JP2003083808A - Photoelectric sensor - Google Patents

Photoelectric sensor

Info

Publication number
JP2003083808A
JP2003083808A JP2001274684A JP2001274684A JP2003083808A JP 2003083808 A JP2003083808 A JP 2003083808A JP 2001274684 A JP2001274684 A JP 2001274684A JP 2001274684 A JP2001274684 A JP 2001274684A JP 2003083808 A JP2003083808 A JP 2003083808A
Authority
JP
Japan
Prior art keywords
light receiving
light
unit
detection
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001274684A
Other languages
Japanese (ja)
Inventor
Hisanori Imai
寿教 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2001274684A priority Critical patent/JP2003083808A/en
Publication of JP2003083808A publication Critical patent/JP2003083808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric sensor capable of performing accurate detection of a detection object, measurement of an advance position or the like even if a slit is mounted. SOLUTION: A slit plate 26 having a proper opening area is selected from plural slit plates 26 corresponding to the size of the detection object W2, and the output signal level from a light receiving circuit 19 is stored as 'the maximum output signal level D1' in a storage part in the state where the slit plate 26 is not mounted and the detection object W2 does not exist in an optical path L1. Then the slit plate 26 is mounted, and the output signal level from the light receiving circuit 19 is stored as 'a detected output signal level D2' in the storage part. In this case, a CPU 20 calculates a light receiving ratio S (=D1/D2) from the maximum output signal level D1 and the detected output signal level D2 and stores it in the storage part, and multiplies the output signal level from the light receiving circuit 19 by the light receiving ratio at the 'detection mode' time and performs determination operation based on a conversion level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光電センサに関す
る。
TECHNICAL FIELD The present invention relates to a photoelectric sensor.

【0002】[0002]

【従来の技術】例えば、透過型光電センサは、互いに対
向配置される投光部及び受光部と、前記受光部での受光
量レベルに基づいて動作する判定手段とからなる。投光
手段から出射され受光手段に入射する光の光路内に検出
物体が存在すると、その検出物体によって受光部に入射
する光が遮られ、受光部での受光量レベルが低下する。
従って、判定手段にて受光部での受光量レベルを所定の
基準レベルと比較することで検出物体の検出が可能にな
るのである。
2. Description of the Related Art For example, a transmission type photoelectric sensor comprises a light projecting portion and a light receiving portion which are arranged to face each other, and a judging means which operates based on a light receiving amount level of the light receiving portion. If a detection object is present in the optical path of the light emitted from the light projecting means and entering the light receiving means, the light entering the light receiving section is blocked by the detection object, and the light receiving level of the light receiving section is lowered.
Therefore, the detection means can detect the detection object by comparing the level of the amount of light received by the light receiving section with the predetermined reference level.

【0003】ここで、例えば検出物体が極めて微小なも
のであると、その検出物体による遮光量も微小になるか
ら、光路内の検出物体の有無による受光部での受光量レ
ベルの変化割合が微小になる。すると、例えば投光部以
外からの光、いわゆる外乱光の受光による影響を受け易
くなるなど安定した検出を行うことができなくなるとい
う問題が生じる。従って、従来から、投光部又は受光部
の前面にスリット板を取り付けて受光部での受光範囲を
制限することで、検出物体の有無により変化する受光部
での受光量レベルの変化割合を大きくする一方で、例え
ば受光アンプのゲインを上げるなどして検出感度を高め
る構成が考えられている。
Here, for example, if the detected object is extremely small, the amount of light shielded by the detected object also becomes small, so the rate of change in the amount of received light at the light receiving portion depending on the presence or absence of the detected object in the optical path is very small. become. Then, there arises a problem that stable detection cannot be performed because, for example, light from other than the light projecting portion, so-called ambient light, is easily received. Therefore, conventionally, by mounting a slit plate on the front surface of the light emitting unit or the light receiving unit to limit the light receiving range in the light receiving unit, the change rate of the light receiving amount level in the light receiving unit which changes depending on the presence or absence of the detected object is increased. On the other hand, a configuration has been considered in which the detection sensitivity is increased by increasing the gain of the light receiving amplifier, for example.

【0004】その一例としては、異なる開口面積を有す
る複数のスリット板を、投光部又は受光部の前面に交換
可能に設ける構成のものがある。このものは、例えば検
出物体の大きさに応じて前記複数のスリット板の中から
適当な開口面積のスリット板を選択して受光部の前面に
取り付けて、その後に検出感度の調整作業を行うのであ
る。このような構成であれば、検出物体の大きさや光電
センサの用途等に応じてスリット板を適宜交換すること
で、受光部での受光範囲を所望の範囲に調整し、受光部
での受光量レベルの変化割合を増大させることができ、
もって微小な検出物体であっても安定した検出を行うこ
とが可能になる。
As an example thereof, there is a structure in which a plurality of slit plates having different opening areas are provided on the front surface of the light projecting portion or the light receiving portion in a replaceable manner. This is because, for example, a slit plate having an appropriate opening area is selected from the plurality of slit plates according to the size of the detection object and attached to the front surface of the light receiving unit, and then the detection sensitivity is adjusted. is there. With such a configuration, the slit plate is appropriately replaced according to the size of the detection object or the application of the photoelectric sensor, so that the light receiving range of the light receiving unit is adjusted to a desired range, and the light receiving amount of the light receiving unit is adjusted. You can increase the rate of change of level,
Therefore, it becomes possible to perform stable detection even for a minute detection object.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
にスリット板を取り付けて受光アンプのゲインを調整す
る構成では、そのゲイン調整作業によって、スリット板
により増大された前記変化割合に対応した最適な検出感
度に正確に設定できる保証がなく、検出物体の正確な検
出が行えないという問題が生じ得る。
However, in the structure in which the slit plate is attached to adjust the gain of the light receiving amplifier as described above, the gain adjustment work makes it possible to optimize the change ratio corresponding to the change rate increased by the slit plate. There is no guarantee that the detection sensitivity can be set accurately, and the problem that the detection object cannot be detected accurately may occur.

【0006】また、例えば透過型変位センサは、対向配
置される投光部及び受光部間の光路内に存在する検出物
体の進出度合いに応じて変化する受光部での受光量レベ
ルの変化割合に基づいて検出物体の進出位置を測定する
ものである。このものでも前記スリット板を取り付けて
受光量レベルの変化割合を増大させる一方で、例えば受
光アンプのゲインを上げるなどして検出感度を高めるこ
とが通常行われる。しかしながら、やはりゲイン調整作
業によって最適な検出感度に正確に設定できる保証がな
く、検出物体の進出位置を精度良く測定することができ
なくなり得る。
Further, for example, the transmissive displacement sensor has a rate of change of the light receiving amount level in the light receiving section which changes according to the degree of advance of the detection object existing in the optical path between the light projecting section and the light receiving section which are arranged opposite to each other. Based on this, the advancing position of the detected object is measured. Even in this case, while the slit plate is attached to increase the rate of change in the received light amount level, it is usual to increase the detection sensitivity, for example, by increasing the gain of the light receiving amplifier. However, there is no guarantee that the optimum detection sensitivity can be accurately set by the gain adjustment work, and it may not be possible to accurately measure the advancing position of the detection object.

【0007】本発明は、上記事情に鑑みてなされたもの
で、その目的は、スリットを取り付けても検出物体の検
出や進出位置の測定などを正確に行うことが可能な光電
センサを提供するところにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric sensor capable of accurately detecting a detection object and measuring an advance position even if a slit is attached. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明に係る光電センサは、検出領域内に
光を出射する投光手段と、投光手段から出射された光の
反射光又は透過光を受ける受光手段と、検出領域内の検
出物体の有無により変化する受光手段での受光量に応じ
て動作する判定手段とを備えた光電センサにおいて、投
光手段及び受光手段のうち少なくともいずれか一方に配
されて、受光手段での受光範囲を所望の範囲に調整可能
な受光範囲制限手段と、検出領域内に検出物体が存在し
ない状態で、受光範囲制限手段によって受光手段での受
光範囲が制限される前の受光量と、受光範囲制限手段に
よって受光手段での受光範囲が制限された後の受光量と
に基づいて受光比を検出する検出手段とを備えて、判定
手段は、受光手段での受光量レベルを検出手段で設定さ
れた受光比に応じて換算した換算レベルに基づいて動作
するところに特徴を有する。
In order to achieve the above object, a photoelectric sensor according to a first aspect of the present invention is a photoelectric sensor that emits light into a detection region and a reflection of light emitted from the light projector. A photoelectric sensor including a light receiving unit that receives light or transmitted light, and a determination unit that operates according to the amount of light received by the light receiving unit that changes depending on the presence or absence of a detection object in the detection area. The light-receiving range limiting means, which is arranged in at least one of the light-receiving means and is capable of adjusting the light-receiving range in the light-receiving means to a desired range, and the light-receiving range limiting means, in the state where there is no detected object, The determining means includes a detecting means for detecting a light receiving ratio based on a light receiving amount before the light receiving range is limited and a light receiving amount after the light receiving range is limited by the light receiving range limiting means. , By light receiving means Characterized in place to operate on the basis of the conversion levels in terms based on the light ratio set amount of received light level detecting means.

【0009】請求項の2の発明に係る光電センサは、平
行光を出射する投光手段と、投光手段に対向して配置さ
れ平行光を受光する受光手段と、平行光の光路内に存在
する検出物体の遮光量により変化する受光手段での受光
量に応じて動作を行う判定手段とを備えた光電センサに
おいて、投光手段及び受光手段のうち少なくともいずれ
か一方に配されて、受光手段での受光範囲を所望の範囲
に調整可能な受光範囲制限手段と、光路内に検出物体が
存在しない状態で、受光範囲制限手段によって受光手段
での受光範囲が制限される前の受光量と、受光範囲制限
手段によって受光手段での受光範囲が制限された後の受
光量とに基づいて受光比を検出する検出手段とを備え
て、判定手段は、受光手段での受光量レベルを検出手段
で設定された受光比に応じて換算した換算レベルに基づ
いて動作するところに特徴を有する。
A photoelectric sensor according to a second aspect of the present invention includes a light projecting means for emitting parallel light, a light receiving means arranged to face the light projecting means for receiving the parallel light, and existing in the optical path of the parallel light. In the photoelectric sensor including a determining unit that operates according to the amount of light received by the light receiving unit that changes depending on the amount of light shielding of the detected object, the light receiving unit is disposed in at least one of the light projecting unit and the light receiving unit. A light receiving range limiting means capable of adjusting the light receiving range at a desired range, and a light receiving amount before the light receiving range at the light receiving means is limited by the light receiving range limiting means in a state where no detection object exists in the optical path, The determining means detects the light receiving ratio based on the light receiving amount after the light receiving range of the light receiving range is limited by the light receiving range limiting means, and the determining means detects the light receiving amount level of the light receiving means. Set reception ratio It characterized in place to operate on the basis of the conversion levels in terms accordingly.

【0010】請求項の3の発明は、請求項1又は請求項
2に記載の光電センサにおいて、受光範囲制限手段は、
受光手段での受光範囲うち検出物体の移動方向と同方向
の幅を制限して受光範囲を調整するところに特徴を有す
る。
According to a third aspect of the invention, in the photoelectric sensor according to the first or second aspect, the light receiving range limiting means is
The feature is that the width of the light receiving range of the light receiving means in the same direction as the moving direction of the detection object is limited to adjust the light receiving range.

【0011】[0011]

【発明の作用及び効果】<請求項1及び請求項2の発明
>請求項1の構成によれば、例えば、まず検出領域内又
は光路内に検出物体が存在しない状態で、受光手段の受
光範囲が何ら制限されていないときの受光部の受光量
(以下、「最大受光量」という)を測定する。次いで、
受光範囲制限手段によって例えば検出物体の大きさ等を
考慮して受光部の受光範囲を調整する。そして、そのと
きの受光部の受光量(以下、「検出受光量」という)を
測定すると、制限割合設定手段によって最大受光量及び
検出受光量に基づいて受光比が検出される。そして、検
出物体の検出を開始すると、判定手段は、受光手段での
受光量レベルを検出手段で検出された受光比に応じて換
算した換算レベルに基づいて動作する。
<Advantages and Effects of the Invention><Inventions of Claims 1 and 2> According to the configuration of Claim 1, for example, first, in a state where no detection object exists in the detection region or in the optical path, the light receiving range of the light receiving means. The light receiving amount of the light receiving unit (hereinafter, referred to as “maximum light receiving amount”) is measured without any limitation. Then
The light receiving range limiting means adjusts the light receiving range of the light receiving unit in consideration of, for example, the size of the detected object. Then, when the amount of light received by the light receiving unit at that time (hereinafter referred to as "detected amount of received light") is measured, the light reception ratio is detected by the limit ratio setting means based on the maximum amount of received light and the detected amount of received light. Then, when the detection of the detected object is started, the determination unit operates based on the conversion level obtained by converting the level of the amount of light received by the light receiving unit according to the light reception ratio detected by the detection unit.

【0012】このように、受光範囲制限手段により受光
部の受光範囲を調整することで、例えば微小な検出物体
に対しても受光部の受光量レベルの変化割合を増大する
ことができる。また、判定手段は、前記受光比、つまり
受光範囲制限手段により変化した受光部の受光量レベル
の変化割合に応じた換算レベルに基づいて動作する。従
って、スリット板を取り付けて感度調整を行う従来の構
成のように、例えば受光アンプのゲイン調整作業を要せ
ずに、前記変化割合に対応した最適な検出感度に設定す
ることができ、もって検出物体の検出や進出位置の測定
などを正確に行うことできる。
As described above, by adjusting the light receiving range of the light receiving unit by the light receiving range limiting means, it is possible to increase the rate of change in the light receiving amount level of the light receiving unit even for a minute detection object. Further, the determination means operates based on the light reception ratio, that is, the conversion level corresponding to the change rate of the light reception amount level of the light receiving portion changed by the light reception range limiting means. Therefore, unlike the conventional configuration in which the slit plate is attached to adjust the sensitivity, it is possible to set the optimum detection sensitivity corresponding to the change ratio without requiring the gain adjustment work of the light receiving amplifier, and thus the detection can be performed. It is possible to accurately detect an object and measure the advance position.

【0013】<請求項3の発明>請求項3の構成によれ
ば、受光範囲制限手段によって受光手段での受光範囲う
ち検出物体の移動方向と同方向の幅を制限することで受
光範囲が調整される。従って、例えば検出物体の有無判
定時の検出幅や検出物体の位置又は幅等を測定する際の
測定幅を制限することなく、微小な検出物体の検出や位
置等の測定を正確に行うことができる。
<Invention of Claim 3> According to the configuration of Claim 3, the light receiving range is adjusted by limiting the width in the same direction as the moving direction of the detected object by the light receiving range limiting means. To be done. Therefore, for example, it is possible to accurately perform detection of a minute detection object or measurement of a position and the like without limiting the detection width when determining the presence or absence of a detection object and the measurement width when measuring the position or width of the detection object. it can.

【0014】[0014]

【発明の実施の形態】本発明の一実施形態について図1
ないし図3によって説明する。図1は、本発明を適用し
た透過型光電センサ10のハードウエア上の構成を示し
た図である。同図に示すように、透過型光電センサ10
は、互いに対向配置される投光部11及び受光部12
と、それらを制御するコントローラ部13とを備えてな
る。このうち投光部11は、スリット状の開口部(以
下、「投光窓14a」という)が形成された投光ケース
14内に、投光窓14aに向って光を出射する投光素子
15と、その投光素子15に駆動信号を与える投光回路
16とを備えて構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention.
3 through FIG. FIG. 1 is a diagram showing a hardware configuration of a transmission photoelectric sensor 10 to which the present invention is applied. As shown in FIG.
Is a light projecting unit 11 and a light receiving unit 12 that are arranged to face each other.
And a controller unit 13 for controlling them. Of these, the light projecting portion 11 is a light projecting element 15 that emits light toward the light projecting window 14a in the light projecting case 14 in which a slit-shaped opening (hereinafter referred to as "light projecting window 14a") is formed. And a light projecting circuit 16 for applying a drive signal to the light projecting element 15.

【0015】一方、受光部12は同じくスリット状の開
口部(以下、「受光窓17a」という)が形成された受
光ケース17内に、受光窓17aから入射する光を受光
する受光素子18と、その受光素子18での受光量に応
じた出力信号を出力する受光回路19とを備えて構成さ
れている。
On the other hand, the light receiving portion 12 has a light receiving element 18 for receiving the light incident from the light receiving window 17a in a light receiving case 17 having a slit-shaped opening (hereinafter referred to as "light receiving window 17a"). A light receiving circuit 19 that outputs an output signal according to the amount of light received by the light receiving element 18 is provided.

【0016】また、コントローラ部13にはCPU20
が備えられている。CPU20によって投光回路16に
制御信号が与えられると投光素子15が発光し、例えば
図示しない投光レンズによって投光窓14aから平行光
L1が出射される。そして、受光部12の受光窓17a
に入射した前記平行光が例えば図示しない収束レンズに
よって受光素子18に集光される。すると、その集光さ
れた光は受光素子18にて光電変換され受光素子18で
の受光量に応じたレベルの出力信号としてA/D変換さ
れた後にCPU20に与えられる。
The controller unit 13 includes a CPU 20.
Is provided. When a control signal is applied to the light projecting circuit 16 by the CPU 20, the light projecting element 15 emits light, and the parallel light L1 is emitted from the light projecting window 14a by a light projecting lens (not shown), for example. Then, the light receiving window 17a of the light receiving unit 12
The collimated light incident on is focused on the light receiving element 18 by a converging lens (not shown), for example. Then, the collected light is photoelectrically converted by the light receiving element 18, A / D converted as an output signal having a level corresponding to the amount of light received by the light receiving element 18, and then provided to the CPU 20.

【0017】前記平行光の光路L1内に例えば検出物体
W1が存在すると、それによって受光窓17aに入射す
る平行光が遮光されて受光素子18での受光量が低下す
る。従って、後述するようにCPU20において受光回
路19からの出力信号レベルと閾値としての基準レベル
とを大小比較することで前記光路L1内に存在する検出
物体を検出することが可能になる。なお、本実施形態で
は、検出物体W1,W2は、投光窓14a及び受光窓17
aの短軸方向(図1において上下方向)に沿って移動し
てきて前記光路L1を横切るよう構成されている。従っ
て、前記光路L1のうち受光窓17aの長軸方向(同図
において奥行き方向)の幅が検出幅となる。
If, for example, the detection object W1 is present in the optical path L1 of the parallel light, the parallel light incident on the light receiving window 17a is blocked thereby, and the amount of light received by the light receiving element 18 decreases. Therefore, as will be described later, the CPU 20 can detect the detection object existing in the optical path L1 by comparing the output signal level from the light receiving circuit 19 and the reference level as a threshold value. It should be noted that in the present embodiment, the detection objects W1 and W2 are arranged in the light projecting window 14a and the light receiving window 17a.
It is configured to move along the minor axis direction of a (vertical direction in FIG. 1) and cross the optical path L1. Therefore, the width of the light receiving window 17a in the long axis direction (the depth direction in the figure) of the optical path L1 becomes the detection width.

【0018】また、CPU20には図1に示すようにモ
ード切替スイッチ21が接続されており、モード切替ス
イッチ21の操作によって後述する「検出モード」や
「受光比検出モード」等のモード切替が可能になる。更
に、本実施形態では、いわゆるジョグスイッチ(登録商
標)(以下「ジョグスイッチ22」という)が設けら
れ、その操作に応じてスイッチ入力回路23からCPU
20に信号を与えるようになっている。
A mode changeover switch 21 is connected to the CPU 20 as shown in FIG. 1, and by operating the mode changeover switch 21, it is possible to change modes such as a "detection mode" and a "reception ratio detection mode" which will be described later. become. Further, in the present embodiment, a so-called jog switch (registered trademark) (hereinafter referred to as “jog switch 22”) is provided, and the switch input circuit 23 causes the CPU to operate in accordance with the operation.
It is designed to give signals to 20.

【0019】また、その操作に応じて設定された内容
は、表示回路24によって駆動される7セグメント4桁
表示の液晶ディスプレイ(以下、「LCD25」とい
う)に表示される。このジョグスイッチ22によって各
モードにおける所定の操作を行うことができる。なお、
ジョグスイッチ22は、その構造的な詳細について図示
はしないが、手指にて回転操作される操作ホイールを備
え、その操作ホイールを回転させることにより前記LC
D25の各桁に0〜9の各数字又は文字を表示すること
ができると共に、その操作ホイールを所望な位置で押圧
操作することにより、LCD25に表示されている数字
を確定させることができる。
The contents set according to the operation are displayed on a 7-segment 4-digit liquid crystal display (hereinafter referred to as "LCD 25") driven by the display circuit 24. A predetermined operation in each mode can be performed by the jog switch 22. In addition,
The jog switch 22 is provided with an operation wheel which is rotationally operated by fingers, although the structural details thereof are not shown, and the LC is provided by rotating the operation wheel.
Each digit or character of 0 to 9 can be displayed in each digit of D25, and the number displayed on the LCD 25 can be confirmed by pressing the operation wheel at a desired position.

【0020】さて、図2(A)には、本発明の「受光範
囲制限手段」に相当するスリット板26が示されてい
る。このスリット板26は複数種用意されており(同図
(A)にはそのうちの1種類のみ示してある)、いずれ
も受光ケース17のうち受光窓17aを有する面とほぼ
同形の板状部材であって、受光部12の受光窓17aに
対応した位置にスリット27が貫通形成されている。各
スリット板26のスリット27について、長軸方向の幅
はいずれも受光窓17aの長軸方向の幅と略同一であっ
て、短軸方向の幅だけがそれぞれ受光窓17aより狭い
種々の幅になるよう形成されている(請求項3の発明に
相当する)。
Now, FIG. 2A shows a slit plate 26 corresponding to the "light receiving range limiting means" of the present invention. Plural kinds of slit plates 26 are prepared (only one of them is shown in FIG. 7A), and each of them is a plate member having substantially the same shape as the surface of the light receiving case 17 having the light receiving window 17a. Therefore, the slit 27 is formed at a position corresponding to the light receiving window 17a of the light receiving unit 12. Regarding the slits 27 of each slit plate 26, the width in the major axis direction is substantially the same as the width in the major axis direction of the light receiving window 17a, and only the width in the minor axis direction has various widths narrower than the light receiving window 17a. Is formed (corresponding to the invention of claim 3).

【0021】また、各スリット板26には、例えばスリ
ット27の短軸方向と同方向の両端に受光ケース17の
側面を挟み込むように突設された一対の引掛弾性片2
8,28が設けられている。一方、受光ケース17側に
は、その両側面に前記一対の引掛弾性片28,28の先
端の引掛突部29,29がそれぞれ嵌着される一対の引
掛孔部30,30が形成されている。この構造によって
受光ケース17に対して前記複数のスリット板26を交
換可能に装着することができ、もって例えば検出物体の
大きさ等を考慮して投光部11からの平行光が通過し得
る受光部12の受光範囲を変更することが可能になる。
Further, on each slit plate 26, for example, a pair of hooking elastic pieces 2 projecting so as to sandwich the side surface of the light receiving case 17 at both ends in the same direction as the minor axis direction of the slit 27.
8, 28 are provided. On the other hand, on the side of the light receiving case 17, a pair of hooking holes 30, 30 into which the hooking protrusions 29, 29 at the tips of the pair of hooking elastic pieces 28, 28 are fitted are formed on both side surfaces thereof. . With this structure, the plurality of slit plates 26 can be replaceably attached to the light-receiving case 17, and thus the parallel light from the light-projecting unit 11 can pass through in consideration of, for example, the size of the detection object. It is possible to change the light receiving range of the unit 12.

【0022】なお、「受光範囲制限手段」は上記構成の
他に、図2(B)に示すように、受光ケース17の前面
に一対の板31,31を並列状態でスライド可能に配置
した構成であってもよい。この構成によっても一対の板
31,31の間隔を変えることで受光範囲を変更するこ
とができる。更に、一対の板ではなく1枚の板を受光ケ
ース17の前面にスライド可能に配置して、その板をス
ライドさせることで一方方向から受光範囲を制限する構
成であってもよい。
In addition to the above structure, the "light receiving range limiting means" has a structure in which a pair of plates 31, 31 are slidably arranged in parallel on the front surface of the light receiving case 17 as shown in FIG. 2B. May be Also with this configuration, the light receiving range can be changed by changing the distance between the pair of plates 31, 31. Further, instead of a pair of plates, one plate may be slidably arranged on the front surface of the light receiving case 17, and the plates may be slid to limit the light receiving range from one direction.

【0023】さて、本実施形態の作用効果についてCP
U20にて実行される制御内容に基づいて説明する。こ
の作用説明にて本実施形態のソフトウエア的構成が明ら
かになるはずである。例えば、図1に示すように、検出
物体W1のような大きさのものを検出する場合には、わ
ざわざ上述したスリット板26を装着しなくても正確な
検出を行うことが可能であると考えられる。ところが例
えば検出物体W2のように受光部12の受光窓17aの
領域に対して微小なものを検出する場合には、この検出
物体W2による遮光量も微小となるから、受光素子18
での受光量差も微小となり受光回路19から出力される
出力信号のレベル差が微小になる。従って、例えば投光
部11以外からの光、いわゆる外乱光の受光による影響
を受け易くなるなど安定した検出を行うことができなく
なり得る。そこで、次述する作業を行う。なお、本説明
では、投光部11から出射される平行光のエネルギー密
度はほぼ均一として考えると共に、受光窓17aの開口
領域に対して検出物体W2の遮光領域は10%である場
合を例に挙げて説明する。
Now, regarding the operation and effect of this embodiment, CP
A description will be given based on the control content executed in U20. This explanation of the operation should clarify the software configuration of the present embodiment. For example, as shown in FIG. 1, when detecting a size of the detection object W1, it is considered that accurate detection can be performed without the purpose of mounting the above-mentioned slit plate 26. To be However, when detecting a minute object such as the detection object W2 in the region of the light receiving window 17a of the light receiving unit 12, the amount of light shielded by the detection object W2 is also minute, so the light receiving element 18
Also, the difference in the amount of received light becomes small, and the level difference in the output signal output from the light receiving circuit 19 becomes small. Therefore, stable detection cannot be performed, for example, because the light from other than the light projecting unit 11, that is, the influence of so-called ambient light is easily received. Therefore, the work described below is performed. In the present description, the energy density of the parallel light emitted from the light projecting unit 11 is considered to be substantially uniform, and the light shielding area of the detection object W2 is 10% of the opening area of the light receiving window 17a. I will give you an explanation.

【0024】<受光比の検出>まず、検出物体W2の大
きさに応じて前記複数のスリット板26から適当な開口
面積を有するスリット板26(本説明では短軸方向の幅
が受光窓17aの短軸方向の幅の半分のもの)を選択す
る。次いで、コントローラ部13のモード切替スイッチ
21を「受光比検出モード」に切り換える。スリット板
26を装着せず、かつ光路L1内に検出物体W2がない状
態で、ジョグスイッチ22を1回押圧操作する。する
と、CPU20によって、投光回路16に制御信号が与
えられて投光素子15が発光し、受光回路19からの出
力信号レベルが「最大出力信号レベルD1」として図示
しない記憶部に記憶される。
<Detection of Light-Reception Ratio> First, a slit plate 26 having an appropriate opening area from the plurality of slit plates 26 in accordance with the size of the detection object W2 (in this description, the width in the minor axis direction is the light-receiving window 17a). Half width in the minor axis direction) is selected. Then, the mode selector switch 21 of the controller unit 13 is switched to the "light receiving ratio detection mode". The jog switch 22 is pressed once with the slit plate 26 not attached and the detection object W2 not present in the optical path L1. Then, the CPU 20 gives a control signal to the light projecting circuit 16 to cause the light projecting element 15 to emit light, and the output signal level from the light receiving circuit 19 is stored in a storage unit (not shown) as "maximum output signal level D1".

【0025】次に、選択したスリット板26を受光ケー
ス17に装着して、再びジョグスイッチ22を1回押圧
操作する。すると、やはりCPU20により投光回路1
6に制御信号が与えられて投光素子15が発光し、受光
回路19からの出力信号レベルが「検出出力信号レベル
D2」として記憶部に記憶される。ここで、CPU20
は本発明の「検出手段」として機能する。即ち、最大出
力信号レベルD1及び検出出力信号レベルD2から受光比
S(=D1/D2)を算出して記憶部に記憶する。なお、
前記最大出力信号レベルD1は予め設定されている構成
であってもよい。この構成であればスリット板26を装
着する際には装着後における前記検出出力信号レベルD
2を測定するだけでよく作業を簡素化することができ
る。
Next, the selected slit plate 26 is mounted on the light receiving case 17, and the jog switch 22 is pressed once again. Then, the CPU 20 also causes the light projecting circuit 1 to operate.
A control signal is given to 6 to cause the light projecting element 15 to emit light, and the output signal level from the light receiving circuit 19 is stored in the storage section as “detection output signal level D2”. Here, the CPU 20
Functions as the "detection means" of the present invention. That is, the light receiving ratio S (= D1 / D2) is calculated from the maximum output signal level D1 and the detected output signal level D2 and stored in the storage unit. In addition,
The maximum output signal level D1 may be preset. With this configuration, when the slit plate 26 is mounted, the detection output signal level D after mounting is set.
The work can be simplified simply by measuring 2.

【0026】<検出物体の検出>次に、モード切替スイ
ッチ21を「検出モード」に切り換えて検出物体W2の
検出を開始する。この際には、CPU20は本発明の
「判定手段」として機能する。即ち、CPU20によっ
て所定のタイミングで投光部11及び受光部12を駆動
させて、受光回路19からの出力信号レベルを受け取
る。そして、CPU20においてこの出力信号レベルに
前記受光比を乗算して換算レベルに基づいて判定動作を
行う。より詳しくは、図3に示すように、スリット板2
6が装着されていない状態で、光路L1内に検出物体W2
がないときの最大出力信号レベルD1を100(同図の
I)とすると、これに対して、検出物体W2があるときの
出力信号レベルは90(同図のII)となる。一方、スリ
ット板26を装着すると、投光部11から出射され受光
部12に至る平行光の光路はスリット12によって狭く
なる(以下、スリット装着時の光路を「光路L2」とい
う)。
<Detection of Detection Object> Next, the mode selector switch 21 is switched to the "detection mode" to start detection of the detection object W2. At this time, the CPU 20 functions as the "determination means" of the present invention. That is, the CPU 20 drives the light projecting unit 11 and the light receiving unit 12 at a predetermined timing to receive the output signal level from the light receiving circuit 19. Then, the CPU 20 multiplies the output signal level by the light receiving ratio and performs the determination operation based on the conversion level. More specifically, as shown in FIG. 3, the slit plate 2
6 is not attached, the detection object W2 in the optical path L1
The maximum output signal level D1 when there is no
If I), on the other hand, the output signal level when there is the detection object W2 is 90 (II in the figure). On the other hand, when the slit plate 26 is mounted, the optical path of the parallel light emitted from the light projecting section 11 and reaching the light receiving section 12 is narrowed by the slit 12 (hereinafter, the optical path when the slit is mounted is referred to as "optical path L2").

【0027】そして、光路L2内に検出物体W2がないと
きの検出出力信号レベルD2は50(同図のIII)とな
り、検出物体W2があるときの出力信号レベルは40
(同図のIV)となる。即ち、スリット板26により受光
部12の受光範囲を制限したことで、スリット板26を
装着しない場合に比べて検出物体W2の有無により変化
する出力信号レベルの変化割合を2倍に大きくすること
ができる。そして、上述したCPU20による換算処理
によって受光回路19からの出力信号が受光比S(2=
100/50)により換算されるから、その換算レベル
は検出物体W2がないときは100になり、検出物体W2
があるときは80になる。CPU20ではこの換算レベ
ルを予め設定された基準レベルと大小比較することで検
出物体W2の検出が可能になる。なお、この基準レベル
は、例えば予め「閾値設定モード」によってスリット板
26を装着した状態で光路L2内に検出物体W2があると
きの換算レベルと、検出物体W2がないときの換算レベ
ルとを中間レベルに設定したものであってもよい。
The detection output signal level D2 when the detection object W2 is not present in the optical path L2 is 50 (III in the figure), and the output signal level when the detection object W2 is present is 40.
(IV in the figure). That is, by limiting the light receiving range of the light receiving unit 12 by the slit plate 26, the change rate of the output signal level that changes depending on the presence or absence of the detection object W2 can be doubled as compared with the case where the slit plate 26 is not attached. it can. Then, the output signal from the light receiving circuit 19 is converted into the light receiving ratio S (2 =
100/50), the conversion level becomes 100 when there is no detected object W2,
When there is, it becomes 80. The CPU 20 can detect the detection object W2 by comparing the conversion level with a preset reference level. The reference level is intermediate between the conversion level when the detection object W2 is present in the optical path L2 with the slit plate 26 attached in advance in the "threshold setting mode" and the conversion level when the detection object W2 is not present. It may be set to a level.

【0028】このように、スリット板26により受光部
12の受光範囲を調整することで、微小な検出物体W2
に対しても受光部12での出力信号レベルの変化割合を
増大することができる。また、CPU20は、前記受光
比S、つまりスリット板26による受光部12の受光量
レベルの変化割合に応じた換算レベルに基づいて検出動
作を行う。従って、スリット板26を取り付けて感度調
整を行う従来の構成のように例えば受光アンプのゲイン
を最適なゲインに設定する困難な感度調整作業を要せず
に検出物体W2の検出を正確に行うことできる。
As described above, by adjusting the light receiving range of the light receiving portion 12 by the slit plate 26, a minute detection object W2
Also, it is possible to increase the change rate of the output signal level in the light receiving unit 12. Further, the CPU 20 performs the detection operation based on the light receiving ratio S, that is, the conversion level according to the change rate of the light receiving amount level of the light receiving unit 12 by the slit plate 26. Therefore, it is possible to accurately detect the detection object W2 without requiring a difficult sensitivity adjustment work such as setting the gain of the light receiving amplifier to an optimum gain as in the conventional configuration in which the slit plate 26 is attached to adjust the sensitivity. it can.

【0029】また、各スリット板26のスリット27
は、受光窓17aに対して短軸方向の幅のみ短く形成さ
れているから、それらを装着することで受光窓17aの
短軸方向、即ち、検出物体の移動方向と同方向の幅だけ
が制限される。従って、前記検出幅を制限することな
く、微小な検出物体W2の検出を安定かつ正確に行うこ
とができる。
In addition, the slits 27 of each slit plate 26
Is formed to be shorter than the light receiving window 17a only in the short axis direction, and therefore, by mounting them, only the width in the short axis direction of the light receiving window 17a, that is, the width in the same direction as the moving direction of the detection object is limited. To be done. Therefore, it is possible to stably and accurately detect the minute detection object W2 without limiting the detection width.

【0030】<他の実施形態>本発明は、前記実施形態
に限定されるものではなく、例えば、以下に説明するよ
うな実施形態も本発明の技術的範囲に含まれ、さらに、
下記以外にも要旨を逸脱しない範囲内で種々変更して実
施することができる。 (1)上記実施形態では、透過型光電センサ10を例に
挙げて説明したが、反射型光電センサであってもよい。
<Other Embodiments> The present invention is not limited to the above-described embodiments. For example, the embodiments described below are also included in the technical scope of the present invention.
Other than the following, various modifications can be made without departing from the scope of the invention. (1) In the above embodiment, the transmissive photoelectric sensor 10 is described as an example, but a reflective photoelectric sensor may be used.

【0031】(2)更に、光路内に進出する検出物体の
進出位置(例えば変位センサ)や、光路内に存在する検
出物体の幅或い大きさ等を測定する光電センサであって
もよい。即ち、検出物体が微小な場合だけでなく、例え
ば互いの寸法差が微小な種々の検出物体を測定するため
の光電センサであっても本発明を適用することで同様の
効果を得ることができる。
(2) Further, it may be a photoelectric sensor for measuring the advancing position (for example, a displacement sensor) of the detection object advancing in the optical path or the width or size of the detection object existing in the optical path. That is, the same effect can be obtained by applying the present invention not only in the case where the detection object is minute, but also in the photoelectric sensor for measuring various detection objects whose mutual dimensional difference is small, for example. .

【0032】(3)上記実施形態では、スリット板26
は投光部11だけに装着する構成を説明したが、これに
限らず、投光部11だけ、或いは投光部11及び受光部
12の両方に装着する構成であってもよい。
(3) In the above embodiment, the slit plate 26
In the above description, the configuration is described in which the light emitting unit 11 is mounted only. However, the configuration is not limited to this, and the light emitting unit 11 may be mounted only in the light projecting unit 11 or both the light projecting unit 11 and the light receiving unit 12.

【0033】(4)上記実施形態では、スリット板26
によって受光窓17aのうち短軸方向の幅のみを制限す
る構成としたが、長軸方向の幅、或いは短軸方向及び長
軸方向の両方の幅を狭める構成であってもよい。但し、
上述したように、本実施形態のような構成であれば、検
出幅や測定幅を制限することなく、微小な検出物体の検
出や寸法測定等を安定かつ正確に行うことができる。
(4) In the above embodiment, the slit plate 26
Although only the width in the minor axis direction of the light receiving window 17a is limited by the above, the width in the major axis direction or the width in both the minor axis direction and the major axis direction may be narrowed. However,
As described above, with the configuration according to the present embodiment, it is possible to stably and accurately detect a minute detection object, measure dimensions, and the like without limiting the detection width and the measurement width.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る透過型光電センサ1
0のハードウエア上の構成図
FIG. 1 is a transmission photoelectric sensor 1 according to an embodiment of the present invention.
0 hardware configuration diagram

【図2】受光ケース17と受光範囲制限手段に相当する
構成を示した斜視図
FIG. 2 is a perspective view showing a configuration corresponding to a light receiving case 17 and a light receiving range limiting unit.

【図3】受光範囲と出力信号レベルとの関係を示した模
式図
FIG. 3 is a schematic diagram showing a relationship between a light receiving range and an output signal level.

【符号の説明】[Explanation of symbols]

10…透過型光電センサ 11…投光部 12…受光部 13…コントローラ部 17a…受光窓 20…CPU 26…スリット板 31… 板 L1,L2…光路 W1,W2…検出物体 10: Transmission type photoelectric sensor 11 ... Projector 12 ... Light receiving part 13 ... Controller section 17a ... Light receiving window 20 ... CPU 26 ... Slit plate 31 ... Plate L1, L2 ... Optical path W1, W2 ... Detecting object

フロントページの続き Fターム(参考) 2F065 AA01 AA07 AA12 AA20 AA21 BB12 BB24 DD04 FF02 FF04 HH03 HH05 HH15 JJ02 JJ09 JJ25 LL04 LL28 QQ03 QQ05 QQ08 QQ25 QQ26 2G065 AA04 AB23 BB23 BC24 BC35 BD01 Continued front page    F term (reference) 2F065 AA01 AA07 AA12 AA20 AA21                       BB12 BB24 DD04 FF02 FF04                       HH03 HH05 HH15 JJ02 JJ09                       JJ25 LL04 LL28 QQ03 QQ05                       QQ08 QQ25 QQ26                 2G065 AA04 AB23 BB23 BC24 BC35                       BD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 検出領域内に光を出射する投光手段と、
前記投光手段から出射された光の反射光又は透過光を受
ける受光手段と、前記検出領域内の検出物体の有無によ
り変化する前記受光手段での受光量に応じて動作する判
定手段とを備えた光電センサにおいて、 前記投光手段及び前記受光手段のうち少なくともいずれ
か一方に配されて、前記受光手段での受光範囲を所望の
範囲に調整可能な受光範囲制限手段と、 前記検出領域内に検出物体が存在しない状態で、前記受
光範囲制限手段によって前記受光手段での受光範囲が制
限される前の受光量と、前記受光範囲制限手段によって
前記受光手段での受光範囲が制限された後の受光量とに
基づいて受光比を検出する検出手段とを備えて、 前記判定手段は、前記受光手段での受光量レベルを前記
検出手段で設定された受光比に応じて換算した換算レベ
ルに基づいて動作することを特徴とする光電センサ。
1. A light projecting means for emitting light into a detection region,
A light receiving unit that receives reflected light or transmitted light of the light emitted from the light projecting unit, and a determination unit that operates according to the amount of light received by the light receiving unit that changes depending on the presence or absence of a detection object in the detection region are provided. In the photoelectric sensor, a light receiving range limiting unit that is arranged in at least one of the light projecting unit and the light receiving unit and is capable of adjusting the light receiving range of the light receiving unit to a desired range, and within the detection region. The amount of light received before the light receiving range is limited by the light receiving range limiting means and the light receiving range after the light receiving range is limited by the light receiving range limiting means in the state where no detection object is present. And a detection unit that detects the light reception ratio based on the light reception amount, and the determination unit converts the light reception amount level of the light reception unit according to the light reception ratio set by the detection unit. Photoelectric sensor, wherein the operating based on Le.
【請求項2】 平行光を出射する投光手段と、前記投光
手段に対向して配置され前記平行光を受光する受光手段
と、前記平行光の光路内に存在する検出物体の遮光量に
より変化する前記受光手段での受光量に応じて動作を行
う判定手段とを備えた光電センサにおいて、 前記投光手段及び前記受光手段のうち少なくともいずれ
か一方に配されて、前記受光手段での受光範囲を所望の
範囲に調整可能な受光範囲制限手段と、 前記光路内に検出物体が存在しない状態で、前記受光範
囲制限手段によって前記受光手段での受光範囲が制限さ
れる前の受光量と、前記受光範囲制限手段によって前記
受光手段での受光範囲が制限された後の受光量とに基づ
いて受光比を検出する検出手段とを備えて、 前記判定手段は、前記受光手段での受光量レベルを前記
検出手段で設定された受光比に応じて換算した換算レベ
ルに基づいて動作することを特徴とする光電センサ。
2. A light projecting means for emitting parallel light, a light receiving means arranged facing the light projecting means for receiving the parallel light, and a light blocking amount of a detection object existing in an optical path of the parallel light. In a photoelectric sensor including a determining unit that operates according to the amount of light received by the light receiving unit that changes, at least one of the light projecting unit and the light receiving unit is disposed, and the light received by the light receiving unit is received. A light receiving range limiting means capable of adjusting the range to a desired range, and a light receiving amount before the light receiving range of the light receiving means is limited by the light receiving range limiting means in a state where no detection object exists in the optical path, A light receiving amount after the light receiving range is limited by the light receiving range limiting unit, and a detecting unit that detects a light receiving ratio based on a light receiving amount, and the determining unit receives the light receiving level of the light receiving unit. The above A photoelectric sensor which operates based on a conversion level converted according to a light receiving ratio set by a detection means.
【請求項3】 前記受光範囲制限手段は、前記受光手段
での受光範囲うち前記検出物体の移動方向と同方向の幅
を制限して前記受光範囲を調整することを特徴とする請
求項1又は請求項2に記載の光電センサ。
3. The light receiving range limiting means adjusts the light receiving range by limiting the width of the light receiving range of the light receiving means in the same direction as the moving direction of the detection object. The photoelectric sensor according to claim 2.
JP2001274684A 2001-09-11 2001-09-11 Photoelectric sensor Pending JP2003083808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274684A JP2003083808A (en) 2001-09-11 2001-09-11 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274684A JP2003083808A (en) 2001-09-11 2001-09-11 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2003083808A true JP2003083808A (en) 2003-03-19

Family

ID=19099676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274684A Pending JP2003083808A (en) 2001-09-11 2001-09-11 Photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2003083808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134369A (en) * 2003-08-01 2005-05-26 Renishaw Plc Measuring instrument and method
JP2010066006A (en) * 2008-09-08 2010-03-25 Seiko Instruments Inc Automatic slicer
JP2011027532A (en) * 2009-07-24 2011-02-10 Yamatake Corp Photoelectric sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134369A (en) * 2003-08-01 2005-05-26 Renishaw Plc Measuring instrument and method
JP4520240B2 (en) * 2003-08-01 2010-08-04 レニショウ パブリック リミテッド カンパニー Measuring apparatus and method
JP2010066006A (en) * 2008-09-08 2010-03-25 Seiko Instruments Inc Automatic slicer
JP2011027532A (en) * 2009-07-24 2011-02-10 Yamatake Corp Photoelectric sensor

Similar Documents

Publication Publication Date Title
JP4709931B2 (en) Distance measuring device and distance measuring method
JPH1184003A (en) Light wave distance-measuring device
JPH1123709A (en) Distance-measuring device
SU1584759A3 (en) Photometric device for measuring and controlling the thickness of optically active layers
JP2002214344A (en) Range-finding device
US9677873B2 (en) Apparatus, method and computer program for determining a distance to an object using a determined peak width of a self-mixing interference (SMI) signal
JP6331829B2 (en) Photoelectric sensor
JP2003083808A (en) Photoelectric sensor
JPH0423202B2 (en)
US5239353A (en) Optical distance measuring apparatus
JPH11352226A (en) Highly accurate distance-measuring apparatus
JP2001349943A (en) Laser range finder, laser range finding method, and measuring device
JP3241857B2 (en) Optical rangefinder
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
JP2926521B2 (en) Lightwave rangefinder
JP2577234Y2 (en) Laser rangefinder
CN210802701U (en) Laser wavelength measuring device based on interference mode
JP3486223B2 (en) Distance measuring device
JPH07191143A (en) Distance measuring device
JP3582853B2 (en) Target reflector detection device
JP2010156603A (en) Device and method for measuring thickness
JPH0566263A (en) Laser radar device
JPS5960203A (en) Device for measuring change in film thickness
JPH0798373A (en) Laser radar device
JP4707365B2 (en) Light wave distance meter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710