JP2003077548A - Battery managing method and system for battery set - Google Patents

Battery managing method and system for battery set

Info

Publication number
JP2003077548A
JP2003077548A JP2002162356A JP2002162356A JP2003077548A JP 2003077548 A JP2003077548 A JP 2003077548A JP 2002162356 A JP2002162356 A JP 2002162356A JP 2002162356 A JP2002162356 A JP 2002162356A JP 2003077548 A JP2003077548 A JP 2003077548A
Authority
JP
Japan
Prior art keywords
cell
battery
capacity
remaining capacity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162356A
Other languages
Japanese (ja)
Other versions
JP3919604B2 (en
Inventor
Toshitaka Takei
敏孝 丈井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002162356A priority Critical patent/JP3919604B2/en
Publication of JP2003077548A publication Critical patent/JP2003077548A/en
Application granted granted Critical
Publication of JP3919604B2 publication Critical patent/JP3919604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately find the remaining capacity of a battery set and control the display of the remaining capacity, the safe charge of the battery set and the consumption of power supplied to equipment for solving the problem on the battery set having a plurality of battery cells connected in series when out of cell balance that the remaining capacity of the battery set cannot be actually calculated in spite of the control of the remaining capacity of the battery cells using battery voltage only as usual, thus making it very difficult to manage power supplied to a battery set equipment system in accordance with remaining capacity data for the battery set. SOLUTION: The display of the remaining capacity of the battery set or the control of the battery set equipment system is performed by controlling the remaining capacity of each battery cell instead of the voltage of each battery cell. For that purpose, independent and accurate cell remaining capacity calculating means for each cell is provided in battery set managing means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】組電池で駆動する電池機器シ
ステムに於いて、残容量表示や充電や機器のパワーセー
ブや電池セルのバランス調整等を行う電池管理方法とシ
ステム、およびその方法を保存した記録媒体に関する。
BACKGROUND OF THE INVENTION In a battery device system driven by an assembled battery, a battery management method and system for displaying the remaining capacity, charging, power saving of the device, balance adjustment of battery cells, etc., and the method are stored. Recording medium

【0002】[0002]

【従来の技術】組電池機器システムとは、組電池と電池
管理手段をケースに収めた電池パックの形態が基本であ
るが、ノートパソコンやビデオカメラやハイブリッドカ
ーのように組電池とセット本体が通信を行い電池の管理
を行う形態も含まれる。従来電池で駆動する機器の中で
も、携帯電話やデジタルスチルカメラ等は電池1個の単
セル電圧で駆動できるが、ビデオカメラやノートパソコ
ン等は、電池電圧の高いリチウムイオン電池を使用して
も単セル電圧では不足である。そこで単セルを複数個直
列に接続して組電池にして所望の電池電圧を得ている。
また従来の電池管理手段では、電池残容量を算出して液
晶等の表示装置に表示して、使用者が機器の電源を切っ
たり、充電したりする管理に使用されている。あるいは
電池残容量が少なくなってくると、自動的に液晶の明る
さを落として、パワーセーブする電池管理を行っている
機器も存在する。いずれも電池残容量を求めて、その情
報に基づいて電池管理を行う方法である。
2. Description of the Related Art A battery pack device system is basically a battery pack in which a battery pack and battery management means are housed in a case, but the battery pack and the set body are similar to those of a laptop computer, a video camera, or a hybrid car. A form in which communication is performed and batteries are managed is also included. Among conventional devices driven by batteries, mobile phones, digital still cameras, etc. can be driven by a single cell voltage of one battery, but video cameras, laptop computers, etc. can be operated by a single cell voltage even if a lithium-ion battery with high battery voltage is used. The cell voltage is insufficient. Therefore, a desired battery voltage is obtained by connecting a plurality of single cells in series to form an assembled battery.
Further, in the conventional battery management means, the remaining battery capacity is calculated and displayed on a display device such as a liquid crystal, and is used for management such that the user turns off the power of the device or charges the device. Alternatively, there is a device that manages the battery by automatically reducing the brightness of the liquid crystal when the remaining battery capacity becomes low and saving power. Both are methods of obtaining the remaining battery capacity and managing the battery based on the information.

【0003】その電池残容量の算出は、従来から単セル
電池の場合、電池セルの電圧から電池残容量に変換する
電圧方法や電池に出入りする電流を積算する電流積算方
法がある。あるいは電圧方法と電流方法を組み合わせた
方法がある。組電池の場合は組電池全体を一つのセルと
見なして、組電池全体の電圧や組電池全体に出入りする
電流を検出して、単セル電池と同様な方法が実施されて
いる。
For the calculation of the remaining battery capacity, conventionally, in the case of a single cell battery, there are a voltage method for converting the voltage of the battery cell into the remaining battery capacity and a current integration method for integrating the current flowing in and out of the battery. Alternatively, there is a method that combines the voltage method and the current method. In the case of an assembled battery, the entire assembled battery is regarded as one cell, the voltage of the entire assembled battery and the current flowing in and out of the entire assembled battery are detected, and a method similar to that of the single cell battery is implemented.

【0004】また、直列接続した組電池では各電池セル
の電圧バランスが崩れる問題がある。電圧のバランスの
崩れる原因としては、電池セルを組電池に組上げた時、
最初から電池セルの電圧が異なっている場合や、各電池
セルの電池容量が異なっている場合が上げられる。電池
セルの電圧バランスが崩れると、充電時、電圧の高い電
池セルが過充電になったり、他の電池セルが充電不足に
なる問題がある。また放電時は電池電圧の低い電池セル
が過放電になったり、他の電池セルの電池容量が残った
まま組電池全体では放電終止電圧になる問題がある。い
ずれにしても、結果的に組電池の使用可能容量が低下す
る。そこで従来は各電池セルの電圧を独立して検出し
て、各電圧に所定電圧以上の差が生じた時、電圧の高い
電池セルを放電して電圧の低い電池セルの電圧に合わせ
るコントロールを行っている。
Further, the battery pack connected in series has a problem that the voltage balance of each battery cell is lost. The cause of the unbalanced voltage is when the battery cells are assembled into an assembled battery,
The case where the voltage of the battery cell is different from the beginning or the case where the battery capacity of each battery cell is different is raised. When the voltage balance of the battery cells is lost, there is a problem that a battery cell having a high voltage is overcharged or another battery cell is insufficiently charged during charging. Further, during discharging, there is a problem that a battery cell having a low battery voltage is over-discharged, or the entire assembled battery has a discharge end voltage while the battery capacities of other battery cells remain. In either case, the usable capacity of the assembled battery is reduced as a result. Therefore, conventionally, the voltage of each battery cell is independently detected, and when a difference of a predetermined voltage or more occurs in each voltage, the battery cell with a higher voltage is discharged and the control is performed to match the voltage of the battery cell with a lower voltage. ing.

【0005】[0005]

【発明が解決しようとする課題】通常電池セルを直列接
続して組電池にする場合、基本的にほぼ同じ容量の電池
セルを使用すると共に、全ての電池セルの電圧がほぼ同
じになるように、いわゆるセルバランスをとって組上げ
ている。従って組電池の電池残容量を算出する上で、新
品電池の間は、従来の電池残容量算出方法であっても問
題のない場合が多い。しかし何度も繰り返し充放電を繰
り返していると、劣化等で各電池セルの容量が不均一に
なり、各電池セルの電圧も不均一になる。すると充電
時、組電池全体では正常な充電電圧であっても、電池容
量の大きな電池セルでは充電電圧が不足して満充電まで
達しないで、組電池としては充電不足のまま満充電にな
ってしまう問題がある。また放電時、組電池全体の放電
終止電圧に到達した時、まだ電池容量が残っている電池
セルが有り、組電池としては容量を使い切らない内に終
止電圧になってしまう問題がある。従って当然組電池の
実残容量は算出値より少なく、従来の算出方法を用いて
いる組電池機器システムの残容量表示の精度は大幅に低
下する。
Normally, when battery cells are connected in series to form an assembled battery, battery cells having basically the same capacity should be used and the voltage of all the battery cells should be substantially the same. , We are taking a so-called cell balance to assemble. Therefore, in calculating the remaining battery capacity of the assembled battery, there is often no problem even between the new batteries, even with the conventional remaining battery capacity calculating method. However, when charging and discharging are repeated many times, the capacity of each battery cell becomes non-uniform due to deterioration or the like, and the voltage of each battery cell also becomes non-uniform. Then, at the time of charging, even if the battery pack has a normal charging voltage, the battery cell with a large battery capacity will not have a sufficient charging voltage and will not reach full charge. There is a problem that ends up. In addition, during discharge, when the discharge end voltage of the entire assembled battery is reached, there is a battery cell in which the battery capacity still remains, and there is a problem that the assembled battery reaches the end voltage before the capacity is used up. Therefore, the actual remaining capacity of the assembled battery is naturally smaller than the calculated value, and the accuracy of the remaining capacity display of the assembled battery device system using the conventional calculation method is significantly reduced.

【0006】その上、充電時、電池容量の小さな電池セ
ルは過充電になるので、安全性が低下したり、リチウム
イオンセルを使った組電池では過電圧保護回路が作動
し、組電池の電流を遮断して、機器が使用できなくなる
大きな問題が発生する。そのために従来、各電池セルの
電圧バランスが崩れてくると、スイッチと放電抵抗で構
成する閉回路を各電池セルに設けて、高い電圧の電池セ
ルを、低い電圧の電池セルの電圧になるまで放電する等
のセルバランス調整をする管理方法が数種類ほど提案さ
れている。例えば、実願平5−47535、特願8−2
00260、特願平9−346550、特願10−32
887、特願平11−61307等が特許あるいは実用
新案として出願されている。しかし、いずれの方法も、
各電池セルの電圧を一致させる調整方法である。ところ
が、電池容量バランスの崩れた各電池セルの電圧を同一
にしても、各電池セルの残容量や満充電するまでの充電
可能容量は同一にならないので、組電池の残容量表示精
度には大きな誤差が発生する。さらには組電池を充放電
すると、直列接続した各電池セル電池に流れる電流は同
じであるから、充電した時は過充電になる電池セルが発
生し、放電した時は過放電になる電池セルが発生する大
きな問題も解消できていない。
In addition, during charging, battery cells with a small battery capacity are overcharged, which reduces safety, and an assembled battery using a lithium ion cell operates an overvoltage protection circuit to reduce the current of the assembled battery. This will cause a big problem that the equipment will be unusable. Therefore, conventionally, when the voltage balance of each battery cell becomes unbalanced, a closed circuit composed of a switch and a discharge resistor is provided in each battery cell, and a high voltage battery cell is changed to a low voltage battery cell voltage. Several types of management methods for adjusting the cell balance such as discharging have been proposed. For example, Japanese Patent Application No. 5-47535 and Japanese Patent Application No. 8-2
00260, Japanese Patent Application No. 9-346550, Japanese Patent Application 10-32.
887 and Japanese Patent Application No. 11-61307 have been filed as patents or utility models. However, both methods
This is a method of adjusting the voltage of each battery cell to be the same. However, even if the voltage of each battery cell with an unbalanced battery capacity is the same, the remaining capacity of each battery cell and the chargeable capacity until fully charged are not the same, so the remaining capacity display accuracy of the assembled battery is large. An error occurs. Furthermore, when the battery pack is charged and discharged, the current flowing through each battery cell battery connected in series is the same, so some battery cells will be overcharged when charged and some battery cells will be overdischarged when discharged. The major problems that have arisen have not been resolved.

【0007】従って本発明の目的とするところは、複数
の電池セルが直列接続された組電池において、セルバラ
ンスが崩れた時も、組電池全体の正確な残容量を算出し
て残容量表示やコントロールを行い、機器使用者あるい
は機器が自動的に組電池の制御を正確に行える管理方
法、あるいはシステム、あるいは方法を記録した記録媒
体を提供する事を目的としている。
Therefore, the object of the present invention is to calculate the accurate remaining capacity of the entire assembled battery and display the remaining capacity in the assembled battery in which a plurality of battery cells are connected in series even when the cell balance is lost. It is an object of the present invention to provide a management method, a system, or a recording medium in which the method is controlled and a device user or a device can automatically and accurately control the assembled battery.

【0008】[0008]

【課題を解決するための手段】直列接続した複数の電池
セルからなる組電池と組電池管理手段で構成する組電池
機器システムにおいて、上記目的を達成するために、本
発明は、組電池管理手段が次の技術的手段を有する。そ
れは、複数の電池セルのセル残容量算出手段と、求めた
複数のセル残容量の中から組電池の残容量として使用す
るセル残容量を選択するセル残容量選択手段、あるいは
複数の電池セルのセル充電可能容量算出手段と、複数の
充電可能容量の中から組電池の充電可能容量として使用
するセル充電可能容量を選択するセル充電可能容量選択
手段と、組電池機器システムの制御手段である。すなわ
ち本発明は、従来のように組電池全体の電圧と、出入り
する電流の管理、あるいは各電池セルの電圧だけを管理
するのではなく、各電池セルの残容量を管理する事で、
組電池の残容量表示あるいは組電池機器システムのコン
トロールを行う方法である。あるいはその方法を構成す
るシステム、あるいはその方法を記録した記録媒体であ
る特徴がある。
In order to achieve the above-mentioned object in an assembled battery equipment system composed of an assembled battery consisting of a plurality of battery cells connected in series and an assembled battery management means, the present invention provides an assembled battery management means. Has the following technical means. It includes a cell remaining capacity calculating means for a plurality of battery cells, a cell remaining capacity selecting means for selecting a cell remaining capacity to be used as a remaining capacity of an assembled battery from the obtained plurality of cell remaining capacities, or a plurality of battery cells. A cell chargeable capacity calculating means, a cell chargeable capacity selecting means for selecting a cell chargeable capacity to be used as a chargeable capacity of an assembled battery from a plurality of chargeable capacities, and a control means for an assembled battery device system. That is, the present invention does not manage the voltage of the entire assembled battery and the current flowing in or out as in the conventional case, or manages only the voltage of each battery cell, but manages the remaining capacity of each battery cell,
This is a method of displaying the remaining capacity of the assembled battery or controlling the assembled battery device system. Alternatively, there is a feature that it is a system constituting the method or a recording medium recording the method.

【0009】さらに本発明は、電池セルの残容量を算出
する手段として、本発明者が、特願2001−1734
43にて特許出願した電池の残容量変換方法を採用し
た。従来は、組電池におけるセルバランスの崩れた各電
池セルの残容量算出が極めて困難であったが、特願20
01−173443による電池の残容量変換方法を使え
ば容易に電池セルの残容量を算出できる特徴がある。
Further, according to the present invention, as a means for calculating the remaining capacity of a battery cell, the present inventor has proposed a Japanese Patent Application No. 2001-1734.
The method of converting the remaining capacity of the battery, which was filed for patent in No. 43, was adopted. Conventionally, it was extremely difficult to calculate the remaining capacity of each battery cell in which the cell balance in the assembled battery was lost.
The remaining capacity of the battery cell can be easily calculated by using the remaining capacity conversion method of the battery according to 01-173443.

【0010】また本発明の制御手段は、セル残容量算出
手段が算出したセル残容量の中からセル残残容量選択手
段が選択したセル算容量を用いて、該組電池の残容量を
表示する事で、機器の使用者が主導で機器のパワーセー
ブを行える特徴がある。
The control means of the present invention displays the remaining capacity of the assembled battery by using the cell calculated capacity selected by the remaining cell capacity selecting means from the remaining cell capacity calculated by the remaining cell capacity calculating means. Therefore, there is a feature that the device user can take the initiative in saving the power of the device.

【0011】また本発明の制御手段は、セル充電可能容
量算出手段が算出したセル充電可能容量の中から、セル
充電可能容量選択手段が選択したセル充電可能容量を用
いて、組電池の充電をコントロールする特徴がある。
Further, the control means of the present invention uses the cell chargeable capacity selected by the cell chargeable capacity selecting means from the cell chargeable capacity calculated by the cell chargeable capacity calculating means to charge the assembled battery. There is a feature to control.

【0012】また本発明は、制御手段が任意の電池セル
の残容量を独立して変化させてセルバランスを整える事
で、組電池の使用可能容量の低下を押さえると共に、安
全性を高める特徴がある。
Further, according to the present invention, the control means independently changes the remaining capacity of any battery cell to adjust the cell balance, thereby suppressing the decrease in the usable capacity of the assembled battery and enhancing the safety. is there.

【0013】また本発明は、各電池セルに独立して設け
るセルバランス調整用の閉回路に流れた電気量を、組電
池全体に流れた電気量に加算あるいは減算して各電池セ
ルに流れた電気量にして、セル残容量算出手段あるいは
セル充電可能容量算出手段の精度を高める特徴がある。
Further, according to the present invention, the amount of electricity flowing in a closed circuit for cell balance adjustment independently provided in each battery cell is added to or subtracted from the amount of electricity flowing in the entire battery pack, and the electricity is supplied to each battery cell. It is characterized in that the amount of electricity is used to increase the accuracy of the cell remaining capacity calculation means or the cell chargeable capacity calculation means.

【0014】また本発明の制御手段は、組電池機器シス
テムを自動的にコントロールして機器のパワーセーブを
する特徴がある。
Further, the control means of the present invention is characterized in that the assembled battery device system is automatically controlled to save the power of the device.

【0015】また本発明は、制御手段が自動的に機器の
パワーセーブを行う特徴がある。
The present invention is also characterized in that the control means automatically saves the power of the equipment.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態1を、図1の
ブロック図を用いて詳細に説明する。先ずn個の電池セ
ルを直列接続して組電池にする。図1では、nは3個と
して説明するが、nは2個以上であれば説明の趣旨は変
わらない。各電池セル1〜3にはそれぞれセル残容量算
出手段4〜6を並列に接続する。また各セル残容量算出
手段4〜6はそれぞれセル残容量選択手段7に入力す
る。さらにセル残容量選択手段は制御手段8に入力す
る。そして組電池への入出力は陽極9と陰極10を通して
行う。セル残容量算出手段4〜6とセル残容量選択手段
7と制御手段8の動作プログラムはマイコン11に収め
る。
Embodiment 1 of the present invention will be described in detail with reference to the block diagram of FIG. First, n battery cells are connected in series to form an assembled battery. In FIG. 1, n is described as 3 pieces, but the purpose of the description is not changed as long as n is 2 or more. The remaining battery capacity calculation means 4 to 6 are connected in parallel to the battery cells 1 to 3, respectively. Further, each of the cell remaining capacity calculating means 4 to 6 inputs to the cell remaining capacity selecting means 7. Further, the cell remaining capacity selection means inputs the control means 8. Input / output to / from the assembled battery is performed through the anode 9 and the cathode 10. The operation programs of the cell remaining capacity calculating means 4 to 6, the cell remaining capacity selecting means 7 and the control means 8 are stored in the microcomputer 11.

【0017】セル残容量算出手段4〜6は、本発明者が
特願2001−173443にて特許出願した、電池の
残容量変換方法を用いて図2で説明する。セル残容量算
出手段4〜6は各電池セル1〜3の残容量をそれぞれ独
立して算出する手段であるが、その構成は同じで良く、
また一つのセル残容量算出手段4をマルチプレクサ等
で、電池セル1〜3を切り替えて使用しても良い。すな
わち残容量算出手段4〜6をセル電圧取得手段12と開放
電圧対残容量変換手段13と電流最小値特定手段14と電流
積算手段15と電流取得手段16で構成する。電流取得手段
16は電池セル1〜3に直列に接続した電流検出抵抗17の
両端に発生する電圧を検出する、電流検出の一つの方法
を用いた。
The cell remaining capacity calculation means 4 to 6 will be described with reference to FIG. 2 using the battery remaining capacity conversion method that the present inventor applied for a patent in Japanese Patent Application No. 2001-173443. The cell residual capacity calculating means 4 to 6 are means for independently calculating the residual capacities of the respective battery cells 1 to 3, but their configurations may be the same.
Further, one cell remaining capacity calculating means 4 may be used by switching the battery cells 1 to 3 by a multiplexer or the like. That is, the remaining capacity calculating means 4 to 6 are composed of a cell voltage acquiring means 12, an open circuit voltage-remaining capacity converting means 13, a current minimum value specifying means 14, a current integrating means 15 and a current acquiring means 16. Current acquisition means
16 used one method of current detection which detects the voltage generated across the current detection resistor 17 connected in series to the battery cells 1 to 3.

【0018】そしてその動作フローを図3に示す。先ず
ステップ1、以降(S1)と表示するが、電源オン(S
1)するとマイコン11がオン(S2)する。次に電流取
得手段16で流れる電流を検出する(S3)。次に電流最
小値特定手段14を使って電流最小値を特定する(S
4)。
The operation flow is shown in FIG. First, step 1 and subsequent steps (S1) are displayed, but the power is turned on (S1).
1) Then, the microcomputer 11 is turned on (S2). Next, the current flowing by the current acquisition means 16 is detected (S3). Next, the minimum current value specifying means 14 is used to specify the minimum current value (S
4).

【0019】次に電池電圧取得手段12を使って電池セル
1〜3の開放電圧を取得する(S5)。一般に開放電圧
とは、電池の陽極と負極を結ぶ電気回路をオープンにし
た時、すなわち電池に出入りする電流がゼロの場合の電
圧である。但し電流が微小であればある程、電圧は開放
電圧に近づくので、電流が最小値以下になった時の電圧
を開放電圧と規定しても良い。例えば携帯電話であれ
ば、待受け時の微小な電流のみが流れる状態、あるいは
ノートパソコンであれば、電源はオフしてもセル電圧を
取得してメモリーするだけの微小な電流のみが流れる状
態がある。その時のセル電圧を開放電圧と見なす事がで
きる。
Next, the open circuit voltage of the battery cells 1 to 3 is acquired using the battery voltage acquisition means 12 (S5). Generally, the open-circuit voltage is a voltage when the electric circuit connecting the positive electrode and the negative electrode of the battery is opened, that is, when the current flowing in and out of the battery is zero. However, the smaller the current is, the closer the voltage is to the open circuit voltage. Therefore, the voltage when the current becomes lower than the minimum value may be defined as the open circuit voltage. For example, in the case of a mobile phone, there is a state in which only a minute current flows during standby, and in a notebook computer, there is a state in which only a minute current flows to acquire the cell voltage and store it even if the power is turned off. . The cell voltage at that time can be regarded as an open circuit voltage.

【0020】次に開放電圧対残容量変換手段13を使っ
て、取得した電池セル1〜3の開放電圧(S5)を残容
量に変換する(S6)。開放電圧対残容量変換手段13
は、あらかじめ電池セル1〜3が劣化していない初期の
時の電池特性を測定して、開放電圧対残容量のデータを
取得し、変換テーブル18にして、ROM等の不揮発性メ
モリーに保存する。
Next, the open circuit voltage-remaining capacity converting means 13 is used to convert the acquired open circuit voltage (S5) of the battery cells 1 to 3 into the remaining capacity (S6). Open-circuit voltage-remaining capacity conversion means 13
Measures the battery characteristics in the initial stage in which the battery cells 1 to 3 have not deteriorated in advance, obtains the data of the open-circuit voltage vs. the remaining capacity, makes the conversion table 18, and saves it in a non-volatile memory such as a ROM. .

【0021】次に電流が最小値を超えて流れ始めると
(S7)、変換して得た電池セル1〜3の残容量(S
6)を初期値(S8)にし、電流積算手段5を使って、
流れる電流を積算して、流れた電気量Qをカウントする
(S9)。ところで本明細書の中では、放電電流をプラ
ス、充電電流をマイナスで計算する。
Next, when the current exceeds the minimum value and starts to flow (S7), the remaining capacities (S) of the converted battery cells 1 to 3 (S
6) is set to the initial value (S8), and the current integration means 5 is used to
The flowing currents are integrated and the amount of electricity Q that has flowed is counted (S9). By the way, in this specification, the discharge current is calculated as positive and the charge current is calculated as negative.

【0022】次に電池セル1〜3の残容量の初期値(S
8)からカウントした電気量Q(S9)を減算あるいは
加算する(S10)。こうして電池セル1〜3の残容量は
初期値(S8)を電気量Q(S9)で減算あるいは加算
しながら新しい残容量に更新する(S11)。
Next, the initial value of the remaining capacity of the battery cells 1 to 3 (S
The electricity quantity Q (S9) counted from 8) is subtracted or added (S10). In this way, the remaining capacities of the battery cells 1 to 3 are updated to new remaining capacities while subtracting or adding the initial value (S8) with the electric quantity Q (S9) (S11).

【0023】ここまでの動作フロー(S1)〜(S11)
は各電池セル1〜3について、それぞれ独立に実施す
る。従って3個の残容量が得られる。電池セル1〜3の
残容量をそれぞれCr(1)〜Cr(3)と表示する。
The operation flow so far (S1) to (S11)
Is independently performed for each of the battery cells 1 to 3. Therefore, three remaining capacities are obtained. The remaining capacities of the battery cells 1 to 3 are indicated as Cr (1) to Cr (3), respectively.

【0024】次にセル残容量選択手段7で、Cr(1)〜C
r(3)の中からもっとも残容量の少ない電池セル残容量を
選んで(S12)、組電池の残容量を確定する(S13)。
Next, in the cell remaining capacity selecting means 7, Cr (1) to C (C)
The remaining battery cell remaining capacity is selected from r (3) (S12), and the remaining capacity of the assembled battery is determined (S13).

【0025】次に確定した組電池残容量(S13)を制御
手段8に入力する。制御手段8は液晶ディスプレイ等に
残容量表示を行う。機器使用者は組電池の残容量を確認
して、機器の電源を切ったり、電池を交換する等の電池
管理を行う事ができる。
Next, the confirmed remaining battery capacity (S13) is input to the control means 8. The control means 8 displays the remaining capacity on a liquid crystal display or the like. The device user can check the remaining capacity of the assembled battery and perform battery management such as turning off the power of the device or replacing the battery.

【0026】次に組電池の充電をコントロールする実施
の形態2を説明する。電池セル1〜3と組電池管理手段
20の構成は実施の形態1で示した図2と同じである。ま
た図3に示す動作フローのステップ(S1)〜(S11)
は同じなので、(S11)以降を図4に示す。さて各電池
セル1〜3の満充電における残容量すなわち容量は、組
電池に組み上げた時から同じであるとは限らない。また
劣化などの要因で各容量のバラツキは拡大する。そこで
各電池セルの容量を区別してCf(1)〜Cf(3)と表示し、
充電可能容量をCp(1)〜Cp(3)と表示すると(1)式の
関係が成立する。
Next, a second embodiment for controlling the charging of the assembled battery will be described. Battery cells 1 to 3 and assembled battery management means
The configuration of 20 is the same as that of FIG. 2 shown in the first embodiment. Also, steps (S1) to (S11) of the operation flow shown in FIG.
Are the same, so (S11) and subsequent figures are shown in FIG. The remaining capacity of each battery cell 1 to 3 when fully charged, that is, the capacity, is not always the same from the time of assembling the assembled battery. In addition, the variation of each capacity increases due to factors such as deterioration. Therefore, the capacity of each battery cell is distinguished and displayed as Cf (1) to Cf (3),
When the chargeable capacity is displayed as Cp (1) to Cp (3), the relationship of the equation (1) is established.

【0027】[0027]

【数1】 [Equation 1]

【0028】そしてセル充電可能容量選択手段21は
(1)式でCp(m)を求めて、その中でもっとも少ないC
p(min)を選択する(S16)。次にそのCp(min)を組電池
の充電可能容量であると確定する(S17)。次に制御手
段8を用いて、組電池をCp(min)だけ充電する(18)。
するといずれの電池セル1〜3も過充電する事なく、組
電池を最大容量まで充電する事ができる。
Then, the cell chargeable capacity selecting means 21 finds Cp (m) by the formula (1), and finds the smallest Cp among them.
Select p (min) (S16). Next, the Cp (min) is determined to be the chargeable capacity of the assembled battery (S17). Next, using the control means 8, the assembled battery is charged by Cp (min) (18).
Then, the assembled battery can be charged to the maximum capacity without overcharging any of the battery cells 1 to 3.

【0029】前記したごとく、各電池セル1〜3の各容
量Cf(m)は同じだとは限らない。さらには劣化によって
各電池セルの容量が変化すると、従来の電池残容量算出
方法では、組電池に組まれた電池セル1〜3の劣化度を
算出する事ができないのでCf(m)を求める事ができな
い。従来の電圧方法や電流積算方法はCf(m)が基準値あ
るいは初期値になるので、Cf(m)が求まらない現状で
は、各電池セル1〜3の実残容量や実充電可能容量を求
めるのは不可能と言える。
As described above, the capacities Cf (m) of the battery cells 1 to 3 are not always the same. Furthermore, when the capacity of each battery cell changes due to deterioration, the conventional battery remaining capacity calculation method cannot calculate the degree of deterioration of the battery cells 1 to 3 assembled in the battery pack, so Cf (m) should be calculated. I can't. In the conventional voltage method and current integration method, Cf (m) becomes the reference value or the initial value, so in the current situation where Cf (m) cannot be obtained, the actual remaining capacity and the actual chargeable capacity of each battery cell 1 to 3 It is impossible to ask for.

【0030】そこで。各電池セルのCf(m)を求め、また
補正する方法である実施の形態3を図5の動作フロー図
を使って説明する。図5は特願2001−173443
に示した容量劣化度の算出方法である。先ず電流最小値
以下を検出する(S13)と、電池セル1〜3の各開放電
圧Vnを取得し(S5)、セル残容量Crn0に変換する(S
6)。ここでVnのごとく下付きの符号nは電流最小値以
下を検出した回数を示し、Crn0は劣化していない時の電
池セルのn回目のセル残容量を示す。
There. A third embodiment, which is a method of obtaining and correcting Cf (m) of each battery cell, will be described with reference to the operation flowchart of FIG. FIG. 5 shows Japanese Patent Application No. 2001-173443.
It is the method of calculating the capacity deterioration degree shown in. First, when the current value is detected to be equal to or less than the minimum current value (S13), each open-circuit voltage Vn of the battery cells 1 to 3 is acquired (S5) and converted into the cell remaining capacity Crn0 (S).
6). Here, a subscript n such as Vn indicates the number of times that the current minimum value or less is detected, and Crn0 indicates the n-th cell remaining capacity of the battery cell when not deteriorated.

【0031】次にステップ13に戻るが、組電池に流れる
電流が電流最小値を超える電流であると、Crn0を初期値
にして(S8)、組電池に流れる電気量Qnをカウントす
る(S9)。再び電流最小値を検出する(S13)まで、
電気量Qnはカウントアップされ続ける(S9)。再び電
流最小値以下を検出する(S13)と、開放電圧V(n+1)を
取得し(S5)、セル残容量Cr(n+1)0に変換する(S
6)。ところで、セル残容量Crn0と残容量Cr(n+1)0は、
開放電圧対残容量変換手段13、すなわち図3のテーブル
18を参照して、開放電圧VnとV(n+1)から変換した残容量
である(S6)。テーブル18から求めるセル残容量は、
電池セルが劣化していない基準電池セルの残容量であ
る。一方電気量Qnは、電圧Vnを取得して(S5)から、
再び電圧V(n+1を取得する(S5)までの間に実際に使
用した容量である。従って電池セルが劣化した比率を示
すセル劣化度αcの基本式は(2)式で表される。
Next, returning to step 13, when the current flowing through the battery pack exceeds the minimum current value, Crn0 is set to the initial value (S8), and the quantity of electricity Qn flowing through the battery pack is counted (S9). . Until the minimum current value is detected again (S13),
The quantity of electricity Qn continues to be counted up (S9). When the current value below the minimum value is detected again (S13), the open circuit voltage V (n + 1) is acquired (S5) and converted into the remaining cell capacity Cr (n + 1) 0 (S).
6). By the way, the cell remaining capacity Crn0 and the remaining capacity Cr (n + 1) 0 are
Open-circuit voltage-remaining capacity conversion means 13, that is, the table of FIG.
It is the remaining capacity converted from the open circuit voltage Vn and V (n + 1) with reference to 18 (S6). The remaining cell capacity obtained from Table 18 is
It is the remaining capacity of the reference battery cell in which the battery cell is not deteriorated. On the other hand, for the quantity of electricity Qn, after acquiring the voltage Vn (S5),
It is the capacity actually used until the voltage V (n + 1 is acquired (S5) again. Therefore, the basic expression of the cell deterioration degree αc, which indicates the ratio of deterioration of the battery cells, is expressed by Expression (2). .

【0032】[0032]

【数2】 [Equation 2]

【0033】式(1)の劣化度αcでは、劣化していな
いセルであればαcは1で、劣化する程大きくなる扱い
にしている。また放電時の電気量Qnはプラスで充電時の
電気量Qnはマイナスで扱っている。但しQnが非常に小さ
いと、VnとV(n+1)の差も小さくなって、セル電圧取得手
段12で電圧差を判別できなくなる恐れがある。そこでQn
は所定量以上の場合だけ採用する必要がある。電池セル
の劣化は徐々に進む傾向があり、頻繁にセル劣化度αc
を更新する必要がないので、Qnが十分に大きくてセル劣
化度αcが正確に求まる時だけ、本実施例を実施すれば
良い。
The deterioration degree αc of the equation (1) is set such that αc is 1 if the cell is not deteriorated and the deterioration degree becomes larger. Also, the quantity of electricity Qn during discharging is treated as positive and the quantity of electricity Qn during charging is treated as negative. However, if Qn is very small, the difference between Vn and V (n + 1) also becomes small, and the cell voltage acquisition means 12 may not be able to determine the voltage difference. So Qn
Should be adopted only when the amount exceeds a predetermined amount. Degradation of battery cells tends to progress gradually, and the cell degradation degree αc
Since it is not necessary to update, the present embodiment may be implemented only when Qn is sufficiently large and the cell deterioration degree αc is accurately obtained.

【0034】図5のフローには示していないが、こうし
て求まったセル劣化度αcが1でない場合は、ステップ6
のセル残容量Crn0をαcで割って補正して実残容量Crnを
求める。またステップ8の初期値も、セル残容量Cn0を
セル実残容量に更新する。補正は(3)式で表される。
mはそれぞれの電池セル1〜3について独立に算出する
事を示す。
Although not shown in the flow chart of FIG. 5, if the cell deterioration degree αc thus obtained is not 1, step 6
The cell remaining capacity Crn0 of is divided by αc and corrected to obtain the actual remaining capacity Crn. The initial value of step 8 is also updated with the cell remaining capacity Cn0 to the actual cell remaining capacity. The correction is expressed by equation (3).
m shows that it calculates independently about each battery cell 1-3.

【0035】[0035]

【数3】 [Equation 3]

【0036】また実容量Cfはセルの劣化を考慮した満充
電時のセル実残容量とし、基準電池の満充電時のセル残
容量を容量Cf0とすると、Cfは(4)式で表される。
If the actual capacity Cf is the actual cell remaining capacity when fully charged considering the deterioration of the cell and the cell remaining capacity when the reference battery is fully charged is the capacity Cf0, then Cf is expressed by equation (4). .

【0037】[0037]

【数4】 [Equation 4]

【0038】通常電池セル1〜3を接続して組電池にす
る時、一つ々々の電池セル1〜3の容量Cf0は実測して
いない。しかしできるだけ均一にするために同一生産ロ
ットの中の電池セルを組み合わせる。従って放電カーブ
や充電カーブなどの電池特性はほぼ相似になっている。
従ってその生産ロットの平均的な特性を実測して、あら
かじめ標準容量Cf0(avr)を決定しておけば、Cf(m)は
(4)式のCf0(m)をCf0(avr)で置換えて式(2)と式
(4)で補正して求める事ができる。
When the normal battery cells 1 to 3 are connected to form an assembled battery, the capacities Cf0 of the battery cells 1 to 3 are not actually measured. However, in order to make it as uniform as possible, combine the battery cells in the same production lot. Therefore, the battery characteristics such as the discharge curve and the charge curve are almost similar.
Therefore, if the standard characteristics Cf0 (avr) are determined in advance by actually measuring the average characteristics of the production lot, Cf (m) can be obtained by replacing Cf0 (m) in Eq. (4) with Cf0 (avr). It can be obtained by correction using the equations (2) and (4).

【0039】このように各電池セル1〜3の満充電時の
実容量が、劣化等の要因で変化しても求まるので、セル
残容量とセル充電可能容量が算出できる。従って制御手
段8で、組電池の正確な残容量と充電可能容量が液晶デ
ィスプレイ等に表示できる。また電池セル1〜3の過充
電を防いで安全性を高める事ができる。
As described above, since the actual capacities of the battery cells 1 to 3 when fully charged can be obtained even if they change due to factors such as deterioration, the remaining cell capacity and the cell chargeable capacity can be calculated. Therefore, the control unit 8 can display the accurate remaining capacity and chargeable capacity of the assembled battery on the liquid crystal display or the like. In addition, overcharging of the battery cells 1 to 3 can be prevented and safety can be improved.

【0040】次に制御手段8が電池セル1〜3のセルバ
ランスを取る実施の形態4を図6のブロック図を用いて
説明する。各電池セル1〜3に並列にスイッチ19〜21と
バランス抵抗22〜24を直列に接続して閉回路25〜27を図
2に追加した構成である。
Next, a fourth embodiment in which the control means 8 balances the battery cells 1 to 3 will be described with reference to the block diagram of FIG. In this configuration, switches 19 to 21 and balance resistors 22 to 24 are connected in series to the battery cells 1 to 3 and closed circuits 25 to 27 are added to FIG.

【0041】次に、制御回路8が電池セル1〜3の実残
容量を使ってバランスを取る場合の動作フローになるよ
うに、図3を変更した図7について説明する。図7は図
3のステップ9から以降を示す。先ず電池セル1〜3の
残容量算出の結果(S11)からセル残容量が最少の残容
量Cr(min)を選択した(S12)。例えばそれが電池セル
1であるとすると、他の電池セル2、3の残容量Cr
(2)、Cr(3)はCr(1)よりも多い。そこで制御手段8を
使ってスイッチ20、とスイッチ21をオンする。すると閉
回路26ではバランス抵抗23を介して電池セル2に単独の
電流が流れて、Cr(2)を消費する。電池セル3に於いて
も、閉回路27ではCr(3)が消費されるのは同様である。
Cr(2)とCr(3)はそれぞれCr(1)と等しくなるまで放電
し、ほぼ等しくなったところで(S22)、スイッチ20と
スイッチ21をオフして閉回路26、27での放電をストップ
する(S23)。
Next, FIG. 7 will be described in which FIG. 3 is modified so that the control circuit 8 has an operation flow in the case where the actual remaining capacities of the battery cells 1 to 3 are used for balancing. FIG. 7 shows step 9 and subsequent steps in FIG. First, the remaining capacity Cr (min) with the smallest remaining capacity was selected from the results of the remaining capacity calculation of the battery cells 1 to 3 (S11) (S12). For example, if it is the battery cell 1, the remaining capacity Cr of the other battery cells 2 and 3 is
(2), Cr (3) is more than Cr (1). Then, the control means 8 is used to turn on the switches 20 and 21. Then, in the closed circuit 26, a single current flows through the battery cell 2 through the balance resistor 23, and Cr (2) is consumed. Even in the battery cell 3, Cr (3) is similarly consumed in the closed circuit 27.
Cr (2) and Cr (3) are discharged until they become equal to Cr (1) respectively, and when they become almost equal (S22), switch 20 and switch 21 are turned off to stop the discharge in closed circuits 26 and 27. Yes (S23).

【0042】ところでスイッチ20、21がオンしている
間、ステップ20では閉回路26、27に流れる電流をカウン
トして電流積算も行い、その電気量をステップ11で更新
したセル残容量から減算する(S21)。それをステップ
11に戻して、閉回路に流れる電気量も含めたセル残容量
に更新する。このようにセル残容量Cr(2)、Cr(3)、C
r(1)が等しくなるようにコントロールすると、組電池が
放電終止電圧に達した時、電池セル1〜3の残容量は等
しくゼロになると共に、各電池セル1〜3の電圧も等し
く終止電圧になって正常なセルバランスが確保できる。
By the way, while the switches 20 and 21 are on, in step 20, the currents flowing through the closed circuits 26 and 27 are counted and the currents are integrated, and the amount of electricity is subtracted from the cell remaining capacity updated in step 11. (S21). Step it
Return to 11 and update to the remaining cell capacity including the amount of electricity flowing in the closed circuit. In this way, the remaining cell capacity Cr (2), Cr (3), C
When r (1) is controlled to be equal, when the assembled battery reaches the discharge end voltage, the remaining capacity of battery cells 1 to 3 becomes equal to zero, and the voltage of each battery cell 1 to 3 becomes equal to the end voltage. Therefore, normal cell balance can be secured.

【0043】次に、制御回路8が、電池セル1〜3の実
充電可能容量を使ってセルバランスを取る場合の動作フ
ローになるように図7を変更した図8について説明す
る。先ず電池セル1〜3のセル充電可能容量算出の結果
(S15)から最大のセル充電可能容量Cp(max)を選択し
た(S16)。例えばそれが電池セル1であるとすると、
他の電池セル2、3の充電可能容量Cp(2)、Cp(3)はC
p(1)よりも少ない。そこで制御手段8を使ってスイッチ
20、とスイッチ21をオンする(S19)。すると閉回路26
ではバランス抵抗23を介して電池セル2に単独の電流が
流れて、Cr(2)を消費する。電池セル3に於いても、閉
回路27ではCr(3)が消費されるのは同様である。Cr(2)
とCr(3)はCp(2)とCp(3)がCp(1)と等しくなるまで放
電し、ほぼ等しくなった(S22)ところでスイッチ20と
スイッチ21をオフ(S23)して閉回路26、27での放電を
ストップする。
Next, FIG. 8 will be described in which FIG. 7 is modified so that the control circuit 8 has an operation flow in which cell balancing is performed using the actual chargeable capacities of the battery cells 1 to 3. First, the maximum cell chargeable capacity Cp (max) was selected from the results (S15) of calculating the cell chargeable capacity of the battery cells 1 to 3 (S16). For example, if it is battery cell 1,
The rechargeable capacities Cp (2) and Cp (3) of the other battery cells 2 and 3 are C
Less than p (1). Therefore, switch using the control means 8.
20 and switch 21 are turned on (S19). Then closed circuit 26
Then, a single current flows through the battery cell 2 through the balance resistor 23, and Cr (2) is consumed. Even in the battery cell 3, Cr (3) is similarly consumed in the closed circuit 27. Cr (2)
And Cr (3) are discharged until Cp (2) and Cp (3) become equal to Cp (1) and become almost equal (S22). Then, the switch 20 and the switch 21 are turned off (S23) and the closed circuit 26 , Stop the discharge at 27.

【0044】またステップ20では電流をカウントして電
流積算も行い、その電気量をステップ11で更新したセル
残容量から減算する(S21)。それをステップ11に戻し
て、閉回路に流れた電気量も含めてセル残容量を更新す
るのは放電の場合と同様である。このようにセル充電可
能容量Cp(2)、Cp(3)、Cp(1)が等しくなるようにコン
トロールすると、組電池が満充電に達した時、電池セル
1〜3も等しく満充電になるので、過充電になる電池セ
ルは発生しない。従って充電における正常なセルバラン
スが確保できる。
In step 20, the current is counted and the current is also integrated, and the amount of electricity is subtracted from the cell remaining capacity updated in step 11 (S21). It is the same as in the case of discharging that the value is returned to step 11 and the cell remaining capacity is updated including the amount of electricity that has flown in the closed circuit. When the cell chargeable capacities Cp (2), Cp (3) and Cp (1) are controlled to be equal in this way, when the assembled battery reaches full charge, the battery cells 1 to 3 are also fully charged. Therefore, the battery cell which is overcharged does not occur. Therefore, a normal cell balance during charging can be secured.

【0045】次に制御手段8が組電池機器システムの消
費電力を自動的にコントロールする実施の形態5を説明
する。例えばビデオカメラであれば、組電池の残容量が
残り少なくなってくると、液晶のバックライトを消灯す
る等のパワーセーブを行う。また電池モーターとガソリ
ンエンジンで駆動するハイブリッドカーであれば、組電
池の残容量が少なくなってくると、電池モーター駆動か
らガソリンエンジン駆動に切り替えるコントロールを行
う。これらの機器コントロールの自動化は周知の技術な
ので、図面を使った詳細な説明は省略する。
Next, a fifth embodiment in which the control means 8 automatically controls the power consumption of the battery pack device system will be described. For example, in the case of a video camera, when the remaining capacity of the battery pack becomes low, power saving such as turning off the backlight of the liquid crystal is performed. In the case of a hybrid car driven by a battery motor and a gasoline engine, when the remaining capacity of the battery pack becomes low, control is performed to switch from battery motor drive to gasoline engine drive. Since automation of these device controls is a well-known technique, detailed description using the drawings will be omitted.

【0046】[0046]

【発明の効果】請求項1においては、従来のように組電
池全体の電圧と出入りする電流の管理、あるいは各電池
セルの電圧だけを管理するのではなく、残容量算出手段
を4〜6を用いて求めた各電池セル1〜3の残容量を管
理する。従ってセルバランスの崩れた組電池であって
も、正確な組電池の実残容量で組電池の残容量表示ある
いは組電池機器システムのコントロールを行う。その結
果セルバランスが崩れるにつれて、組電池全体の管理精
度が低下して行く問題点を解決する効果がある。
According to the first aspect of the present invention, instead of managing the voltage of the entire assembled battery and the current flowing in or out as in the prior art or managing only the voltage of each battery cell, the remaining capacity calculating means is set to 4 to 6. The remaining capacities of the battery cells 1 to 3 obtained by using are managed. Therefore, even if the assembled battery has a broken cell balance, the remaining capacity of the assembled battery is displayed or the assembled battery device system is controlled with the correct actual remaining capacity of the assembled battery. As a result, there is an effect of solving the problem that the management accuracy of the entire assembled battery is lowered as the cell balance is lost.

【0047】請求項2においては、本発明者が特願20
01−173443にて特許出願した電池の残容量変換
方法を採用する事で、従来不可能とされていたセルバラ
ンスの崩れた組電池における電池セル1〜3の残容量を
正確に求める事が可能になり、電池機器システムの電源
管理を正確にできるようになる効果は大きい。
In claim 2, the present inventor applies for a patent 20
By adopting the battery remaining capacity conversion method filed for patent in 01-173443, it is possible to accurately determine the remaining capacities of the battery cells 1 to 3 in the assembled battery in which the cell balance has been lost, which was impossible in the past. Therefore, the power management of the battery device system can be accurately controlled, which is a great effect.

【0048】請求項3においては、制御手段8が請求項
1に基づいたセル残容量を算出し、残容量表示を行う事
で、機器使用者が電源管理を正確に実施できる効果があ
る。
In the third aspect, the control means 8 calculates the remaining capacity of the cell based on the first aspect and displays the remaining capacity, so that there is an effect that the equipment user can accurately perform power management.

【0049】請求項4においては、制御手段8が請求項
1に基づいて算出したセル残容量を使用してセル充電可
能容量を算出し、その計算結果に基づいて制御手段8が
充電をコントロールする。従って過充電になる電池セル
が発生する事なく充電できるので安全性に対する効果が
大きい。
In the fourth aspect, the control means 8 calculates the cell chargeable capacity by using the cell remaining capacity calculated according to the first aspect, and the control means 8 controls the charging based on the calculation result. . Therefore, the battery can be charged without the occurrence of overcharged battery cells, which has a great effect on safety.

【0050】請求項5においては、請求項1に基づいて
セル残容量算出手段が算出したセル残容量を使用し、正
確なセルバランスの崩れの量を算出する。そして制御手
段8が、その崩れ量分だけセルの残容量あるいは充電可
能容量を調整するので、精度のよいセルバランスが確保
できる効果は大きい。
In the fifth aspect, the cell remaining capacity calculated by the cell remaining capacity calculating means based on the first aspect is used to calculate an accurate amount of collapse of the cell balance. Then, the control means 8 adjusts the remaining capacity or chargeable capacity of the cell by the amount of the collapse, so that there is a great effect that an accurate cell balance can be secured.

【0051】また請求項6においては、各電池セル1〜
3に独立して設けるセルバランス調整用の閉回路25〜27
に流れた電気量を、組電池全体に流れた電気量に加算あ
るいは減算して各電池セル1〜3に流れた電気量にする
ので、セル残容量算出手段あるいはセル充電可能容量算
出手段の精度を高める効果がある。
Further, in claim 6, each battery cell 1 to
Closed circuit for cell balance adjustment independently provided in 3-25 to 27
Since the amount of electricity flowing to each battery cell 1 to 3 is added to or subtracted from the amount of electricity flowing to the whole assembled battery, the amount of electricity flowing to Has the effect of increasing

【0052】また請求項7においては、制御手段8が、
組電池機器システムの消費電力を自動的に変化させるの
で、機器の使用時間を延ばせる効果がある。
Further, in claim 7, the control means 8 is
Since the power consumption of the battery pack device system is automatically changed, the use time of the device can be extended.

【0053】また請求項8においては、請求項1に基づ
く正確な組電池管理方法を電池機器システムに構成する
ので、機器の電源管理の精度が格段に良くなる効果があ
る。
In the eighth aspect, since the accurate assembled battery management method according to the first aspect is configured in the battery equipment system, there is an effect that the accuracy of the power supply management of the equipment is significantly improved.

【0054】また請求項9においては、請求項1に基づ
く正確な組電池管理方法のプログラムをマイコン内のRO
M等の記録媒体に保存する事で、量産してコストダウン
でき、組電池機器システムを小型化できる効果がある。
According to a ninth aspect of the present invention, the program of the accurate battery pack management method according to the first aspect is stored in the RO in the microcomputer.
By storing in a recording medium such as M, mass production can be performed, cost can be reduced, and the assembled battery device system can be miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態1の組電池管理方法のブロック図で
ある。
FIG. 1 is a block diagram of a battery pack management method according to a first embodiment.

【図2】実施の形態1の組電池管理方法のブロック図で
ある。
FIG. 2 is a block diagram of an assembled battery management method according to the first embodiment.

【図3】実施の形態1の組電池管理方法のフローチャー
トである。
FIG. 3 is a flowchart of a battery pack management method according to the first embodiment.

【図4】実施の形態2の組電池管理方法のフローチャー
トである。
FIG. 4 is a flowchart of a battery pack management method according to a second embodiment.

【図5】実施の形態3の組電池管理方法のフローチャー
トである。
FIG. 5 is a flowchart of an assembled battery management method according to a third embodiment.

【図6】実施の形態4の組電池管理方法のブロック図で
ある。
FIG. 6 is a block diagram of an assembled battery management method according to a fourth embodiment.

【図7】実施の形態4の組電池管理方法のフローチャー
トである。
FIG. 7 is a flowchart of an assembled battery management method according to a fourth embodiment.

【図8】実施の形態4の組電池管理方法のフローチャー
トである。
FIG. 8 is a flowchart of an assembled battery management method according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1,2,3は電池セル 4,5,6はセル残容量算出手段 7はセル残容量選択手段 8は制御手段 9は陽極 10はは陰極 11はマイコン 12はセル電圧取得手段 13は開放電圧対残容量変換手段 14は電流最小値取得手段 15は電流積算手段 16は電流取得手段 17は電流検出抵抗 18は変換テーブル 19,20,21はスイッチ 22,23,24はバランス抵抗 25,26,27は閉回路 1, 2 and 3 are battery cells 4, 5 and 6 are cell remaining capacity calculating means 7 is a cell remaining capacity selecting means 8 is control means 9 is an anode 10 is the cathode 11 is a microcomputer 12 is a cell voltage acquisition means 13 is an open circuit voltage-remaining capacity conversion means 14 is the minimum current value acquisition means 15 is a current integrating means 16 is a current acquisition means 17 is the current detection resistor 18 is a conversion table 19, 20, 21 are switches 22, 23, 24 are balance resistors 25, 26, 27 are closed circuits

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】直列接続した複数の電池セルからなる組電
池と電池管理手段で構成する組電池機器システムに於い
て、該電池管理手段が、セル残容量算出手段あるいはセ
ル充電可能容量算出手段と、セル残容量選択手段あるい
はセル充電可能容量選択手段と、該組電池機器システム
のコントロールをする制御手段を有し、該セル残容量算
出手段は複数の該電池セルの残容量を算出し、求めた該
複数のセル残容量の内から該組電池の残容量に使用する
該セル残容量を選択し、該充電可能容量選択手段は該セ
ル充電可能容量算出手段を用いて算出したセル充電可能
容量の内から該組電池の充電可能容量を選択し、該制御
手段は選択した該セル残容量あるいは該セル充電可能容
量を使用して該組電池機器システムのコントロールを行
う組電池管理方法。
1. An assembled battery device system comprising an assembled battery composed of a plurality of battery cells connected in series and a battery management means, wherein the battery management means comprises a remaining cell capacity calculation means or a cell rechargeable capacity calculation means. A cell remaining capacity selecting means or a cell rechargeable capacity selecting means, and a control means for controlling the assembled battery device system, wherein the cell remaining capacity calculating means calculates and obtains remaining capacity of a plurality of the battery cells. The remaining cell capacity to be used for the remaining capacity of the assembled battery is selected from among the plurality of remaining cell capacity, and the rechargeable capacity selecting means calculates the rechargeable capacity of the cell calculated using the rechargeable capacity calculating means of the cell. A battery pack management method for selecting a rechargeable capacity of the battery pack from among, and controlling the battery pack device system using the selected remaining cell capacity or the rechargeable capacity of the cell.
【請求項2】該セル残容量算出手段は、該電池セルに出
入りする電流をカウントして電気量Qを求める電流積算
手段と、電流最小値特定手段と、セル電圧を取得するセ
ル電圧取得手段と、該電池セルの開放電圧を該電池セル
の残容量に変換する開放電圧対残容量変換手段を有し、
該電流最小値特定手段が、電流最小値以下に特定した
時、該セル電圧取得手段で該電池セルの電圧を取得し、
該電圧を該開放電圧対残容量変換手段で該電池セルの残
容量に変換し、次に電流が該電流最小値を超えた時、該
開放電圧対残容量変換手段によって得られた該残容量を
初期値にすると共に、該電流積算手段を使用して積算し
た電気量Qを、該初期値に加算あるいは減算して該電池
セルの該残容量を更新する請求項1の組電池管理方法。
2. The cell remaining capacity calculation means is a current integration means for counting a current flowing in and out of the battery cell to obtain an electricity quantity Q, a current minimum value specifying means, and a cell voltage acquisition means for acquiring a cell voltage. And an open circuit voltage-remaining capacity converting means for converting the open circuit voltage of the battery cell into the remaining capacity of the battery cell,
When the current minimum value specifying means specifies the current minimum value or less, the cell voltage acquiring means acquires the voltage of the battery cell,
The open voltage to remaining capacity conversion means converts the voltage into the remaining capacity of the battery cell, and when the current exceeds the current minimum value, the remaining capacity obtained by the open voltage to remaining capacity conversion means. 2. The battery pack management method according to claim 1, wherein the electric charge Q accumulated using the current accumulating means is added to or subtracted from the initial value, and the remaining capacity of the battery cell is updated.
【請求項3】該制御手段は、該組電池の残容量を表示す
る手段である請求項1の組電池管理方法。
3. The assembled battery management method according to claim 1, wherein the control means is a means for displaying the remaining capacity of the assembled battery.
【請求項4】該制御手段は、該組電池の充電をコントロ
ールする手段である請求項1の組電池管理方法。
4. The assembled battery management method according to claim 1, wherein the control means is means for controlling charging of the assembled battery.
【請求項5】該制御手段は、該電池セルの残容量を独立
して変化させる手段である請求項1の組電池管理方法。
5. The assembled battery management method according to claim 1, wherein the control means is means for independently changing the remaining capacity of the battery cell.
【請求項6】該セル残容量算出手段あるいは該セル充電
可能容量算出手段が、セルバランス調整用の閉回路に流
れる電流を積算し、該組電池全体に流れる電流を積算し
て得られる電気量に加算あるいは減算して該セルに流れ
た電気量とする請求項1の組電池管理方法。
6. A quantity of electricity obtained by the cell residual capacity calculating means or the cell chargeable capacity calculating means integrating the current flowing through a closed circuit for cell balance adjustment and integrating the current flowing through the entire assembled battery. 2. The assembled battery management method according to claim 1, wherein the amount of electricity flowing in the cell is added or subtracted with respect to.
【請求項7】該制御手段は、該組電池機器システムの消
費電力を変化させる手段である請求項1の組電池管理方
法。
7. The assembled battery management method according to claim 1, wherein the control means is means for changing the power consumption of the assembled battery device system.
【請求項8】請求項1の組電池管理方法を使用する組電
池管理システム。
8. An assembled battery management system using the assembled battery management method according to claim 1.
【請求項9】請求項1の組電池管理方法をプログラムし
た記録媒体。
9. A recording medium programmed with the battery pack management method according to claim 1.
JP2002162356A 2001-06-08 2002-06-04 Battery management method and system for battery pack Expired - Fee Related JP3919604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162356A JP3919604B2 (en) 2001-06-08 2002-06-04 Battery management method and system for battery pack

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001173443 2001-06-08
JP2001-173443 2001-06-08
JP2002162356A JP3919604B2 (en) 2001-06-08 2002-06-04 Battery management method and system for battery pack

Publications (2)

Publication Number Publication Date
JP2003077548A true JP2003077548A (en) 2003-03-14
JP3919604B2 JP3919604B2 (en) 2007-05-30

Family

ID=26616577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162356A Expired - Fee Related JP3919604B2 (en) 2001-06-08 2002-06-04 Battery management method and system for battery pack

Country Status (1)

Country Link
JP (1) JP3919604B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847200A (en) * 1994-08-03 1996-02-16 Mayekawa Mfg Co Ltd Protective device of canned motor for ammonia
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
US7193392B2 (en) 2002-11-25 2007-03-20 Tiax Llc System and method for determining and balancing state of charge among series connected electrical energy storage units
JP2011530073A (en) * 2008-08-07 2011-12-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Identifying the state of charge for an electrical accumulator
JP2013135579A (en) * 2011-12-27 2013-07-08 Mitsubishi Motors Corp Voltage balance controller
JP2013156202A (en) * 2012-01-31 2013-08-15 Sanyo Electric Co Ltd Method for calculating residual capacity of secondary cell and battery pack
JPWO2013128810A1 (en) * 2012-02-29 2015-07-30 Necエナジーデバイス株式会社 Battery control system, battery pack, electronic equipment
CN107872074A (en) * 2016-09-27 2018-04-03 北京飞亚视科技发展有限公司 A kind of low-power consumption battery detection managing device
CN111257779A (en) * 2020-02-11 2020-06-09 北京海博思创科技有限公司 SOH determination method and device of battery system
CN113391230A (en) * 2021-05-12 2021-09-14 万克能源科技有限公司 Calculation method for reducing loss tolerance rate in energy storage scene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040684B2 (en) 2012-09-28 2016-12-07 富士通株式会社 Secondary battery state evaluation device, secondary battery state evaluation method, and secondary battery state evaluation program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847200A (en) * 1994-08-03 1996-02-16 Mayekawa Mfg Co Ltd Protective device of canned motor for ammonia
US7193392B2 (en) 2002-11-25 2007-03-20 Tiax Llc System and method for determining and balancing state of charge among series connected electrical energy storage units
US7245108B2 (en) 2002-11-25 2007-07-17 Tiax Llc System and method for balancing state of charge among series-connected electrical energy storage units
US7378818B2 (en) 2002-11-25 2008-05-27 Tiax Llc Bidirectional power converter for balancing state of charge among series connected electrical energy storage units
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP4649101B2 (en) * 2003-09-10 2011-03-09 株式会社日本自動車部品総合研究所 Secondary battery status detection device and status detection method
US9450427B2 (en) 2008-08-07 2016-09-20 Robert Bosch Gmbh State of charge determination for an electrical accumulator
JP2011530073A (en) * 2008-08-07 2011-12-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Identifying the state of charge for an electrical accumulator
JP2013135579A (en) * 2011-12-27 2013-07-08 Mitsubishi Motors Corp Voltage balance controller
JP2013156202A (en) * 2012-01-31 2013-08-15 Sanyo Electric Co Ltd Method for calculating residual capacity of secondary cell and battery pack
JPWO2013128810A1 (en) * 2012-02-29 2015-07-30 Necエナジーデバイス株式会社 Battery control system, battery pack, electronic equipment
US9735592B2 (en) 2012-02-29 2017-08-15 Nec Energy Devices, Ltd. Battery control system, battery pack, electronic device
US10027141B2 (en) 2012-02-29 2018-07-17 Nec Energy Devices, Ltd. Battery control system, battery pack, electronic device
CN107872074A (en) * 2016-09-27 2018-04-03 北京飞亚视科技发展有限公司 A kind of low-power consumption battery detection managing device
CN111257779A (en) * 2020-02-11 2020-06-09 北京海博思创科技有限公司 SOH determination method and device of battery system
CN113391230A (en) * 2021-05-12 2021-09-14 万克能源科技有限公司 Calculation method for reducing loss tolerance rate in energy storage scene
CN113391230B (en) * 2021-05-12 2022-08-12 万克能源科技有限公司 Calculation method for reducing capacity loss rate in energy storage scene

Also Published As

Publication number Publication date
JP3919604B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
KR101166099B1 (en) Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
CN103872398B (en) Charging method of rechargeable battery and related charging structure
US20120032641A1 (en) Battery pack and method of controlling the same
EP2254219A1 (en) Charge state equalizing device and assembled battery system provided with same
GB2312517A (en) Battery monitoring system
CN101636872A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2010124640A5 (en)
CN112541260B (en) Battery equalization control method, system, storage medium and electronic equipment
JP3919604B2 (en) Battery management method and system for battery pack
KR20100114123A (en) Charging device and quality judging device of pack cell
JP3841001B2 (en) Battery control system
WO2021249150A1 (en) Charging and discharging method for series-parallel battery, and series-parallel battery system
US8664919B2 (en) Remaining battery power calculation circuit
AU724298B2 (en) Battery charging system
JP2003274570A (en) Constant-current constant-voltage charging method, and charger
CN110729797A (en) Vehicle and battery pack balance control method, device and system thereof
CN114552039A (en) Control method for battery constant-charge self-maintenance and constant-charge self-maintenance battery
JPH11341694A (en) Charging method of secondary battery
WO2005076430A1 (en) Combined battery and battery pack
JP2000323182A (en) Battery pack power source device
JP2002354698A (en) Control circuit
JP2010019653A (en) Battery residual capacity calculating system
JP2013247045A (en) Battery system and apparatus mounted with battery system
JP2001051030A (en) Charging battery or changing battery pack
JPH11135159A (en) Detecting method of remaining capacity of secondary battery and its device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees