JP2010019653A - Battery residual capacity calculating system - Google Patents

Battery residual capacity calculating system Download PDF

Info

Publication number
JP2010019653A
JP2010019653A JP2008179701A JP2008179701A JP2010019653A JP 2010019653 A JP2010019653 A JP 2010019653A JP 2008179701 A JP2008179701 A JP 2008179701A JP 2008179701 A JP2008179701 A JP 2008179701A JP 2010019653 A JP2010019653 A JP 2010019653A
Authority
JP
Japan
Prior art keywords
battery
current
memory
operation mode
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179701A
Other languages
Japanese (ja)
Inventor
Toshitaka Takei
敏孝 丈井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008179701A priority Critical patent/JP2010019653A/en
Publication of JP2010019653A publication Critical patent/JP2010019653A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for calculating residual capacity, accurately and at low cost, without having to use a current detection resistance, whereas since when inserting a detection resistance necessary for calculating a battery remaining capacity between a battery and an electrical apparatus in series, defects appear, wherein the utilization time of the electrical apparatus becomes short; and in an electrical apparatus capable of replacing a battery, a microprocessor and a memory are required to be built into each battery pack, to thereby result in cost increase. <P>SOLUTION: A battery open circuit voltage is converted into a residual capacity and used as an initial value, and power consumption of an operation mode measured and stored beforehand is subjected to time integration and is added to/subtracted from the initial value. Degree of deterioration is determined by performing current integration in a separate circuit so as to avoid affecting the utilization time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

電池で駆動する携帯機器の、電池の残容量を算出するシステムに関する。 The present invention relates to a system for calculating a remaining battery capacity of a portable device driven by a battery.

従来の電池の残時間、あるいは残容量を求める方法には時間積算方法、電流積算方法、電圧方法が提案され実際に機器に組み込まれている。時間積算方法は電気髭剃り器等のように、比較的負荷が一定であって、使用時間だけで電池残容量が判断できる場合に良く使われる。電流積算方法は、使用時に負荷が変動するようなポータブルビデオカメラ等で使用され、使用した電流量を監視して、初期残容量値から放電時は減算し、充電時は加算して電池から取り出せる電流量を算出する。電圧方法はあらかじめ電池特性データを取り、電池電圧値対電池残容量値のテーブルの形でROM等の記録媒体に保存する。そして動作時には電池電圧を検出し、保存してあるテーブルを参照する事で残容量に変換する。正確な放電電流の検出と積算が比較的困難な機器や、コストが優先される場合に多く利用されているが、電池電圧は温度や負荷の大きさによって大きく変動するので、誤差が大きくなる。 As a conventional method for obtaining the remaining time or remaining capacity of a battery, a time integration method, a current integration method, and a voltage method have been proposed and actually incorporated in a device. Time accumulation methods are often used when the load is relatively constant, such as an electric shaver, and the remaining battery capacity can be determined only by the usage time. The current integration method is used in portable video cameras, etc. whose load fluctuates during use, monitors the amount of current used, subtracts it from the initial remaining capacity value when discharging, and adds it when charging it, so that it can be taken out of the battery Calculate the amount of current. In the voltage method, battery characteristic data is taken in advance and stored in a recording medium such as a ROM in the form of a table of battery voltage values versus remaining battery capacity values. During operation, the battery voltage is detected and converted to the remaining capacity by referring to the stored table. Although it is often used in cases where it is relatively difficult to accurately detect and integrate the discharge current, and when cost is a priority, the battery voltage varies greatly depending on the temperature and the size of the load, resulting in a large error.

また充電時に電流積算方法を使用して、満充電近くになると充電電流が低下して所定電流以下になると充電電圧になったと判断して残容量が100%とする残容量表示システムも一般的である。またいわゆる従来の電流積算方法は、放電時に電流積算方法を使用し、電池の放電終止電圧になると容量0%と表示する残容量表示システムである。従って従来の電流積算方法でも、一部電圧方法を組合せていると言える。また劣化した電池に対しては、従来の電流積算方法では、今回満充電から終止電圧まで放電できた容量を真の実容量として、次回の電流積算に使用して電池の容量低下時の補正に利用している。あるいは、あらかじめ充放電の回数で電池が劣化する程度を予測して劣化度をメモリーし、使用時には充放電の回数をカウントして、定格容量に劣化度を掛けて容量補正を行っている。 A remaining capacity display system that uses a current integration method at the time of charging to determine that a charging voltage has been reached when the charging current decreases to a predetermined current or less when the charging current is nearly full and the remaining capacity is 100% is also common. is there. The so-called conventional current integration method is a remaining capacity display system that uses a current integration method at the time of discharging and displays 0% capacity when the discharge end voltage of the battery is reached. Therefore, it can be said that a part of the voltage method is combined even in the conventional current integration method. For degraded batteries, the conventional current integration method uses the capacity that can be discharged from the full charge to the end voltage as the true actual capacity, and is used for the next current integration to compensate when the battery capacity decreases. We are using. Alternatively, the degree of deterioration of the battery is predicted in advance based on the number of times of charging / discharging, the degree of deterioration is stored in memory, the number of times of charging / discharging is counted during use, and the capacity is corrected by multiplying the rated capacity by the degree of deterioration.

また、電池に出入りする電流が微小な時は、電池電圧は温度や負荷の大きさに影響を受けないで、電池の残容量に精度良く変換でき、電流が大きくなると電流積算方法が電池容量の消費量を正確にカウントできるので、本発明者は特許第391960号の中で、状況に応じて精度が上がる方法を使い分ける事を提案している。 In addition, when the current flowing into and out of the battery is very small, the battery voltage can be accurately converted into the remaining capacity of the battery without being affected by the temperature and the load size. Since the amount of consumption can be accurately counted, the present inventor has proposed in Japanese Patent No. 391960 to use different methods for increasing the accuracy depending on the situation.

また、電池を充電あるいは放電して使用している時に、流れる電流が1回目の規定電流値以下になり、次いで規定電流値を超える電流が流れ、再度2回目の規定電流値以下になった時に、1回目と2回目の規定電流値以下の時に、電圧値から電池残容量値に変換した電圧方法での容量の変化量は、劣化等を含まない標準電池の容量変化量である。一方1回目と2回目の電圧方法で測定する間に規定電流値以上流れる電流を電流積算した容量値は実際の使用容量になる。そこで特許第391960号では、電圧方法で求めた電池の残容量変化と電流積算方法で求めた電流積算値を比較して、電池の劣化度を求めている。こうして求めた劣化度を電池残容量を求める式に反映させ、補正する事で、電池劣化を加味した正確な残容量値が算出できるようになっている。これらの処理をするために、電池パックにマイクロプロッサとメモリーを内蔵している。あるいは電気機器本体のマイクロプロセッサとメモリーを使用している。
特許第391960号
Also, when the battery is charged or discharged and used, the current that flows is less than the specified current value for the first time, then the current that exceeds the specified current value flows, and again falls below the specified current value for the second time. The amount of change in capacity in the voltage method in which the voltage value is converted from the voltage value to the remaining battery capacity value when the current value is equal to or less than the first and second specified current values is the amount of change in the capacity of the standard battery not including deterioration. On the other hand, the capacity value obtained by integrating the current flowing over the specified current value during the measurement by the first and second voltage methods is the actual capacity used. Therefore, in Japanese Patent No. 391960, the change in the remaining capacity of the battery obtained by the voltage method and the current accumulated value obtained by the current integrating method are compared to obtain the degree of deterioration of the battery. By reflecting the degree of deterioration obtained in this way in an equation for calculating the remaining battery capacity and correcting it, it is possible to calculate an accurate remaining capacity value taking into account the battery deterioration. In order to carry out these processes, the battery pack incorporates a microprocessor and memory. Alternatively, the microprocessor and memory of the electrical equipment body are used.
Patent No. 391960

従来技術によって、開放電池電圧と電池に出入りする電流を精度良く検出できれば、かなり正確な電池残容量が算出できるようになった。しかし、電池に出入りする電流を精度良く検出するためには、精度の良い検出抵抗を電池と電気機器との間に直列に挿入して、その検出抵抗の両端に発生する電圧を取得する必要がある。それはとりもなおさず電気機器に入力する電圧が低下すると共に、検出抵抗でも電池電力が消費されるので、電気機器の使用時間が短くなる要因ある。また、電流積算し、残容量を計算するためには、マイクロプロセッサとメモリーが必要で、電池の交換が可能な電気機器では、電池パック1個ごとにマイクロプロセッサとメモリーを内蔵する必要があり、コストアップの要因になっている。単セルで駆動する携帯電話などでは、これらの要因の比重が高まるので、致命的な問題で、携帯電話の残容量算出に電流積算方法が採用されない2大要因になっている。 If the open-circuit battery voltage and the current flowing into and out of the battery can be accurately detected by the prior art, it is possible to calculate a considerably accurate remaining battery capacity. However, in order to accurately detect the current flowing in and out of the battery, it is necessary to insert a high-precision detection resistor in series between the battery and the electric device and acquire the voltage generated at both ends of the detection resistor. is there. In any case, the voltage input to the electric device is reduced, and the battery power is consumed even by the detection resistor. In addition, in order to integrate the current and calculate the remaining capacity, a microprocessor and memory are required.Electric devices that can be replaced with a battery must have a microprocessor and memory for each battery pack. This is a factor of cost increase. In cellular phones driven by a single cell, the specific gravity of these factors increases, which is a fatal problem, and is a major factor that does not employ the current integration method for calculating the remaining capacity of cellular phones.

上記課題を解決するため、電流積算方法に変えて、電気機器の各動作モードの消費電力をあらかじめ測定してテーブルを作成し、電気機器に内蔵したメモリーに保存する。各動作モード指定手段が動作モードを指定した時は、メモリーからその動作モードに対応した消費電力を読み込み、電池残容量から加減算する事で、電流検出器のない回路を実現する。ユーザーが電気機器を使用しない時、あるいはユーザーの意思によって、回路をほぼ全電流が電流検出器を通過するように切替える。そして、正確な開放電池電圧から変換した電池容量と使用電池容量とを測定して、従来技術で説明した方法で劣化度の算出を行う。また、電池を交換して、現在メモリーに保存している電池データが役に立たない時は、無線やインターネット回線を使用して取得する新たな電池データをダウンロードする。以上のごとく、開放電池電圧を残容量に変換する方法と電流積算方法と時間積算方法の3種類の電池残容量算出方法を組み合わせる事で問題点を解決する。 In order to solve the above problem, instead of the current integration method, the power consumption in each operation mode of the electric device is measured in advance, a table is created, and the table is stored in a memory built in the electric device. When each operation mode designation means designates an operation mode, a circuit without a current detector is realized by reading power consumption corresponding to the operation mode from the memory and adding / subtracting from the remaining battery capacity. When the user does not use the electrical device or at the user's will, the circuit is switched so that almost all the current passes through the current detector. Then, the battery capacity converted from the accurate open battery voltage and the used battery capacity are measured, and the deterioration degree is calculated by the method described in the related art. If the battery data stored in the memory is not useful after replacing the battery, new battery data to be acquired using a wireless or internet connection is downloaded. As described above, the problem is solved by combining the three methods of calculating the remaining battery capacity, the method of converting the open battery voltage into the remaining capacity, the current integration method, and the time integration method.

本発明は、電池で駆動する電気機器において、動作モード指定手段とマイクロプロセッサと第1のメモリーと第2のメモリー2とデータ転送手段と電圧検出手段と電流検出手段で構成する。あらかじめ取得した開放電池電圧を電池残容量に変換する第1のデータを、ライターなどのデータ転送手段を用いて第1のメモリーに転送して保存する。またあらかじめ取得した電気機器の各動作モードにおける消費電力あるいは消費電流の第2のデータを、ライターなどのデータ転送手段を用いて第2のメモリーに転送して保存する。動作モード指定手段が電気機器が動作するモードを決定し、動作モードの消費電力あるいは消費電流が規定値より小さい小動作モードの時、マイクロプロセッサは第1のメモリーに保存した第1のデータを用いて、電圧検出手段を用いて検出した開放電池電圧を電池残容量に変換して残容量の初期値にする。動作モードの消費電力あるいは消費電流が規定値より大きい大動作モードの時、第2のデータから動作モードに対応する消費電力あるいは消費電流に動作モードの動作時間を掛けて消費容量を算出し、初期値から加減算して残容量を求める。動作モードが電池から出入りする電流のほぼ全てが電流検出手段を通過する検出電流の場合は、検出電流を時間積算して消費容量として初期値から加減算して残容量とする。したがって、電圧方法と時間積算方法と電流積算方法の3種類の電池残容量算出方法を状況に応じて切替えて使用する特徴がある。 The present invention, in an electric device driven by a battery, comprises an operation mode designation means, a microprocessor, a first memory, a second memory 2, a data transfer means, a voltage detection means, and a current detection means. First data for converting an open battery voltage acquired in advance to a remaining battery capacity is transferred and stored in a first memory using a data transfer means such as a writer. Further, the second data of power consumption or current consumption in each operation mode of the electrical device acquired in advance is transferred and stored in the second memory using a data transfer means such as a writer. When the operation mode specifying means determines the mode in which the electric device operates, and when the power consumption or current consumption of the operation mode is a small operation mode smaller than the specified value, the microprocessor uses the first data stored in the first memory. The open battery voltage detected using the voltage detecting means is converted into the remaining battery capacity to obtain the initial remaining capacity. When the power consumption or current consumption in the operation mode is larger than the specified value in the large operation mode, the power consumption or current consumption corresponding to the operation mode is multiplied by the operation time in the operation mode from the second data to calculate the initial capacity. Add / subtract from the value to find the remaining capacity. When the operation mode is a detection current in which almost all of the current flowing into and out of the battery passes through the current detection means, the detection current is integrated over time, and the remaining capacity is obtained by adding or subtracting from the initial value as the consumed capacity. Accordingly, there is a feature that three types of battery remaining capacity calculation methods, that is, a voltage method, a time integration method, and a current integration method, are switched according to the situation.

請求2の発明においては、電流検出手段があらかじめ電流値を設定できる定電流回路であって、設定した電流値に動作時間を掛けて電池の消費容量にする特徴がある。 The invention according to claim 2 is a constant current circuit in which the current detection means can set the current value in advance, and has a feature that the set current value is multiplied by the operation time to obtain the consumed capacity of the battery.

請求項3の発明においては、データ転送手段が第3のメモリーとサーバーを有し、サーバーが無線通信手段あるいはインターネットを通して、第3のメモリーに保存されたデータを電気機器の第1や第2のメモリーに転送する特徴がある。 In the invention of claim 3, the data transfer means has a third memory and a server, and the server stores the data stored in the third memory via the wireless communication means or the Internet. It has the feature of transferring to memory.

開放電池電圧と電池に出入りする電流を精度良く検出して、電圧方法と電流積算方法を組合せると、かなり正確な電池残容量が算出できる。しかし、電流検出のために、回路に直列に検出抵抗を挿入するので、電気機器に入力する電圧が低下すると共に、検出抵抗でも電池電力が消費される。そこで、電流積算方法に変えて、あらかじめ測定して既知になった消費電力を時間積分すると、検出抵抗が不要になるので電気機器の使用時間を延ばせる効果がある。また、ユーザーが電気機器を使用しない時に、電流検出手段を通るように回路を切替えると、正確な使用電池容量を測定できるので、正確な電池の劣化度も測定可能になる。また、データ転送手段を有する事で、外部で測定した電池データをメモリーに書き込んで保存できるし、電池や充電器を取替えた時など、新しい電池データや充電器データを転送して書きかえる事も簡単にできる効果がある。すると電池ごとにマイクロプロセッサやメモリーを内蔵しなくて良いので、精度の良い残容量システムにした場合に発生するコストアップを極力抑える効果がある。 By accurately detecting the open battery voltage and the current flowing into and out of the battery and combining the voltage method and the current integration method, a considerably accurate remaining battery capacity can be calculated. However, since a detection resistor is inserted in series with the circuit for current detection, the voltage input to the electrical device is reduced and battery power is also consumed by the detection resistor. Therefore, instead of the current integration method, if the power consumption that has been measured and known in advance is integrated over time, the detection resistor is not required, so that the use time of the electric device can be extended. In addition, when the user does not use the electric device, switching the circuit so as to pass through the current detection means can measure the accurate battery capacity to be used, so that the accurate degree of battery deterioration can also be measured. In addition, by having a data transfer means, externally measured battery data can be written and stored in memory, and new battery data and charger data can be transferred and rewritten when the battery or charger is replaced. There is an effect that can be easily done. Then, since it is not necessary to incorporate a microprocessor or memory for each battery, there is an effect of minimizing the cost increase that occurs when a highly accurate remaining capacity system is made.

また、正確な電池の劣化度を知る事は、電池残容量の算出、ひいては電池マネジメントにとって極めて重要な事である。ところで、ユーザーが電気機器を使用していない時、例えば充電時には、充電器には既知の定電流が流れる時間帯がある。請求項2においては、その時間帯を利用して、正確な消費電流を求め、開放電池電圧から変換した残容量変化を比較する事で、正確な電池の劣化度を算出する大きな効果がある。この劣化度算出においても、電流検出抵抗をなくせるし、その抵抗間電圧を取得する回路も不要になるので、コストダウン効果は大きい。 In addition, knowing the exact battery deterioration level is extremely important for calculating the remaining battery capacity and thus for battery management. By the way, when the user is not using the electric device, for example, when charging, the charger has a time zone in which a known constant current flows. According to the second aspect of the present invention, an accurate current consumption is obtained by using the time zone, and a change in the remaining capacity converted from the open battery voltage is compared, so that there is a great effect of calculating an accurate battery deterioration degree. Also in this deterioration degree calculation, the current detection resistor can be eliminated, and a circuit for acquiring the voltage between the resistors is not necessary, so that the cost reduction effect is great.

また、請求項3においては、電池データをサーバーのメモリーに保存するので、電池を交換した時など、あらたな電池データをサーバーから取得できる。すると、サーバーから取得したデータは電気機器に内蔵したマイクロプロセッサを使用して電気機器に内蔵したメモリーを書換えて保存すれば良いので、電池ごとにメモリーやマイクロプロセッサを内蔵する必要がなくなり、大きなコストダウン効果がある。 According to the third aspect of the present invention, since the battery data is stored in the memory of the server, new battery data can be acquired from the server when the battery is replaced. Then, the data acquired from the server can be stored by rewriting the memory built into the electrical device using the microprocessor built into the electrical device, eliminating the need for a built-in memory or microprocessor for each battery. There is a down effect.

メモリーに保存した開放電池電圧対電池残容量の変換テーブルを用いて微小電流時の電池電圧を残容量に変換する電圧方法と、既知の使用電力に使用時間を掛けて電池残容量を算出する時間積算方法と、流れる電流を積算して求める消費電池容量から電池残容量を算出する電流積算方法の3種類の電池残容量方法を状況に応じて切替えて使用する。 Voltage method to convert battery voltage at minute current to remaining capacity using conversion table of open battery voltage versus remaining battery capacity stored in memory, and time to calculate remaining battery capacity by multiplying the used power by the usage time Three types of remaining battery capacity methods are used depending on the situation: the accumulation method and the current accumulation method for calculating the remaining battery capacity from the consumed battery capacity obtained by integrating the flowing current.

図1は請求項1の実施例1を示すブロック図である。電気機器1は、電池2と動作モード指定手段3と各動作モード4と電圧検出手段5と第1のメモリー6と第2のメモリー7と点線で囲って示した電流検出手段8とマイクロプロセッサ9を有している。また充電器10も内蔵あるいは外部から接続可能になっていている。さらに、外部には第3のメモリー11を有するデータ転送手段12があって電池残容量算出システムを構成する。動作モード指定手段3はキーボードや音声や光などの入力手段を用いて、動作モード4の選択をして、マイクロプロセッサ9に指示を入力する。動作モード4は図1では3種類であるが、何種類あっても本発明の趣旨は同じである。電圧検出手段5は電池2の電圧を取得する。メモリー6には図2に示すように、開放電池電圧を電池残容量に変換するテーブルが保存されている。このテーブルは細かければ細かい程、残容量の精度が上がるのは言うまでもない。但し、図2のようなテーブルでなくて、開放電池電圧を電池残容量に変換する関数であっても、本発明の趣旨は変わらない。メモリー7には図3に示す各動作モード4が消費する消費電力あるいは消費電流のテーブルを保存する。図3には、各動作モード4に末尾を付けて動作モード4−1、動作モード4−2のごとく表示している。電流検出手段8は、スイッチ13で電流検出抵抗14を電池に直列に接続して、回路電流が流れる時、電流検出抵抗14の両端電圧を電圧検出IC15で検出する従来の回路になっている。マイクロプロセッサ9は動作モード4の指示や電池残容量を算出し、また表示装置などに出力するプログラムを実行し、電気機器1全体をコントロールする。図1にはマイクロプロセッサ9が1個であるが、複数個であっても本発明の趣旨は変わらない。充電器10は電気機器1に内蔵されていても良いが、図1では充電が必要な時に電気機器1に接続する。データ転送手段12は、本実施例では電気機器1と独立していて、図には示さないが、試験機で測定した電池データが第3のメモリー11に保存されていて、第1のメモリー6やメ第2のモリー7に書き込むライターである。 FIG. 1 is a block diagram showing a first embodiment of the present invention. The electric device 1 includes a battery 2, an operation mode designating unit 3, each operation mode 4, a voltage detection unit 5, a first memory 6, a second memory 7, a current detection unit 8 surrounded by a dotted line, and a microprocessor 9. have. The charger 10 can also be connected internally or externally. Furthermore, there is a data transfer means 12 having a third memory 11 outside to constitute a battery remaining capacity calculation system. The operation mode designating unit 3 selects the operation mode 4 using an input unit such as a keyboard, voice, light, etc., and inputs an instruction to the microprocessor 9. Although there are three types of operation modes 4 in FIG. 1, the gist of the present invention is the same regardless of the number of types. The voltage detection means 5 acquires the voltage of the battery 2. As shown in FIG. 2, the memory 6 stores a table for converting the open battery voltage into the remaining battery capacity. Needless to say, the finer the table, the higher the accuracy of the remaining capacity. However, the gist of the present invention does not change even if the function is not a table as shown in FIG. 2 but a function that converts the open battery voltage into the remaining battery capacity. The memory 7 stores a table of power consumption or current consumption consumed by each operation mode 4 shown in FIG. In FIG. 3, each operation mode 4 is suffixed and displayed as an operation mode 4-1 and an operation mode 4-2. The current detection means 8 is a conventional circuit in which the current detection resistor 14 is connected in series with the battery by the switch 13 and the voltage detection IC 15 detects the voltage across the current detection resistor 14 when a circuit current flows. The microprocessor 9 calculates the operation mode 4 instruction and the remaining battery capacity, and executes a program to be output to a display device or the like, thereby controlling the entire electric device 1. Although FIG. 1 shows a single microprocessor 9, even if there are a plurality of microprocessors 9, the gist of the present invention does not change. The charger 10 may be built in the electric device 1, but in FIG. 1, it is connected to the electric device 1 when charging is required. The data transfer means 12 is independent of the electric device 1 in this embodiment and is not shown in the figure, but the battery data measured by the testing machine is stored in the third memory 11 and the first memory 6 It is a writer that writes in the second memory 7.

次にその作用である図4の動作フローを説明する。図4のフローを実施する前に、電池試験器で取得した開放電池電圧対残容量のデータが第3のメモリー11に保存され、そのデータはデータ転送手段であるライター12を使って第1のメモリー5に転送されて書き込まれている。また、電気機器1の各動作モードにおける消費電力も試験器で前もって取得し、第3のメモリー11に保存してあり、そのデータもライター12を使って第2のメモリー7に転送し書き込んである。さて、図4においては、フローの各ステップは通し番号の前にSを付けて表示している。先ず電気機器1の電源をONする(S1)とマイクロプロセッサ9の電源がONする(S2)。電流検出手段8はOFFにして(S3)できるだけ流れる電流を小さくしている。次に電圧検出手段5を使って電池2の電圧を取得する(S4)。取得した電池電圧はメモリー6に保存してある開放電圧対残容量のデータを参照して、電池残容量に変換して残容量の初期値Q0とし、マイクロプロセッサ9に内蔵したメモリーに保存する(S5)。電池2の開放電池電圧とは、一般に電池2がまったく負荷を接続していないオープンな状態での電池電圧であるが、本発明では電池2に出入りする電流が微小で規定値以下であれば、開放電池電圧としている。この段階では電池2を流れる電流は、マイクロプロセッサ9を動作させる電流で微小なので、規定値以下にしている。この電流が規定値以下である状態が指定時間例えば1時間以上続いているかどうかを判断する(S6).もし、指定時間以上続いているなら、再度電圧検出手段5を使って開放電池電圧を検出する(S7)。その開放電池電圧をメモリー6を参照して残容量に変換した値で、残容量の初期値を更新する(S8)。次に、マイクロプロセッサ9に割り込みで、動作モード指定手段3が動作モード4を指定する(S9)と、メモリー7から指定した動作モード4の消費電力を図3のテーブルから読み出す(S10)。そして、消費電力が規定値以下かどうかを判断する(S11)。規定値以下であれば、前記したステップ6になる。消費電力が規定値以上であれば消費電力に使用時間を掛けて時間積分で消費容量Q1を算出する(S12)。ステップ5あるいはステップ8で更新した残容量初期値からステップ12で算出した消費容量を加減算して現在の残容量Qrを算出する(S13)。動作モード指定手段3で割込むたびにステップ9からのフローを繰り返し、消費容量もQ1、Q2、そしてQnのように増えて行く。算出式は(1)式で現される。 Next, the operation flow of FIG. 4 will be described. Before carrying out the flow of FIG. 4, the data of the open battery voltage versus the remaining capacity obtained by the battery tester is stored in the third memory 11, and the data is stored in the first data using the writer 12 which is a data transfer means. It is transferred to the memory 5 and written. The power consumption in each operation mode of the electrical device 1 is also acquired in advance by a tester and stored in the third memory 11, and the data is transferred to the second memory 7 and written using the writer 12. . In FIG. 4, each step of the flow is displayed with S added before the serial number. First, when the electric device 1 is turned on (S1), the microprocessor 9 is turned on (S2). The current detection means 8 is turned off (S3) to reduce the flowing current as much as possible. Next, the voltage of the battery 2 is acquired using the voltage detection means 5 (S4). The acquired battery voltage is converted into the remaining battery capacity by referring to the data of the open circuit voltage versus the remaining capacity stored in the memory 6 and is stored in the memory built in the microprocessor 9 as the initial value Q0 of the remaining capacity ( S5). The open battery voltage of the battery 2 is generally a battery voltage in an open state in which the battery 2 is not connected to any load. However, in the present invention, if the current flowing into and out of the battery 2 is very small and not more than a specified value, The battery voltage is open. At this stage, the current flowing through the battery 2 is very small as the current for operating the microprocessor 9 and is therefore set to a predetermined value or less. It is determined whether or not the state where the current is below the specified value continues for a specified time, for example, 1 hour (S6). If it continues for more than the specified time, the open battery voltage is detected again using the voltage detection means 5 (S7). The initial value of the remaining capacity is updated with the value obtained by converting the open battery voltage into the remaining capacity with reference to the memory 6 (S8). Next, when the operation mode designating unit 3 designates the operation mode 4 by interrupting the microprocessor 9 (S9), the power consumption of the designated operation mode 4 is read from the table of FIG. 3 (S10). And it is judged whether power consumption is below a regulation value (S11). If it is equal to or less than the specified value, step 6 described above is performed. If the power consumption is equal to or higher than the specified value, the power consumption Q1 is calculated by time integration by multiplying the power consumption by the usage time (S12). The current remaining capacity Qr is calculated by adding or subtracting the consumed capacity calculated in step 12 from the remaining capacity initial value updated in step 5 or step 8 (S13). Each time the operation mode designating means 3 interrupts, the flow from step 9 is repeated, and the consumption capacity increases like Q1, Q2, and Qn. The calculation formula is expressed by formula (1).

Qr=Q0−(Q1+Q2+…+Qn) … (1)     Qr = Q0− (Q1 + Q2 +... + Qn) (1)

Qnは充電時には−Qnになり、Q0に加算されて行くので、電池2に蓄積する容量であるが、本発明では、どちらも消費容量として統一して説明する。また図3のテーブルは動作モード対消費電力であるが、消費電力を電池電圧で割ると消費電流になるので、一般に電池の容量を現すアンペアアワーに換算するのは容易であるから、本発明の説明で消費電力と消費電流、あるいは電池容量と電池電力を同じ意味に使用しても発明の趣旨は変わらない。 Qn becomes -Qn at the time of charging and is added to Q0, and is the capacity stored in the battery 2, but in the present invention, both are explained as the consumed capacity. The table of FIG. 3 shows the operation mode vs. power consumption. However, since the current consumption is obtained by dividing the power consumption by the battery voltage, it is generally easy to convert the battery capacity into ampere hours. Even if power consumption and current consumption or battery capacity and battery power are used in the same meaning in the description, the gist of the invention does not change.

次に電気機器1をユーザーが使用していない非使用時間帯に手動あるいは自動的に劣化度算出モードにする(S14)。先ず動作モード4の消費電力が規定値以下で指定時間以上かどうかを判断する(S15)。規定値以下が指定時間以上であれば、開放電池電圧を残容量に変換して初期値を更新して、Qf0(S16)とする。指定時間に達していなければ、達するまで待機する。指定時間に達したところで、電流検出手段8をオンする(S17)。この実施例では、スイッチ13を直流抵抗に切替えて、動作モード4のいずれかを選択して負荷とし(S18)、消費する電池容量を電流積算でカウントし消費電池容量Qaを実測する(S19)。次に動作モード4をオフして電池に流れる電流を止める(S20)。この電流をストップした状態を所定時間以上続ける(S−21)。電圧検出手段5を使って、開放電池電圧を取得する(S22)。図2のテーブルから開放電池電圧を残容量Qr0に変換する(S23)。Qf0からQr0を引いてQaで割って電池劣化度αを算出する(S24)。算出式は(2)式で現わされる。 Next, the deterioration degree calculation mode is set manually or automatically during a non-use time zone when the user is not using the electric device 1 (S14). First, it is determined whether or not the power consumption in the operation mode 4 is not more than a specified value and not less than a specified time (S15). If the specified value or less is equal to or longer than the specified time, the open battery voltage is converted into the remaining capacity and the initial value is updated to obtain Qf0 (S16). If the specified time has not been reached, wait until it reaches. When the designated time is reached, the current detection means 8 is turned on (S17). In this embodiment, the switch 13 is switched to DC resistance, and any one of the operation modes 4 is selected as a load (S18), the consumed battery capacity is counted by current integration, and the consumed battery capacity Qa is measured (S19). . Next, the operation mode 4 is turned off to stop the current flowing through the battery (S20). The state where the current is stopped continues for a predetermined time or longer (S-21). An open battery voltage is acquired using the voltage detection means 5 (S22). The open battery voltage is converted into the remaining capacity Qr0 from the table of FIG. 2 (S23). The battery deterioration degree α is calculated by subtracting Qr0 from Qf0 and dividing by Qa (S24). The calculation formula is expressed by formula (2).

α=(Qf0―Qr0)/Qa … (2)     α = (Qf0−Qr0) / Qa (2)

Qf0はfがフロントの印で1回目の残容量初期値を意味する。Qr0はrがリヤの印で2回目の残容量初期値を意味する。Qaはaがエイジの印で劣化算出用の電池容量を意味する。すなわちQf0とQr0は電池が劣化していない条件で測定した図2のテーブルから求め、Qaは劣化も含めた現状の電池容量を測定しているので、劣化度αが算出できる。 Qf0 means the first remaining capacity initial value when f is a front mark. Qr0 means the second remaining capacity initial value when r is a mark of the rear. Qa means a battery capacity for deterioration calculation when a is an age mark. That is, Qf0 and Qr0 are obtained from the table of FIG. 2 measured under the condition that the battery is not deteriorated, and Qa is the current battery capacity including the deterioration, so that the deterioration degree α can be calculated.

そして、残容量初期値Q0をQr0の値で更新する(S25)。この後は、その間に動作モード4を指定する割込み(S9)が入るまで、時間間隔t(S26)で間欠的に開放電池電圧を取得して(S27)残容量に変換し、残容量の初期値を更新する(S28)ループになる(S29)。 Then, the remaining capacity initial value Q0 is updated with the value of Qr0 (S25). Thereafter, until an interrupt (S9) for specifying the operation mode 4 is received during that time, an open battery voltage is intermittently acquired at a time interval t (S26) (S27) and converted to a remaining capacity, and the initial remaining capacity is obtained. The value is updated (S28) and a loop is entered (S29).

こうして、求めた残容量Qrと電池劣化度αはさまざまな電池マネジメントに使用される事は周知の事なので、説明は省略する。 Thus, since it is well known that the obtained remaining capacity Qr and the battery deterioration degree α are used for various battery management, the description thereof will be omitted.

請求項2の実施例2を図1を用いて、充電器に内蔵した定電流回路16と電源プラグ17を実施例1に追加する構成で説明する。充電して繰り返し使用する2次電池の充電器は、ほとんどすべてが定電流回路16を有し、定電流充電期間が存在する。そこで本発明では、定電流回路16を電流検出手段にする。すなわち、定電流回路16が動作すると、電流検出手段8がオンであり、逆ではオフである。電流検出16が検出する電流はあらかじめ充電器10に設定された既知の値である。そして、図4のフローチャートで電流検出手段8を定電流回路16に置きかえると実施例2の作用になる。但し、充電時にこの劣化度算出モードに入ると、開放電池電圧を取得するために、電池電圧が落ち付くまでの待機時間が必要で、そのために充電時間が長くなってしまう。電池劣化度の取得は頻繁に行う必要がないので、通常は劣化モードにしないで、残容量表示の精度が悪くなってきたと感じた時に、ユーザーの選択で劣化度算出モードにするのも一つの方法である。 A second embodiment of claim 2 will be described with reference to FIG. 1 in a configuration in which a constant current circuit 16 and a power plug 17 incorporated in a charger are added to the first embodiment. Almost all chargers for secondary batteries that are charged and used repeatedly have a constant current circuit 16, and there is a constant current charging period. Therefore, in the present invention, the constant current circuit 16 is used as current detection means. That is, when the constant current circuit 16 operates, the current detection means 8 is on and vice versa. The current detected by the current detection 16 is a known value set in the charger 10 in advance. Then, when the current detecting means 8 is replaced with the constant current circuit 16 in the flowchart of FIG. However, if the deterioration degree calculation mode is entered at the time of charging, in order to acquire the open battery voltage, a standby time until the battery voltage settles is required, and therefore the charging time becomes long. Since it is not necessary to frequently acquire the battery deterioration level, it is not usually necessary to switch to the deterioration mode. If you feel that the accuracy of the remaining capacity display has deteriorated, you can select the deterioration level calculation mode by user selection. Is the method.

実施例3においては、図1のデータ転送手段12が第3の第3のメモリー11を有するサーバーであって、無線通信あるいはインターネットを通して、第1のデータあるいは第2のデータを第1のメモリーあるいは第2のメモリーに転送する手段になっている。 In the third embodiment, the data transfer means 12 of FIG. 1 is a server having a third third memory 11, and the first data or the second data is transmitted to the first memory or the second data through wireless communication or the Internet. It is a means for transferring to the second memory.

その作用は、電気機器1が携帯電話であれば、データ転送手段12から、メモリー11に保存されているデータを無線で転送する事ができる。また、電気機器1がノートパソコンであれば、インターネットを通じて転送する事ができる。電気機器1の充電可能な2次電池パックは取替え可能になっている機器が多く、電池パックにマイクロプロセッサやメモリーを内蔵していないと、電池を換えた時、電池残容量のデータの信頼性が失われてしまう。例えば、使用時間の短い電池パックと長いパックでは、図2のテーブルデータが異なる。また、製造者が電気機器発売後に電池性能の異なる電池をオプションで提供する場合も、電池パックにマイクロプロセッサやメモリーを内蔵していない場合は電池データが合わなくなるので、残容量算出の信頼性は失われる。また電気機器1の各動作モード4の消費電力も新しいオプション機器が接続できるようになったり、携帯電話であれば、近くに基地局が開局するだけでも消費電力の変更が必要になる。そのような場合、請求項3の発明である実施例3は電気機器1のユーザーが、電気機器1をサーバー12に接続して、図2あるいは図3の新しいデータをダウンロードして、第1のメモリー6や第2のメモリー7に更新保存する事ができる。 The operation is that if the electrical device 1 is a mobile phone, the data stored in the memory 11 can be transferred wirelessly from the data transfer means 12. Further, if the electric device 1 is a notebook computer, it can be transferred through the Internet. Many rechargeable secondary battery packs for the electrical device 1 can be replaced. If the battery pack does not contain a microprocessor or memory, the reliability of the remaining battery capacity data when the battery is changed Will be lost. For example, the table data in FIG. 2 differs between a battery pack with a short usage time and a long pack. In addition, even if the manufacturer provides batteries with different battery performance after the sale of electrical equipment, battery data will not match if the battery pack does not contain a microprocessor or memory, so the reliability of remaining capacity calculation is not Lost. Further, the power consumption of each operation mode 4 of the electrical device 1 can be connected to a new optional device, or if it is a mobile phone, it is necessary to change the power consumption just by opening a base station nearby. In such a case, according to the third embodiment of the invention of claim 3, the user of the electric device 1 connects the electric device 1 to the server 12, downloads the new data of FIG. 2 or FIG. It can be updated and stored in the memory 6 or the second memory 7.

電池残容量の算出は、従来電流積算方法がもっとも精度が良いとされている。欠点は初期値の精度が不充分であった。そこで本発明者は、特許第391960号において、初期値を電池に流れる電流が極小になり、しかも時間が経って電池電圧が落ち付いた時取得する開放電池電圧を電池残容量に変換して初期値にする発明を行った。そして、電流積算方法と開放電池電圧方法を組み合わせて電池劣化度も算出できるようになった。しかし、電流積算方法では、精度の良い直流抵抗を電気機器回路に直列に挿入するために、電気機器の使用時間が短くなるマイナス要因が発生する。さらには電池パックが取替え可能な機器では電池パックごとにマイクロプロセッサとメモリーを内蔵する必要があるのでコストアップしてしまう。本発明では、残容量算出の精度も保ちながら、これらマイナス要因をすべて無くしたので、これまで残容量表示の精度が省みられてこなかった携帯電話を始めとして、多くの電池駆動する携帯機器に使用されて、精度の高い電池マネジメントシステムになる可能性は大である。 The calculation of the remaining battery capacity is said to be most accurate by the conventional current integration method. The drawback is that the accuracy of the initial value is insufficient. In view of this, the present inventor in Japanese Patent No. 391960 converts the open battery voltage obtained when the current flowing through the battery is minimized and the battery voltage has settled over time to the remaining battery capacity by converting the initial value to the initial value. Invented to value. The battery degradation level can be calculated by combining the current integration method and the open battery voltage method. However, in the current integration method, a precise direct current resistor is inserted in series in the electric device circuit, and thus a negative factor that shortens the usage time of the electric device occurs. Furthermore, in a device in which the battery pack can be replaced, it is necessary to incorporate a microprocessor and a memory for each battery pack, which increases the cost. In the present invention, all these negative factors are eliminated while maintaining the remaining capacity calculation accuracy, so that many battery-powered portable devices such as mobile phones that have not been able to omit the remaining capacity display accuracy so far have been used. The possibility of being used and becoming a highly accurate battery management system is great.

本発明の回路ブロック図である。It is a circuit block diagram of the present invention. 第1のデーターテーブル。First data table. 第2のデーターテーブル。Second data table. 本発明の作用を示すフローチャート。The flowchart which shows the effect | action of this invention.

符号の説明Explanation of symbols

1 電気機器
2 電池
3 動作モード指定手段
5 電圧検出手段
6 第1のメモリー
7 第2のメモリー
8 電流検出手段
9 マイクロプロセッサ
10 充電器
12 データ転送手段
16 定電流回路
DESCRIPTION OF SYMBOLS 1 Electric equipment 2 Battery 3 Operation mode designation | designated means 5 Voltage detection means 6 1st memory 7 2nd memory 8 Current detection means 9 Microprocessor 10 Charger 12 Data transfer means 16 Constant current circuit

Claims (3)

充電して繰り返し使用する2次電池で駆動する電気機器において、動作モード指定手段とマイクロプロセッサと第1のメモリーと第2のメモリーとデータ転送手段と電圧検出手段と電流検出手段で構成し、あらかじめ取得した第1のデータ、すなわち開放電池電圧を電池残容量に変換するデータを、データ転送手段を用いて該第1のメモリーに転送して保存し、またあらかじめ取得した第2のデータ、すなわち該電気機器の各動作モードにおける消費電力あるいは消費電流を、該データ転送手段を用いて該第2のメモリーに転送して保存し、該動作モード指定手段が消費電力あるいは消費電流が規定値より小さい動作モードを指定した時、該マイクロプロセッサは該第1のメモリーに保存した該第1のデータを用いて、該電圧検出手段が検出した該開放電池電圧を電池残容量に変換して残容量の初期値にし、該動作モードの消費電力あるいは消費電流が規定値より大きい該動作モードを指定すると、該第2のデータから該動作モードに対応する消費電力あるいは消費電流に該動作モードの動作時間を掛けて消費容量を算出し、該初期値から加減算して残容量を求め、該電池から出入りする電流のほぼ全てが該電流検出手段を通過する検出電流である該動作モードを指定した場合は、該検出電流を時間積算して該消費電流として、該初期値から加減算して残容量とする電池残容量算出システム。 In an electric device driven by a rechargeable battery that is charged and used repeatedly, it is composed of an operation mode designation means, a microprocessor, a first memory, a second memory, a data transfer means, a voltage detection means, and a current detection means. The acquired first data, that is, the data for converting the open battery voltage to the remaining battery capacity is transferred and stored in the first memory using the data transfer means, and the second data acquired in advance, that is, the data Power consumption or current consumption in each operation mode of the electrical equipment is transferred and stored in the second memory using the data transfer means, and the operation mode designating means operates with power consumption or current consumption smaller than a specified value. When the mode is designated, the microprocessor detects the voltage using the first data stored in the first memory. When the open battery voltage is converted into a battery remaining capacity to obtain an initial value of the remaining capacity, and the operation mode in which the power consumption or current consumption in the operation mode is greater than a specified value, the operation mode is changed from the second data to the operation mode. The corresponding power consumption or current consumption is multiplied by the operation time of the operation mode to calculate the consumption capacity, and the remaining capacity is obtained by adding or subtracting from the initial value, and almost all of the current flowing in and out of the battery is passed through the current detection means. A battery remaining capacity calculation system in which, when the operation mode that is a detected current passing through is designated, the detected current is accumulated over time to add or subtract from the initial value as the consumed current to obtain a remaining capacity. 該電流検出手段は、該電池あるいは充電器あるいは該電気機器に内蔵した定電流回路である請求項1の電池残容量算出システム。 2. The battery remaining capacity calculation system according to claim 1, wherein the current detection means is a constant current circuit built in the battery, a charger, or the electric device. データ転送手段が第3のメモリーとサーバーを有し、無線通信あるいはインターネットを通して、該第1のデータあるいは該第2のデータを該第1のメモリーあるいは該第2のメモリーに転送して保存する請求項1の電池残容量算出システム。 The data transfer means has a third memory and a server, and transfers and stores the first data or the second data to the first memory or the second memory through wireless communication or the Internet. Item 1. A battery remaining capacity calculation system according to item 1.
JP2008179701A 2008-07-10 2008-07-10 Battery residual capacity calculating system Pending JP2010019653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179701A JP2010019653A (en) 2008-07-10 2008-07-10 Battery residual capacity calculating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179701A JP2010019653A (en) 2008-07-10 2008-07-10 Battery residual capacity calculating system

Publications (1)

Publication Number Publication Date
JP2010019653A true JP2010019653A (en) 2010-01-28

Family

ID=41704719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179701A Pending JP2010019653A (en) 2008-07-10 2008-07-10 Battery residual capacity calculating system

Country Status (1)

Country Link
JP (1) JP2010019653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155801A1 (en) * 2012-04-19 2013-10-24 中兴通讯股份有限公司 Detection circuit and electronic terminal
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
JP5644855B2 (en) * 2010-05-14 2014-12-24 トヨタ自動車株式会社 Secondary battery control device and control method
CN113156319A (en) * 2021-04-14 2021-07-23 北京骑胜科技有限公司 Remaining power determining method, remaining power determining apparatus, vehicle, medium, and program product
CN113253134A (en) * 2017-12-08 2021-08-13 南京德朔实业有限公司 Portable electric energy system and measuring method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644855B2 (en) * 2010-05-14 2014-12-24 トヨタ自動車株式会社 Secondary battery control device and control method
US9073437B2 (en) 2010-05-14 2015-07-07 Toyota Jidosha Kabushiki Kaisha Device and method for controlling rechargeable battery, including warning a user to subject the rechargeable battery to a diagnosis
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
WO2013155801A1 (en) * 2012-04-19 2013-10-24 中兴通讯股份有限公司 Detection circuit and electronic terminal
US9689927B2 (en) 2012-04-19 2017-06-27 Zte Corporation Detection circuit and electronic terminal
CN113253134A (en) * 2017-12-08 2021-08-13 南京德朔实业有限公司 Portable electric energy system and measuring method thereof
CN113156319A (en) * 2021-04-14 2021-07-23 北京骑胜科技有限公司 Remaining power determining method, remaining power determining apparatus, vehicle, medium, and program product
CN113156319B (en) * 2021-04-14 2023-12-05 北京骑胜科技有限公司 Residual electric quantity determining method, device, vehicle, medium and program product

Similar Documents

Publication Publication Date Title
US8159185B2 (en) Battery charger and control method therefor
JP4137496B2 (en) Remaining amount prediction method
JP5561916B2 (en) Battery status monitoring device
KR101638393B1 (en) Apparatus and method for displaying capacity and charging/discharging state of battery in poertable device
EP1895312A1 (en) Battery control device, battery control method, power source control device and electronic apparatus
JP4783700B2 (en) Mobile device
JP2007252196A (en) Charging control method for battery system
KR100818519B1 (en) Method and apparatus of controlling battery
WO2007099898A1 (en) Battery pack, electronic device and method for detecting remaining quantity in battery
JP3859608B2 (en) Battery pack, electronic device, remaining battery level prediction system, and semiconductor device
JP2005315597A (en) Remaining capacity calculation method and battery pack of secondary battery
JP2010019653A (en) Battery residual capacity calculating system
JP2005312239A (en) Charging method for secondary battery and battery pack
US7602150B2 (en) Battery device for electronic apparatus with rechargeable secondary battery, fuel cell and run time computing unit
JP2008275524A (en) Battery pack and residual capacity computing method
JP2010038775A (en) Electronic device
JP2004170231A (en) Battery equipment system indicating degradation of battery
JP2002181906A (en) Method and equipment for calculating residual capacity of battery
JP4000240B2 (en) Secondary battery unit and secondary battery remaining amount measuring method
JP4769227B2 (en) Charging circuit and portable electronic device
JP2003009407A (en) Information terminal equipment
JP2014119394A (en) Battery deterioration method
JP3947881B2 (en) Portable information processing terminal and battery remaining amount display method
KR100630055B1 (en) Battery usage time display device and method of mobile communication terminal
JP2009216681A (en) Degradation determination method of secondary battery and portable information processor