JP2003086191A - Solid polymer fuel cell and its manufacturing method - Google Patents

Solid polymer fuel cell and its manufacturing method

Info

Publication number
JP2003086191A
JP2003086191A JP2001274604A JP2001274604A JP2003086191A JP 2003086191 A JP2003086191 A JP 2003086191A JP 2001274604 A JP2001274604 A JP 2001274604A JP 2001274604 A JP2001274604 A JP 2001274604A JP 2003086191 A JP2003086191 A JP 2003086191A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst
catalyst layer
fuel cell
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001274604A
Other languages
Japanese (ja)
Inventor
Eiichi Yasumoto
栄一 安本
Makoto Uchida
誠 内田
Akihiko Yoshida
昭彦 吉田
Yoshihiro Hori
堀  喜博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001274604A priority Critical patent/JP2003086191A/en
Publication of JP2003086191A publication Critical patent/JP2003086191A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell and its manufacturing method stabilizing a polymer electrolyte in catalyst layers and facilitating preparation of catalyst ink. SOLUTION: The solid polymer fuel cell has the catalyst layers on both sides of a solid electrolyte membrane. At least one of the catalyst layers uses carbon powders with at least catalyst particles supported thereon, and also uses no less than two kinds of polymer electrolytes of different characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池およびその製造方法、特にその触媒層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell and a method for producing the same, and particularly to a catalyst layer thereof.

【0002】[0002]

【従来の技術】固体高分子型燃料電池の電極は、触媒層
を多孔質導電性の電極基材上に形成したものを用いる。
通常、これらの触媒層の形成方法は、貴金属を担持した
炭素微粉末と、水素イオン導電性を有する高分子電解質
の溶液に、水、イソプロピルアルコールなどの溶媒を用
いて触媒インクを作製し、この触媒インクも粘度を調製
した後、スクリーン印刷法やスプレー法を用いて、電極
基材となるカーボンペーパーやカーボンクロス上に塗工
し、乾燥あるいは焼成して形成するのが一般的である。
このようにして作製した電極を、電解質膜を介してホッ
トプレスにより接合し、固体高分子型燃料電池を作製す
る。
2. Description of the Related Art As an electrode of a polymer electrolyte fuel cell, a catalyst layer formed on a porous conductive electrode base material is used.
Usually, these catalyst layers are formed by using a fine carbon powder carrying a noble metal and a solution of a polymer electrolyte having hydrogen ion conductivity, and using a solvent such as water or isopropyl alcohol to prepare a catalyst ink. In general, the catalyst ink is also formed by coating the carbon ink or carbon cloth as an electrode base material with a screen printing method or a spray method after adjusting the viscosity, and then drying or firing.
The electrodes produced in this manner are joined together by hot pressing through the electrolyte membrane to produce a polymer electrolyte fuel cell.

【0003】これ以外の方法として、高分子フィルム上
にグラビア印刷やコーター法により、触媒インクを塗工
し、乾燥させて触媒層を形成した後に、電解質膜に転写
・接合し、固体高分子型燃料電池を作製する方法も提案
されている。この場合も、塗工する前にはインク調製を
行うのが一般的である。
As another method, a catalyst ink is coated on a polymer film by gravure printing or a coater method, dried to form a catalyst layer, and then transferred and bonded to an electrolyte membrane to form a solid polymer type. Methods of making fuel cells have also been proposed. Also in this case, it is general to prepare ink before coating.

【0004】以上のように、これらの触媒層中の高分子
電解質は、触媒インクを調製する段階で高分子電解質溶
液の状態で添加されるのが一般的である。よって触媒層
を形成後、熱処理を加えるだけであることが多い。
As described above, the polymer electrolyte in these catalyst layers is generally added in the state of the polymer electrolyte solution at the stage of preparing the catalyst ink. Therefore, it is often the case that only heat treatment is applied after forming the catalyst layer.

【0005】また、触媒インクの粘度、固形分比は、高
分子電解質溶液の粘度、固形分比に左右されることが多
く、塗工前の最終の触媒インク調整時には、触媒インク
中から溶媒成分を除去させる、粘度調製剤を添加するな
どの対策がとられている。
Further, the viscosity and solid content ratio of the catalyst ink are often influenced by the viscosity and solid content ratio of the polymer electrolyte solution, and during the final preparation of the catalyst ink before coating, the solvent component is removed from the catalyst ink. Are taken and measures such as adding a viscosity adjusting agent are taken.

【0006】さらに、高分子電解質膜と異なり触媒層中
の高分子電解質は、上記の如く高分子電解質溶液を用い
て形成されるために、高分子電解質膜に比べて安定性が
悪く、劣化しやすいため、特許2781630号公報で
提案されているように、触媒層形成後熱処理を加えて、
安定化させるなどの対策を行う場合も多い。
Further, unlike the polymer electrolyte membrane, the polymer electrolyte in the catalyst layer is formed by using the polymer electrolyte solution as described above, so that it is less stable and deteriorates than the polymer electrolyte membrane. Therefore, as proposed in Japanese Patent No. 2881630, heat treatment is added after formation of the catalyst layer,
In many cases, measures such as stabilization are taken.

【0007】[0007]

【発明が解決しようとする課題】触媒インクを、塗工前
に最適化することは、平滑で均一な触媒層を形成するた
めには必要不可欠である。しかしながら、多くの場合、
触媒インクの最適化は、混合する高分子電解質溶液の粘
度、固形分比に依存するために行われることが多い。通
常、市販されている高分子電解質溶液の固形分比は、5
〜10%程度と低い。また、このような高分子電解質溶
液の粘度は、0.01〜0.1Pa・s(0.1〜1.
0P)程度と非常に低い。このために、触媒インクの最
適化工程では、溶媒成分を揮発させて、固形分比を上げ
る対策がとられているが、溶媒を所定の量だけ除去する
ことは非常に困難であり、再現性という観点からも好ま
しくない。また、増粘剤を添加して、触媒インクの粘度
を上昇させることも、触媒層中に不純物を添加すること
になり電池性能の観点からは好ましくない。これらの方
法では、触媒層形成のための工程が複雑になるという問
題がある。
The optimization of the catalyst ink before coating is essential for forming a smooth and uniform catalyst layer. However, in many cases
Optimization of the catalyst ink is often performed because it depends on the viscosity and solid content ratio of the polymer electrolyte solution to be mixed. Usually, the solid content ratio of commercially available polymer electrolyte solutions is 5
It is as low as about 10%. The viscosity of such a polymer electrolyte solution is 0.01 to 0.1 Pa · s (0.1 to 1.
0P), which is very low. For this reason, in the process of optimizing the catalyst ink, measures are taken to evaporate the solvent component to increase the solid content ratio, but it is very difficult to remove the solvent in a predetermined amount, and the reproducibility is reproducible. It is not preferable from the viewpoint. In addition, it is not preferable to increase the viscosity of the catalyst ink by adding a thickener, because impurities are added to the catalyst layer from the viewpoint of battery performance. These methods have a problem that the steps for forming the catalyst layer are complicated.

【0008】さらに、特許2781630号のように触
媒層中の高分子電解質の安定化のために、触媒層を形成
した後に熱処理することは、電池の耐久性の観点からは
有用である。しかしながら、触媒層形成後では、触媒層
の形状や寸法変化を考慮すると、十分な熱処理が行えな
いという問題がある。
Further, as described in Japanese Patent No. 2881630, heat treatment after forming the catalyst layer for stabilizing the polymer electrolyte in the catalyst layer is useful from the viewpoint of the durability of the battery. However, after forming the catalyst layer, there is a problem that sufficient heat treatment cannot be performed in consideration of the shape and dimensional change of the catalyst layer.

【0009】以上のことから、触媒層中の高分子電解質
を安定化させ、かつ、触媒インク調製が簡便に行える固
体高分子型燃料電池とその製造方法が求められている。
From the above, there is a demand for a polymer electrolyte fuel cell which stabilizes the polymer electrolyte in the catalyst layer and allows the catalyst ink to be easily prepared, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明の高分子型燃料電
池は、高分子電解質膜を挟んで両側に触媒層が備えられ
た固体高分子型燃料電池において、前記触媒層の少なく
とも一方の触媒層は、少なくとも触媒粒子を担持した炭
素粉末と、特性の異なる2種以上の高分子電解質を有す
ることを特徴とする。特性の異なる2種以上の高分子電
解質は、熱処理温度を変えることで実現出来る。
The polymer fuel cell of the present invention is a solid polymer fuel cell in which a catalyst layer is provided on both sides of a polymer electrolyte membrane, and at least one of the catalyst layers has a catalyst. The layer is characterized by having at least carbon powder carrying catalyst particles and two or more kinds of polymer electrolytes having different properties. Two or more polymer electrolytes having different properties can be realized by changing the heat treatment temperature.

【0011】また、触媒層は、イオン交換容量が異なる
高分子電解質を有することが有効である。
Further, it is effective that the catalyst layer has polymer electrolytes having different ion exchange capacities.

【0012】また、触媒層の製造方法は、触媒粒子を担
持した炭素粒子と、高分子電解質とを混合し、熱処理し
て高分子電解質が付いた触媒担持炭素粉末を作製する第
1工程と、前記高分子電解質付き触媒担持炭素粉末に、
高分子電解質を含む溶液を混合し、触媒層を塗工する第
2工程と、塗工した前記触媒層を熱処理する第3工程を
有することを特徴とする製造方法が有効である。
Further, the method for producing the catalyst layer comprises a first step of mixing carbon particles carrying catalyst particles and a polymer electrolyte and heat-treating the mixture to prepare a catalyst-supporting carbon powder with the polymer electrolyte. In the catalyst-supporting carbon powder with the polymer electrolyte,
A manufacturing method characterized by having a second step of applying a solution containing a polymer electrolyte and applying a catalyst layer and a third step of heat-treating the applied catalyst layer is effective.

【0013】このとき、第1工程における熱処理温度
と、第3工程における熱処理温度とが異なる温度である
ことを特徴とする。
At this time, the heat treatment temperature in the first step and the heat treatment temperature in the third step are different temperatures.

【0014】また、第1工程における触媒を担持した炭
素粉末と高分子電解質溶液を混合した溶液の粘度を、第
2工程におけ前記高分子電解質付き触媒担持炭素粉末
に、高分子電解質を含む溶液を混合した溶液の粘度より
も低くしたことを特徴とする。
The viscosity of the solution obtained by mixing the catalyst-supporting carbon powder and the polymer electrolyte solution in the first step is the solution containing the polymer electrolyte in the catalyst-supporting carbon powder with polymer electrolyte in the second step. Is lower than the viscosity of the mixed solution.

【0015】[0015]

【発明の実施の形態】本発明の固体高分子型燃料電池
は、触媒層内に、たとえば、熱処理温度の異なる2種類
の高分子電解質を用いるため、従来の熱処理温度が1つ
高分子電解質に比べて、電池を構成した場合、電池の初
期特性を維持した状態で耐久性が向上する。また、イオ
ン交換容量の異なる高分子電解質を用いることにより、
その効果をより大きくすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the polymer electrolyte fuel cell of the present invention uses, for example, two kinds of polymer electrolytes having different heat treatment temperatures in the catalyst layer, the conventional polymer electrolyte can be treated with one heat treatment temperature. In contrast, when a battery is constructed, the durability is improved while maintaining the initial characteristics of the battery. Also, by using polymer electrolytes with different ion exchange capacities,
The effect can be further increased.

【0016】また、いったん高分子電解質付き触媒担持
炭素粉末を形成してから、再度、高分子電解質溶液に添
加して触媒インクを作製するため、触媒インク作製持
に、固形分比を高くすることが出来ると共に、高い粘度
の触媒インクを作製することが可能になる。さらに、予
め作製する高分子電解質付き触媒担持炭素粉末は、触媒
層を形成していない段階のため、高分子電解質が熱劣化
しない範囲の、広い温度領域で熱処理することが可能で
ある。
Further, since the catalyst-supporting carbon powder with the polymer electrolyte is once formed and then added again to the polymer electrolyte solution to prepare the catalyst ink, the solid content ratio must be increased to prepare the catalyst ink. It becomes possible to produce a catalyst ink having a high viscosity. Further, the catalyst-supported carbon powder with a polymer electrolyte prepared in advance can be heat-treated in a wide temperature range within a range where the polymer electrolyte is not thermally deteriorated because the catalyst layer is not formed.

【0017】これにより触媒層形成後熱処理するのに比
べて、高い温度での熱処理が可能となり、高分子電解質
の安定性が向上する。さらに、予め熱処理した高分子電
解質付き触媒担持炭素粉末を用いて触媒層を形成するた
め、触媒層形成後の熱処理温度を低く設定し、触媒層の
形状や寸法安定性を維持した状態で、高分子電解質の安
定性を確保することができる。
As a result, heat treatment at a higher temperature becomes possible as compared with heat treatment after forming the catalyst layer, and the stability of the polymer electrolyte is improved. Further, since the catalyst layer is formed using the catalyst-supported carbon powder with polymer electrolyte that has been preheated, the heat treatment temperature after the catalyst layer is formed is set low, and the shape and dimensional stability of the catalyst layer are maintained at a high level. The stability of the molecular electrolyte can be ensured.

【0018】[0018]

【実施例】以下、実施例で説明する。EXAMPLES Examples will be described below.

【0019】(実施例1)まず、比表面積が800m2
/g、DBP吸油量が360ml/100gである炭素
粒子(ケッチェンブラック・インターナショナル社製フ
ァーネスブラック、品名ケッチェンブラックEC)に、
平均粒径約30Åの白金粒子を50%の重量比で担持さ
せ、触媒粒子とした。これと、5重量%の水素イオン伝
導性高分子電解質溶液(アルドリッチ製SE-5012、イオ
ン交換容量1.0meq/g)とを混合し、触媒インク
を作製した。このとき、触媒粒子と水素イオン伝導性高
分子電解質との重量比が1:1となるようにした。
Example 1 First, the specific surface area is 800 m 2.
/ G, carbon particles having a DBP oil absorption of 360 ml / 100 g (Ketjen Black International, Furnace Black, product name Ketjen Black EC),
Platinum particles having an average particle size of about 30Å were supported at a weight ratio of 50% to obtain catalyst particles. This was mixed with a 5 wt% hydrogen ion conductive polymer electrolyte solution (SE-5012 manufactured by Aldrich, ion exchange capacity 1.0 meq / g) to prepare a catalyst ink. At this time, the weight ratio of the catalyst particles to the hydrogen ion conductive polymer electrolyte was set to 1: 1.

【0020】この触媒インクを減圧乾燥させ、乾式粉砕
することにより、高分子電解質付き触媒担持炭素粉末A
(以下、粉末Aと呼ぶ)を作製した。この粉末Aを2つ
に分け、各々80℃と160℃で3時間熱処理を行い、
粉末A80と粉末A160を得た。これらの粉末をイソ
プロピルアルコール中に同量ずつ混合し、触媒インクA
を作製した。比較のために、粉末A80および粉末A1
60だけを用いた触媒インクA80と、触媒インクA1
60も作製した。
The catalyst ink is dried under reduced pressure and dry-pulverized to obtain a catalyst-supporting carbon powder A with a polymer electrolyte.
(Hereinafter, referred to as powder A) was produced. This powder A is divided into two and heat-treated at 80 ° C and 160 ° C for 3 hours,
Powder A80 and powder A160 were obtained. These powders were mixed in equal amounts in isopropyl alcohol to prepare a catalyst ink A.
Was produced. For comparison, Powder A80 and Powder A1
Catalyst ink A80 using only 60 and catalyst ink A1
60 was also produced.

【0021】このようにして作製した触媒インクを、ガ
ス拡散層となるカーボンペーパー(TGP−H−90、
東レ製)上に塗布して触媒層を形成した。これらを高分
子電解質膜(Nafion112,デュポン製)を介し
て、ガスケットと共に接合し単電池A、単電池A80、
単電池A160を作製した。
The catalyst ink prepared in this manner was used as a carbon paper (TGP-H-90, which became a gas diffusion layer).
(Manufactured by Toray) to form a catalyst layer. These are joined together with a gasket via a polymer electrolyte membrane (Nafion 112, made by DuPont) to form a single cell A, a single cell A80,
A unit cell A160 was produced.

【0022】これらを単電池試験装置にセットし各電池
特性を調べた。作製した単電池には、燃料極に水素ガス
を、空気極には空気を流し、電池温度を80℃、燃料利
用率を80%、空気利用率を40%、加湿は水素ガスを
75℃、空気を60℃の露点になるように調整した。
These were set in a unit cell test device and the characteristics of each cell were examined. Hydrogen gas was supplied to the fuel electrode and air was supplied to the air electrode of the prepared unit cell, the cell temperature was 80 ° C, the fuel utilization rate was 80%, the air utilization rate was 40%, and the humidification was hydrogen gas at 75 ° C. The air was adjusted to have a dew point of 60 ° C.

【0023】図1に電流−電圧特性を、図2にこれらの
電池の0.2A/cm2時の寿命特性を比較して示し
た。これより、単電池Aの性能が電池特性、寿命特性共
に優れていることがわかった。
FIG. 1 shows the current-voltage characteristics, and FIG. 2 shows the life characteristics of these batteries at 0.2 A / cm 2 for comparison. From this, it was found that the performance of the unit cell A was excellent in both battery characteristics and life characteristics.

【0024】単電池A80では、電池特性は高いものの
寿命特性が悪くなった。これは触媒層中の高分子電解質
の熱処理温度が低かったために、初期の電池特性は良か
ったものの、高分子が十分に活性化、安定化されていな
いため、寿命特性が低くなったものと考えられた。逆
に、単電池A160では熱処理温度が高いため、触媒担
持炭素粉末との密着性は向上し、電池の耐久性、寿命特
性は向上するが、触媒層中でのガス拡散性が低下して、
初期特性は低くなったものと考えられた。
In the unit cell A80, the battery characteristics were high, but the life characteristics were poor. This is probably because the initial battery characteristics were good because the heat treatment temperature of the polymer electrolyte in the catalyst layer was low, but the life characteristics were low because the polymer was not sufficiently activated and stabilized. Was given. On the other hand, in the unit cell A160, the heat treatment temperature is high, so that the adhesion with the catalyst-supporting carbon powder is improved and the durability and life characteristics of the battery are improved, but the gas diffusibility in the catalyst layer is lowered,
The initial characteristics were considered to have deteriorated.

【0025】これに対して単電池Aでは、粉末A80と
A120が混合されているため、触媒層中でのガス拡散
性は保持した状態で、活性化された高分子電解質が存在
しているため、結果的には初期特性を維持したまま、耐
久性が向上したものと考えられた。
On the other hand, in the unit cell A, since the powders A80 and A120 are mixed, the activated polymer electrolyte exists while maintaining the gas diffusibility in the catalyst layer. As a result, it was considered that the durability was improved while maintaining the initial characteristics.

【0026】次に、イオン交換容量の異なる高分子電解
質溶液を用いて、先と同じ触媒インクを作製した。イオ
ン交換容量が0.9meq/gのNafion溶液(S
E−5112、デュポン製)を用い、先と同じに触媒イ
ンク作製し、これらを減圧乾燥して高分子電解質付き触
媒担持炭素粉末(粉末B)を作製した。これを80℃で
熱処理して、粉末B80を作製した。この粉末B80と
先に作製した粉末A160を、先と同様にイソプロピル
アルコール中に同量ずつ混合して触媒インクを作製し、
同様のプロセスを経て単電池Bを作製した。
Next, using the polymer electrolyte solutions having different ion exchange capacities, the same catalyst ink as above was prepared. Nafion solution (S with an ion exchange capacity of 0.9 meq / g)
E-5112, manufactured by DuPont) was used to prepare a catalyst ink in the same manner as above, and these were dried under reduced pressure to prepare a catalyst-supporting carbon powder with a polymer electrolyte (powder B). This was heat-treated at 80 ° C. to prepare powder B80. This powder B80 and the previously prepared powder A160 were mixed in isopropyl alcohol in the same amount in the same manner as above to prepare a catalyst ink,
A unit cell B was produced through the same process.

【0027】図3に、単電池Bの電流−電圧特性を、先
の単電池Aと比較して示した。これより、単電池Bの性
能が、単電池Aよりも優れていることがわかる。また寿
命特性を調べた結果も単電池Aよりも優れていることが
分かった。これはイオン交換容量の小さい高分子電解質
はイオン交換容量の大きい高分子電解質に比べて、高分
子自身の安定性が高く、同じ温度で熱処理しても、高分
子電解質の安定性が高くなるためと考えられた。
FIG. 3 shows the current-voltage characteristics of the unit cell B in comparison with the unit cell A. From this, it is understood that the performance of the unit cell B is superior to that of the unit cell A. Also, the result of examining the life characteristics was found to be superior to the unit cell A. This is because a polymer electrolyte with a small ion exchange capacity has a higher stability of the polymer itself than a polymer electrolyte with a large ion exchange capacity, and the stability of the polymer electrolyte becomes higher even if heat-treated at the same temperature. It was considered.

【0028】以上のように、熱処理温度の異なる2種類
の高分子電解質を用いることにより、従来よりも耐久性
に優れた高分子電解質型燃料電池を構成できる。
As described above, by using two kinds of polymer electrolytes having different heat treatment temperatures, it is possible to construct a polymer electrolyte fuel cell which is more durable than conventional ones.

【0029】(実施例2)本実施例でも、実施例1で作
成した触媒インクを用いた。ただし、高分子電解質と触
媒粒子との重量比が0.3:1となるように混合し、こ
れを触媒インクCとした。比較のために高分子電解質と
触媒粒子の比が0.5:1になるように混合した触媒イ
ンクDも作製した。この触媒インクCを減圧乾燥させ、
乾式粉砕することにより、高分子電解質付き触媒担持炭
素粉末C(以下、粉末Cと呼ぶ)を作製した。この粉末
Cを160℃で3時間熱処理を行った。熱処理後の粉末
Cを再度、5%Nafion溶液中に混合し触媒インク
C2を作製した。この触媒インク中での高分子電解質と
触媒担持炭素粉末の比は、0.5となるようにした。
Example 2 In this example as well, the catalyst ink prepared in Example 1 was used. However, the polymer electrolyte and the catalyst particles were mixed so that the weight ratio was 0.3: 1, and this was used as catalyst ink C. For comparison, a catalyst ink D was also prepared in which the polymer electrolyte and the catalyst particles were mixed at a ratio of 0.5: 1. This catalyst ink C is dried under reduced pressure,
By dry grinding, a catalyst-supporting carbon powder C with a polymer electrolyte (hereinafter referred to as powder C) was produced. This powder C was heat-treated at 160 ° C. for 3 hours. The powder C after the heat treatment was mixed again in the 5% Nafion solution to prepare the catalyst ink C2. The ratio of the polymer electrolyte to the catalyst-supporting carbon powder in this catalyst ink was set to 0.5.

【0030】ここで触媒インクCと触媒インクC2、お
よび比較用の触媒インクDの粘度を粘弾性測定装置(レ
オストレス RS150、独HAAKE社製)を用いて測定
した。剪断速度が0.1(1/s)における触媒層イン
クCの粘度は、1Pa・s、触媒層インクC2の粘度は
同じ剪断速度で、100Pa・s、触媒インクDの場合
は5Pa・sであった。
Here, the viscosities of the catalyst ink C and the catalyst ink C2, and the comparative catalyst ink D were measured using a viscoelasticity measuring device (Rheostress RS150, manufactured by HAAKE, Germany). The viscosity of the catalyst layer ink C at a shear rate of 0.1 (1 / s) is 1 Pa · s, the viscosity of the catalyst layer ink C2 is 100 Pa · s, and the viscosity of the catalyst ink D is 5 Pa · s at the same shear rate. there were.

【0031】次に、触媒インクC2と触媒インクDを実
施例1と同様にカーボンペーパー上に塗工した。この
時、触媒インクDを用いた場合にはインクの粘度が低い
ため、塗工が再現性良く行うことができず、塗工バラツ
キも触媒層インクC2に比べ大きくなった。これに対し
て触媒層インクC2を用いた場合には、インク粘度が低
すぎることなく、安定して触媒層を形成することが出来
た。これらの触媒層を80℃で熱処理した後、高分子電
解質膜(Nafion112,デュポン製)を介して、
ガスケットと共に接合し単電池C2、単電池Dを作製し
た。
Next, catalyst ink C2 and catalyst ink D were coated on carbon paper in the same manner as in Example 1. At this time, when the catalyst ink D was used, since the viscosity of the ink was low, the coating could not be performed with good reproducibility, and the coating variation was larger than that of the catalyst layer ink C2. On the other hand, when the catalyst layer ink C2 was used, the catalyst layer could be stably formed without the ink viscosity being too low. After heat treating these catalyst layers at 80 ° C., a polymer electrolyte membrane (Nafion 112, manufactured by DuPont)
It joined together with the gasket and the single cell C2 and the single cell D were produced.

【0032】これらを単電池試験装置にセットし実施例
1と同じ条件で各電池特性を調べた。図4にこれらの電
池の電流−電圧特性を示した。これにより単電池C2の
方が単電池Dに比べ特性が向上することが分かった。こ
れは、触媒インク塗工時のインク粘度が低いDの方が触
媒層の形成状態が悪く、不均一であったことと、触媒層
中の高分子電解質の熱処理温度が80℃と低く、高分子
電解質の活性化が十分でなかったためと考えられた。
These were set in a unit cell tester and the characteristics of each cell were examined under the same conditions as in Example 1. FIG. 4 shows the current-voltage characteristics of these batteries. As a result, it was found that the unit cell C2 had better characteristics than the unit cell D. This is because when the ink viscosity D when the catalyst ink was applied was lower, the formation state of the catalyst layer was worse and the catalyst layer was non-uniform, and the heat treatment temperature of the polymer electrolyte in the catalyst layer was as low as 80 ° C. It was considered that the activation of the molecular electrolyte was not sufficient.

【0033】触媒層形成後の熱処理温度を高くすること
も可能ではあるが、触媒層のひび割れやカーボンペーパ
ーからの脱落の可能性があるため、これ以上の温度での
熱処理は困難である。これに対して、単電池Cでは、予
め高分子電解質付き炭素粉末を作製し熱処理を行ってい
るため、触媒層形成後の熱処理温度が低くても、電池特
性が低下しなかったためと考えられた。また、作製した
粉末Cを再度、高分子電解質溶液に混合しているため触
媒インクC2の粘度が、触媒インクDの粘度に比べて、
前述の通り高く、カーボンペーパー上に安定して触媒層
を形成することが出来たためと考えられた。
Although it is possible to raise the heat treatment temperature after forming the catalyst layer, it is difficult to perform heat treatment at a temperature higher than this because the catalyst layer may be cracked or fall off from the carbon paper. On the other hand, in the unit cell C, the carbon powder with the polymer electrolyte was prepared in advance and the heat treatment was performed, so it was considered that the battery characteristics did not deteriorate even if the heat treatment temperature after the catalyst layer formation was low. . Further, since the produced powder C is mixed again with the polymer electrolyte solution, the viscosity of the catalyst ink C2 is higher than that of the catalyst ink D.
As described above, it was considered to be high because the catalyst layer could be stably formed on the carbon paper.

【0034】以上のように、一端高分子電解質付き触媒
担持炭素粉末の状態で熱処理が出来るため、触媒層を形
成後に高温の熱処理をすることが出来なくても、高い特
性の高分子電解質型燃料電池を構成できる。また、高分
子電解質付き触媒担持炭素粉末を再度、高分子電解質溶
液に混合して触媒インクを形成するため、直接高分子電
解質溶液と触媒担持炭素粉末だけで触媒インクを調製す
るよりも、インク粘度のコントロールが容易で、初期の
高分子電解質と触媒担持炭素粉末の比や、溶媒等の添加
によって、幅広い粘度範囲の触媒インクを自由に調整す
ることが可能である。
As described above, since the heat treatment can be performed in the state of the catalyst-supporting carbon powder with the polymer electrolyte, even if the heat treatment at high temperature cannot be performed after the formation of the catalyst layer, the polymer electrolyte fuel having high characteristics can be obtained. A battery can be constructed. Further, since the catalyst-supporting carbon powder with the polymer electrolyte is again mixed with the polymer electrolyte solution to form the catalyst ink, the ink viscosity is higher than that of directly preparing the catalyst ink with only the polymer electrolyte solution and the catalyst-supporting carbon powder. Is easy to control, and the catalyst ink in a wide viscosity range can be freely adjusted by the ratio of the initial polymer electrolyte to the catalyst-supporting carbon powder and the addition of a solvent and the like.

【0035】また、本方法を用いれば、いったん高分子
電解質付き触媒担持炭素粉末を形成してから、再度、高
分子電解質溶液に添加して触媒インクを作製するため、
触媒インク作製持に、固形分比を高くすることが出来る
と共に、高い粘度の触媒インクを作製することが可能に
なる。さらに、予め作製する高分子電解質付き触媒担持
炭素粉末は、触媒層を形成していない段階のため、高分
子電解質が熱劣化しない範囲の、広い温度領域で熱処理
することが可能である。
Further, according to this method, since the catalyst-supporting carbon powder with the polymer electrolyte is once formed, it is added again to the polymer electrolyte solution to prepare the catalyst ink.
It is possible to increase the solid content ratio for producing the catalyst ink and to produce the catalyst ink having high viscosity. Further, the catalyst-supported carbon powder with a polymer electrolyte prepared in advance can be heat-treated in a wide temperature range within a range where the polymer electrolyte is not thermally deteriorated because the catalyst layer is not formed.

【0036】これにより触媒層形成後熱処理するのに比
べて、高い温度での熱処理が可能となり、高分子電解質
の安定性が向上する。さらに、予め熱処理した高分子電
解質付き触媒担持炭素粉末を用いて触媒層を形成するた
め、触媒層形成後の熱処理温度を低く設定し、触媒層の
形状や寸法安定性を維持した状態で、高分子電解質の安
定性を確保することができる。
This makes it possible to perform heat treatment at a higher temperature as compared with heat treatment after formation of the catalyst layer, and the stability of the polymer electrolyte is improved. Further, since the catalyst layer is formed using the catalyst-supported carbon powder with polymer electrolyte that has been preheated, the heat treatment temperature after the catalyst layer is formed is set low, and the shape and dimensional stability of the catalyst layer are maintained at a high level. The stability of the molecular electrolyte can be ensured.

【0037】[0037]

【発明の効果】以上のように、本発明の固体高分子型燃
料電池は、触媒層内に、熱処理温度の異なる2種類の高
分子電解質を用いているため、従来の熱処理温度が1つ
高分子電解質に比べて、電池を構成した場合、電池の初
期特性を維持した状態で耐久性が向上する。
As described above, since the solid polymer electrolyte fuel cell of the present invention uses two kinds of polymer electrolytes having different heat treatment temperatures in the catalyst layer, the conventional heat treatment temperature is higher by one. When a battery is constructed, durability is improved in comparison with a molecular electrolyte while maintaining the initial characteristics of the battery.

【0038】また、イオン交換容量の異なる高分子電解
質を用いることにより、その効果をより大きくすること
ができる。また、いったん高分子電解質付き触媒担持炭
素粉末を形成してから、再度、高分子電解質溶液に添加
して触媒インクを作製するため、触媒インク作製持に、
固形分比を高くすることが出来ると共に、高い粘度の触
媒インクを作製することが可能になる。
The effect can be further enhanced by using polymer electrolytes having different ion exchange capacities. Further, once the catalyst-supporting carbon powder with the polymer electrolyte is formed, it is added to the polymer electrolyte solution again to prepare the catalyst ink.
The solid content ratio can be increased, and a catalyst ink having a high viscosity can be manufactured.

【0039】さらに、予め作製する高分子電解質付き触
媒担持炭素粉末は、触媒層を形成していない段階のた
め、高分子電解質が熱劣化しない範囲の、広い温度領域
で熱処理することが可能である。これにより触媒層形成
後熱処理するのに比べて、高い温度での熱処理が可能と
なり、高分子電解質の安定性が向上する。さらに、予め
熱処理した高分子電解質付き触媒担持炭素粉末を用いて
触媒層を形成するため、触媒層形成後の熱処理温度を低
く設定し、触媒層の形状や寸法安定性を維持した状態
で、高分子電解質の安定性を確保することができる。
Further, the catalyst-supported carbon powder with polymer electrolyte prepared in advance can be heat-treated in a wide temperature range within the range where the polymer electrolyte is not thermally deteriorated because the catalyst layer is not formed. . This enables heat treatment at a higher temperature than heat treatment after forming the catalyst layer, and improves the stability of the polymer electrolyte. Further, since the catalyst layer is formed using the catalyst-supported carbon powder with polymer electrolyte that has been preheated, the heat treatment temperature after the catalyst layer is formed is set low, and the shape and dimensional stability of the catalyst layer are maintained at a high level. The stability of the molecular electrolyte can be ensured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の固体高分子型燃料電池
の第1の特性を示す図
FIG. 1 is a diagram showing a first characteristic of the polymer electrolyte fuel cell according to the first embodiment of the present invention.

【図2】本発明の第1の実施例の固体高分子型燃料電池
の第2の特性を示す図
FIG. 2 is a diagram showing a second characteristic of the polymer electrolyte fuel cell according to the first embodiment of the present invention.

【図3】本発明の第1の実施例の固体高分子型燃料電池
の第3の特性を示す図
FIG. 3 is a diagram showing a third characteristic of the polymer electrolyte fuel cell according to the first embodiment of the present invention.

【図4】本発明の第2の実施例の固体高分子型燃料電池
の特性を示す図
FIG. 4 is a diagram showing characteristics of a polymer electrolyte fuel cell according to a second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 堀 喜博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 BB01 BB06 BB08 BB12 DD06 EE03 EE08 EE17 EE18 HH00 HH08 5H026 AA06 BB04 BB08 CX05 EE18 HH00 HH08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Yoshida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshihiro Hori             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H018 AA06 BB01 BB06 BB08 BB12                       DD06 EE03 EE08 EE17 EE18                       HH00 HH08                 5H026 AA06 BB04 BB08 CX05 EE18                       HH00 HH08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜を挟んで両側に触媒層が
備えられた固体高分子型燃料電池において、前記触媒層
の少なくとも一方の触媒層は、少なくとも触媒粒子を担
持した炭素粉末と、特性の異なる2種以上の高分子電解
質を有することを特徴とする固体高分子型燃料電池。
1. A polymer electrolyte fuel cell having a catalyst layer on both sides of a polymer electrolyte membrane, wherein at least one catalyst layer of the catalyst layer comprises carbon powder carrying at least catalyst particles, and characteristics. A polymer electrolyte fuel cell comprising two or more kinds of polymer electrolytes different from each other.
【請求項2】 触媒層は、イオン交換容量が異なる高分
子電解質を有することを特徴とする請求項1記載の固体
高分子型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the catalyst layer has polymer electrolytes having different ion exchange capacities.
【請求項3】 触媒層の製造方法は、触媒粒子を担持し
た炭素粒子と、高分子電解質とを混合し、熱処理して高
分子電解質が付いた触媒担持炭素粉末を作製する第1工
程と、前記高分子電解質付き触媒担持炭素粉末に、高分
子電解質を含む溶液を混合し、触媒層を塗工する第2工
程と、塗工した前記触媒層を熱処理する第3工程を有す
ることを特徴とする請求項1または2記載の固体高分子
型燃料電池の製造方法。
3. A method for producing a catalyst layer comprises a first step of mixing carbon particles carrying catalyst particles and a polymer electrolyte and heat-treating the mixture to prepare a catalyst-supporting carbon powder with the polymer electrolyte. A second step of applying a solution containing a polymer electrolyte to the catalyst-supported carbon powder with a polymer electrolyte to apply a catalyst layer, and a third step of heat-treating the applied catalyst layer, The method for producing a polymer electrolyte fuel cell according to claim 1 or 2.
【請求項4】 第1工程における熱処理温度と、第3工
程における熱処理温度とが異なる温度であることを特徴
とする請求項3記載の固体高分子型燃料電池の製造方
法。
4. The method for producing a polymer electrolyte fuel cell according to claim 3, wherein the heat treatment temperature in the first step and the heat treatment temperature in the third step are different temperatures.
【請求項5】 第1工程における触媒を担持した炭素粉
末と高分子電解質溶液を混合した溶液の粘度を、第2工
程におけ前記高分子電解質付き触媒担持炭素粉末に、高
分子電解質を含む溶液を混合した溶液の粘度よりも低く
したことを特徴とする請求項3または4記載の固体高分
子型燃料電池の製造方法。
5. A solution containing a polymer electrolyte in the second step, wherein the viscosity of a solution obtained by mixing the carbon powder carrying the catalyst in the first step and the polymer electrolyte solution is added to the carbon powder carrying the catalyst with the polymer electrolyte in the second step. 5. The method for producing a polymer electrolyte fuel cell according to claim 3, wherein the viscosity is lower than the viscosity of the mixed solution.
JP2001274604A 2001-09-11 2001-09-11 Solid polymer fuel cell and its manufacturing method Withdrawn JP2003086191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274604A JP2003086191A (en) 2001-09-11 2001-09-11 Solid polymer fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274604A JP2003086191A (en) 2001-09-11 2001-09-11 Solid polymer fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003086191A true JP2003086191A (en) 2003-03-20

Family

ID=19099609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274604A Withdrawn JP2003086191A (en) 2001-09-11 2001-09-11 Solid polymer fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003086191A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
WO2006129629A1 (en) * 2005-05-31 2006-12-07 Konica Minolta Holdings, Inc. Fuel cell electrode and fuel cell
JP2007103175A (en) * 2005-10-05 2007-04-19 Gs Yuasa Corporation:Kk Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2012123927A (en) * 2010-12-06 2012-06-28 Nippon Soken Inc Catalyst layer member and membrane electrode assembly and fuel cell
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2013073892A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Method for manufacturing membrane electrode assembly for fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037585A1 (en) * 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037585A1 (en) * 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
WO2006129629A1 (en) * 2005-05-31 2006-12-07 Konica Minolta Holdings, Inc. Fuel cell electrode and fuel cell
JP2007103175A (en) * 2005-10-05 2007-04-19 Gs Yuasa Corporation:Kk Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2012123927A (en) * 2010-12-06 2012-06-28 Nippon Soken Inc Catalyst layer member and membrane electrode assembly and fuel cell
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2013073892A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Method for manufacturing membrane electrode assembly for fuel cell

Similar Documents

Publication Publication Date Title
US8148026B2 (en) Multi-layered electrode for fuel cell and method for producing the same
JP4792160B2 (en) Screen printing method and screen printing paste for producing gas diffusion electrode
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
KR20070086110A (en) Solution based enhancements of fuel cell components and other electrochemical systems and devices
CN100521316C (en) Anode for fuel cell, manufacturing method thereof, and fuel cell including the same
JP3444530B2 (en) Fuel cell
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
JPH08236123A (en) Fuel cell electrode and manufacture thereof
CN100377401C (en) Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same
JP2003109643A (en) Fuel cell
JP4367983B2 (en) Electrode electrolyte assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP2003086191A (en) Solid polymer fuel cell and its manufacturing method
JP2004152489A (en) Catalyst electrode for fuel cell, fuel cell, catalyst carrier particle for fuel cell, and manufacturing method of catalyst electrode
JP2003528438A (en) Manufacture of low-temperature fuel cell electrodes
JP4129366B2 (en) Proton conductor manufacturing method and fuel cell manufacturing method
KR102199455B1 (en) Binder for membrane electrode assembly electrode and manufacturing method thereof membrane electrode assembly having the same and polymer electrolyte membrane fuel cell having the same
CN111095637B (en) Method of preparing catalyst layer, and membrane electrode assembly and fuel cell including the same
JP2002050367A (en) Polymer electrolyte fuel cell and its manufacturing method
TW202131544A (en) Fuel cell electrode having high durability, method for manufacturing the same, and membrane-electrode assembly comprising the same
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP7152992B2 (en) Electrodes for fuel cells
JP2003308847A (en) Method of manufacturing electrode for fuel cell, coating composition and method of manufacturing it
JP2003123774A (en) Manufacturing method of electrode for fuel cell, electrode for fuel cell, coating composition, manufacturing method for, the composition solid polymer fuel cell, manufacturing method for the cell
KR100423843B1 (en) Manufacturing method of electrode for fuel cell and electrode using the same
JP2003282073A (en) Manufacturing method of fuel cell and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322