JP2003082428A - Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone - Google Patents

Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone

Info

Publication number
JP2003082428A
JP2003082428A JP2001277220A JP2001277220A JP2003082428A JP 2003082428 A JP2003082428 A JP 2003082428A JP 2001277220 A JP2001277220 A JP 2001277220A JP 2001277220 A JP2001277220 A JP 2001277220A JP 2003082428 A JP2003082428 A JP 2003082428A
Authority
JP
Japan
Prior art keywords
brazing
core material
corrosion resistance
aluminum alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277220A
Other languages
Japanese (ja)
Inventor
Tokinori Onda
時伯 恩田
Yoshiaki Ogiwara
吉章 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001277220A priority Critical patent/JP2003082428A/en
Publication of JP2003082428A publication Critical patent/JP2003082428A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy brazing sheet which has excellent corrosion resistance in a weld zone, and is useful for various structural members such as a tube for a heat exchanger. SOLUTION: The brazing sheet 3 having excellent corrosion resistance in a weld zone 5 is obtained by coating one side or both sides of a core material 1 containing, by mass, 0.1 to 0.5% Cu, 0.05 to 0.3% Ti and 0.3 to 1.5% Mn, <=0.2% Si, Fe and Mg, and the balance Al with inevitable impurities with an aluminum alloy brazing filler metal 2 in a cladding ratio of 10 to 20% per one side. The crystal grain diameter L in a rolling direction in the longitudinal face of the core material 1 is 150 to 200 μm, the diffusion depth D of Cu in the weld zone 5 when subjected to brazing heating after welding is >=100 μm, and the potential difference S between the surface of the brazing filler metal 2 in the weld zone 5 and the position at the inside by 100 μm from the surface of the brazing filler metal 2 is >=50 mV.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱交換器用チュー
ブなどの各種構造用部材に有用な、溶接部の耐食性に優
れるアルミニウム合金ブレージングシートに関する。 【0002】 【従来の技術】自動車用熱交換器(ラジエーターなど)
は、図3に示すように、チューブ6に、チューブ6を連
結するヘッダー7と放熱フィン8をろう付けしたコア9
を主要部として構成されている。図3で10は皮材であ
る。前記チューブ6は、例えば、図4に示すように、芯
材1の片面にろう材2を、他の片面に皮材10を被覆し
たアルミニウム合金ブレージングシート3を、ろう材2
を外側にして円筒状にロール成形し、これを高周波コイ
ル11により誘導加熱し、溶融端面を加圧ロール12に
より押圧して溶接する電縫加工法により製造されてい
る。 【0003】ところで、チューブ6に孔食が発生し、こ
れが貫通すると液漏れが生じるためチューブ6の耐食性
は極めて重要である。チューブ6の耐食性はチューブ6
にろう付けされる放熱フィン8または皮材10を犠牲腐
食材として維持されるが、近年の自動車軽量化の一環と
してチューブ6の薄肉化が進み、それに伴って芯材1自
体の耐食性も要求されるようになった。 【0004】芯材1の耐食性改善については、芯材1に
Cuを添加し、このCuがろう材2に拡散して芯材に形
成される電位勾配によりチューブを面状に腐食させて孔
食を防止する方法(特開昭64―83396号公報)、
芯材1にTiを添加し、このTiを芯材1の長さ方向
(圧延方向)に層状に分布させてTiの濃淡層間に局部
電池を形成し、孔食を防止する方法(特開平8―283
891号公報)などが提案されている。 【0005】 【発明が解決しようとする課題】しかし、前記Cuを添
加する方法は、前記チューブなどの溶接部ではろう材が
一旦溶融して凝固組織になっていてCuが拡散し難いた
め、Cuの拡散深さD(ろう材表面から芯材のCuの濃
度が減少し始めるまでの距離)が浅くなり、Cuの電位
勾配による孔食防止効果が十分に得られないという問題
がある。前記Tiを層状に分布させる方法は、Tiが溶
接の際に結晶粒界に沿って拡散し、接合界面にTiの濃
化層が生成し、このTiの濃化層に沿って孔食が進行す
るという問題があった。このため、本発明者等は、アル
ミニウム合金ブレージングシートの溶接部の耐食性につ
いて検討し、前記2つの問題は芯材の結晶粒径を規定す
ることにより解決し得ることを知見し、さらに検討を重
ねて本発明を完成させるに至った。本発明は、溶接部の
耐食性に優れるアルミニウム合金ブレージングシートを
提供することを目的とする。 【0006】 【課題を解決するための手段】請求項1記載の発明は、
Cuを0.1〜0.5mass%、Tiを0.05〜0.3
mass%、Mnを0.3〜1.5mass%含有し、Si、F
e、Mgをそれぞれ0.2mass%以下に規制し、残部が
Alと不可避不純物からなる芯材の片面または両面にア
ルミニウム合金ろう材が片面あたり10〜20%のクラ
ッド率で被覆されたブレージングシートであって、前記
芯材の縦断面における圧延方向の結晶粒径が150〜2
00μm、溶接後ろう付け加熱したときの溶接部におけ
るろう材表面からのCuの拡散深さDが100μm以
上、前記溶接部のろう材表面と前記ろう材表面から10
0μm内部位置との電位差Sが50mV以上であること
を特徴とする溶接部の耐食性に優れるアルミニウム合金
ブレージングシートである。 【0007】 【発明の実施の形態】本発明は、図1に示すように、C
u、Mn、Tiを適量含有し、Si、Fe、Mgの量を
規制したアルミニウム合金芯材1の片面にろう材2を被
覆したブレージングシート3であり、前記芯材1の縦断
面(圧延方向断面)における圧延方向の結晶粒径Lを1
50〜200μmに規定することにより、図2(イ)、
(ロ)に示すように、ろう付け加熱後の溶接部5におけ
るろう材2表面からのCuの拡散深さDを100μm以
上に深くして芯材1に緩やかな電位勾配を形成し、また
Tiが溶接界面4で濃化するのを抑え、さらに電位差S
(ろう材2表面とろう材2表面から100μm内部位置
との電位差)を50mV以上に規定し、以て溶接部5の
耐食性を改善したブレージングシートである。本発明に
おいて、溶接部5とは、溶接熱で溶融した部分を含む領
域を言う。 【0008】以下に、本発明のブレージングシートの芯
材の合金組成について説明する。Cuは、ろう付け時の
加熱(600℃×3〜4分)で固溶して、芯材1の強度
を高めるとともに、図2(ロ)に示すように、ろう材に
拡散して、ろう材2表面から内部に向けて緩やかな電位
勾配を形成し、それにより腐食形態を、厚さ方向に進行
する孔食型から、面方向に広がる面食型に改善する作用
を果たす。 【0009】Cuの含有量が0.1mass%未満では前記
効果が十分に得られず、0.5mass%を超えると結晶粒
界にAl―Cu系金属間化合物が析出して粒界腐食感受
性が大きくなり耐食性が低下する。このためCuの含有
量は0.1〜0.5mass%に規定する。特には0.1〜
0.3mass%が望ましい。 【0010】また、本発明では、溶接部におけるCuの
拡散深さD(ろう材表面から芯材のCuの濃度が減少し
始めるまでの距離:図2(ロ)参照)を100μm以上
にするが、前記Cuの拡散深さDを100μm以上にす
るには、芯材の縦断面における圧延方向の結晶粒径L
(図1参照)を200μm以下に規定してCuの拡散を
促進させる必要がある。本発明では、前記溶接部のろう
材表面と芯材の前記ろう材表面から100μm内部位置
との電位差Sを50mV以上に規定して腐食形態を面食
型とする。 【0011】本発明において、芯材に含有されるTiは
芯材表面に対し平行に層状に析出して孔食を抑え、また
芯材の電位を貴に移行させて芯材の耐食性を高める。 【0012】Tiの含有量が0.05mass%未満では前
記効果が十分に得られず、0.3mass%を超えると、前
記効果が飽和するうえ、粗大な化合物が生成して加工性
が低下する。このためTiは0.05〜0.3mass%に
規定する。特には0.05〜0.2mass%が望ましい。 【0013】本発明において、前記Tiの接合界面への
濃化は、結晶粒径Lを150μm以上にしてTiの拡散
を抑制することにより阻止する。結晶粒径Lが200μ
mを超えると前述のようにCuの緩やかな濃度勾配が得
られなくなり、また溶接の際にミクロ割れが生じて溶接
部の強度が低下する。前記結晶粒径Lはアルミニウム合
金ブレージングシートの冷間加工率や中間焼鈍条件など
を選定することにより制御できる。中間焼鈍温度は36
0℃前後が適当である。 【0014】Mnは芯材の耐食性、溶接性および強度を
高める。Mnの含有量が0.3mass%未満では前記効果
が十分に得られず、1.5mass%を超えると粗大な金属
間化合物が生成して加工性が低下する。このためMnの
含有量は0.3〜1.5mass%に規定する。特には0.
3〜1.2mass%が望ましい。 【0015】SiはFeと金属間化合物を形成して芯材
の強度を高めるが、量が多いと貴な化合物が生成してマ
トリックスの耐食性が低下する。このためSiは0.2
mass%以下に規制する。特には0.02〜0.2mass%
が望ましい。 【0016】Feは前述のようにSiと金属間化合物を
形成して芯材の強度を高めるとともに、結晶粒径Lを2
50μm以下に微細化し、さらに芯材の溶接性を高め
る。しかし、その量が多いと芯材の耐食性が低下する。
このためFeは0.2mass%以下に規制する。特には
0.02〜0.2mass%が望ましい。 【0017】Mgは芯材の強度を高めるが、量が多いと
フッ化物系フラックスを用いるノコロックろう付け法に
おいてろう付け性が低下する。このためMgは0.2ma
ss%以下に規制する。特には0.1mass%以下が望まし
い。 【0018】本発明において、ろう材のクラッド率を1
0〜20%に規定する理由は、10%未満ではフィンと
のろう付け性が低下し、20%を超えるとろう材が芯材
にしみこんだとき芯材の残存板厚が薄くなり、チューブ
を骨格とする熱交換器では外力により疲労破壊を起こす
恐れがあるためである。ろう材には、任意のアルミニウ
ム合金ろう材が使用できるが、Al−Si系合金ろう材
が、安定して良好なろう付け性が得られ望ましい。本発
明のブレージングシートは、芯材の両面にろう材が被覆
されたもの、芯材の片面にろう材が、他の片面に皮材が
被覆されたもの、芯材の片面にろう材が被覆されただけ
のものなどである。 【0019】 【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明規定組成のアルミニウム
合金芯素材材の片面に4045合金ろう素材(Si1
0.5mass%、Fe0.05mass%、Cu0.05mass
%、Ti0.01mass%、Al残部)を重ね合わせて厚
さ35mmに熱間圧延し、次いで冷間圧延、中間焼鈍、
冷間圧延をこの順に施して厚さ3.5mmの板材とし、
さらにこの板材に冷間圧延と中間焼鈍を繰り返し施して
厚さ0.4mmのH14アルミニウム合金ブレージング
シートを製造した。ろう材のクラッド率は10〜20%
の範囲内で種々に変化させた。芯材の結晶粒径は冷間圧
延率や中間焼鈍温度などを制御して150〜200μm
の範囲内に制御した。 【0020】(比較例1)芯材に表2に示す本発明規定
外組成のアルミニウム合金を用いた他は、実施例1と同
じ方法によりアルミニウム合金ブレージングシートを製
造した。 【0021】(比較例2)ろう材のクラッド率を本発明
規定外とした他は、実施例1と同じ方法によりアルミニ
ウム合金ブレージングシートを製造した。 【0022】実施例1および比較例1、2で製造した各
々のブレージングシートから試験片を切り出し、(1)
ろう付け性、(2)引張強さ、(3)耐疲労特性、
(4)耐食性を下記方法により調べ評価した。結果を表
1、2に併記する。 【0023】(1)ろう付け性 ドロップ試験を常法により行って流動係数を求め、流動
係数が60%以上を合格と判定した。 (2)引張強さ 試験片(JIS5号試験片)をろう付け条件(600℃
×3.5分)で加熱し、1週間室温に放置後、JISZ
2241に準じて引張試験した。引張強さが140N/
mm2 以上を合格と判定した。 (3)耐疲労特性 試験片(幅10mm)をろう付け条件(600℃×3.
5分)で加熱し、1週間室温に放置後JISZ2273
に準じて、繰り返し曲げ応力を付加して107回におけ
る疲労強度を求めた。曲げは周波数15Hzの両振りと
し、付加応力は試験片の長さにより変化させた。振幅は
一定とした。疲労強度が30MPa以上を合格とした。 (4)耐食性 試験片(幅30mm、長さ120mm)をろう付け条件
(600℃×3.5分)で加熱後、端部を絶縁テープで
マスキングし、CASS試験をJISH8601に準じ
て750時間行い、試験後、腐食生成物を除去し、孔食
深さを光学顕微鏡を用いた焦点深度法により測定した。
孔食深さ170μm以下を合格とした。 【0024】 【表1】 【0025】 【表2】 【0026】表1、2から明らかなように、本発明例の
No.1〜18はいずれもろう付け性、引張強さ、耐疲
労特性および耐食性に優れた。これに対し、比較例のN
o.19、20、22はそれぞれSi、Fe、Cuが多
いため、No.21、24、26はそれぞれCu、M
n、Tiが少ないためいずれも耐食性が劣った。No.
21、24は強度も低下した。No.23は芯材のMg
が多いため、No.28はクラッド率が小さいため、い
ずれもろう付け性が劣った。No.25はMnが多いた
め圧延加工性に劣り、No.27はTiが多いため電縫
加工性が劣った。No.29、30はクラッド率が大き
いため疲労強度が劣った。 【0027】なお、本発明のブレージングシートは、別
途行った試験調査により、他の雰囲気ろう付け、フラッ
クスろう付け、真空ろう付けなどでも良好にろう付けさ
れることが確認された。 【0028】(実施例2)表1に示したNo.11のア
ルミニウム合金芯材の片面に4045合金ろう材を重ね
合わせて厚さ35mmに熱間圧延し、次いで冷間圧延、
中間焼鈍(360℃×2時間)、冷間圧延をこの順に施
して厚さ3.5mmの板材を製造した。前記板材は、冷
間圧延率および中間焼鈍温度を変化させることにより結
晶粒径Lを本発明規定値内に制御した。 【0029】(比較例3)冷間圧延率および中間焼鈍温
度を選定して結晶粒径Lを本発明規定値外とした他は、
実施例2と同じ方法により板材を製造した。 【0030】実施例2および比較例3で製造した各々の
板材から試験片(幅100mm、長さ30mm)を切り
出し、この試験片を直流(DC)バッド溶接し、溶接部
断面におけるミクロ割れ数を計測し、割れ発生率R(R
=〔ミクロ割れが生じた溶接回数/全溶接回数〕×10
0)を求めた。また溶接部の耐食性について実施例1の
場合と同じようにJISH8601に準じてCASS試
験を750時間行い調べた。溶接部に孔食が生じなかっ
たものは耐食性が良好(○)、生じたものは不良(×)
と判定した。結果を表3に示す。なお、直流(DC)バ
ッド溶接では高周波誘導溶接の場合と同じように、溶接
の際半溶融状態で外力が作用する。 【0031】 【表3】 【0032】表3から明らかなように、本発明例のN
o.31〜33はいずれも、溶接性および溶接部の耐食
性に優れた。一方、比較例のNo.34は芯材の結晶粒
径Lが大きいため割れが発生し易くなり、No.35は
芯材の結晶粒径Lが小さいため溶接部の耐食性が劣っ
た。なお、ここでは、板厚3.5mmの板材を試験片と
したが、板厚の薄いブレージングシートでも同様の結果
が得られることを別の実験により確認した。 【0033】(実施例3)表1に示したNo.15の合
金を用い、実施例1と同じ方法により厚さ0.4mmの
H14ブレージングシートを製造し、このブレージング
シートを図4に示した電縫加工法によりチューブに加工
した。前記電縫加工法の条件(高周波溶接条件)は周波
数400kHz、電流3.7mA、電圧6.7kV、ア
プセット量200μm、製管速度90m/分とした。前
記条件によりチューブの溶接部におけるCuの拡散深さ
Dおよび電位差Sは本発明規定値を満足した。前記チュ
ーブの溶接状態(フィレット形状)および寸法精度はと
もに良好であった。 【0034】(比較例4)高周波溶接法の条件を変え
て、前記Cuの拡散深さDおよび電位差Sを本発明規定
値外とした他は、実施例3と同じ方法によりチューブを
電縫加工した。 【0035】実施例3および比較例4で製造した各々の
チューブを用いて図3に示したラジエーターコアを作製
し、実施例2の場合と同様に、チューブの溶接部の耐食
性を調べ評価した。溶接部に孔食が生じなかったものは
耐食性が良好(○)、生じたものは不良(×)と判定し
た。なお、前記ラジエーターコアは、チューブに放熱フ
ィンを挟み込むように組付け、この組付体にノコロック
用フラックスを3g/m2 の量スプレー塗布し、乾燥
後、露点−40℃、酸素濃度300ppm、温度600
℃の雰囲気下で5分間加熱してチューブに放熱フィンを
ろう付けして作製した。前記チューブとフィンの接続部
にはいずれも良好なフィレットが形成された。結果を表
4に示す。表4にはCuの拡散深さD(図2ロ参照)と
電位差Sを併記した。Cuの拡散深さDはEPMAを用
いた定量線分析法により求めた。電位差Sはろう材表面
の電位aとろう材表面から100μm内側部分の研磨面
の電位bを5%NaCl中で参照電極Ag/AgClを
用いて測定し、両者の差(a−b)の絶対値で示した。 【0036】 【表4】【0037】表4から明らかなように、本発明例のN
o.36は良好な耐食性を示したが、比較例のNo.3
7は電位差Sが低いため、No.38はCuの拡散深さ
Dが浅いため、No.39は拡散深さDが浅く電位差S
が低いため、いずれも溶接部の耐食性が劣った。 【0038】 【発明の効果】以上に述べたように、本発明のブレージ
ングシートは、Cu、Ti、Mnを適量含有し、Si、
Fe、Mgを少量に規制した芯材の片面または両面にア
ルミニウム合金ろう材が片面あたり10〜20%のクラ
ッド率で被覆されたブレージングシートで、ろう付け
性、引張強さ、耐疲労特性、耐食性などの熱交換器用チ
ューブなどに必要な諸特性を具備し、さらに前記芯材の
縦断面における圧延方向の結晶粒径Lを150〜200
μm、溶接後ろう付け加熱したときの溶接部におけるC
uの拡散深さDを100μm以上、前記溶接部のブレー
ジングシート表面と前記表面から100μm内部位置と
の電位差Sを50mV以上に規定するため溶接部に孔食
が生じず、耐食性に優れる。依って、工業上顕著な効果
を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy brazing sheet which is useful for various structural members such as tubes for heat exchangers and which has excellent corrosion resistance at welds. [0002] Automotive heat exchangers (radiators, etc.)
As shown in FIG. 3, a core 9 in which a header 7 for connecting the tube 6 and a radiation fin 8 are brazed to the tube 6.
The main part is configured. In FIG. 3, reference numeral 10 denotes a skin material. For example, as shown in FIG. 4, the tube 6 is made of a brazing material 3 coated with a brazing material 2 on one side of a core material 1 and a skin material 10 on another side, and a brazing material 2.
Is roll-formed into a cylindrical shape with the outside facing, induction heating by a high-frequency coil 11, and welding by pressing the molten end face by a pressure roll 12 to produce a weld. [0003] By the way, pitting corrosion occurs in the tube 6, and when it penetrates, liquid leakage occurs, so that the corrosion resistance of the tube 6 is extremely important. The corrosion resistance of tube 6 is tube 6
The radiating fins 8 or the skin material 10 to be brazed are maintained as a sacrificial corrosive material, but the thickness of the tube 6 has been reduced as a part of the recent reduction in the weight of automobiles. It became so. In order to improve the corrosion resistance of the core material 1, Cu is added to the core material 1, and the Cu is diffused into the brazing material 2 to corrode the tube in a planar shape by a potential gradient formed in the core material, thereby causing pitting corrosion. (JP-A-64-83396),
A method of adding Ti to the core material 1 and distributing the Ti in a layered manner in the length direction (rolling direction) of the core material 1 to form a local battery between the thick and thin layers of Ti to prevent pitting corrosion (Japanese Patent Laid-Open No. -283
No. 891) has been proposed. [0005] However, in the method of adding Cu, since the brazing material is melted once in a welded portion such as the tube to form a solidified structure and Cu is hardly diffused, The diffusion depth D (the distance from the surface of the brazing material to the start of the decrease in the concentration of Cu in the core material) becomes shallow, and the effect of preventing the pitting corrosion due to the potential gradient of Cu cannot be obtained sufficiently. In the method of distributing Ti in a layered manner, Ti diffuses along a crystal grain boundary at the time of welding to form a thickened layer of Ti at a joint interface, and pitting corrosion proceeds along the thickened layer of Ti. There was a problem of doing. For this reason, the present inventors have studied the corrosion resistance of the welded portion of the aluminum alloy brazing sheet, and have found that the two problems can be solved by defining the crystal grain size of the core material. Thus, the present invention has been completed. An object of the present invention is to provide an aluminum alloy brazing sheet having excellent corrosion resistance at a welded portion. Means for Solving the Problems The invention according to claim 1 is:
0.1 to 0.5 mass% of Cu and 0.05 to 0.3 of Ti
mass%, Mn containing 0.3 to 1.5 mass%, Si, F
e, Mg is regulated to 0.2 mass% or less, and the rest is a brazing sheet in which aluminum alloy brazing material is coated on one or both sides of a core material composed of Al and unavoidable impurities at a cladding rate of 10 to 20% per side. And the crystal grain size in the rolling direction in the longitudinal section of the core material is 150 to 2
The diffusion depth D of Cu from the brazing filler metal surface at the time of brazing and heating after welding is 100 μm or more.
An aluminum alloy brazing sheet excellent in corrosion resistance of a welded part, wherein a potential difference S from an inner position of 0 μm is 50 mV or more. DETAILED DESCRIPTION OF THE INVENTION The present invention, as shown in FIG.
A brazing sheet 3 in which a brazing material 2 is coated on one surface of an aluminum alloy core material 1 containing appropriate amounts of u, Mn, and Ti, and regulating the amounts of Si, Fe, and Mg. (Cross section) the grain size L in the rolling direction is 1
By defining the thickness to be 50 to 200 μm, FIG.
As shown in (b), the diffusion depth D of Cu from the surface of the brazing material 2 in the welded portion 5 after the brazing is heated is increased to 100 μm or more to form a gentle potential gradient in the core material 1, and Ti Is suppressed at the welding interface 4 and the potential difference S
This is a brazing sheet in which the (potential difference between the surface of the brazing material 2 and an internal position of 100 μm from the surface of the brazing material 2) is set to 50 mV or more, thereby improving the corrosion resistance of the welded portion 5. In the present invention, the welded portion 5 refers to a region including a portion melted by welding heat. Hereinafter, the alloy composition of the core material of the brazing sheet of the present invention will be described. Cu forms a solid solution by heating at the time of brazing (600 ° C. × 3 to 4 minutes) to increase the strength of the core material 1 and diffuses into the brazing material as shown in FIG. A gentle potential gradient is formed from the surface of the material 2 toward the inside, thereby improving the corrosion mode from a pitting type that progresses in the thickness direction to a surface type that spreads in the surface direction. If the Cu content is less than 0.1 mass%, the above effect cannot be sufficiently obtained. If the Cu content exceeds 0.5 mass%, Al-Cu intermetallic compounds are precipitated at the crystal grain boundaries, and the intergranular corrosion susceptibility is lowered. It becomes large and the corrosion resistance decreases. For this reason, the content of Cu is regulated to 0.1 to 0.5 mass%. Especially 0.1 ~
0.3 mass% is desirable. Further, in the present invention, the diffusion depth D of Cu in the welded portion (distance from the surface of the brazing material until the concentration of Cu in the core material starts to decrease: see FIG. 2B) is set to 100 μm or more. In order to increase the diffusion depth D of Cu to 100 μm or more, the grain size L in the rolling direction in the longitudinal section of the core material is adjusted.
(See FIG. 1) must be set to 200 μm or less to promote Cu diffusion. In the present invention, the potential difference S between the surface of the brazing material at the welded portion and the position 100 μm from the surface of the brazing material of the core material is defined to be 50 mV or more, and the corrosion mode is set to a surface corrosion type. In the present invention, Ti contained in the core material precipitates in a layer parallel to the surface of the core material to suppress pitting corrosion, and also shifts the potential of the core material noble to enhance the corrosion resistance of the core material. If the content of Ti is less than 0.05 mass%, the above effect cannot be sufficiently obtained. If the content exceeds 0.3 mass%, the above effect is saturated, and a coarse compound is formed to lower processability. . For this reason, Ti is defined as 0.05 to 0.3 mass%. In particular, 0.05 to 0.2 mass% is desirable. In the present invention, the enrichment of Ti at the bonding interface is prevented by setting the crystal grain size L to 150 μm or more to suppress the diffusion of Ti. Crystal grain size L is 200μ
If it exceeds m, a gradual concentration gradient of Cu cannot be obtained as described above, and microcracks occur during welding, resulting in a decrease in the strength of the welded portion. The crystal grain size L can be controlled by selecting a cold working rate, an intermediate annealing condition, and the like of the aluminum alloy brazing sheet. Intermediate annealing temperature is 36
Around 0 ° C. is appropriate. Mn enhances the corrosion resistance, weldability and strength of the core material. If the content of Mn is less than 0.3 mass%, the above effect cannot be sufficiently obtained, and if it exceeds 1.5 mass%, a coarse intermetallic compound is formed and the workability is reduced. For this reason, the content of Mn is specified to be 0.3 to 1.5 mass%. Especially 0.
3 to 1.2 mass% is desirable. [0015] Si forms an intermetallic compound with Fe to increase the strength of the core material. However, when the amount is large, a noble compound is formed and the corrosion resistance of the matrix is reduced. Therefore, Si is 0.2
Restrict to mass% or less. Especially 0.02 to 0.2 mass%
Is desirable. As described above, Fe forms an intermetallic compound with Si to increase the strength of the core material and to reduce the crystal grain size L to 2%.
It is refined to 50 μm or less and further enhances the weldability of the core material. However, when the amount is large, the corrosion resistance of the core material is reduced.
For this reason, Fe is restricted to 0.2 mass% or less. In particular, 0.02 to 0.2 mass% is desirable. [0017] Mg increases the strength of the core material, but if the amount is large, the brazing property decreases in the Nocolok brazing method using a fluoride-based flux. Therefore, Mg is 0.2 ma.
Restrict to ss% or less. In particular, 0.1 mass% or less is desirable. In the present invention, the cladding ratio of the brazing material is set to 1
The reason for defining the range from 0 to 20% is that if it is less than 10%, the brazing properties with the fins decrease, and if it exceeds 20%, the residual thickness of the core material becomes thin when the brazing material soaks into the core material. This is because a heat exchanger having a skeleton may cause fatigue fracture due to external force. Although any aluminum alloy brazing material can be used as the brazing material, an Al—Si alloy brazing material is desirable because it can stably provide good brazing properties. The brazing sheet of the present invention includes a core material having both surfaces coated with a brazing material, a core material having one surface coated with a brazing material, another surface coated with a brazing material, and a core material having one surface coated with a brazing material. What was just done. The present invention will be described below in more detail with reference to examples. (Example 1) 4045 alloy brazing material (Si1
0.5 mass%, Fe 0.05 mass%, Cu 0.05 mass
%, 0.01 mass% of Ti, and the balance of Al), and hot-rolled to a thickness of 35 mm, then cold-rolled, intermediately annealed,
Cold rolling is performed in this order to obtain a 3.5 mm thick plate,
Further, the sheet was repeatedly subjected to cold rolling and intermediate annealing to produce an H14 aluminum alloy brazing sheet having a thickness of 0.4 mm. Cladding rate of brazing material is 10-20%
Were variously changed within the range. The crystal grain size of the core material is 150 to 200 μm by controlling the cold rolling rate and the intermediate annealing temperature.
Was controlled within the range. Comparative Example 1 An aluminum alloy brazing sheet was manufactured in the same manner as in Example 1, except that an aluminum alloy having a composition outside the range specified in the present invention shown in Table 2 was used as a core material. (Comparative Example 2) An aluminum alloy brazing sheet was manufactured in the same manner as in Example 1 except that the clad ratio of the brazing material was outside the range specified in the present invention. A test piece was cut out from each of the brazing sheets produced in Example 1 and Comparative Examples 1 and 2, and (1)
Brazing properties, (2) tensile strength, (3) fatigue resistance properties,
(4) The corrosion resistance was examined and evaluated by the following method. The results are shown in Tables 1 and 2. (1) A brazing property drop test was carried out by a conventional method to obtain a fluidity coefficient. A fluidity coefficient of 60% or more was judged to be acceptable. (2) Brazing conditions (600 ° C) for tensile strength test piece (JIS No. 5 test piece)
× 3.5 minutes) and leave it at room temperature for one week.
A tensile test was performed according to H.241. Tensile strength is 140N /
mm 2 or more was determined to be acceptable. (3) Brazing conditions (600 ° C. × 3.
5 minutes) and leave it at room temperature for 1 week, then JISZ2273
In accordance with to determine the fatigue strength at 10 7 times by adding a repeated bending stress. The bending was a double swing at a frequency of 15 Hz, and the applied stress was changed according to the length of the test piece. The amplitude was constant. A fatigue strength of 30 MPa or more was considered acceptable. (4) After heating a corrosion resistance test piece (width 30 mm, length 120 mm) under brazing conditions (600 ° C. × 3.5 minutes), the end portion was masked with an insulating tape, and a CASS test was performed for 750 hours according to JIS H8601. After the test, corrosion products were removed, and the pit depth was measured by a depth of focus method using an optical microscope.
A pit depth of 170 μm or less was accepted. [Table 1] [Table 2] As is clear from Tables 1 and 2, No. 1 of the present invention example. All of Nos. 1 to 18 were excellent in brazing property, tensile strength, fatigue resistance and corrosion resistance. In contrast, N of the comparative example
o. Nos. 19, 20, and 22 each contain a large amount of Si, Fe, and Cu. 21, 24 and 26 are Cu and M, respectively.
Since both n and Ti were small, the corrosion resistance was inferior. No.
In Nos. 21 and 24, the strength also decreased. No. 23 is Mg of the core material
Because there are many, No. 28 had low brazing properties because of low cladding ratio. No. No. 25 is inferior in rollability due to a large amount of Mn. No. 27 was inferior in electric resistance workability due to a large amount of Ti. No. Nos. 29 and 30 were inferior in fatigue strength due to a large cladding ratio. In addition, the brazing sheet of the present invention was confirmed to be satisfactorily brazed by other atmosphere brazing, flux brazing, vacuum brazing, etc., through a test and investigation conducted separately. (Example 2) No. 2 shown in Table 1 The aluminum alloy core material of No. 11 was overlaid with 4045 alloy brazing material on one side, hot-rolled to a thickness of 35 mm, and then cold-rolled.
Intermediate annealing (360 ° C. × 2 hours) and cold rolling were performed in this order to produce a 3.5 mm-thick plate. In the sheet material, the crystal grain size L was controlled within the specified value of the present invention by changing the cold rolling reduction and the intermediate annealing temperature. (Comparative Example 3) A cold rolling reduction and an intermediate annealing temperature were selected so that the crystal grain size L was outside the specified value of the present invention.
A plate was manufactured in the same manner as in Example 2. A test piece (width: 100 mm, length: 30 mm) was cut out from each of the plate members produced in Example 2 and Comparative Example 3, and the test piece was subjected to direct current (DC) pad welding to determine the number of microcracks in the welded section. The crack occurrence rate R (R
= [Number of welding times microcracking occurred / total number of welding times] × 10
0) was determined. In addition, the CASS test was performed for 750 hours in accordance with JIS 8601 in the same manner as in Example 1 to check the corrosion resistance of the welded portion. If no pitting occurred on the welded portion, the corrosion resistance was good (O), and if it did, it was poor (X).
It was determined. Table 3 shows the results. In direct current (DC) bad welding, an external force acts in a semi-molten state during welding, as in the case of high-frequency induction welding. [Table 3] As is apparent from Table 3, N of the present invention example
o. All of Nos. 31 to 33 were excellent in weldability and corrosion resistance of a welded portion. On the other hand, in Comparative Example No. In No. 34, since the crystal grain size L of the core material was large, cracks were easily generated. In No. 35, the corrosion resistance of the welded portion was inferior because the crystal grain size L of the core material was small. Here, a 3.5 mm-thick plate material was used as the test piece, but it was confirmed by another experiment that the same result was obtained even with a thin brazing sheet. (Example 3) No. 3 shown in Table 1 Using the alloy No. 15, an H14 brazing sheet having a thickness of 0.4 mm was produced in the same manner as in Example 1, and this brazing sheet was processed into a tube by the electric resistance welding method shown in FIG. The conditions (high frequency welding conditions) of the electric resistance welding method were a frequency of 400 kHz, a current of 3.7 mA, a voltage of 6.7 kV, an upset amount of 200 μm, and a pipe-making speed of 90 m / min. Under the above conditions, the diffusion depth D and the potential difference S of Cu in the welded portion of the tube satisfied the specified values of the present invention. The welding condition (fillet shape) and dimensional accuracy of the tube were both good. (Comparative Example 4) The tube was subjected to ERW by the same method as in Example 3 except that the conditions of the high-frequency welding method were changed so that the diffusion depth D and the potential difference S of Cu were outside the specified values of the present invention. did. A radiator core shown in FIG. 3 was prepared using each of the tubes manufactured in Example 3 and Comparative Example 4, and the corrosion resistance of the welded portion of the tube was evaluated and evaluated in the same manner as in Example 2. Those in which pitting corrosion did not occur in the welded portion were determined to have good corrosion resistance (○), and those in which pitting corrosion occurred were determined to be poor (x). The radiator core was assembled so that the radiation fins were sandwiched between the tubes, and a flux for Nokoloc was spray-coated on the assembled body in an amount of 3 g / m 2. After drying, the dew point was −40 ° C., the oxygen concentration was 300 ppm, and the temperature was 600
Heating was performed in an atmosphere at a temperature of 5 ° C. for 5 minutes, and a radiation fin was brazed to the tube. A good fillet was formed at the connection between the tube and the fin. Table 4 shows the results. Table 4 also shows the Cu diffusion depth D (see FIG. 2B) and the potential difference S. The diffusion depth D of Cu was determined by a quantitative line analysis method using EPMA. The potential difference S is measured by using a reference electrode Ag / AgCl in 5% NaCl using a reference electrode Ag / AgCl in measuring the potential a on the brazing material surface and the potential b on the polished surface 100 μm inside from the brazing material surface. Indicated by value. [Table 4] As is clear from Table 4, N of the present invention example
o. No. 36 showed good corrosion resistance, but no. Three
No. 7 has a low potential difference S, and No. 38 has a shallow Cu diffusion depth D, and Numeral 39 indicates a shallow diffusion depth D and a potential difference S
, The corrosion resistance of the welds was inferior. As described above, the brazing sheet of the present invention contains appropriate amounts of Cu, Ti, and Mn and contains Si,
Brazing sheet in which aluminum alloy brazing material is coated on one or both sides of a core material in which Fe and Mg are restricted to a small amount at a cladding ratio of 10 to 20% per one side, brazing properties, tensile strength, fatigue resistance properties, corrosion resistance And other properties required for a heat exchanger tube and the like. Further, the crystal grain size L in the rolling direction in the longitudinal section of the core material is set to 150 to 200.
μm, C in the weld when brazing and heating after welding
The diffusion depth D of u is set to 100 μm or more, and the potential difference S between the brazing sheet surface of the welded portion and the position 100 μm from the surface is set to 50 mV or more. Therefore, a remarkable industrial effect is achieved.

【図面の簡単な説明】 【図1】本発明のブレージングシートの芯材における結
晶粒径の説明図である。 【図2】本発明のブレージングシートの、(イ)は溶接
部の説明図、(ロ)はCuの拡散深さDおよび電位差S
の説明図である。 【図3】ラジエーターコアの部分説明図である。 【図4】電縫加工法の説明図である。 【符号の説明】 1 芯材 2 ろう材 3 ブレージングシート 4 溶接界面 5 溶接部 6 チューブ 7 ヘッダー 8 放熱フィン 9 コア 10 皮材 11 高周波コイル 12 加圧ロール
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a crystal grain size in a core material of a brazing sheet of the present invention. 2A is an explanatory view of a welded portion of the brazing sheet of the present invention, and FIG. 2B is a diffusion depth D and a potential difference S of Cu.
FIG. FIG. 3 is a partial explanatory view of a radiator core. FIG. 4 is an explanatory diagram of an electric resistance sewing method. [Description of Signs] 1 core material 2 brazing material 3 brazing sheet 4 welding interface 5 welded portion 6 tube 7 header 8 radiating fin 9 core 10 skin material 11 high frequency coil 12 pressure roll

Claims (1)

【特許請求の範囲】 【請求項1】 Cuを0.1〜0.5mass%、Tiを
0.05〜0.3mass%、Mnを0.3〜1.5mass%
含有し、Si、Fe、Mgをそれぞれ0.2mass%以下
に規制し、残部がAlと不可避不純物からなる芯材の片
面または両面にアルミニウム合金ろう材が片面あたり1
0〜20%のクラッド率で被覆されたブレージングシー
トであって、前記芯材の縦断面における圧延方向の結晶
粒径が150〜200μm、溶接後ろう付け加熱したと
きの溶接部におけるろう材表面からのCuの拡散深さD
が100μm以上、前記溶接部のろう材表面と前記ろう
材表面から100μm内部位置との電位差Sが50mV
以上であることを特徴とする溶接部の耐食性に優れるア
ルミニウム合金ブレージングシート。
[Claim 1] 0.1 to 0.5 mass% of Cu, 0.05 to 0.3 mass% of Ti, and 0.3 to 1.5 mass% of Mn.
The content of Si, Fe, and Mg is regulated to 0.2 mass% or less, respectively, and the balance is made of aluminum alloy brazing material on one or both sides of a core material consisting of Al and unavoidable impurities.
A brazing sheet coated with a cladding ratio of 0 to 20%, wherein a crystal grain size in a rolling direction in a longitudinal section of the core material is 150 to 200 μm, and a brazing material surface at a welded portion when heated by brazing after welding. Cu diffusion depth D
Is equal to or more than 100 μm, and the potential difference S between the surface of the brazing material of the welded portion and a position 100 μm inside from the surface of the brazing material is 50 mV.
An aluminum alloy brazing sheet having excellent corrosion resistance at a welded portion, characterized in that:
JP2001277220A 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone Pending JP2003082428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277220A JP2003082428A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277220A JP2003082428A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone

Publications (1)

Publication Number Publication Date
JP2003082428A true JP2003082428A (en) 2003-03-19

Family

ID=19101786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277220A Pending JP2003082428A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone

Country Status (1)

Country Link
JP (1) JP2003082428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647607A1 (en) * 2004-10-13 2006-04-19 Erbslöh Aluminium GmbH Wrought aluminium alloy suitable for a heat exchanger.
US7247392B2 (en) * 2002-05-29 2007-07-24 Furukawa-Sky Aluminum Corp. Aluminum alloy heat exchanger and method of producing the same
CN103017416A (en) * 2013-01-04 2013-04-03 广州德星太阳能科技有限公司 All-aluminum material heat energy exchanger and production method thereof
JP2014205876A (en) * 2013-04-12 2014-10-30 株式会社デンソー Heat exchanger made of aluminum alloy, and method of manufacturing the same
JP2017002341A (en) * 2015-06-05 2017-01-05 株式会社ケーヒン・サーマル・テクノロジー Clad material, manufacturing method of pipe, pipe and heat exchanger using pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247392B2 (en) * 2002-05-29 2007-07-24 Furukawa-Sky Aluminum Corp. Aluminum alloy heat exchanger and method of producing the same
EP1647607A1 (en) * 2004-10-13 2006-04-19 Erbslöh Aluminium GmbH Wrought aluminium alloy suitable for a heat exchanger.
CN103017416A (en) * 2013-01-04 2013-04-03 广州德星太阳能科技有限公司 All-aluminum material heat energy exchanger and production method thereof
JP2014205876A (en) * 2013-04-12 2014-10-30 株式会社デンソー Heat exchanger made of aluminum alloy, and method of manufacturing the same
JP2017002341A (en) * 2015-06-05 2017-01-05 株式会社ケーヒン・サーマル・テクノロジー Clad material, manufacturing method of pipe, pipe and heat exchanger using pipe

Similar Documents

Publication Publication Date Title
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5057439B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP6147470B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP4832354B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP5750077B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP5054404B2 (en) Aluminum alloy clad material and brazing sheet for heat exchanger
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
US10307869B2 (en) Aluminum alloy brazing sheet for electric resistance welding
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP2009127121A (en) Aluminum alloy brazing sheet for heat exchanger
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2003082428A (en) Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2003082427A (en) Aluminum alloy brazing sheet having excellent vibration fatigue resistance
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JPH11315337A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2000026931A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP5498214B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040202

Free format text: JAPANESE INTERMEDIATE CODE: A712