマ Large-aperture telephoto zoom lens having vibration control function
JP2019191317A (en) * 2018-04-23 2019-10-31 株式会社シグマ Large-aperture zoom lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278445A (en) * 1995-04-04 1996-10-22 Nikon Corp Zoom lens having vibration-isolating function
JPH09325269A (en) * 1996-06-03 1997-12-16 Nikon Corp Image position correcting optical system
JPH1090599A (en) * 1996-09-12 1998-04-10 Nikon Corp Zoom lens with vibration proof function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278445A (en) * 1995-04-04 1996-10-22 Nikon Corp Zoom lens having vibration-isolating function
JPH09325269A (en) * 1996-06-03 1997-12-16 Nikon Corp Image position correcting optical system
JPH1090599A (en) * 1996-09-12 1998-04-10 Nikon Corp Zoom lens with vibration proof function

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508604B2 (en) * 2003-11-06 2010-07-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2005140969A (en) * 2003-11-06 2005-06-02 Canon Inc Zoom lens and imaging apparatus having the same
JP4751732B2 (en) * 2006-02-10 2011-08-17 Hoya株式会社 Telephoto zoom lens system
JP2007212830A (en) * 2006-02-10 2007-08-23 Pentax Corp Telephoto zoom lens system
US7289274B1 (en) 2006-02-10 2007-10-30 Pentax Corporation Telescopic zoom lens system
JP2008216480A (en) * 2007-03-01 2008-09-18 Tamron Co Ltd Telephoto zoom lens
US8405906B2 (en) 2007-10-02 2013-03-26 Nikon Corporation Zoom lens system, optical apparatus, and method for manufacturing zoom lens system
US8031411B2 (en) 2008-06-05 2011-10-04 Samsung Electronics Co., Ltd. Telephoto zoom lens
US8305687B2 (en) 2008-06-05 2012-11-06 Samsung Electronics Co., Ltd. Telephoto zoom lens
JP2011158630A (en) * 2010-01-29 2011-08-18 Tamron Co Ltd Anti-vibration zoom lens optical system
JP2012058620A (en) * 2010-09-10 2012-03-22 Tamron Co Ltd Zoom lens
JP2012118097A (en) * 2010-11-29 2012-06-21 Sigma Corp Large-aperture telephoto zoom lens having vibration control function
JP2011070220A (en) * 2010-12-20 2011-04-07 Fujifilm Corp Variable magnification optical system with vibration-proof function and imaging apparatus incorporating the variable magnification optical system
JP2014132364A (en) * 2014-04-08 2014-07-17 Tamron Co Ltd Anti-shake zoom lens optical system
JP2015092300A (en) * 2015-02-19 2015-05-14 株式会社シグマ Large-aperture telephoto zoom lens having vibration control function
JP2019191317A (en) * 2018-04-23 2019-10-31 株式会社シグマ Large-aperture zoom lens

Also Published As

Publication number Publication date
JP3753038B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3800134B2 (en) Large aperture ratio internal focusing telephoto zoom lens
JP4626135B2 (en) Large aperture ratio internal focusing telephoto zoom lens
JP4978119B2 (en) High zoom ratio zoom lens
US6693750B2 (en) Zoom lens system
JP4590826B2 (en) Variable focal length lens system
JP4479204B2 (en) Highly variable magnification optical system capable of image shift
JP2004061910A (en) Zoom lens provided with vibration-proofing function
JP4374853B2 (en) Anti-shake zoom lens
JP2012068303A (en) Photographic lens, optical equipment including photographic lens, and method for manufacturing photographic lens
JPH10104520A (en) Wide angle zoom lens
JPH11258504A (en) Vibration proof zoom lens
JP3753038B2 (en) Zoom lens
JPH08122640A (en) Zoom lens
JP3536128B2 (en) Zoom lens with anti-vibration function
JPH1164732A (en) Zoom lens
JPH0727975A (en) Rear conversion lens provided with vibration proof function
JP4380158B2 (en) Zoom lens
JP2000019398A (en) Large aperture ratio inner focus type telephoto zoom lens
JP2001290076A (en) Variable focal length lens system
JPH06123836A (en) Zoom lens with vibration preventing function
JP2000275524A (en) Zoom lens
JP4032502B2 (en) Large aperture ratio in-focus super telephoto lens
JPH1090599A (en) Zoom lens with vibration proof function
JP4333151B2 (en) Zoom lens
JP2004226644A (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3753038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees