JP2003086783A - Solid-state image pickup element and its manufacturing method - Google Patents

Solid-state image pickup element and its manufacturing method

Info

Publication number
JP2003086783A
JP2003086783A JP2001276133A JP2001276133A JP2003086783A JP 2003086783 A JP2003086783 A JP 2003086783A JP 2001276133 A JP2001276133 A JP 2001276133A JP 2001276133 A JP2001276133 A JP 2001276133A JP 2003086783 A JP2003086783 A JP 2003086783A
Authority
JP
Japan
Prior art keywords
image pickup
signal charge
sensor
solid
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001276133A
Other languages
Japanese (ja)
Other versions
JP4972838B2 (en
Inventor
Masanori Ohashi
正典 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001276133A priority Critical patent/JP4972838B2/en
Publication of JP2003086783A publication Critical patent/JP2003086783A/en
Application granted granted Critical
Publication of JP4972838B2 publication Critical patent/JP4972838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity by forming a longitudinal overflow barrier deep and to suppress color mixing due to interference between adjacent pixels accompanying reduction in cell size. SOLUTION: In order to optimize the impurity profile of a photodetection pixel of a solid-state image pickup element by colors that respective pixels take charge of, a sensor structure has a profile of multi-stage constitution increased in photoelectric conversion efficiency along the depth of a silicon substrate, by performing ion implantation of n+ impurities of a sensor divisionally a plurality of times while the energy and mask pattern are changed. So that photoelectric conversion is effectively performed corresponding to the incident wavelength filtered by a color filter on a photodetection pixel, part of the multi-stage constitution of n-type impurities of the sensor is expanded, the expanded area is formed to the best depth for each pixel to provide expanded parts at different positions by adjacent pixels, and interference between the adjacent pixels is avoided to actualize both sensitivity improvement and prevention against color mixing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2次元イメージセ
ンサやラインセンサ等のカラー画像を読み取る固体撮像
素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device such as a two-dimensional image sensor or a line sensor for reading a color image, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年の固体撮像素子において、撮像画素
(セル)の微細化に伴う感度低下を補うために、単位セ
ル当たりの量子効率を上げることが必須となっている。
そこで、従来は、例えばオンチップマイクロレンズの形
状を工夫することなどにより、入射光量を有効にセンサ
領域に取り込む施策が取られてきているが、センサ領域
に取り込まれた入射光が、その後、シリコン(Si)基
板中で光電変換され、信号電荷として有効にフォトダイ
オードに蓄積されなければ、スミア成分となったり、シ
リコン基板のドレイン側に捨てられてしまい、結果的に
感度として寄与することはできない。
2. Description of the Related Art In recent solid-state image pickup devices, it is essential to increase the quantum efficiency per unit cell in order to compensate for the decrease in sensitivity due to the miniaturization of image pickup pixels (cells).
Therefore, conventionally, measures such as devising the shape of the on-chip microlens have been taken to effectively capture the amount of incident light into the sensor area. Unless photoelectrically converted in the (Si) substrate and effectively accumulated as a signal charge in the photodiode, it becomes a smear component or is discarded on the drain side of the silicon substrate, and as a result, it cannot contribute as sensitivity. .

【0003】そして、光電変換された電荷をセンサ領域
に有効に蓄積させるためには、フォトダイオードの下層
電荷蓄積領域であるn領域を3次元的に極力拡大する必
要がある。その拡大方法として、(1)シリコン基板の
深さ方向にn領域を拡大する方法と、(2)シリコン基
板の2次元方向(基板面方向)にn領域を拡大する方法
が考えられる。
In order to effectively store the photoelectrically converted charges in the sensor region, it is necessary to three-dimensionally expand the n region, which is the lower layer charge storage region of the photodiode. As the expansion method, (1) a method of expanding the n region in the depth direction of the silicon substrate and (2) a method of expanding the n region in the two-dimensional direction (substrate surface direction) of the silicon substrate can be considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
(1)の深さ方向にn領域を拡大する方法では、オーバ
ーフローバリアの位置を深く形成することで実現し得る
が、センサ領域のセルサイズに対する深さ方向のアスペ
クト比が大きくなるため、3次元的な締め付けが発生し
ないように、スムーズなプロファイルを形成することが
困難となってきている。図2は、一般的な縦形オーバー
フロードレインを有するCCD固体撮像素子のセンサ部
における不純物プロファイルを示す説明図であり、図3
は、オーバーフローバリアの位置を深く形成したCCD
固体撮像素子のセンサ部における不純物プロファイルを
示す説明図である。なお、各図において、それぞれ縦軸
はポテンシャルレベルφ(V)を示し、横軸はシリコン
基板における表面からの深さ位置を示している。
However, the method (1) for expanding the n region in the depth direction can be realized by forming the position of the overflow barrier deeply, but the depth relative to the cell size of the sensor region can be increased. Since the aspect ratio in the depth direction becomes large, it has become difficult to form a smooth profile so that three-dimensional tightening does not occur. FIG. 2 is an explanatory diagram showing an impurity profile in a sensor portion of a CCD solid-state imaging device having a general vertical overflow drain, and FIG.
Is a CCD with a deep overflow barrier
It is explanatory drawing which shows the impurity profile in the sensor part of a solid-state image sensor. In each figure, the vertical axis represents the potential level φ (V), and the horizontal axis represents the depth position from the surface of the silicon substrate.

【0005】図示のように、センサ部は、入射光が光電
変換された後、電荷の蓄積を行うn型層と、オーバーフ
ローバリアを形成するp型層、および界面準位によって
発生する電荷の湧き出し(暗電流)を抑制するようにセ
ンサ部のシリコン表面をピニングさせるp型高濃度層
(p+)から構成されている。上述した深さ方向にセン
サ領域(n領域)を拡大する構成では、図3に示すよう
に、オーバーフローバリアをシリコン表面からより深い
位置に形成し、その間をn−領域による繋ぎ空乏層を滑
らかに伸ばすプロファイルをとることによって実現する
ことができる。
As shown in the figure, in the sensor portion, after the incident light is photoelectrically converted, an n-type layer for accumulating charges, a p-type layer for forming an overflow barrier, and a charge outflow generated by an interface state. Of the p-type high concentration layer (p +) for pinning the silicon surface of the sensor portion so as to suppress the dark current (dark current). In the above-described configuration in which the sensor region (n region) is expanded in the depth direction, as shown in FIG. 3, the overflow barrier is formed at a deeper position from the silicon surface, and the gap between the overflow barriers is smoothly formed by the n-region. It can be achieved by taking a stretching profile.

【0006】図5及び図6は、このようにセンサのn領
域をシリコン基板の深さ方向に拡大したCCD固体撮像
素子の構造を示す断面図であり、図5は水平方向に隣接
する画素間の構造を示し、図6は垂直方向に隣接する画
素間の構造を示している。図5において、シリコン基板
10の上層にRGBに対応する各画素のセンサ領域11
A、11Bが配置され、各センサ領域11A、11Bの
間には垂直転送レジスタ12が形成されている。そし
て、シリコン基板10の上面には、絶縁膜13を介して
各垂直転送レジスタ12に対応して転送電極14が配置
され、その上面に遮光膜16が配置されている。
FIGS. 5 and 6 are sectional views showing the structure of a CCD solid-state image pickup device in which the n region of the sensor is enlarged in the depth direction of the silicon substrate as described above. FIG. 6 shows the structure between adjacent pixels in the vertical direction. In FIG. 5, the sensor region 11 of each pixel corresponding to RGB is provided on the upper layer of the silicon substrate 10.
A and 11B are arranged, and a vertical transfer register 12 is formed between the sensor areas 11A and 11B. Then, the transfer electrodes 14 are arranged on the upper surface of the silicon substrate 10 so as to correspond to the vertical transfer registers 12 via the insulating film 13, and the light shielding film 16 is arranged on the upper surface thereof.

【0007】また、図6においては、各垂直転送レジス
タ12のための転送電極14、15が配置され、その上
面に遮光膜16が配置されている。図示のように、各セ
ンサ領域11A、11Bのn領域をシリコン基板10の
深さ方向に拡大すると、シリコン基板10の深部におい
て隣接するn領域同士が近接し過ぎ、特に垂直転送レジ
スタ12が介在しない垂直方向の隣接画素の間で混色の
懸念が発生する。
Further, in FIG. 6, transfer electrodes 14 and 15 for each vertical transfer register 12 are arranged, and a light shielding film 16 is arranged on the upper surface thereof. As illustrated, when the n regions of the sensor regions 11A and 11B are enlarged in the depth direction of the silicon substrate 10, adjacent n regions are too close to each other in the deep portion of the silicon substrate 10, and the vertical transfer register 12 is not particularly interposed. There is a concern about color mixing between adjacent pixels in the vertical direction.

【0008】一方、上記(2)のプロファイルの2次元
方向に単純にn領域を拡大する方法は、垂直転送電極領
域の縮小による取り扱い電荷の減少や、読み出しゲート
の縮小によるブルーミングマージンの減少、さらには隣
接するセルへの混色等、基本特性の劣化を招いてしま
う。
On the other hand, in the method of simply enlarging the n region in the two-dimensional direction of the profile of (2), the handling charge is reduced by reducing the vertical transfer electrode region and the blooming margin is reduced by reducing the read gate. Causes deterioration of basic characteristics such as color mixing in adjacent cells.

【0009】そこで本発明の目的は、セルサイズの縮小
に伴う感度低下や混色を抑制できる固体撮像素子及びそ
の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a solid-state image sensor capable of suppressing a decrease in sensitivity and color mixture due to a reduction in cell size, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明は前記目的を達成
するため、半導体基板中に、複数の撮像画素を構成する
センサ部と、各センサ部で蓄積した信号電荷を転送する
転送レジスタとを設け、前記センサ部の信号電荷蓄積領
域を半導体基板の深さ方向に拡大した固体撮像素子にお
いて、互いに隣接する撮像画素の信号電荷蓄積領域が、
各撮像画素が受け持つ入射光の波長に対応して決定され
る半導体基板の異なる深さ位置で半導体基板の面方向に
拡大されていることを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a semiconductor substrate with a sensor portion constituting a plurality of image pickup pixels and a transfer register for transferring the signal charge accumulated in each sensor portion. In the solid-state imaging device, in which the signal charge storage region of the sensor unit is enlarged in the depth direction of the semiconductor substrate, the signal charge storage regions of the image pickup pixels adjacent to each other are provided.
It is characterized in that it is enlarged in the surface direction of the semiconductor substrate at different depth positions of the semiconductor substrate which are determined corresponding to the wavelength of the incident light which each imaging pixel is responsible for.

【0011】また本発明は、半導体基板中に、複数の撮
像画素を構成するセンサ部と、各センサ部で蓄積した信
号電荷を転送する転送レジスタとを設け、前記センサ部
の信号電荷蓄積領域を半導体基板の深さ方向に拡大した
固体撮像素子の製造方法において、前記センサ部の信号
電荷蓄積領域を形成するための不純物イオン注入を複数
回に分けて行うとともに、各回のイオン注入量を隣接す
る撮像画素間で変化させることにより、互いに隣接する
撮像画素の信号電荷蓄積領域を、各撮像画素が受け持つ
入射光の波長に対応して決定される半導体基板の異なる
深さ位置で半導体基板の面方向に拡大するようにしたこ
とを特徴とする。
Further, according to the present invention, a semiconductor substrate is provided with a sensor section which constitutes a plurality of image pickup pixels, and a transfer register which transfers the signal charge accumulated in each sensor section. In a method of manufacturing a solid-state imaging device enlarged in a depth direction of a semiconductor substrate, impurity ion implantation for forming a signal charge storage region of the sensor unit is performed in plural times, and the ion implantation amount of each time is adjacent. By changing between the image pickup pixels, the signal charge storage areas of the image pickup pixels adjacent to each other are determined at the different depth positions of the semiconductor substrate determined according to the wavelength of the incident light which each image pickup pixel covers. It is characterized in that it is designed to expand.

【0012】本発明の固体撮像素子では、互いに隣接す
る撮像画素の信号電荷蓄積領域が、各撮像画素が受け持
つ入射光の波長に対応して決定される半導体基板の異な
る深さ位置で半導体基板の面方向に拡大されていること
から、隣接する信号電荷蓄積領域の近接を防止しつつ、
入射光の波長に最適な深さ位置で信号電荷蓄積領域を拡
大できる。したがって、信号電荷蓄積領域の拡大による
感度向上効果と、隣接する信号電荷蓄積領域の分離によ
る混色抑制効果の両方を実現することが可能となり、セ
ルサイズの縮小に伴う画質の劣化を防止でき、高品位の
固体撮像素子を得ることが可能となる。
In the solid-state image pickup device of the present invention, the signal charge storage regions of the image pickup pixels adjacent to each other are formed at different depth positions of the semiconductor substrate which are determined corresponding to the wavelength of incident light which each image pickup pixel covers. Since it is enlarged in the plane direction, while preventing the adjacent signal charge storage regions from approaching,
The signal charge storage region can be expanded at a depth position that is optimum for the wavelength of incident light. Therefore, it is possible to realize both the sensitivity improvement effect by expanding the signal charge storage area and the color mixing suppression effect by separating the adjacent signal charge storage areas, and it is possible to prevent the deterioration of the image quality due to the reduction of the cell size. It is possible to obtain a solid-state image sensor of high quality.

【0013】また、本発明の固体撮像素子の製造方法で
は、複数回の不純物イオン注入によって、固体撮像素子
の互いに隣接する撮像画素の信号電荷蓄積領域を、各撮
像画素が受け持つ入射光の波長に対応して決定される半
導体基板の異なる深さ位置で半導体基板の面方向に拡大
することから、容易な製造工程によって隣接する信号電
荷蓄積領域の近接を防止しつつ、入射光の波長に最適な
深さ位置で信号電荷蓄積領域を拡大できる。したがっ
て、信号電荷蓄積領域の拡大による感度向上効果と、隣
接する信号電荷蓄積領域の分離による混色抑制効果の両
方を実現することが可能となり、セルサイズの縮小に伴
う画質の劣化を防止でき、高品位の固体撮像素子を製造
することが可能となる。
In the method for manufacturing a solid-state image pickup device of the present invention, the signal charge storage regions of the image pickup pixels adjacent to each other of the solid-state image pickup device are adjusted to the wavelength of the incident light which each image pickup pixel takes charge of, by implanting impurity ions a plurality of times. Since the semiconductor substrate is expanded in the plane direction of the semiconductor substrate at different depth positions corresponding to each other, it is possible to prevent the adjacent signal charge storage regions from approaching each other by an easy manufacturing process and optimize the wavelength of the incident light. The signal charge storage region can be expanded at the depth position. Therefore, it is possible to realize both the sensitivity improvement effect by expanding the signal charge storage area and the color mixing suppression effect by separating the adjacent signal charge storage areas, and it is possible to prevent the deterioration of the image quality due to the reduction of the cell size. It is possible to manufacture a solid-state image sensor of high quality.

【0014】[0014]

【発明の実施の形態】以下、本発明による固体撮像素子
及びその製造方法の実施の形態例について説明する。な
お、以下に説明する実施の形態は、本発明の好適な具体
例であり、技術的に好ましい種々の限定が付されている
が、本発明の範囲は、以下の説明において、特に本発明
を限定する旨の記載がない限り、これらの態様に限定さ
れないものとする。本実施の形態では、固体撮像素子に
おける受光画素部の不純物プロファイルを各画素が受け
持つ色毎に最適化させるために、センサ部のn+不純物
を複数回に分けてエネルギやマスクパターンを変えてイ
オン注入を行い、深さ方向への光電変換効率を上げた多
段構成のプロファイルを持つセンサ構造において、受光
画素上のカラーフィルタによりフィルタリングされた入
射波長に応じて光電変換が有効に行われるように、セン
サ部のn+不純物の多段構成の一部を拡大させ、かつ、
その拡大領域を画素毎に最適な深さで形成することによ
り、感度向上と混色防止を両立させるようにしたもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a solid-state image sensor and a method of manufacturing the same according to the present invention will be described below. The embodiments described below are preferred specific examples of the present invention, and various technically preferable limitations are given. However, the scope of the present invention is not limited to the present invention in the following description. Unless otherwise stated, the present invention is not limited to these embodiments. In the present embodiment, in order to optimize the impurity profile of the light-receiving pixel portion in the solid-state image sensor for each color that each pixel is responsible for, ion implantation is performed by dividing the n + impurity in the sensor portion into a plurality of times and changing the energy or mask pattern. In a sensor structure having a multi-stage profile with improved photoelectric conversion efficiency in the depth direction, the sensor is configured so that photoelectric conversion is effectively performed according to the incident wavelength filtered by the color filter on the light receiving pixel. A part of the multi-stage structure of n + impurities in the part, and
By forming the enlarged region at an optimum depth for each pixel, both sensitivity improvement and color mixture prevention are achieved.

【0015】図1は、本発明の実施の形態によるCCD
固体撮像素子の構造を示す断面図であり、垂直方向に隣
接する画素間の構造を示している。本例において、シリ
コン基板110の上層にRGBに対応する各画素のセン
サ領域111A、111B、111Cが配置されてい
る。なお、図1では省略しているが、各センサ領域11
1A、111B、111Cの水平方向の画素間には図5
に示す構造と同様に垂直転送レジスタが形成されてい
る。また、シリコン基板110の上面には、絶縁膜11
3を介して各垂直転送レジスタに対応して上下2相の転
送電極114、115が配置され、その上面に遮光膜1
16が配置されている。
FIG. 1 shows a CCD according to an embodiment of the present invention.
It is sectional drawing which shows the structure of a solid-state image sensor, and has shown the structure between the pixels which adjoin a vertical direction. In this example, sensor regions 111A, 111B, 111C of pixels corresponding to RGB are arranged on the upper layer of the silicon substrate 110. Although omitted in FIG. 1, each sensor region 11
1A, 111B, and 111C are shown in FIG.
A vertical transfer register is formed similarly to the structure shown in FIG. The insulating film 11 is formed on the upper surface of the silicon substrate 110.
Upper and lower two-phase transfer electrodes 114 and 115 are arranged corresponding to each vertical transfer register via the light-shielding film 3, and the light-shielding film 1 is provided on the upper surface thereof.
16 are arranged.

【0016】そして、このようなシリコン基板110の
上面には、各撮像画素に対してRGBの3色光を分離し
て入射させるカラーフィルタ120が設けられている。
このカラーフィルタ120は、センサ領域111Aに青
色(Blue)光を入射させ、センサ領域111Bに緑
色(Green)光を入射させ、センサ領域111Cに
赤色(Red)光を入射させる。そして、各センサ領域
111A、111B、111Cは、上層のn+型不純物
領域による光電変換層の下層にn−型不純物領域による
空乏層をシリコン基板110の深さ方向に拡大させて信
号電荷蓄積領域としたものであり、このような不純物プ
ロファイル構造により、オーバーフローバリアの位置を
深く形成し、感度の向上を図るようにしたものである。
On the upper surface of the silicon substrate 110, a color filter 120 for separating the three color lights of R, G, and B into the respective image pickup pixels and providing them is provided.
The color filter 120 causes blue (Blue) light to enter the sensor region 111A, green (Green) light to enter the sensor region 111B, and red (Red) light to enter the sensor region 111C. In each of the sensor regions 111A, 111B, and 111C, a depletion layer formed of an n − -type impurity region is formed below the photoelectric conversion layer formed of the n + -type impurity region in the upper layer in the depth direction of the silicon substrate 110 to form a signal charge storage region. With such an impurity profile structure, the position of the overflow barrier is formed deeply to improve the sensitivity.

【0017】そして、このような不純物プロファイル構
造のセンサ領域111A、111B、111Cは、複数
回(図示の例では7段階)に分割したイオン注入によっ
て形成されており、各回のイオン注入エネルギとマスク
パターンを変化させることにより、各色を受け持つ画素
のセンサ領域111A、111B、111C毎に異なる
深さ位置に基板面方向に拡大した不純物領域を有してい
る。すなわち、最も波長の短いBlue画素(センサ領
域111A)については、最も浅い位置のn−型不純物
領域を拡大し、次に波長の短いGreen画素(センサ
領域111B)については、上から3段目のn−型不純
物領域を拡大し、最も波長の長いRed画素(センサ領
域111C)については、下から1段目及び2段目のn
−型不純物領域を拡大する。これにより、入射光の波長
に最適な深さ位置のn−型不純物領域を基板面方向に拡
大し、各画素における感度の向上を達成し、かつ、隣接
画素間で異なる深さ位置でn−型不純物領域を拡大させ
ることで互いの分離状態を確保し、混色の抑制を実現す
る。
The sensor regions 111A, 111B, 111C having such an impurity profile structure are formed by ion implantation divided into a plurality of times (7 steps in the illustrated example), and the ion implantation energy and mask pattern of each time. Is changed to have an impurity region enlarged in the substrate surface direction at a different depth position for each of the sensor regions 111A, 111B, and 111C of pixels that are in charge of each color. That is, for the Blue pixel with the shortest wavelength (sensor region 111A), the shallowest n-type impurity region is enlarged, and for the Green pixel with the next shortest wavelength (sensor region 111B), the third row from the top. The red pixel (sensor region 111C) having the longest wavelength is enlarged by expanding the n-type impurity region, and the n pixels in the first stage and the second stage from the bottom.
Enlarge the − type impurity region. As a result, the n-type impurity region at the depth position optimum for the wavelength of the incident light is expanded in the substrate surface direction, the sensitivity in each pixel is improved, and the n-type impurity region at the depth position different between adjacent pixels is n-type. By enlarging the type impurity region, mutual separation is ensured and color mixture is suppressed.

【0018】図4は、シリコン基板における入射波長毎
のオーバーフローバリアの形成位置と感度との関係を示
す説明図であり、縦軸は分光感度、横軸は入射波長(μ
m)を示し、各折れ線は0.3μmから12μmまでの
各位置における分光特性カーブ(計算値)を示してい
る。ここで、Blue光(Blueフィルタを透過した
光)は、約450nm(0.45μm)の波長に感度ピ
ークを持つ分光カーブを持つため、Si基板表面から3
μm程度の深さにオーバーフローバリアがあれば、セン
サ領域で効率よく光電変換がなされるが、Green光
(Greenフィルタを透過した光)は500〜550
nm付近に感度ピークを持つため、有効な光電変換を得
るためには、5μm程度の深さにオーバーフローバリア
を形成する必要がある。
FIG. 4 is an explanatory diagram showing the relationship between the formation position of the overflow barrier and the sensitivity for each incident wavelength on the silicon substrate, where the vertical axis is the spectral sensitivity and the horizontal axis is the incident wavelength (μ
m), and each polygonal line shows a spectral characteristic curve (calculated value) at each position from 0.3 μm to 12 μm. Here, the blue light (light that has passed through the blue filter) has a spectral curve having a sensitivity peak at a wavelength of about 450 nm (0.45 μm), so that it is 3
If there is an overflow barrier at a depth of about μm, photoelectric conversion is efficiently performed in the sensor area, but green light (light transmitted through the green filter) is 500 to 550.
Since it has a sensitivity peak in the vicinity of nm, it is necessary to form an overflow barrier at a depth of about 5 μm in order to obtain effective photoelectric conversion.

【0019】さらに、Red光(Redフィルタを透過
した光)については、600〜650nm付近に感度ピ
ークを持つため、必要なオーバーフローバリアの深さ位
置は10μm以上となる。これを言い換えれば、オーバ
ーフローバリアの位置を予め深く形成しておき、それぞ
れの画素が受け持つ波長に併かせて、上述の色毎に異な
る光電変換の深さにおけるセンサ領域のみを拡大してお
けば、隣り合う画素のセンサ領域を互いに侵すことな
く、効率よく光電変換を行うことが可能となる。
Further, the red light (light transmitted through the red filter) has a sensitivity peak in the vicinity of 600 to 650 nm, so the required depth position of the overflow barrier is 10 μm or more. In other words, if the position of the overflow barrier is formed deep in advance, and the wavelength is assigned to each pixel, and only the sensor region at the photoelectric conversion depth different for each color is enlarged, It is possible to efficiently perform photoelectric conversion without invading the sensor regions of adjacent pixels.

【0020】したがって、このようなプロファイル構造
の作成方法の一例として、次のような手順を採用するこ
とが可能である。まず、10μm以上の深さにオーバー
フローバリアを高エネルギイオン注入(Boron:8
〜10MeV)や2層Epi法等で形成した後、図3に
示すn+領域にあたる領域を全画素同時に形成する。こ
のn+領域はセンサ部のミニマムポテンシャルを決める
ものであり、AsまたはPhosで約0.5μm程度の
深さに形成する。その後、このn+領域とオーバーフロ
ーバリアまでをポテンシャル的に滑らかに空乏領域が広
がるように、多段階に異なるエネルギでイオン注入を行
い、n−領域を形成する。このn−領域は、先のn+領
域に対して高エネルギ、かつ低濃度で形成する。
Therefore, as an example of the method of creating such a profile structure, the following procedure can be adopted. First, high-energy ion implantation of an overflow barrier (Boron: 8
(10 MeV) or a two-layer Epi method or the like, and then an area corresponding to the n + area shown in FIG. This n + region determines the minimum potential of the sensor portion, and is formed with As or Phos to a depth of about 0.5 μm. After that, ion implantation is performed in multiple steps with different energies so that the depletion region spreads smoothly to the n + region and the overflow barrier in a potential manner to form the n- region. The n-region is formed with higher energy and lower concentration than the n + region.

【0021】そして、このn−領域の多段イオン注入
(インプラ)作業毎に、先に述べたBlue、Red、
Greenそれぞれの波長がSi中で光電変換される深
さに相当するエネルギのマスクパターンを画素毎に最適
化する。すなわち、図1に示すように、n−領域を形成
する多段のインプラ作業において、3μm以下の深さに
打ち込むインプラでは、そのときのマスクパターンは、
Blue光を扱う画素(センサ領域111A)の開口の
みを他の画素よりも拡大させておく。また、3〜5μm
の深さに打ち込むインプラ作業時のマスクパターンは、
Green光を扱う画素(センサ領域111B)の開口
のみを他の画素より拡大させておく。同様に、Red光
を扱う画素(センサ領域111C)は5μm以上の深さ
に打ち込むインプラ作業時において、マスクパターンの
開口を他の画素より拡大させておく。
Then, for each multi-stage ion implantation (implantation) operation of the n-region, the above-mentioned Blue, Red,
A mask pattern of energy corresponding to the depth at which each wavelength of Green is photoelectrically converted in Si is optimized for each pixel. That is, as shown in FIG. 1, in the multi-stage implantation work for forming the n − region, in the implantation that is driven to a depth of 3 μm or less, the mask pattern at that time is
Only the opening of the pixel (sensor area 111A) that handles the blue light is made larger than the other pixels. Also, 3 to 5 μm
The mask pattern at the time of implanting work to the depth of
Only the opening of the pixel (sensor region 111B) that handles the green light is made larger than the other pixels. Similarly, the opening of the mask pattern of the pixel (sensor region 111C) that handles the red light is made larger than the other pixels during the implantation work for implanting to a depth of 5 μm or more.

【0022】その後、通常の方法で転送電極を形成した
後、最表面のP+領域を転送電極に対して自己整合的に
よるインプラ作業によって形成し、通常の遮光膜等を形
成する。以上のような本例の製造方法では、各センサの
信号電荷蓄積領域を構成するn−領域を多段インプラに
よって形成するため、それぞれのインプラ毎にパターン
の最適化が容易に行え、図1に示すようなセンサプロフ
ァイルを容易に実現することが可能である。なお、多段
n領域のイオン打ち込み段数は、図1の例では7段の例
で示しているが、オーバーフローバリアの位置やセンサ
を取り巻く不純物の2次元的な締め付け効果などの影響
に応じて、最適段数は適宜変更が可能である。
Then, after forming the transfer electrode by a normal method, the P + region on the outermost surface is formed by an implantation work by self-alignment with the transfer electrode, and a normal light-shielding film or the like is formed. In the manufacturing method of the present example as described above, since the n − region forming the signal charge storage region of each sensor is formed by the multi-stage implanter, the pattern can be easily optimized for each implanter, as shown in FIG. It is possible to easily realize such a sensor profile. Note that the number of ion implantation steps in the multi-step n region is shown as an example of seven steps in the example of FIG. 1, but it is optimal depending on the position of the overflow barrier and the two-dimensional tightening effect of impurities surrounding the sensor. The number of stages can be changed as appropriate.

【0023】[0023]

【発明の効果】以上説明したように本発明の固体撮像素
子では、互いに隣接する撮像画素の信号電荷蓄積領域
が、各撮像画素が受け持つ入射光の波長に対応して決定
される半導体基板の異なる深さ位置で半導体基板の面方
向に拡大されていることから、隣接する信号電荷蓄積領
域の近接を防止しつつ、入射光の波長に最適な深さ位置
で信号電荷蓄積領域を拡大できる。したがって、隣接す
る画素同士でセンサ領域が干渉せず、特に垂直方向に隣
接する画素間の電荷混色が発生しにくい構造となり、信
号電荷蓄積領域の拡大による感度向上効果と、隣接する
信号電荷蓄積領域の分離による混色抑制効果の両方を実
現することが可能となる。この結果、セルサイズの縮小
に伴う画質の劣化を防止でき、高品位の固体撮像素子を
得ることが可能となる。
As described above, in the solid-state image pickup device of the present invention, the signal charge storage regions of the image pickup pixels adjacent to each other are different from each other in the semiconductor substrate determined according to the wavelength of the incident light which each image pickup pixel covers. Since the semiconductor substrate is expanded at the depth position in the surface direction, it is possible to expand the signal charge storage region at the optimum depth position for the wavelength of the incident light while preventing the adjacent signal charge storage regions from approaching each other. Therefore, the sensor regions do not interfere with each other between adjacent pixels, and a structure in which charge color mixing does not occur particularly between pixels that are adjacent to each other in the vertical direction, and the sensitivity improvement effect due to the expansion of the signal charge storage region and the adjacent signal charge storage region It is possible to realize both the effect of suppressing the color mixture by separating the. As a result, it is possible to prevent the deterioration of the image quality due to the reduction of the cell size, and it is possible to obtain a high quality solid-state imaging device.

【0024】また、本発明の固体撮像素子の製造方法で
は、複数回の不純物イオン注入によって、固体撮像素子
の互いに隣接する撮像画素の信号電荷蓄積領域を、各撮
像画素が受け持つ入射光の波長に対応して決定される半
導体基板の異なる深さ位置で半導体基板の面方向に拡大
することから、容易な製造工程によって隣接する信号電
荷蓄積領域の近接を防止しつつ、入射光の波長に最適な
深さ位置で信号電荷蓄積領域を拡大できる。したがっ
て、隣接する画素同士でセンサ領域が干渉せず、特に垂
直方向に隣接する画素間の電荷混色が発生しにくい構造
の固体撮像素子を容易に製造でき、信号電荷蓄積領域の
拡大による感度向上効果と、隣接する信号電荷蓄積領域
の分離による混色抑制効果の両方を実現することが可能
となる。この結果、セルサイズの縮小に伴う画質の劣化
を防止でき、高品位の固体撮像素子を製造することが可
能となる。
Further, in the method for manufacturing a solid-state image pickup device of the present invention, the signal charge accumulation regions of the image pickup pixels adjacent to each other of the solid-state image pickup device are adjusted to the wavelength of the incident light which each image pickup pixel takes charge of by implanting impurity ions a plurality of times. Since the semiconductor substrate is expanded in the plane direction of the semiconductor substrate at different depth positions corresponding to each other, it is possible to prevent the adjacent signal charge storage regions from approaching each other by an easy manufacturing process and optimize the wavelength of the incident light. The signal charge storage region can be expanded at the depth position. Therefore, it is possible to easily manufacture the solid-state imaging device having a structure in which the sensor regions do not interfere with each other between adjacent pixels and charge mixing especially between pixels adjacent in the vertical direction is difficult to occur, and the effect of improving the sensitivity by enlarging the signal charge storage region is achieved. In addition, it is possible to realize both the effect of suppressing color mixture by separating the adjacent signal charge storage regions. As a result, it is possible to prevent the deterioration of image quality due to the reduction of the cell size, and it is possible to manufacture a high-quality solid-state imaging device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態によるCCD固体撮像素子
の構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a CCD solid-state image sensor according to an embodiment of the present invention.

【図2】一般的な縦形オーバーフロードレインを有する
CCD固体撮像素子のセンサ部における不純物プロファ
イルを示す説明図である。
FIG. 2 is an explanatory diagram showing an impurity profile in a sensor portion of a CCD solid-state imaging device having a general vertical overflow drain.

【図3】オーバーフローバリアの位置を深く形成したC
CD固体撮像素子のセンサ部における不純物プロファイ
ルを示す説明図である。
FIG. 3 C in which the position of the overflow barrier is deeply formed
It is explanatory drawing which shows the impurity profile in the sensor part of a CD solid-state image sensor.

【図4】シリコン基板における入射波長毎のオーバーフ
ローバリアの形成位置と感度との関係を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the relationship between the formation position of the overflow barrier and the sensitivity for each incident wavelength on the silicon substrate.

【図5】従来のCCD固体撮像素子における水平方向に
隣接する画素間の構造を示す断面図である。
FIG. 5 is a cross-sectional view showing a structure between horizontally adjacent pixels in a conventional CCD solid-state imaging device.

【図6】従来のCCD固体撮像素子における垂直方向に
隣接する画素間の構造を示す断面図である。
FIG. 6 is a sectional view showing a structure between vertically adjacent pixels in a conventional CCD solid-state imaging device.

【符号の説明】[Explanation of symbols]

110……シリコン基板、111A、111B、111
C……センサ領域、113……絶縁膜、114、115
……転送電極、116……遮光膜、120……カラーフ
ィルタ。
110 ... Silicon substrate, 111A, 111B, 111
C ... Sensor area, 113 ... Insulating film, 114, 115
...... Transfer electrode, 116 …… Light-shielding film, 120 …… Color filter.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板中に、複数の撮像画素を構成
するセンサ部と、各センサ部で蓄積した信号電荷を転送
する転送レジスタとを設け、前記センサ部の信号電荷蓄
積領域を半導体基板の深さ方向に拡大した固体撮像素子
において、 互いに隣接する撮像画素の信号電荷蓄積領域が、各撮像
画素が受け持つ入射光の波長に対応して決定される半導
体基板の異なる深さ位置で半導体基板の面方向に拡大さ
れている、 ことを特徴とする固体撮像素子。
1. A semiconductor substrate is provided with a sensor section that constitutes a plurality of image pickup pixels and a transfer register that transfers the signal charge accumulated in each sensor section, and the signal charge storage region of the sensor section is provided in the semiconductor substrate. In the solid-state imaging device expanded in the depth direction, the signal charge storage regions of the imaging pixels adjacent to each other are determined according to the wavelength of the incident light that each imaging pixel covers A solid-state image sensor characterized by being enlarged in the plane direction.
【請求項2】 互いに隣接する撮像画素は、異なる色の
撮像を受け持つ画素であることを特徴とする請求項1記
載の固体撮像素子。
2. The solid-state image pickup device according to claim 1, wherein the image pickup pixels adjacent to each other are pixels which are in charge of image pickup of different colors.
【請求項3】 赤青緑の3色を受け持つ撮像画素のう
ち、青画素の信号電荷蓄積領域を最も浅い深さ位置で拡
大し、緑画素の信号電荷蓄積領域を2番目に浅い深さ位
置で拡大し、赤画素の信号電荷蓄積領域を最も深い位置
で拡大したことを特徴とする請求項2記載の固体撮像素
子。
3. A signal charge storage region of a blue pixel among the image pickup pixels for three colors of red, blue, and green is enlarged at a shallowest depth position, and a signal charge storage region of a green pixel is located at a second shallowest depth position. 3. The solid-state imaging device according to claim 2, wherein the signal charge storage region of the red pixel is enlarged at the deepest position.
【請求項4】 半導体基板中に、複数の撮像画素を構成
するセンサ部と、各センサ部で蓄積した信号電荷を転送
する転送レジスタとを設け、前記センサ部の信号電荷蓄
積領域を半導体基板の深さ方向に拡大した固体撮像素子
の製造方法において、 前記センサ部の信号電荷蓄積領域を形成するための不純
物イオン注入を複数回に分けて行うとともに、各回のイ
オン注入量を隣接する撮像画素間で変化させることによ
り、互いに隣接する撮像画素の信号電荷蓄積領域を、各
撮像画素が受け持つ入射光の波長に対応して決定される
半導体基板の異なる深さ位置で半導体基板の面方向に拡
大するようにした、 ことを特徴とする固体撮像素子の製造方法。
4. A semiconductor substrate is provided with a sensor portion that constitutes a plurality of image pickup pixels and a transfer register that transfers the signal charge accumulated in each sensor portion, and the signal charge accumulation region of the sensor portion is formed in the semiconductor substrate. In a method of manufacturing a solid-state image pickup device enlarged in a depth direction, impurity ion implantation for forming a signal charge storage region of the sensor unit is performed in plural times, and the ion implantation amount of each time is set between adjacent image pickup pixels. The signal charge storage regions of the image pickup pixels adjacent to each other are expanded in the plane direction of the semiconductor substrate at different depth positions determined according to the wavelength of the incident light which each image pickup pixel covers by A method of manufacturing a solid-state image sensor, comprising:
【請求項5】 互いに隣接する撮像画素は、異なる色の
撮像を受け持つ画素であることを特徴とする請求項4記
載の固体撮像素子の製造方法。
5. The method of manufacturing a solid-state image pickup device according to claim 4, wherein the image pickup pixels adjacent to each other are pixels which are responsible for image pickup of different colors.
【請求項6】 赤青緑の3色を受け持つ撮像画素のう
ち、青画素の信号電荷蓄積領域を最も浅い深さ位置で拡
大し、緑画素の信号電荷蓄積領域を2番目に浅い深さ位
置で拡大し、赤画素の信号電荷蓄積領域を最も深い位置
で拡大したことを特徴とする請求項5記載の固体撮像素
子の製造方法。
6. A signal charge storage region of a blue pixel among the image pickup pixels for three colors of red, blue, and green is enlarged at a shallowest depth position, and a signal charge storage region of a green pixel is located at a second shallowest depth position. 6. The method for manufacturing a solid-state imaging device according to claim 5, wherein the signal charge storage region of the red pixel is enlarged at the deepest position.
JP2001276133A 2001-09-12 2001-09-12 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP4972838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276133A JP4972838B2 (en) 2001-09-12 2001-09-12 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276133A JP4972838B2 (en) 2001-09-12 2001-09-12 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003086783A true JP2003086783A (en) 2003-03-20
JP4972838B2 JP4972838B2 (en) 2012-07-11

Family

ID=19100880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276133A Expired - Fee Related JP4972838B2 (en) 2001-09-12 2001-09-12 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4972838B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485892B1 (en) * 2002-11-14 2005-04-29 매그나칩 반도체 유한회사 Cmos image sensor and the method for fabricating thereof
JP2009033167A (en) * 2007-07-24 2009-02-12 Magnachip Semiconductor Ltd Image sensor and method of manufacturing the same
US7579633B2 (en) 2004-05-07 2009-08-25 Rohm Co., Ltd. Photoelectric conversion device, image sensor, and method for manufacturing photoelectric conversion device
JP2011066204A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Solid-state imaging element, method for manufacturing the same, and imaging device
CN112786626A (en) * 2019-11-04 2021-05-11 爱思开海力士有限公司 Image sensing device and forming method thereof
JP2021100136A (en) * 2019-04-26 2021-07-01 ソニーグループ株式会社 Solid-state imaging device and electronic device
US11569286B2 (en) 2013-05-24 2023-01-31 Sony Corporation Solid-state imaging device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143668A (en) * 1983-12-29 1985-07-29 Res Dev Corp Of Japan Color image sensor
JPH01134966A (en) * 1987-11-20 1989-05-26 Fuji Photo Film Co Ltd Solid-state image pickup device
JPH0463473A (en) * 1990-07-03 1992-02-28 Toshiba Corp Solid state image sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143668A (en) * 1983-12-29 1985-07-29 Res Dev Corp Of Japan Color image sensor
JPH01134966A (en) * 1987-11-20 1989-05-26 Fuji Photo Film Co Ltd Solid-state image pickup device
JPH0463473A (en) * 1990-07-03 1992-02-28 Toshiba Corp Solid state image sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485892B1 (en) * 2002-11-14 2005-04-29 매그나칩 반도체 유한회사 Cmos image sensor and the method for fabricating thereof
US7579633B2 (en) 2004-05-07 2009-08-25 Rohm Co., Ltd. Photoelectric conversion device, image sensor, and method for manufacturing photoelectric conversion device
JP2009033167A (en) * 2007-07-24 2009-02-12 Magnachip Semiconductor Ltd Image sensor and method of manufacturing the same
JP2011066204A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Solid-state imaging element, method for manufacturing the same, and imaging device
US11569286B2 (en) 2013-05-24 2023-01-31 Sony Corporation Solid-state imaging device and electronic apparatus
US11894406B2 (en) 2013-05-24 2024-02-06 Sony Group Corporation Solid-state imaging device and electronic apparatus
JP2021100136A (en) * 2019-04-26 2021-07-01 ソニーグループ株式会社 Solid-state imaging device and electronic device
JP7180706B2 (en) 2019-04-26 2022-11-30 ソニーグループ株式会社 Solid-state imaging device and electronic equipment
CN112786626A (en) * 2019-11-04 2021-05-11 爱思开海力士有限公司 Image sensing device and forming method thereof

Also Published As

Publication number Publication date
JP4972838B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US9543341B2 (en) Solid-state imaging device and electronic apparatus
JP5508665B2 (en) Image sensor with improved color crosstalk
JP2004165462A (en) Solid-state imaging device and its manufacturing method
JP2013012551A (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and electronic apparatus
US20090317936A1 (en) Solid state imaging device, method of producing the same and camera relating to same
US9237283B2 (en) Solid-state image pickup device
JP2007201267A (en) Solid state imaging element and its fabrication process
JP4972838B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004152819A (en) Solid-state image sensing device and its manufacturing method
JP2008147471A (en) Solid-state imaging device
JP2004273952A (en) Ccd solid-state color image pickup device
JP2008153428A (en) Solid-state imaging device and its manufacturing method
JP2007035950A (en) Solid-state image pickup device, manufacturing method thereof and camera
JP4867309B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
WO2021241062A1 (en) Solid-state imaging device, electronic machine, and solid-state imaging device production method
JP2007299989A (en) Method for manufacturing semiconductor device, solid-state imaging device and method for manufacturing the same
JP4882207B2 (en) Solid-state image sensor
JP5056928B2 (en) Solid-state imaging device and manufacturing method thereof
JP4797302B2 (en) Solid-state imaging device and manufacturing method thereof
JP2011222802A (en) Solid-state image sensing device and manufacturing method thereof
JP2007234883A (en) Solid-state imaging apparatus, and its manufacturing method, as well as camera
JP2007189129A (en) Solid-state photographing device, and manufacturing method thereof
JP2007299806A (en) Solid-state image pickup device and manufacturing method thereof
JP2008227254A (en) Ccd solid-state image pickup element
JP2010258268A (en) Solid-state imaging element, imaging device, and method of manufacturing solid-state imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees