JP2003086248A - Non-aqueous electrolytic solution secondary battery and electrolytic solution - Google Patents

Non-aqueous electrolytic solution secondary battery and electrolytic solution

Info

Publication number
JP2003086248A
JP2003086248A JP2001279294A JP2001279294A JP2003086248A JP 2003086248 A JP2003086248 A JP 2003086248A JP 2001279294 A JP2001279294 A JP 2001279294A JP 2001279294 A JP2001279294 A JP 2001279294A JP 2003086248 A JP2003086248 A JP 2003086248A
Authority
JP
Japan
Prior art keywords
electrolytic solution
secondary battery
aqueous
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001279294A
Other languages
Japanese (ja)
Other versions
JP2003086248A5 (en
JP4830244B2 (en
Inventor
Christian Moller Kai
クリスチャン モラー カイ
Jurgen Otto Besenhard
オットー ベーゼンハルト ユルゲン
Winter Martin
ウインター マルティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001279294A priority Critical patent/JP4830244B2/en
Publication of JP2003086248A publication Critical patent/JP2003086248A/en
Publication of JP2003086248A5 publication Critical patent/JP2003086248A5/ja
Application granted granted Critical
Publication of JP4830244B2 publication Critical patent/JP4830244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution secondary battery which has a high charge-discharge efficiency, and which is superior in cycle characteristics, and which has a high security, and provide the non-aqueous electrolytic solution used for this. SOLUTION: In the non-aqueous electrolytic solution secondary battery including a negative electrode and a positive electrode in which an occlusion/discharge of lithium is possible, and including the electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, an organic solvent having 25 or more of dielectric constant occupies 60 wt.% or more of the non-aqueous solvent, and the electrolytic solution contains 0.001 to 10 wt.% of a compound having an electrophilic group conjugated with a carbon-carbon unsaturated bond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池及びそれに使用する非水系電解液に関する。詳しく
は、充放電効率が高く、サイクル特性に優れ、安全性の
高い非水系電解液二次電池及びそれに使用する非水系電
解液に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery having high charge / discharge efficiency, excellent cycle characteristics, and high safety, and a non-aqueous electrolyte used therein.

【0002】[0002]

【従来の技術】近年の電気製品の軽量化、小型化に伴
い、高いエネルギー密度を持つリチウム二次電池の需要
が高まってきている。更に、リチウム二次電池の適用分
野の拡大に伴い、電池特性の一層の向上も要望されてい
る。非水系電解液二次電池の電解液に用いる溶媒として
は、誘電率の高いエチレンカーボネートが多用されてい
る。しかし、エチレンカーボネートの凝固点は36.4
℃と高く室温では固体であり、液体としても粘度が高い
ため扱いづらい。そこで、エチレンカーボネートを用い
た電解液には、副溶媒としてエチルメチルカーボネート
やジエチルカーボネート等の低粘度溶媒が混合されてい
る。しかし、低粘度溶媒は、一般的に沸点が低く、誘電
率が低いため、大量に混合すると、リチウム塩の解離度
の低下により電解液の性能が低下したり、溶媒の蒸発に
より塩が析出したり、引火点が低下したりするなど安全
性の面で問題がある。逆に、少量しか混合しないと、低
温での電気伝導率や粘度の面の問題が残る。
2. Description of the Related Art With the recent lightening and miniaturization of electric products, the demand for lithium secondary batteries having high energy density is increasing. Further, with the expansion of the application fields of lithium secondary batteries, further improvement of battery characteristics is also demanded. As a solvent used for an electrolytic solution of a non-aqueous electrolytic solution secondary battery, ethylene carbonate having a high dielectric constant is often used. However, the freezing point of ethylene carbonate is 36.4.
It is high at ℃ and solid at room temperature, and it is difficult to handle because it has a high viscosity as a liquid. Therefore, the electrolytic solution using ethylene carbonate is mixed with a low-viscosity solvent such as ethyl methyl carbonate or diethyl carbonate as an auxiliary solvent. However, a low-viscosity solvent generally has a low boiling point and a low dielectric constant.Therefore, when mixed in a large amount, the performance of the electrolytic solution deteriorates due to a decrease in the dissociation degree of the lithium salt, or the salt precipitates due to evaporation of the solvent. There is a problem in terms of safety, such as a decrease in flash point. On the contrary, if only a small amount is mixed, there remain problems in terms of electric conductivity and viscosity at low temperatures.

【0003】ところで、コークス、人造黒鉛、天然黒鉛
等の炭素質材料を負極に用いた非水系電解液二次電池で
は、リチウムが金属状態で存在しないためデンドライト
の形成が抑制され、優れた電池寿命と安全性を示すこと
が知られている。しかし、黒鉛のような結晶化度の高い
炭素質材料を負極に用いると、非水溶媒の分解や炭素質
材料の剥離が生じ、不可逆容量が増大することがある。
特に、非水溶媒にプロピレンカーボネートを、負極に黒
鉛材料を用いた場合には、黒鉛電極の表面においてプロ
ピレンカーボネートの激しい分解が起こり、電池特性が
低下するという問題が生じる。
By the way, in a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke, artificial graphite or natural graphite for the negative electrode, the formation of dendrites is suppressed because lithium does not exist in a metallic state, resulting in an excellent battery life. And is known to show safety. However, when a carbonaceous material having a high degree of crystallinity such as graphite is used for the negative electrode, decomposition of the non-aqueous solvent and exfoliation of the carbonaceous material may occur, and the irreversible capacity may increase.
In particular, when propylene carbonate is used as the non-aqueous solvent and a graphite material is used as the negative electrode, the propylene carbonate undergoes severe decomposition on the surface of the graphite electrode, which causes a problem of deterioration in battery characteristics.

【0004】このような電池特性の低下を抑制するた
め、電解液に種々の化合物を含有させることが多数検討
されている。例えば、電極に被膜を形成させるものとし
ては、クロロエチレンカーボネート (H. Katayama, J.
Arai, H. Akahoshi, J. PowerSources 1999, 81-82, 70
5-708.)、 フルオロエチレンカーボネート (R. McMilla
n, H. Slegr, Z. X. Sho, W. Wang, J. Power Sources
1999, 81-82, 20-26.)、 エチレンサルファイト (G.H.
Wrodnigg, J. O. Besenhard, M. Winter, J. Electroch
em. Soc. 1999, 146, 470.)及びビニレンカーボネート
(J. Barker, F.Gao, US Patent No. 5,712,059 (1998),
Y. Naruse, S. Fujita, A. Omaru, USPatent No. 5,71
4,281 (1998))等のエチレンカーボネート誘導体及び類
似体が検討されている。これらの化合物は、通常、初期
の充電において高い電極電位で還元されて電極表面に被
膜を形成させると考えられる。
In order to suppress such deterioration of battery characteristics, many studies have been made to include various compounds in the electrolytic solution. For example, chloroethylene carbonate (H. Katayama, J.
Arai, H. Akahoshi, J. PowerSources 1999, 81-82, 70
5-708.), Fluoroethylene carbonate (R. McMilla
n, H. Slegr, ZX Sho, W. Wang, J. Power Sources
1999, 81-82, 20-26.), Ethylene sulfite (GH
Wrodnigg, JO Besenhard, M. Winter, J. Electroch
em. Soc. 1999, 146, 470.) and vinylene carbonate
(J. Barker, F. Gao, US Patent No. 5,712,059 (1998),
Y. Naruse, S. Fujita, A. Omaru, USPatent No. 5,71
4,281 (1998)) and other ethylene carbonate derivatives and analogues have been investigated. It is considered that these compounds are usually reduced at a high electrode potential in the initial charge to form a film on the electrode surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た添加剤の効果は不十分であり、更なる改良が望まれて
いる。本発明は、充放電効率が高く、サイクル特性に優
れ、高い安全性を有する非水系電解液二次電池の提供を
課題とするものである。
However, the effects of the above-mentioned additives are insufficient, and further improvement is desired. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having high charge / discharge efficiency, excellent cycle characteristics, and high safety.

【0006】[0006]

【課題を解決するための手段】本発明者等は、かかる事
情に鑑み鋭意検討した結果、非水系電解液二次電池の電
解液の非水溶媒として、比誘電率が25以上の有機溶媒
を用い、これに炭素-炭素不飽和結合と共役した電子吸
引基を有する化合物を混合することにより、充放電効率
が高く、サイクル特性に優れ、高い安全性を有する非水
系電解液二次電池を得ることができることを見いだし、
本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies made by the present inventors in view of such circumstances, an organic solvent having a relative dielectric constant of 25 or more was selected as a non-aqueous solvent for an electrolytic solution of a non-aqueous electrolytic solution secondary battery. By using this, and by mixing with this a compound having an electron-withdrawing group conjugated with a carbon-carbon unsaturated bond, a non-aqueous electrolyte secondary battery having high charge / discharge efficiency, excellent cycle characteristics, and high safety is obtained. Find that you can
The present invention has been completed.

【0007】すなわち、本発明は、リチウムを吸蔵・放
出することが可能な負極及び正極と、非水溶媒にリチウ
ム塩を溶解している電解液とを含む非水系電解液二次電
池において、比誘電率25以上の有機溶媒が非水溶媒の
60重量%以上を占め、かつ電解液が炭素-炭素不飽和
結合と共役した電子吸引基を有する化合物を0.001
〜10重量%含むことを特徴とする非水系電解液二次電
池、及びそれに使用する非水系電解液、である。
That is, the present invention provides a non-aqueous electrolyte secondary battery including a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. An organic solvent having a dielectric constant of 25 or more occupies 60% by weight or more of the non-aqueous solvent, and the electrolytic solution contains 0.001 of a compound having an electron-withdrawing group conjugated with a carbon-carbon unsaturated bond.
The non-aqueous electrolyte secondary battery is characterized by containing 10 to 10% by weight, and the non-aqueous electrolyte used therein.

【0008】[0008]

【発明の実施の形態】比誘電率が25以上の有機溶媒と
しては、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、及び
γ−バレロラクトン等が挙げられ、中でもエチレンカー
ボネート、プロピレンカーボネート、及びγ−ブチロラ
クトンが好ましい。これらは単独でも、2種以上を混合
して用いてもよい。2種以上の有機溶媒を混合する場
合、その組み合わせは任意である。非水溶媒に比誘電率
25以上の有機溶媒が、60重量%以上、特に85重量
%以上占めることが好ましい。この割合が低いと、低沸
点の低粘度溶媒が併用されている場合、高温保存時に電
池内圧が上昇し、電池の変形・液漏れが起こりやすくな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the organic solvent having a relative dielectric constant of 25 or more include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and γ-valerolactone. Among them, ethylene carbonate, propylene carbonate, and γ-butyrolactone is preferred. You may use these individually or in mixture of 2 or more types. When two or more organic solvents are mixed, the combination is arbitrary. It is preferable that an organic solvent having a relative dielectric constant of 25 or more accounts for 60% by weight or more, and particularly 85% by weight or more in the non-aqueous solvent. When this ratio is low, when a low-boiling point, low-viscosity solvent is also used, the internal pressure of the battery rises during high temperature storage, and the battery is likely to be deformed or leaked.

【0009】上記溶媒とともに、ジメチルカーボネー
ト、ジエチルカーボネート、ジ−n−プロピルカーボネ
ート、エチルメチルカーボネート等のジアルキル(アル
キル基の炭素数は1〜4のものが好ましい)カーボネー
ト;テトラヒドロフラン、2−メチルテトラヒドロフラ
ン等の環状エーテル;ジメトキシエタン、ジメトキシメ
タン等の鎖状エーテル;酢酸メチル、プロピオン酸エチ
ル等の鎖状エステル等;スルフォラン、ジエチルスルホ
ン等の含硫黄有機溶媒;リン酸トリメチル、リン酸トリ
エチル等の含燐有機溶媒などを併用することもできる。
Dialkyl carbonate (preferably having an alkyl group having 1 to 4 carbon atoms) carbonate such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethyl methyl carbonate together with the above solvent; tetrahydrofuran, 2-methyltetrahydrofuran, etc. Cyclic ethers; chain ethers such as dimethoxyethane and dimethoxymethane; chain esters such as methyl acetate and ethyl propionate; sulfur-containing organic solvents such as sulfolane and diethyl sulfone; phosphorus-containing such as trimethyl phosphate and triethyl phosphate An organic solvent or the like can be used together.

【0010】炭素-炭素不飽和結合と共役した電子吸引
基を有する化合物としては、アクリロニトリル、メタク
リロニトリル、N,N−ジメチルアクリルアミド、メタ
クリル酸メチル、2‐シアノアクリル酸エチル、及びα
‐メチレン‐γ‐ブチロラクトン等が挙げられる。これ
らの化合物を電解液中に0.001〜10重量%、特に
0.01〜3重量%となるように含有させるのが好まし
い。
Examples of the compound having an electron withdrawing group conjugated with a carbon-carbon unsaturated bond include acrylonitrile, methacrylonitrile, N, N-dimethylacrylamide, methyl methacrylate, ethyl 2-cyanoacrylate, and α.
-Methylene-γ-butyrolactone and the like. It is preferable that these compounds are contained in the electrolytic solution in an amount of 0.001 to 10% by weight, particularly 0.01 to 3% by weight.

【0011】非水溶媒には、更に公知の被膜形成剤、過
充電防止剤、脱水剤、脱酸剤などの助剤を含有させても
よい。例えば、被膜形成剤として、ビニレンカーボネー
ト、ビニルエチレンカーボネート等のカーボネート;エ
チレンサルファイト等のサルファイト;プロパンスルト
ン等のスルホン酸エステル;無水コハク酸、無水マレイ
ン酸、無水フタル酸等のカルボン酸無水物;1‐メチル
‐2‐ピロリジノン、1‐メチル‐2‐ピペリドン、3
‐メチル‐2‐オキサゾリジノン、1,3‐ジメチル‐
2‐イミダゾリジノン、N‐メチルスクシンイミド等の
含窒素化合物よりなる群から選ばれる化合物を、電解液
中に0.01〜3重量%となるように含有させると、電
池の容量維持特性、サイクル特性が向上する。
The non-aqueous solvent may further contain known auxiliary agents such as a film forming agent, an overcharge preventing agent, a dehydrating agent and a deoxidizing agent. For example, as film-forming agents, carbonates such as vinylene carbonate and vinyl ethylene carbonate; sulfites such as ethylene sulfite; sulfonate esters such as propane sultone; carboxylic acid anhydrides such as succinic anhydride, maleic anhydride, phthalic anhydride, etc. 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3
-Methyl-2-oxazolidinone, 1,3-dimethyl-
When a compound selected from the group consisting of nitrogen-containing compounds such as 2-imidazolidinone and N-methylsuccinimide is contained in the electrolytic solution in an amount of 0.01 to 3% by weight, the capacity maintenance characteristics and cycle of the battery are improved. The characteristics are improved.

【0012】過充電防止剤としては、特開平8−203
560号、同7−302614号、同9−50822
号、同8−273700号、同9−17447号各公報
等に記載されているベンゼン誘導体;特開平9−106
835号、同9−171840号、同10−32125
8号,同7−302614号、同7−302614号、
同11−162512号各公報及び特許2939469
号、特許2963898号各公報等に記載されているビ
フェニル及びその誘導体;特開平9−45369号、同
10−321258号各公報等に記載されているピロー
ル誘導体;特開平7−320778号、同7−3026
14号各公報等に記載されているアニリン誘導体等の芳
香族化合物;特許2983205号公報等に記載されて
いるエーテル系化合物;及び特開2001‐15158
号公報に記載されている化合物を挙げることができる。
As an overcharge preventing agent, JP-A-8-203 is known.
560, 7-302614, 9-50822.
Nos. 8-273700, 9-17447, and the like; benzene derivatives described in JP-A-9-106;
No. 835, No. 9-171840, No. 10-32125.
No. 8, No. 7-302614, No. 7-302614,
No. 11-162512, each gazette and patent 2939469.
And the derivatives thereof described in JP-A No. 2963898 and the like; Pyrrole derivatives described in JP-A Nos. 9-45369 and 10-32258, and the like; JP-A Nos. 7-320778 and 7 -3026
Aromatic compounds such as aniline derivatives described in JP-A-14, etc .; Ether-based compounds described in JP-A-2983205, and JP-A-2001-15158
The compounds described in the publication can be mentioned.

【0013】更に、電解液には、セパレータや電極材と
の濡れ性を良くするために、界面活性剤を0.01〜2
重量%となるように含有させてもよい。本発明で使用さ
れる電解液の溶質としては、リチウム塩が用いられる。
リチウム塩は、非水系電解液の溶質として用い得ること
が知られているいずれのものも使用できるが、例えば、 1)無機リチウム塩:LiPF6、LiAsF6、LiB
4、LiTaF6、LiAlF4、LiAlF6、LiS
iF6等の無機フッ化物塩、LiClO4等の過ハロゲン
酸塩 2)有機リチウム塩:LiCF3SO3等の有機スルホン
酸塩、LiN(CF3SO22 、LiN(C25
22、LiN(CF3SO2)(C49SO2)等のパ
ーフルオロアルキルスルホン酸イミド塩、LiC(CF
3SO23等のパーフルオロアルキルスルホン酸メチド
塩、LiPF3(C253、LiBF2CF32、Li
BF3(CF3)等の無機フッ化物塩の一部のフッ素をパ
ーフルオロアルキル基で置換した塩、LiB(CF3
OO)4、LiB(OCOCF2COO)2、LiB(O
COC24COO)2、等のリチウムテトラキス(パー
フルオロカルボキシレート)ボレート塩 が挙げられ、これらを混合して用いてもよい。
Further, in order to improve the wettability with the separator and the electrode material, the electrolytic solution contains 0.01 to 2 of a surfactant.
You may contain so that it may become a weight%. A lithium salt is used as the solute of the electrolytic solution used in the present invention.
Lithium salt can be used any of those that may be used as a solute of the nonaqueous electrolyte solution is known, for example, 1) an inorganic lithium salt: LiPF 6, LiAsF 6, LiB
F 4, LiTaF 6, LiAlF 4 , LiAlF 6, LiS
Inorganic fluoride salts such as iF 6 and perhalogenates such as LiClO 4 2) Organic lithium salts: Organic sulfonates such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 S
O 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and other perfluoroalkyl sulfonic acid imide salts, LiC (CF
Perfluoroalkyl sulfonic acid methide salt such as 3 SO 2 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiBF 2 CF 3 ) 2 , Li
LiB (CF 3 C), which is a salt obtained by substituting a part of fluorine in an inorganic fluoride salt such as BF 3 (CF 3 ) with a perfluoroalkyl group.
OO) 4 , LiB (OCOCF 2 COO) 2 , LiB (O
Examples thereof include lithium tetrakis (perfluorocarboxylate) borate salts such as COC 2 F 4 COO) 2 , and these may be used as a mixture.

【0014】これらの中で、溶解度、イオン解離度、電
気伝導率などの特性の面から、LiPF6、LiBF4
LiN(CF3SO22 、LiN(C25SO22
LiN(CF3SO2)(C49SO2)、LiPF3(C
33、LiPF3(C253、LiBF2(C252
LiB(OCOCF2COO)2が好ましく、LiP
6、LiBF4がより好ましい。特に、非水溶媒がγ−
ブチロラクトンを60重量%以上含む場合には、LiB
4がリチウム塩全体の50重量%以上となるようにす
ることが好ましい。
Among these, LiPF 6 , LiBF 4 , and LiBF 4 , in terms of characteristics such as solubility, ionic dissociation, and electrical conductivity.
LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 ,
LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiPF 3 (C
F 3) 3, LiPF 3 ( C 2 F 5) 3, LiBF 2 (C 2 F 5) 2
LiB (OCOCF 2 COO) 2 is preferable, and LiP
F 6 and LiBF 4 are more preferable. In particular, the non-aqueous solvent is γ-
If the content of butyrolactone is 60% by weight or more, LiB
It is preferable that F 4 be 50% by weight or more of the whole lithium salt.

【0015】電解液中におけるリチウム塩の濃度は、
0.5〜3モル/リットルであることが好ましい。濃度
が低すぎると、絶対的な濃度不足により電解液の電気伝
導率が不十分となり、逆に高すぎると、電解液の粘度が
上昇するため電気伝導率が低下したり、低温でリチウム
塩が析出しやすくなる。本発明の電池を構成する負極の
材料としては、様々な条件での有機物の熱分解物、人造
黒鉛、天然黒鉛及びこれらの混合物等の炭素質材料;酸
化錫、酸化アンチモン錫、一酸化珪素、酸化バナジウム
等の金属酸化物;リチウム金属;アルミニウム、珪素、
錫、アンチモン、鉛、ヒ素、亜鉛、ビスマス、銅、カド
ミウム、銀、金、白金、パラジウム、マグネシウム、ナ
トリウム、カリウム等のリチウムと合金化可能な金属;
前記金属を含む合金(金属間化合物を含む。);前記金
属酸化物、リチウムと合金化可能な金属及び該金属を含
む合金とリチウムとの複合合金化合物;窒化コバルトリ
チウム等の窒化金属リチウム、などを挙げることができ
る。なお、上記材料を混合して用いてもよい。
The concentration of the lithium salt in the electrolytic solution is
It is preferably 0.5 to 3 mol / liter. If the concentration is too low, the electrical conductivity of the electrolyte becomes insufficient due to an absolute lack of concentration, and on the contrary, if it is too high, the viscosity of the electrolyte increases and the electrical conductivity decreases, or at low temperatures the lithium salt becomes Easily deposited. As the material of the negative electrode constituting the battery of the present invention, carbonaceous materials such as organic pyrolysates under various conditions, artificial graphite, natural graphite and mixtures thereof; tin oxide, antimony tin oxide, silicon monoxide, Metal oxides such as vanadium oxide; lithium metal; aluminum, silicon,
Metals that can be alloyed with lithium, such as tin, antimony, lead, arsenic, zinc, bismuth, copper, cadmium, silver, gold, platinum, palladium, magnesium, sodium, potassium;
Alloys containing the metals (including intermetallic compounds); Metal oxides, metals that can be alloyed with lithium, and complex alloy compounds of alloys containing the metals and lithium; Lithium metal nitrides such as lithium cobalt nitride; Can be mentioned. The above materials may be mixed and used.

【0016】炭素質材料としては、種々の原料から得た
易黒鉛性ピッチを高温熱処理して製造される人造黒鉛、
精製天然黒鉛及びこれらの黒鉛に種々のピッチで表面処
理を施した黒鉛材料が好ましい。このような黒鉛材料と
しては、学振法によるX線回折で求めた格子面(002
面)のd値(層間距離)が、0.335〜0.34n
m、特に0.335〜0.337nmであるものが好ま
しい。灰分は、1重量%以下が好ましく、0.5重量%
以下であるのがより好ましく、0.1重量%以下である
のが更に好ましい。学振法によるX線回折で求めた結晶
子サイズ(Lc)は、30nm以上であるのが好まし
く、50nm以上であるのがより好ましく、100nm
以上であるのが更に好ましい。
As the carbonaceous material, artificial graphite produced by subjecting easily graphitizable pitch obtained from various raw materials to high temperature heat treatment,
Purified natural graphite and graphite materials obtained by subjecting these graphites to surface treatment with various pitches are preferable. As such a graphite material, a lattice plane (002
The d value (interlayer distance) of the surface is 0.335 to 0.34n
m, especially 0.335 to 0.337 nm is preferable. Ash content is preferably 1% by weight or less, 0.5% by weight
It is more preferable that the amount is below, and it is further preferable that the amount is 0.1 wt% or less. The crystallite size (Lc) determined by X-ray diffraction by Gakshin method is preferably 30 nm or more, more preferably 50 nm or more, and 100 nm.
The above is more preferable.

【0017】また、レーザー回折・散乱法による炭素質
材料のメジアン径は、1〜100μmが好ましく、3〜
50μmがより好ましく、5〜40μmが更に好まし
く、7〜30μmが特に好ましい。BET法比表面積
は、0.3〜25.0m2/gが好ましく、0.5〜2
0.0m2/gがより好ましく、0.7〜15.0m2
gが更に好ましく、0.8〜10.0m2/gが特に好
ましい。
The median diameter of the carbonaceous material by the laser diffraction / scattering method is preferably 1 to 100 μm, and 3 to
50 μm is more preferable, 5 to 40 μm is still more preferable, and 7 to 30 μm is particularly preferable. The BET method specific surface area is preferably 0.3 to 25.0 m 2 / g, and 0.5 to 2
0.0m more preferably 2 / g, 0.7~15.0m 2 /
g is more preferable, and 0.8 to 10.0 m 2 / g is particularly preferable.

【0018】炭素質材料は、アルゴンイオンレーザー光
を用いたラマンスペクトル分析した場合、1570〜1
620cm-1の範囲のピークPA (ピーク強度IA )と
1300〜1400cm-1の範囲のピークPB (ピーク
強度IB )との強度比R=IB /IA が、0.01〜
1.0、特に0.1〜0.7が好ましく、1570〜1
620cm-1の範囲のピークの半値幅が、26cm-1
下、特に25cm-1以下であるのが好ましい。
The carbonaceous material is 1570 to 1 as determined by Raman spectrum analysis using an argon ion laser beam.
Intensity ratio R = IB / IA of the peak PB (peak intensity IB) the scope of the peak PA (peak intensity IA) and 1300~1400Cm -1 of 620 cm -1 is 0.01
1.0, particularly 0.1 to 0.7 is preferable, and 1570 to 1
The half-value width of the peak in the range of 620 cm -1 is, 26cm -1 or less, and particularly preferably between 25 cm -1 or less.

【0019】合金としては、錫、アンチモン、銀、銅及
び金よりなる群から選択される金属の合金が好ましく、
錫・アンチモン合金、錫・銀合金、銅・アンチモン合
金、金・アンチモン合金を使用するのが特に好ましい。
負極に使用する金属や合金は、1種でも、2種以上の混
合物であってもよい。その平均粒径は、1〜1000n
mが好ましく、10〜500nmがより好ましく、30
〜400nmが更に好ましい。平均粒径が大きすぎる
と、充放電サイクルを繰り返すことによる容量劣化が大
きくなり電極としての有用性が損なわれる場合があり、
逆に小さすぎると、表面積が大きくなり電池の安全性が
低下する。また、粒径分布もこれらの範囲内にあるもの
が好ましい。
The alloy is preferably an alloy of a metal selected from the group consisting of tin, antimony, silver, copper and gold,
It is particularly preferable to use a tin-antimony alloy, a tin-silver alloy, a copper-antimony alloy, or a gold-antimony alloy.
The metal or alloy used for the negative electrode may be one kind or a mixture of two or more kinds. The average particle size is 1 to 1000 n
m is preferable, 10-500 nm is more preferable, and 30
-400 nm is more preferable. If the average particle size is too large, the capacity deterioration due to repeated charge and discharge cycles may increase and the usefulness as an electrode may be impaired.
On the other hand, if it is too small, the surface area increases and the safety of the battery decreases. The particle size distribution is preferably within these ranges.

【0020】これらの負極材料を用いて、負極を製造す
るのは常法により行うことができる。例えば、負極材料
に必要に応じて結着剤、増粘剤、導電材、溶媒等を加え
てスラリー状とし、集電体の基板に塗布し、乾燥するこ
とにより負極を製造することができる。また、負極材料
をそのままロール成形してシート電極としたり、圧縮成
形してペレット電極とすることもできる。
A negative electrode can be manufactured by a conventional method using these negative electrode materials. For example, a negative electrode can be manufactured by adding a binder, a thickener, a conductive material, a solvent and the like to the negative electrode material as needed to form a slurry, coating the slurry on the substrate of the current collector, and drying. Alternatively, the negative electrode material may be roll-formed as it is to form a sheet electrode, or compression-molded to form a pellet electrode.

【0021】結着剤は、電極製造時に使用する溶媒や電
解液に対して安定な材料であれば、任意のものを使用で
きる。その具体例としては、ポリフッ化ビニリデン、ポ
リテトラフルオロエチレン、スチレン・ブタジエンゴ
ム、イソプレンゴム、ブタジエンゴム等を挙げることが
できる。増粘剤としては、カルボキシルメチルセルロー
ス、メチルセルロース、ヒドロキシメチルセルロース、
エチルセルロース、ポリビニルアルコール、酸化スター
チ、リン酸化スターチ、ガゼイン等が挙げられる。
Any binder can be used as long as it is a stable material with respect to the solvent or electrolytic solution used in the production of electrodes. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber and butadiene rubber. As the thickener, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose,
Examples thereof include ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch and casein.

【0022】導電材としては、銅やニッケル等の金属材
料、グラファイトやカーボンブラック等の炭素質材料が
挙げられる。負極用集電体の材質としては、銅、ニッケ
ル、ステンレス等の金属が挙げられ、これらの中で薄膜
に加工しやすいという点及びコストの点から銅箔が好ま
しい。
Examples of the conductive material include metallic materials such as copper and nickel, and carbonaceous materials such as graphite and carbon black. Examples of the material for the negative electrode current collector include metals such as copper, nickel, and stainless steel. Among these, copper foil is preferable from the viewpoints of easy processing into a thin film and cost.

【0023】正極の材料としては、リチウムコバルト酸
化物、リチウムニッケル酸化物、リチウムマンガン酸化
物等のリチウム遷移金属複合酸化物材料などのリチウム
を吸蔵及び放出可能な材料を挙げることができる。正極
は、上述した負極の製造方法に準じて製造することがで
きる。正極材料に、必要に応じて、結着剤、導電材、溶
媒等を加えて混合後、これを集電体の基板に塗布してシ
ート電極としたり、プレス成形を施してペレット電極と
したりすることができる。
Examples of the material for the positive electrode include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide and lithium manganese oxide. The positive electrode can be manufactured according to the manufacturing method of the negative electrode described above. If necessary, a binder, a conductive material, a solvent, etc. are added to the positive electrode material and mixed, and then this is applied to the substrate of the current collector to form a sheet electrode, or press-molded to form a pellet electrode. be able to.

【0024】正極用集電体の材質としては、アルミニウ
ム、チタン、タンタル等の金属又はその合金等が挙げら
れ、これらの中でアルミニウム又はその合金が、エネル
ギー密度の点で好ましい。本発明の電池に使用するセパ
レータは、電解液に対して安定で、保液性に優れたもの
であれば任意であり、ポリエチレン、ポリプロピレン等
のポリオレフィンを原料とする多孔性シート又は不織布
等を用いるのが好ましい。
Examples of the material for the current collector for the positive electrode include metals such as aluminum, titanium and tantalum or alloys thereof. Among these, aluminum or alloys thereof is preferable in terms of energy density. The separator used in the battery of the present invention may be any as long as it is stable to an electrolytic solution and has excellent liquid retention, and a porous sheet or nonwoven fabric made of polyolefin such as polyethylene and polypropylene is used. Is preferred.

【0025】上述した負極、正極及び非水系電解液を用
いて、本発明にかかる電池を作製するのは常法により行
うことができる。電池は、常用されている任意の形状と
することができる。例えば、シート電極及びセパレータ
をスパイラル状にしたシリンダータイプ、ペレット電極
及びセパレータを組み合わせたインサイドアウト構造の
シリンダータイプ、ペレット電極及びセパレータを積層
したコインタイプ等が挙げられる。
The battery according to the present invention can be prepared by a conventional method using the above-mentioned negative electrode, positive electrode and non-aqueous electrolyte solution. The battery can be of any shape commonly used. For example, a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type in which an inside-out structure is combined with a pellet electrode and a separator, and a coin type in which pellet electrodes and a separator are stacked are listed.

【0026】[0026]

【実施例】以下に、実施例及び比較例を挙げて本発明を
更に具体的に説明するが、本発明は、その要旨を越えな
い限りこれらの実施例に限定されるものではない。 (実施例1)人造黒鉛粉末(TIMREX KS6)9
5重量部にポリフッ化ビニリデン5重量部を混合し、N
−メチル−2−ピロリドンで分散させスラリー状とし
た。これを負極集電体であるステンレス製メッシュ上に
均一に塗布し、乾燥、プレスして負極とした。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. (Example 1) Artificial graphite powder (TIMREX KS6) 9
5 parts by weight of polyvinylidene fluoride and 5 parts by weight of N
-Methyl-2-pyrrolidone was dispersed to make a slurry. This was uniformly applied onto a stainless steel mesh serving as a negative electrode current collector, dried and pressed to give a negative electrode.

【0027】乾燥アルゴン雰囲気下で、プロピレンカー
ボネート99重量部にアクリロニトリルを1重量部添加
し、これに十分に乾燥したLiN(CF3SO22を1
モル/リットルとなるように溶解させて電解液とした。
ガラスセル中に上記電解液を満たし、上記負極を作用極
とし、リチウム金属を対極及び参照極として、電気化学
セルを作製し、室温下電位走査速度0.05mV/se
cの条件でサイクリックボルタンメトリーを測定した。
In a dry argon atmosphere, 1 part by weight of acrylonitrile was added to 99 parts by weight of propylene carbonate, and 1 part of sufficiently dried LiN (CF 3 SO 2 ) 2 was added thereto.
It was dissolved so as to have a mol / liter to prepare an electrolytic solution.
An electrochemical cell was prepared by filling a glass cell with the electrolytic solution, using the negative electrode as a working electrode, and using lithium metal as a counter electrode and a reference electrode, and at room temperature, a potential scanning rate of 0.05 mV / se.
Cyclic voltammetry was measured under the condition of c.

【0028】(比較例1)プロピレンカーボネートにL
iN(CF3SO22を1モル/リットルとなるように
溶解させた電解液を用いた以外は、実施例1と同様にし
て電気化学セルを作製し、サイクリックボルタンメトリ
ーを測定した。 (実施例2)実施例1のアクリロニトリルに代えて、メ
タクリロニトリルを1重量部添加して調製した電解液を
用いた以外は、実施例1と同様にして電気化学セルを作
製し、サイクリックボルタンメトリーを測定した。
(Comparative Example 1) L in propylene carbonate
An electrochemical cell was prepared and cyclic voltammetry was measured in the same manner as in Example 1 except that an electrolytic solution in which iN (CF 3 SO 2 ) 2 was dissolved to be 1 mol / liter was used. (Example 2) An electrochemical cell was prepared in the same manner as in Example 1 except that an electrolytic solution prepared by adding 1 part by weight of methacrylonitrile was used in place of the acrylonitrile of Example 1, and a cyclic cell was prepared. Voltammetry was measured.

【0029】(実施例3)実施例1のアクリロニトリル
に代えて、α‐メチレン‐γ‐ブチロラクトンを1重量
部添加して調製した電解液を用いた以外は、実施例1と
同様にして電気化学セルを作製し、サイクリックボルタ
ンメトリーを測定した。実施例1〜3の結果を図1、
3、4に、比較例1の結果を図2に示す。
Example 3 Electrochemistry was carried out in the same manner as in Example 1 except that an electrolytic solution prepared by adding 1 part by weight of α-methylene-γ-butyrolactone was used in place of the acrylonitrile of Example 1. A cell was prepared and cyclic voltammetry was measured. The results of Examples 1 to 3 are shown in FIG.
The results of Comparative Example 1 are shown in FIGS.

【0030】比較例1の場合、約0.8V付近に電解液
の分解に伴う大きな還元電流が観測されるのみで、リチ
ウムの吸蔵・放出に伴う電流は観測されない。実施例1
〜3の場合は、0.8V付近の電解液の分解に伴う電流
は観測されずに、0.2V付近からリチウムの吸蔵によ
る大きな還元電流が観察され、0Vから0.3V付近に
リチウムの放出による酸化電流も観察され、リチウムの
吸蔵及び放出がスムーズに進行していることがわかる。
In the case of Comparative Example 1, only a large reduction current due to the decomposition of the electrolytic solution is observed in the vicinity of about 0.8 V, and no current due to the occlusion / release of lithium is observed. Example 1
In the case of ~ 3, the current due to the decomposition of the electrolytic solution around 0.8V was not observed, but a large reduction current due to the occlusion of lithium was observed around 0.2V, and the release of lithium around 0V to 0.3V. Oxidation current due to is also observed, and it can be seen that the occlusion and release of lithium proceed smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 1 shows the first-time potential-current curve measured by cyclic voltammetry of Example 1.

【図2】図2は、比較例1のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 2 shows a first potential-current curve measured by cyclic voltammetry in Comparative Example 1.

【図3】図3は、実施例2のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 3 shows the first-time potential-current curve measured by cyclic voltammetry of Example 2.

【図4】図4は、実施例3のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 4 shows the first potential-current curve measured by cyclic voltammetry of Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ユルゲン オットー ベーゼンハルト オーストリア国グラーツ、ストレマイアガ ッセ、16/111 A−8010 テクニカル ユニバーシティー グラーツ (72)発明者 マルティン ウインター オーストリア国グラーツ、ストレマイアガ ッセ、16/111 A−8010 テクニカル ユニバーシティー グラーツ Fターム(参考) 5H029 AJ02 AJ05 AJ12 AK03 AL07 AM00 AM01 AM03 AM04 AM05 AM07 DJ17 HJ02 HJ13 HJ20 5H050 AA02 AA07 AA15 BA17 CA07 CB08 FA19 HA02 HA13 HA19   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jürgen Otto Bosenhardt             Stremaiaga, Graz, Austria             Se, 16/111 A-8010 Technical             University Graz (72) Inventor Martin Winter             Stremaiaga, Graz, Austria             Se, 16/111 A-8010 Technical             University Graz F term (reference) 5H029 AJ02 AJ05 AJ12 AK03 AL07                       AM00 AM01 AM03 AM04 AM05                       AM07 DJ17 HJ02 HJ13 HJ20                 5H050 AA02 AA07 AA15 BA17 CA07                       CB08 FA19 HA02 HA13 HA19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵・放出することが可能な負
極及び正極と、非水溶媒にリチウム塩を溶解している電
解液とを含む非水系電解液二次電池において、比誘電率
25以上の有機溶媒が非水溶媒の60重量%以上を占
め、かつ電解液が炭素-炭素不飽和結合と共役した電子
吸引基を有する化合物を0.001〜10重量%含むこ
とを特徴とする非水系電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent, in a relative dielectric constant of 25 or more. The organic solvent occupies 60% by weight or more of the non-aqueous solvent, and the electrolytic solution contains 0.001 to 10% by weight of a compound having an electron-withdrawing group conjugated with a carbon-carbon unsaturated bond. Electrolyte secondary battery.
【請求項2】比誘電率25以上の有機溶媒が、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、γ−ブチロラクトン、及びγ−バレロラクト
ンよりなる群から選ばれたものであることを特徴とする
請求項1記載の非水系電解液二次電池。
2. The organic solvent having a relative dielectric constant of 25 or more is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and γ-valerolactone. 1. The non-aqueous electrolyte secondary battery according to 1.
【請求項3】炭素-炭素不飽和結合と共役した電子吸引
基を有する化合物が、アクリロニトリル、メタクリロニ
トリル、N,N−ジメチルアクリルアミド、メタクリル
酸メチル、2‐シアノアクリル酸エチル、及びα‐メチ
レン‐γ‐ブチロラクトンよりなる群から選ばれたもの
であることを特徴とする請求項1又は2記載の非水系電
解液二次電池。
3. A compound having an electron-withdrawing group conjugated with a carbon-carbon unsaturated bond is acrylonitrile, methacrylonitrile, N, N-dimethylacrylamide, methyl methacrylate, ethyl 2-cyanoacrylate, and α-methylene. The non-aqueous electrolyte secondary battery according to claim 1 or 2, which is selected from the group consisting of -γ-butyrolactone.
【請求項4】負極が、炭素質材料を含むことを特徴とす
る請求項1乃至3のいずれかに記載の非水系電解液二次
電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode contains a carbonaceous material.
【請求項5】炭素質材料が、学振法によるX線回折で求
めた格子面(002面)のd値が0.335〜0.34
nmの黒鉛材料であることを特徴とする請求項4に記載
の非水系電解液二次電池。
5. The carbonaceous material has a d-value of 0.335 to 0.34 on the lattice plane (002 plane) determined by X-ray diffraction by Gakushin method.
The non-aqueous electrolyte secondary battery according to claim 4, wherein the non-aqueous electrolyte secondary battery is a graphite material having a thickness of nm.
【請求項6】請求項1乃至5のいずれかに記載の非水系
電解液二次電池に用いる非水系電解液二次電池用電解
液。
6. An electrolytic solution for a non-aqueous electrolytic solution secondary battery used in the non-aqueous electrolytic solution secondary battery according to any one of claims 1 to 5.
JP2001279294A 2001-09-14 2001-09-14 Non-aqueous electrolyte secondary battery and electrolyte Expired - Lifetime JP4830244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279294A JP4830244B2 (en) 2001-09-14 2001-09-14 Non-aqueous electrolyte secondary battery and electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279294A JP4830244B2 (en) 2001-09-14 2001-09-14 Non-aqueous electrolyte secondary battery and electrolyte

Publications (3)

Publication Number Publication Date
JP2003086248A true JP2003086248A (en) 2003-03-20
JP2003086248A5 JP2003086248A5 (en) 2008-10-30
JP4830244B2 JP4830244B2 (en) 2011-12-07

Family

ID=19103517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279294A Expired - Lifetime JP4830244B2 (en) 2001-09-14 2001-09-14 Non-aqueous electrolyte secondary battery and electrolyte

Country Status (1)

Country Link
JP (1) JP4830244B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038722A (en) * 2003-07-15 2005-02-10 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery
JP2005093293A (en) * 2003-09-18 2005-04-07 Sanyo Electric Co Ltd Nonaqueous solvent system secondary battery
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
JP2005243458A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP2005285504A (en) * 2004-03-29 2005-10-13 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and lithium secondary battery using the same
JP2005322610A (en) * 2004-04-05 2005-11-17 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005340151A (en) * 2004-04-28 2005-12-08 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007141860A (en) * 2007-01-22 2007-06-07 Toshiba Corp Non-aqueous electrolytic battery
JPWO2005122318A1 (en) * 2004-05-28 2008-04-10 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
WO2014017464A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2015007554A1 (en) 2013-07-15 2015-01-22 Basf Se Maleonitrile derivatives as additives for electrolytes in lithium ion batteries
CN111029659A (en) * 2019-11-12 2020-04-17 天津力神电池股份有限公司 Lithium ion battery cathode protection method and electrolyte
CN111224167A (en) * 2020-01-13 2020-06-02 苏州大学 Electrolyte of leakage self-repairing lithium metal battery and preparation method and application thereof
CN112713306A (en) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 Electrolyte capable of being cured when meeting air or moisture, preparation method and application thereof
WO2022142093A1 (en) * 2020-12-29 2022-07-07 东莞新能源科技有限公司 Electrolyte, electrochemical device and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH06215761A (en) * 1993-01-21 1994-08-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH07176322A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
JPH08321312A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH10189008A (en) * 1996-12-27 1998-07-21 Sanyo Electric Co Ltd Lithium battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2000311715A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003163032A (en) * 2001-09-13 2003-06-06 Samsung Sdi Co Ltd Organic electrolyte including carbonate with carbon- carbon double bond, and polymer electrolyte and lithium secondary battery manufactured by using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH06215761A (en) * 1993-01-21 1994-08-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH07176322A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
JPH08321312A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH10189008A (en) * 1996-12-27 1998-07-21 Sanyo Electric Co Ltd Lithium battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2000311715A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003163032A (en) * 2001-09-13 2003-06-06 Samsung Sdi Co Ltd Organic electrolyte including carbonate with carbon- carbon double bond, and polymer electrolyte and lithium secondary battery manufactured by using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038722A (en) * 2003-07-15 2005-02-10 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery
JP4671589B2 (en) * 2003-07-15 2011-04-20 三星エスディアイ株式会社 Electrolyte for lithium secondary battery and lithium secondary battery
JP2005093293A (en) * 2003-09-18 2005-04-07 Sanyo Electric Co Ltd Nonaqueous solvent system secondary battery
JP4707313B2 (en) * 2003-09-18 2011-06-22 三洋電機株式会社 Non-aqueous solvent type secondary battery
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
US8137846B2 (en) 2003-12-15 2012-03-20 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP4649848B2 (en) * 2004-02-26 2011-03-16 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP2005243458A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP2005285504A (en) * 2004-03-29 2005-10-13 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and lithium secondary battery using the same
JP4581454B2 (en) * 2004-03-29 2010-11-17 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP2005322610A (en) * 2004-04-05 2005-11-17 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005340151A (en) * 2004-04-28 2005-12-08 Mitsubishi Chemicals Corp Lithium secondary battery
JPWO2005122318A1 (en) * 2004-05-28 2008-04-10 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP4560056B2 (en) * 2007-01-22 2010-10-13 株式会社東芝 Non-aqueous electrolyte battery
JP2007141860A (en) * 2007-01-22 2007-06-07 Toshiba Corp Non-aqueous electrolytic battery
US10312546B2 (en) 2012-07-27 2019-06-04 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
JP2014026885A (en) * 2012-07-27 2014-02-06 Fujifilm Corp Electrolyte for nonaqueous secondary battery and secondary battery
WO2014017464A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2015007554A1 (en) 2013-07-15 2015-01-22 Basf Se Maleonitrile derivatives as additives for electrolytes in lithium ion batteries
WO2015007555A1 (en) 2013-07-15 2015-01-22 Basf Se Maleonitrile derivatives as additives for electrolytes in lithium ion batteries
US9722280B2 (en) 2013-07-15 2017-08-01 Basf Se Acrylonitrile derivatives as additive for electrolytes in lithium ion batteries
US9761909B2 (en) 2013-07-15 2017-09-12 Basf Se Acrylonitrile derivatives as additive for electrolytes in lithium ion batteries
US10541446B2 (en) 2013-07-15 2020-01-21 Basf Se Acrylonitrile derivatives as additive for electrolytes in lithium ion batteries
CN111029659A (en) * 2019-11-12 2020-04-17 天津力神电池股份有限公司 Lithium ion battery cathode protection method and electrolyte
CN111224167A (en) * 2020-01-13 2020-06-02 苏州大学 Electrolyte of leakage self-repairing lithium metal battery and preparation method and application thereof
CN112713306A (en) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 Electrolyte capable of being cured when meeting air or moisture, preparation method and application thereof
WO2022142093A1 (en) * 2020-12-29 2022-07-07 东莞新能源科技有限公司 Electrolyte, electrochemical device and electronic device

Also Published As

Publication number Publication date
JP4830244B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US6670078B1 (en) Non-aqueous electrolyte cell with a solvent including a S-O bond
JP4233819B2 (en) Non-aqueous electrolyte secondary battery
US6958198B2 (en) Non-aqueous electrochemical apparatus
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
WO2000079632A1 (en) Nonaqueous electrolytic solution type secondary battery
WO2007064076A1 (en) Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
JP2001006729A (en) Nonaqueous electrolyte secondary battery
JP2003282138A (en) Nonaqueous electrolyte secondary battery and electrolyte used in it
JP4830244B2 (en) Non-aqueous electrolyte secondary battery and electrolyte
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2004014134A (en) Nonaqueous electrolyte secondary battery and electrolyte used for it
JP5282346B2 (en) Non-aqueous electrolyte secondary battery
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
US6664008B1 (en) Secondary battery having nonaqueous electrolyte solution
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2002298912A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
KR102426798B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP4887589B2 (en) Non-aqueous electrolyte secondary battery
JP4363063B2 (en) Non-aqueous electrolyte secondary battery
JP2002352851A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term