JP2003082427A - Aluminum alloy brazing sheet having excellent vibration fatigue resistance - Google Patents

Aluminum alloy brazing sheet having excellent vibration fatigue resistance

Info

Publication number
JP2003082427A
JP2003082427A JP2001277219A JP2001277219A JP2003082427A JP 2003082427 A JP2003082427 A JP 2003082427A JP 2001277219 A JP2001277219 A JP 2001277219A JP 2001277219 A JP2001277219 A JP 2001277219A JP 2003082427 A JP2003082427 A JP 2003082427A
Authority
JP
Japan
Prior art keywords
mass
core material
aluminum alloy
brazing
alloy brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277219A
Other languages
Japanese (ja)
Inventor
Tokinori Onda
時伯 恩田
Yoshiaki Ogiwara
吉章 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001277219A priority Critical patent/JP2003082427A/en
Publication of JP2003082427A publication Critical patent/JP2003082427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy brazing sheet which has excellent vibration fatigue resistance in a weld zone, and is useful for various structural members such as a tube for a heat exchanger. SOLUTION: The aluminum alloy brazing sheet having excellent corrosion resistance in a weld zone 5 is obtained by coating one side or both sides of a core material 1 containing, by mass, >0.5 to 1.0% Cu, 0.05 to 0.3% Ti and 0.3 to 1.5% Mn, <=0.2 Si, Fe and Mg, and the balance Al with inevitable impurities with an aluminum alloy brazing filler metal 2 in a cladding ratio of 10 to 20% per one side. The crystal grain diameter L in a rolling direction in the longitudinal direction of the core material 1 is 150 to 200 μm.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱交換器用チュー
ブなどの各種構造用部材に有用な、特に溶接部の耐振動
疲労特性に優れるアルミニウム合金ブレージングシート
に関する。 【0002】 【従来の技術】自動車用熱交換器(ラジエーターなど)
は、図3に示すように、チューブ6に、チューブ6を連
結するヘッダー7と放熱フィン8をろう付けしたコア9
を主要部として構成されている。図3で10は皮材であ
る。前記チューブ6は、例えば、図4に示すように、芯
材1の片面にろう材2を、他の片面に皮材10を被覆し
たアルミニウム合金ブレージングシート3を、ろう材2
を外側にして円筒状にロール成形し、これを高周波コイ
ル11により誘導加熱し、溶融端面を加圧ロール12に
より押圧して溶接する電縫加工法により製造されてい
る。 【0003】ところで、チューブ6は、自動車のラジエ
ーターなどに使用される場合、長時間にわたり振動下に
置かれるため、振動疲労によるクラックが生じ易く、特
に溶接部は凝固組織となるためその傾向が強い。このク
ラックは貫通すると液漏れの原因になるため、溶接部の
耐振動疲労特性の改善は重要課題とされている。この
他、孔食も液漏れの原因になるためその防止方法が検討
され、例えば、芯材にTiを添加し、このTiを芯材の
長さ方向(圧延方向)に層状に分布させてTiの濃淡層
間に局部電池を形成して腐食を面方向に促すことによ
り、孔食を防止する方法が提案されている(特開平8―
283891号公報)。 【0004】 【発明が解決しようとする課題】しかし、前記溶接部の
耐振動疲労特性については有効な改善策が見いだされて
おらず、また前記Ti添加による孔食防止方法はTiが
溶接の際に結晶粒界に沿って拡散し、接合界面にTiの
濃化層が生成し、このTiの濃化層に沿って孔食が進行
するという問題がある。 【0005】このため、本発明者等は、アルミニウム合
金ブレージングシートの溶接部の耐振動疲労特性および
耐食性の改善策を検討し、耐振動疲労特性はCuを適量
添加することにより改善し得ること、また耐食性はTi
を添加し、かつ芯材の結晶粒径を規定することにより改
善し得ることを知見し、さらに検討を重ねて本発明を完
成させるに至った。本発明の目的は、特に溶接部の耐振
動疲労特性に優れるアルミニウム合金ブレージングシー
トを提供することにある。 【0006】 【課題を解決するための手段】請求項1記載の発明は、
Cuを0.5mass%超え1.0mass%以下、Tiを0.
05〜0.3mass%、Mnを0.3〜1.5mass%含有
し、Si、Fe、Mgをそれぞれ0.2mass%以下に規
制し、残部がAlと不可避不純物からなる芯材の片面ま
たは両面にアルミニウム合金ろう材が片面あたり10〜
20%のクラッド率で被覆されたブレージングシートで
あって、前記芯材の縦断面における圧延方向の結晶粒径
が150〜200μmであることを特徴とする耐振動疲
労特性に優れるアルミニウム合金ブレージングシートで
ある。 【0007】 【発明の実施の形態】本発明は、図1に示すような、ア
ルミニウム合金芯材1の片面にろう材2を10〜20%
のクラッド率で被覆したブレージングシート3であり、
前記芯材1はCu、Mn、Tiを適量含有し、Si、F
e、Mgの量を規制し、かつ結晶粒径の大きさが適正に
規定されたものである。 【0008】前記芯材に含まれるCuは、図2に示すよ
うに、溶接部5では、溶接時の加熱でAlマトリックス
中に固溶し或いは微細に析出して、芯材1の溶接部5の
強度並びに耐振動疲労特性を高める。図2で、4は溶接
界面である。Cuの含有量が0.5mass%以下では前記
効果が十分に得られず、1.0mass%を超えると結晶粒
界にAl―Cu系金属間化合物が析出して粒界腐食感受
性が高くなり耐食性が低下する。このためCuの含有量
は0.5mass%を超え1.0mass%以下に規定する。特
には0.5mass%を超え0.7mass%以下が望ましい。 【0009】本発明において、芯材に含有されるTiは
芯材表面に対し平行に層状に析出して孔食を抑え、また
芯材の電位を貴に移行させて芯材の耐食性を高める。T
iの含有量が0.05mass%未満では前記効果が十分に
得られず、0.3mass%を超えると、前記効果が飽和す
るうえ、粗大な化合物が生成して加工性が低下する。こ
のためTiは0.05〜0.3mass%に規定する。特に
は0.05〜0.2mass%が望ましい。 【0010】本発明において、図1に示すように、芯材
1の縦断面(圧延方向断面)における圧延方向の結晶粒
径Lを150〜200μmに規定する理由は、結晶粒径
Lが150μm未満ではTiが拡散し易くなり、Tiが
溶接部の接合界面に濃化し、そこに孔食が生じるため、
また結晶粒径Lが200μmを超えると溶接の際に溶接
部にミクロ割れが生じ易くなるためである。前記結晶粒
径Lはアルミニウム合金ブレージングシートの冷間加工
率や中間焼鈍条件などを選定することにより制御でき
る。焼鈍温度は360℃前後が適当である。なお、本発
明において溶接部5とは、例えば、チューブを電縫加工
する際の溶接熱で溶融した部分を含む領域を言う。 【0011】Mnは芯材の耐食性、溶接性および強度を
高める。Mnの含有量が0.3mass%未満では前記効果
が十分に得られず、1.5mass%を超えると粗大な金属
間化合物が生成して加工性が低下する。このためMnの
含有量は0.3〜1.5mass%に規定する。特には0.
3〜1.2mass%が望ましい。 【0012】SiはFeと金属間化合物を形成して芯材
の強度を高めるが、量が多いと貴な化合物が生成してマ
トリックスの耐食性が低下する。このためSiは0.2
mass%以下に規制する。特には0.02〜0.2mass%
が望ましい。 【0013】Feは前述のようにSiと金属間化合物を
形成して芯材の強度を高めるとともに、結晶粒径Lを2
00μm以下に微細化し、さらに芯材の溶接性を高め
る。しかし、その量が多いと芯材の耐食性が低下する。
このためFeは0.2mass%以下に規制する。特には
0.02〜0.2mass%が望ましい。 【0014】Mgは芯材の強度を高めるが、量が多いと
フッ化物系フラックスを用いるノコロックろう付け法な
どにおいてろう付け性が低下する。このためMgは0.
2mass%以下に規制する。特には0.1mass%以下が望
ましい。 【0015】本発明において、ろう材のクラッド率を1
0〜20%に規定する理由は、10%未満ではフィンと
のろう付け性が低下し、20%を超えるとろう材が芯材
にしみこんだとき芯材の残存板厚が薄くなり、チューブ
を骨格とする熱交換器では外力により疲労破壊を起こす
恐れがあるためである。ろう材には、任意のアルミニウ
ム合金ろう材が使用できるが、Al−Si系合金ろう材
が、良好なろう付け性が安定して得られ望ましい。本発
明のブレージングシートは、芯材の両面にろう材が被覆
されたもの、芯材の片面にろう材が、他の片面に皮材が
被覆されたもの、芯材の片面にろう材が被覆されただけ
のものなどである。 【0016】 【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明規定組成のアルミニウム
合金芯素材の片面に4045合金ろう素材(Si10.
5mass%、Fe0.05mass%、Cu0.05mass%、
Ti0.01mass%、Al残部)を重ね合わせて厚さ3
5mmに熱間圧延し、次いで冷間圧延、中間焼鈍、冷間
圧延をこの順に施して厚さ3.5mmの板材とし、さら
にこの板材に冷間圧延と中間焼鈍を繰り返し施して厚さ
0.4mmのH14アルミニウム合金ブレージングシー
トを製造した。ろう材のクラッド率は10〜20%の範
囲内で種々に変化させた。芯材の結晶粒径は冷間圧延率
や中間焼鈍条件などを制御して150〜200μmの範
囲内に調整した。 【0017】(比較例1)芯材に表2に示す本発明規定
外組成のアルミニウム合金を用いた他は、実施例1と同
じ方法によりアルミニウム合金ブレージングシートを製
造した。 【0018】(比較例2)ろう材のクラッド率を本発明
規定外とした他は、実施例1と同じ方法によりアルミニ
ウム合金ブレージングシートを製造した。 【0019】実施例1および比較例1、2で製造した各
々のブレージングシートから試験片を切り出し、(1)
ろう付け性、(2)引張強さ、(3)疲労強度、(4)
耐食性(孔食深さ)の諸特性を下記方法により調べ評価
した。結果を表1、2に併記する。 【0020】(1)ろう付け性 ドロップ試験を常法により行って流動係数を求めた。流
動係数が60%以上を合格と判定した。 (2)引張強さ 試験片(JIS5号試験片)をろう付け条件(600℃
×3.5分)で加熱し、1週間室温に放置後、JISZ
2241に準じて引張試験した。引張強さ160N/m
2 以上を合格と判定した。 (3)疲労強度 試験片(幅10mm)をろう付け条件(600℃×3.
5分)で加熱し、1週間室温に放置後JISZ2273
に準じて、繰り返し曲げ応力を付加して107回におけ
る疲労強度を求めた。曲げは周波数15Hzの両振りと
し、付加応力は試験片の長さにより変化させた。振幅は
一定とした。疲労強度45MPa以上を合格と判定し
た。 (4)耐食性 試験片(幅30mm、長さ120mm)をろう付け条件
(600℃×3.5分)で加熱後、端部を絶縁テープで
マスキングし、CASS試験をJISH8601に準じ
て750時間行い、試験後、腐食生成物を除去し、孔食
深さを光学顕微鏡を用いた焦点深度法により測定した。
孔食深さ160μm以下を合格と判定した。 【0021】 【表1】【0022】 【表2】 【0023】表1、2から明らかなように、実施例1
(本発明例)のNo.1〜18はいずれも前記諸特性に
優れた。これに対し、比較例のNo.19、20はそれ
ぞれ芯材のSi、Feが多いため、No.24、26は
それぞれ芯材のMn、Tiが少ないためいずれも耐食性
が劣った。No.21はCuが少ないため疲労強度が低
下した。No.22はCuが多いため耐食性が低下し
た。No.23は芯材のMgが多いため、No.28は
クラッド率が小さいため、いずれもろう付け性が劣っ
た。No.25は芯材のMnが多いため、No.27は
芯材のTiが多いためいずれも圧延加工時に割れが生じ
圧延加工ができなかった。No.29はクラッド率が大
きいため疲労強度が低下した。 【0024】なお、本発明のブレージングシートは、別
途行った試験調査により、他の雰囲気ろう付け、フラッ
クスろう付け、真空ろう付けなどでも良好なろう付けが
なされることが確認された。 【0025】(実施例2)実施例1で製造したNo.
1、3、5のブレージングシートを高周波溶接法を用い
た電縫加工法により10mmφのチューブに加工した。 【0026】(比較例3)冷間圧延率および中間焼鈍条
件を制御して芯材の結晶粒径を50μmまたは250μ
mに調整した他は、実施例1と同じ方法によりアルミニ
ウム合金ブレージングシートを製造した。 【0027】(比較例4)比較例1で製造したNo.2
1、22のブレージングシートを高周波溶接法を用いた
電縫加工法により10mmφのチューブに加工した。 【0028】実施例2および比較例4で製造した各々の
チューブについて耐振動疲労特性および耐食性を調べ
た。耐振動疲労特性は、前記各々のチューブから長さ2
00mmのサンプルを切り出し、この試験片をろう付け
条件(600℃×3.5分)で加熱し、1週間室温に放
置後JISZ2273に準じて、繰り返し曲げ応力を周
波数15Hzの両振りで107 回付加してクラック有無
を観察した。曲げ応力は引張強さの60%とした。クラ
ックが生じなかったものは耐振動疲労特性が良好
(○)、クラックが生じたものは不良(×)と判定し
た。耐食性は実施例1の場合と同じ方法により調べ、孔
食深さが150μm以下は耐食性が良好(○)、孔食深
さが150μmを超えたものは不良(×)と判定した。
結果を表3に示す。 【0029】 【表3】 【0030】表3から明らかなように、実施例2(本発
明例)のNo.30〜32はいずれも耐振動疲労特性お
よび耐食性に優れた。溶接部においてもミクロ割れの発
生がなく、また孔食深さが浅かった。一方、比較例のN
o.33は芯材の結晶粒径が小さいためTiが溶接界面
に拡散し、前記界面部分に深い孔食が生じた。No.3
4は結晶粒径が大きいため電縫加工時に溶接部にミクロ
割れが生じた。No.35はCuの含有量が少ないため
振動疲労試験で溶接部に割れが生じた。No.36はC
uの含有量が多いため耐食性が劣った。なお、別途、実
施例1で製造した他のブレージングシート(No.2、
4、6〜18)についても、前述と同じ方法で耐振動疲
労特性および耐食性を調べたが、いずれもNo.1、
3、5と同様に優れた特性を示した。 【0031】 【発明の効果】以上に述べたように、本発明は、Cu、
Ti、Mnを適量含有し、Si、Fe、Mgを少量に規
制し、片面または両面にAl合金ろう材が片面あたり1
0〜20%のクラッド率で被覆され、かつ前記芯材の縦
断面における圧延方向の結晶粒径が150〜200μm
に規定されたブレージングシートで、ろう付け性、引張
強さ、疲労強度、耐食性などの諸特性を具備し、特にチ
ューブなどに溶接加工したときの溶接部の耐振動疲労特
性並びに耐食性に優れる。依って、工業上顕著な効果を
奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy brazing sheet useful for various structural members such as tubes for heat exchangers, and particularly excellent in vibration fatigue resistance of a welded portion. . [0002] Automotive heat exchangers (radiators, etc.)
As shown in FIG. 3, a core 9 in which a header 7 for connecting the tube 6 and a radiation fin 8 are brazed to the tube 6.
The main part is configured. In FIG. 3, reference numeral 10 denotes a skin material. For example, as shown in FIG. 4, the tube 6 is made of a brazing material 3 coated with a brazing material 2 on one side of a core material 1 and a skin material 10 on another side, and a brazing material 2.
Is roll-formed into a cylindrical shape with the outside facing, induction heating by a high-frequency coil 11, and welding by pressing the molten end face by a pressure roll 12 to produce a weld. When the tube 6 is used in a radiator of an automobile or the like, the tube 6 is placed under vibration for a long time, so that cracks due to vibration fatigue tend to occur. . When this crack penetrates, it causes liquid leakage, and therefore, improvement of the vibration fatigue resistance of the welded portion is regarded as an important issue. In addition, pitting corrosion also causes liquid leakage, and a method for preventing the pitting corrosion has been studied. For example, Ti is added to a core material, and this Ti is distributed in a layered manner in the length direction (rolling direction) of the core material. A method has been proposed to prevent pitting corrosion by forming a local cell between light and shade layers to promote corrosion in the surface direction (Japanese Unexamined Patent Publication No. Hei 8-
No. 283891). [0004] However, no effective improvement measures have been found for the vibration fatigue resistance of the welded portion, and the method of preventing pitting corrosion by adding Ti has a problem in the case where Ti is welded. In addition, there is a problem that the pits diffuse along the crystal grain boundaries to form a concentrated layer of Ti at the bonding interface, and pitting proceeds along the concentrated layer of Ti. Therefore, the present inventors have studied measures for improving the vibration fatigue resistance and corrosion resistance of the welded portion of the aluminum alloy brazing sheet, and have found that the vibration fatigue resistance can be improved by adding an appropriate amount of Cu. The corrosion resistance is Ti
Was found to be able to be improved by adding a crystal grain and defining the crystal grain size of the core material. The present inventors completed further studies and completed the present invention. An object of the present invention is to provide an aluminum alloy brazing sheet that is particularly excellent in vibration fatigue resistance of a weld. Means for Solving the Problems The invention according to claim 1 is:
Cu is more than 0.5 mass% and 1.0 mass% or less, and Ti is 0.1 mass% or less.
One or both sides of a core material containing 0.5 to 0.3 mass%, Mn of 0.3 to 1.5 mass%, and each of Si, Fe, and Mg being regulated to 0.2 mass% or less, with the balance being Al and unavoidable impurities. Aluminum alloy brazing material on one side
A brazing sheet coated with a cladding ratio of 20%, wherein the core material has a crystal grain size in a rolling direction in a longitudinal section of 150 to 200 μm, and is an aluminum alloy brazing sheet excellent in vibration fatigue resistance. is there. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy core material 1 as shown in FIG.
A brazing sheet 3 coated with a cladding ratio of
The core material 1 contains appropriate amounts of Cu, Mn, and Ti, and Si, F
e, the amount of Mg is regulated, and the size of the crystal grain size is appropriately defined. As shown in FIG. 2, Cu contained in the core material is solid-dissolved or finely precipitated in the Al matrix by heating during welding at the welded portion 5, and Cu is welded to the welded portion 5 of the core material 1. To increase the strength and vibration fatigue resistance. In FIG. 2, reference numeral 4 denotes a welding interface. If the Cu content is 0.5 mass% or less, the above effect cannot be sufficiently obtained. If the Cu content exceeds 1.0 mass%, the Al-Cu intermetallic compound precipitates at the crystal grain boundaries to increase the susceptibility to intergranular corrosion and increase corrosion resistance. Decreases. Therefore, the content of Cu is specified to be more than 0.5 mass% and 1.0 mass% or less. In particular, it is desirable to be more than 0.5 mass% and 0.7 mass% or less. In the present invention, Ti contained in the core material precipitates in a layer parallel to the surface of the core material to suppress pitting corrosion, and also increases the corrosion resistance of the core material by shifting the potential of the core material to noble. T
When the content of i is less than 0.05 mass%, the above effect cannot be sufficiently obtained. When the content exceeds 0.3 mass%, the above effect is saturated, and a coarse compound is formed to deteriorate processability. For this reason, Ti is defined as 0.05 to 0.3 mass%. In particular, 0.05 to 0.2 mass% is desirable. In the present invention, as shown in FIG. 1, the reason why the grain size L in the rolling direction in the longitudinal section (section in the rolling direction) of the core material 1 is defined as 150 to 200 μm is that the grain size L is less than 150 μm. In the case, Ti becomes easy to diffuse, and Ti concentrates at the joint interface of the welded portion, and pitting corrosion occurs there.
On the other hand, if the crystal grain size L exceeds 200 μm, micro-cracks tend to occur in the welded portion during welding. The crystal grain size L can be controlled by selecting a cold working rate, an intermediate annealing condition, and the like of the aluminum alloy brazing sheet. An appropriate annealing temperature is around 360 ° C. In addition, in this invention, the welding part 5 means the area | region containing the part fuse | melted by the welding heat at the time of performing the electric resistance welding of a tube, for example. Mn enhances the corrosion resistance, weldability and strength of the core material. If the content of Mn is less than 0.3 mass%, the above effect cannot be sufficiently obtained, and if it exceeds 1.5 mass%, a coarse intermetallic compound is formed and the workability is reduced. For this reason, the content of Mn is specified to be 0.3 to 1.5 mass%. Especially 0.
3 to 1.2 mass% is desirable. [0012] Si forms an intermetallic compound with Fe to increase the strength of the core material, but if the amount is large, a noble compound is formed and the corrosion resistance of the matrix is reduced. Therefore, Si is 0.2
Restrict to mass% or less. Especially 0.02 to 0.2 mass%
Is desirable. [0013] As described above, Fe forms an intermetallic compound with Si to increase the strength of the core material and to reduce the crystal grain size L to 2%.
It is refined to not more than 00 μm and further enhances the weldability of the core material. However, when the amount is large, the corrosion resistance of the core material is reduced.
For this reason, Fe is restricted to 0.2 mass% or less. In particular, 0.02 to 0.2 mass% is desirable. [0014] Mg increases the strength of the core material, but if the amount is large, the brazing property is reduced in a Nocolok brazing method using a fluoride-based flux. For this reason, the content of Mg is 0.1.
Restrict to 2 mass% or less. In particular, 0.1 mass% or less is desirable. In the present invention, the cladding ratio of the brazing material is set to 1
The reason for defining the range from 0 to 20% is that if it is less than 10%, the brazing properties with the fins decrease, and if it exceeds 20%, the residual thickness of the core material becomes thin when the brazing material soaks into the core material. This is because a heat exchanger having a skeleton may cause fatigue fracture due to external force. Although any aluminum alloy brazing material can be used as the brazing material, an Al-Si alloy brazing material is desirable because good brazing properties are stably obtained. The brazing sheet of the present invention includes a core material having both surfaces coated with a brazing material, a core material having one surface coated with a brazing material, another surface coated with a brazing material, and a core material having one surface coated with a brazing material. What was just done. The present invention will be described below in more detail with reference to examples. (Example 1) A 4045 alloy brazing material (Si10.
5 mass%, Fe 0.05 mass%, Cu 0.05 mass%,
(Ti 0.01 mass%, Al remainder)
The sheet is hot-rolled to 5 mm, and then cold-rolled, intermediately annealed, and cold-rolled in this order to obtain a sheet having a thickness of 3.5 mm. This sheet is repeatedly subjected to cold-rolling and intermediate annealing to obtain a sheet having a thickness of 0.1 mm. A 4 mm H14 aluminum alloy brazing sheet was produced. The cladding ratio of the brazing material was variously changed within the range of 10 to 20%. The crystal grain size of the core material was adjusted within the range of 150 to 200 μm by controlling the cold rolling ratio, the conditions of the intermediate annealing, and the like. Comparative Example 1 An aluminum alloy brazing sheet was manufactured in the same manner as in Example 1 except that an aluminum alloy having a composition outside the range specified in the present invention shown in Table 2 was used as a core material. (Comparative Example 2) An aluminum alloy brazing sheet was manufactured in the same manner as in Example 1 except that the clad ratio of the brazing material was outside the range specified in the present invention. A test piece was cut out from each of the brazing sheets produced in Example 1 and Comparative Examples 1 and 2, and (1)
Brazing properties, (2) tensile strength, (3) fatigue strength, (4)
Various characteristics of corrosion resistance (pitting depth) were examined and evaluated by the following methods. The results are shown in Tables 1 and 2. (1) Brazing properties A drop test was carried out by a conventional method to determine a flow coefficient. A flow coefficient of 60% or more was judged to be acceptable. (2) Brazing conditions (600 ° C) for tensile strength test piece (JIS No. 5 test piece)
× 3.5 minutes) and leave it at room temperature for one week.
A tensile test was performed according to H.241. Tensile strength 160N / m
m 2 or more was judged to be acceptable. (3) Conditions for brazing a fatigue strength test piece (width 10 mm) (600 ° C. × 3.
5 minutes) and leave it at room temperature for 1 week, then JISZ2273
In accordance with to determine the fatigue strength at 10 7 times by adding a repeated bending stress. The bending was a double swing at a frequency of 15 Hz, and the applied stress was changed according to the length of the test piece. The amplitude was constant. A fatigue strength of 45 MPa or more was determined to be acceptable. (4) After heating a corrosion resistance test piece (width 30 mm, length 120 mm) under brazing conditions (600 ° C. × 3.5 minutes), the end portion was masked with an insulating tape, and a CASS test was performed for 750 hours according to JIS H8601. After the test, corrosion products were removed, and the pit depth was measured by a depth of focus method using an optical microscope.
A pit depth of 160 μm or less was determined to be acceptable. [Table 1] [Table 2] As apparent from Tables 1 and 2, Example 1
No. (Example of the present invention). All of Nos. 1 to 18 were excellent in the above various properties. On the other hand, in Comparative Example No. Nos. 19 and 20 each have a large amount of core material Si and Fe. Nos. 24 and 26 were inferior in corrosion resistance because each of the core materials had little Mn and Ti. No. In No. 21, the fatigue strength was reduced due to the small amount of Cu. No. In No. 22, the corrosion resistance was reduced due to the large amount of Cu. No. No. 23 has a large amount of Mg in the core material. No. 28 had low brazing properties because of low cladding ratio. No. No. 25 has a large amount of Mn in the core material. In the case of No. 27, since the core material had a large amount of Ti, cracks occurred during rolling and rolling could not be performed. No. In No. 29, the fatigue strength decreased due to a large cladding ratio. In addition, the brazing sheet of the present invention was confirmed to be able to be favorably brazed by other atmosphere brazing, flux brazing, vacuum brazing, etc., through a test conducted separately. (Example 2) No. 2 manufactured in Example 1
Each of the brazing sheets 1, 3, and 5 was processed into a 10 mmφ tube by an electric resistance welding method using a high-frequency welding method. Comparative Example 3 The crystal grain size of the core material was controlled to 50 μm or 250 μm by controlling the cold rolling reduction and the intermediate annealing conditions.
An aluminum alloy brazing sheet was manufactured in the same manner as in Example 1 except that the value was adjusted to m. (Comparative Example 4) 2
Each of the brazing sheets 1 and 22 was processed into a 10 mmφ tube by an electric resistance welding method using a high-frequency welding method. Each of the tubes produced in Example 2 and Comparative Example 4 was examined for vibration fatigue resistance and corrosion resistance. Vibration fatigue resistance is measured by a length of 2
A 00 mm sample was cut out, and the test piece was heated under brazing conditions (600 ° C. × 3.5 minutes), allowed to stand at room temperature for one week, and then repeatedly subjected to a bending stress of 10 7 times in accordance with JISZ2273 at a frequency of 15 Hz. After addition, the presence or absence of cracks was observed. The bending stress was set to 60% of the tensile strength. Those without cracks were judged to have good vibration fatigue resistance (O), and those with cracks were judged as poor (X). The corrosion resistance was examined by the same method as in Example 1, and when the pit depth was 150 μm or less, the corrosion resistance was good (良好), and when the pit depth exceeded 150 μm, it was judged as poor (×).
Table 3 shows the results. [Table 3] As is apparent from Table 3, No. 2 of Example 2 (Example of the present invention). Each of Nos. 30 to 32 was excellent in vibration fatigue resistance and corrosion resistance. Microcracks did not occur in the welds, and the pit depth was shallow. On the other hand, N
o. In No. 33, since the crystal grain size of the core material was small, Ti diffused into the welding interface, and deep pitting occurred at the interface. No. Three
No. 4 had a large crystal grain size, and microcracks occurred in the welded portion during the electric resistance welding. No. In No. 35, a crack was generated in the welded portion in the vibration fatigue test due to a low Cu content. No. 36 is C
The corrosion resistance was poor due to the high content of u. Separately, other brazing sheets (No. 2,
4, 6 to 18), the vibration fatigue resistance and corrosion resistance were examined in the same manner as described above. 1,
Excellent characteristics were exhibited as in the cases of Nos. 3 and 5. As described above, the present invention relates to Cu,
Contains an appropriate amount of Ti and Mn, regulates a small amount of Si, Fe, and Mg.
The core material is coated with a cladding ratio of 0 to 20%, and has a grain size of 150 to 200 μm in a rolling direction in a longitudinal section of the core material.
The brazing sheet is characterized by having various properties such as brazing properties, tensile strength, fatigue strength, and corrosion resistance, and is particularly excellent in vibration fatigue resistance and corrosion resistance of a welded portion when it is welded to a tube or the like. Therefore, a remarkable industrial effect is achieved.

【図面の簡単な説明】 【図1】本発明のブレージングシートの芯材における結
晶粒径の説明図である。 【図2】本発明のブレージングシートの溶接部の説明図
である。 【図3】ラジエーターコアの部分説明図である。 【図4】電縫加工法の説明図である。 【符号の説明】 1 芯材 2 ろう材 3 ブレージングシート 4 溶接界面 5 溶接部 6 チューブ 7 ヘッダー 8 放熱フィン 9 コア 10 皮材 11 高周波コイル 12 加圧ロール
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a crystal grain size in a core material of a brazing sheet of the present invention. FIG. 2 is an explanatory diagram of a welded portion of the brazing sheet of the present invention. FIG. 3 is a partial explanatory view of a radiator core. FIG. 4 is an explanatory diagram of an electric resistance sewing method. [Description of Signs] 1 core material 2 brazing material 3 brazing sheet 4 welding interface 5 welded portion 6 tube 7 header 8 radiating fin 9 core 10 skin material 11 high frequency coil 12 pressure roll

Claims (1)

【特許請求の範囲】 【請求項1】 Cuを0.5mass%超え1.0mass%以
下、Tiを0.05〜0.3mass%、Mnを0.3〜
1.5mass%含有し、Si、Fe、Mgをそれぞれ0.
2mass%以下に規制し、残部がAlと不可避不純物から
なる芯材の片面または両面にアルミニウム合金ろう材が
片面あたり10〜20%のクラッド率で被覆されたブレ
ージングシートであって、前記芯材の縦断面における圧
延方向の結晶粒径が150〜200μmであることを特
徴とする耐振動疲労特性に優れるアルミニウム合金ブレ
ージングシート。
Claims: 1. More than 0.5 mass% of Cu and 1.0 mass% or less, 0.05 to 0.3 mass% of Ti, and 0.3 to 0.3 mass% of Mn.
1.5 mass%, and each of Si, Fe, and Mg is 0.1%.
A brazing sheet in which the aluminum alloy brazing material is coated on one or both sides of a core material comprising Al and unavoidable impurities at a cladding rate of 10 to 20% per one side, with the balance being restricted to 2 mass% or less. An aluminum alloy brazing sheet having excellent vibration fatigue resistance, wherein a crystal grain size in a rolling direction in a longitudinal section is 150 to 200 μm.
JP2001277219A 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent vibration fatigue resistance Pending JP2003082427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277219A JP2003082427A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent vibration fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277219A JP2003082427A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent vibration fatigue resistance

Publications (1)

Publication Number Publication Date
JP2003082427A true JP2003082427A (en) 2003-03-19

Family

ID=19101785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277219A Pending JP2003082427A (en) 2001-09-12 2001-09-12 Aluminum alloy brazing sheet having excellent vibration fatigue resistance

Country Status (1)

Country Link
JP (1) JP2003082427A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
ES2343300A1 (en) * 2009-01-26 2010-07-27 Asociacion De Investigacion De Industrias De La Construccion Aidico Instituto Tecnologico De La Cons Composition and procedure for applying phase change materials (pcms) to natural stone
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger
JP2015054342A (en) * 2013-09-12 2015-03-23 昭和電工株式会社 Method for production of heat radiation device
WO2015107982A1 (en) * 2014-01-16 2015-07-23 株式会社Uacj Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
CN105964720A (en) * 2016-05-04 2016-09-28 国网新疆电力公司哈密供电公司 Preparation method of electric steel board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
EP2479303A1 (en) 2008-02-12 2012-07-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multi-layered sheet of aluminum alloys
US8343635B2 (en) 2008-02-12 2013-01-01 Kobe Steel, Ltd. Multi-layered sheet of aluminum alloys
ES2343300A1 (en) * 2009-01-26 2010-07-27 Asociacion De Investigacion De Industrias De La Construccion Aidico Instituto Tecnologico De La Cons Composition and procedure for applying phase change materials (pcms) to natural stone
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger
JP2015054342A (en) * 2013-09-12 2015-03-23 昭和電工株式会社 Method for production of heat radiation device
WO2015107982A1 (en) * 2014-01-16 2015-07-23 株式会社Uacj Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
JPWO2015107982A1 (en) * 2014-01-16 2017-03-23 株式会社Uacj Aluminum alloy material and manufacturing method thereof, and aluminum alloy clad material and manufacturing method thereof
US11136652B2 (en) 2014-01-16 2021-10-05 Uacj Corporation Aluminum alloy material and method for producing the same, and aluminum alloy clad material and method for producing the same
CN105964720A (en) * 2016-05-04 2016-09-28 国网新疆电力公司哈密供电公司 Preparation method of electric steel board

Similar Documents

Publication Publication Date Title
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
WO2015001725A1 (en) Aluminum alloy brazing sheet and method for producing same
JPH08134574A (en) Aluminum alloy brazing sheet, production of the brazing sheet, heat exchanger using the brazing sheet, and production of the heat exchanger
JP6147470B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
EP1802457A1 (en) Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
JP2007092101A (en) Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger
CN103302921A (en) Aluminum alloy brazing sheet for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP3772017B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP2006015376A (en) Aluminum alloy brazing sheet for heat exchanger
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JP2003082427A (en) Aluminum alloy brazing sheet having excellent vibration fatigue resistance
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2003082428A (en) Aluminum alloy brazing sheet having excellent corrosion resistance in weld zone
JP7530251B2 (en) Aluminum alloy bare material and brazing sheet with excellent thermal conductivity and strength
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040311