JP2013156202A - Method for calculating residual capacity of secondary cell and battery pack - Google Patents

Method for calculating residual capacity of secondary cell and battery pack Download PDF

Info

Publication number
JP2013156202A
JP2013156202A JP2012018227A JP2012018227A JP2013156202A JP 2013156202 A JP2013156202 A JP 2013156202A JP 2012018227 A JP2012018227 A JP 2012018227A JP 2012018227 A JP2012018227 A JP 2012018227A JP 2013156202 A JP2013156202 A JP 2013156202A
Authority
JP
Japan
Prior art keywords
secondary battery
remaining capacity
battery
calculated
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012018227A
Other languages
Japanese (ja)
Inventor
Tomomi Kaino
友美 貝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012018227A priority Critical patent/JP2013156202A/en
Priority to CN2012105008284A priority patent/CN103226183A/en
Publication of JP2013156202A publication Critical patent/JP2013156202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for calculating a residual capacity of secondary cells capable of appropriately continuing discharge, even when the discharge of the plurality of serially-concatenated secondary cells progresses and the residual capacity (RC) or a relative state of charge (RSOC) becomes a fixed small capacity or less, and to provide a battery pack.SOLUTION: A calculation method includes: while calculating (learning) FCC (Full Charge Capacity) of each of three serially-concatenated battery blocks by a known method, detecting OCV (Open Circuit Voltage) of each battery block; collating the detected OCV with a discharge characteristic of Fig.3 that represents a relationship between OCV and RSOC of the battery block to calculate RSOC of each battery block; multiplying the calculated RSOC by FCC of each battery block to calculate RC of each battery block; and defining a minimum RC of the calculated RCs as a residual capacity of the entire secondary cells.

Description

本発明は、複数直列に接続された二次電池の開放電圧(開放端子電圧、無負荷電圧)に基づいて残容量を算出する二次電池の残容量算出方法、及びこの残容量算出方法を実行して残容量のデータを生成するパック電池に関する。   The present invention executes a remaining battery capacity calculation method for calculating a remaining capacity based on an open voltage (open terminal voltage, no load voltage) of a plurality of secondary batteries connected in series, and the remaining capacity calculation method. The present invention also relates to a battery pack that generates remaining capacity data.

従来、パーソナルコンピュータ(PC)等の電子機器に搭載される二次電池の残容量(RC=Remaining Capacity )は、満充電容量(FCC=Full Charge Capacity )即ち満充電状態における二次電池の電気量(電流値×時間)又は電力量(電力値×時間)の夫々に対して、充電/放電電流又は充電/放電電力の積算値(以下、充放電量という)を加算/減算して算出されている。いわゆる残容量は、FCCに対する相対残容量(RSOC=Relative State Of Charge )として表されることもある。このようにRCの算出の元になるFCCは、二次電池の使用に伴う劣化に応じて減少するにも関わらず、二次電池の実際の使用状態において満充電状態(以下、単に満充電ともいう)から放電終止状態になるまで放電(又は放電終止状態から満充電状態になるまで充電)されることが殆どないため、正確なFCCを算出する機会に乏しいのが実情である。   Conventionally, the remaining capacity (RC = Remaining Capacity) of a secondary battery mounted on an electronic device such as a personal computer (PC) is the full charge capacity (FCC = Full Charge Capacity), that is, the amount of electricity of the secondary battery in a fully charged state. Calculated by adding / subtracting the charge / discharge current or the integrated value of charge / discharge power (hereinafter referred to as charge / discharge amount) for each of (current value × time) or power amount (power value × time). Yes. The so-called remaining capacity may be expressed as a relative remaining capacity with respect to FCC (RSOC = Relative State Of Charge). In this way, the FCC from which the RC is calculated is reduced in accordance with deterioration due to the use of the secondary battery, but in the actual use state of the secondary battery (hereinafter simply referred to as full charge). In fact, there is little opportunity to calculate an accurate FCC, since there is almost no discharge (or charge from the discharge end state to the fully charged state) until the end of discharge state.

そこで、二次電池の電池電圧が所定のRSOCに対応する低電圧(RSOCがN%であることを示す既知の電圧;Nは整数)より低下した場合に、RSOCをN%に補正する技術(例えば、特許文献1参照)を利用して、満充電のときから上記既知の電圧を検出するまでに積算した「放電量−充電量」を「1−N/100」で除して得た容量を、二次電池のFCCとして学習する方法が用いられている。   Therefore, when the battery voltage of the secondary battery falls below a low voltage corresponding to a predetermined RSOC (a known voltage indicating that the RSOC is N%; N is an integer), a technique for correcting the RSOC to N% ( For example, using “Patent Document 1”), the capacity obtained by dividing “discharge amount−charge amount” accumulated from the time of full charge until the above known voltage is detected by “1-N / 100”. Is used as the FCC of the secondary battery.

また特許文献2では、二次電池の充電中に充電を中断して検出した開放端子電圧(以下、開放電圧という)と、その後、満充電まで再充電した期間中の充電量と、満充電後に検出した開放電圧とに基づいて二次電池のFCCを算出(学習)する技術が開示されている。また、特許文献3では、第1及び第2時点における二次電池の無負荷電圧(開放電圧)から算出したRSOCの変化量と、第1及び第2時点の間における充放電量の変化量とから、二次電池のFCCを算出(学習)する技術が開示されている。このようにして算出(学習)したFCCを、算出(若しくは検出)したRSOCに掛けてRCが算出され、更に、RCを算出したときからの充放電量をRCに加算/減算することによって新たなRCが算出される。   In Patent Document 2, an open terminal voltage (hereinafter referred to as an open voltage) detected by interrupting charging during charging of the secondary battery, a charge amount during a period of recharging until full charge, and after full charge A technique for calculating (learning) the FCC of the secondary battery based on the detected open circuit voltage is disclosed. Further, in Patent Document 3, the amount of change in RSOC calculated from the no-load voltage (open voltage) of the secondary battery at the first and second time points, and the amount of change in charge / discharge amount between the first and second time points, Thus, a technique for calculating (learning) the FCC of the secondary battery is disclosed. RC is calculated by multiplying the FCC calculated (learned) in this way by the calculated (or detected) RSOC, and further, a charge / discharge amount from the time of calculating RC is added / subtracted to / from RC to obtain a new value. RC is calculated.

ところで、定電流・定電圧充電によって充電される二次電池は、例えば電圧が最大の電池セルの電池電圧が満充電の検出開始電圧以上、且つ充電電流が所定値以下の状態が一定時間以上継続したときに満充電と判定される。この判定の間に電圧が最大の電池セルの電池電圧が満充電の検出電圧より高くなった場合は、その時点で満充電と判定される。   By the way, for a secondary battery charged by constant current / constant voltage charging, for example, the battery voltage of the battery cell having the maximum voltage is equal to or higher than the detection start voltage of full charge, and the state where the charging current is equal to or lower than a predetermined value continues for a certain time or longer. Is determined to be fully charged. If the battery voltage of the battery cell having the maximum voltage becomes higher than the fully charged detection voltage during this determination, it is determined that the battery is fully charged at that time.

特開平5−87896号公報JP-A-5-87896 特開2011−43460号公報JP 2011-43460 A 特開2008−261669号公報JP 2008-261669 A

しかしながら、二次電池が複数直列に接続されている場合、充電前の各二次電池の自己放電量のばらつき等の理由により、何れかの二次電池の電池電圧が満充電の判定電圧より高くなっても、他の二次電池は実際には満充電に至っていないのが普通である。そして、その後の放電の際には、充電された充電量が小さい前記他の二次電池の電池電圧が先に低下する。このため、前記他の二次電池の低電圧が検出されてRSOCが補正される時になって初めて、二次電池全体のRC又はRSOCの値が、PCをハイバネーション(メモリ内容が保存される休止状態)に移行させることができない値にまで低下したことが検出されるという問題があった。また、各二次電池の自己放電量にばらつきがない場合であっても、劣化等のばらつきにより各二次電池が充放電可能な容量に差がある場合は、同様の問題が起こり得た。   However, when a plurality of secondary batteries are connected in series, the battery voltage of any secondary battery is higher than the full-charge determination voltage due to variations in the self-discharge amount of each secondary battery before charging. Even so, it is normal that other secondary batteries are not actually fully charged. And in the case of subsequent discharge, the battery voltage of said other secondary battery with the small charged amount reduces first. For this reason, only when the low voltage of the other secondary battery is detected and the RSOC is corrected, the RC or RSOC value of the entire secondary battery does not hibernate the PC (the sleep state in which the memory contents are stored). ) Has been detected as having been reduced to a value that cannot be transferred to. Even when there is no variation in the amount of self-discharge of each secondary battery, the same problem may occur when there is a difference in the chargeable / dischargeable capacity of each secondary battery due to variations such as deterioration.

本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、複数直列に接続された二次電池の放電が進行して残容量(RC)又は相対残容量(RSOC)が一定の小さな容量以下になった場合であっても、適宜放電を継続することが可能な二次電池の残容量算出方法及びパック電池を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to increase the remaining capacity (RC) or the relative remaining capacity (RSOC) as the discharge of a plurality of secondary batteries connected in series proceeds. An object of the present invention is to provide a method for calculating the remaining capacity of a secondary battery and a battery pack that can continue discharging appropriately even when the battery capacity becomes a certain small capacity or less.

本発明に係る二次電池の残容量算出方法は、直列接続された複数の二次電池の満充電容量を算出し、算出した満充電容量に基づいて前記複数の二次電池の残容量を算出する方法において、二次電池毎に満充電容量を算出し、各二次電池の開放電圧を検出し、前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び検出した開放電圧に基づいて、夫々の二次電池の相対残容量を算出し、算出した相対残容量に夫々の二次電池の満充電容量を乗ずることにより、各二次電池の残容量を算出し、算出した残容量のうち、最も小さい残容量を前記複数の二次電池の残容量とすることを特徴とする。   A method for calculating a remaining capacity of a secondary battery according to the present invention calculates a full charge capacity of a plurality of secondary batteries connected in series, and calculates a remaining capacity of the plurality of secondary batteries based on the calculated full charge capacity. In the method, the full charge capacity is calculated for each secondary battery, the open circuit voltage of each secondary battery is detected, and the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity with respect to the full charge capacity, And calculating the relative remaining capacity of each secondary battery based on the detected open circuit voltage, and multiplying the calculated relative remaining capacity by the full charge capacity of each secondary battery, the remaining capacity of each secondary battery is calculated. The smallest remaining capacity of the calculated remaining capacity is calculated as the remaining capacity of the plurality of secondary batteries.

本発明に係る二次電池の残容量算出方法は、前記二次電池の充電電流及び放電電流が所定電流より小さいか否かを時系列的に判定し、小さいと判定する状態が所定時間以上継続するか否かを判定し、継続すると判定した場合、各二次電池の開放電圧を検出することを特徴とする。   The method for calculating the remaining capacity of a secondary battery according to the present invention determines whether or not the charging current and discharging current of the secondary battery are smaller than a predetermined current in a time series, and the state of determining that it is small continues for a predetermined time or more It is characterized by determining whether to continue, and when it is determined to continue, the open circuit voltage of each secondary battery is detected.

本発明に係る二次電池の残容量算出方法は、算出した残容量のうち、最も小さい残容量を有する二次電池を特定し、特定した二次電池を識別する情報を記憶し、記憶した情報によって識別される二次電池の残容量を、前記複数の二次電池の残容量とすることを特徴とする。   The method for calculating the remaining capacity of a secondary battery according to the present invention specifies a secondary battery having the smallest remaining capacity among the calculated remaining capacity, stores information for identifying the identified secondary battery, and stores the stored information The remaining capacity of the secondary battery identified by is the remaining capacity of the plurality of secondary batteries.

本発明に係る二次電池の残容量算出方法は、前記二次電池が満充電状態にあるか否かを判定し、満充電状態にあると判定した後に、前記二次電池を識別する情報を更新することを特徴とする。   The secondary battery remaining capacity calculation method according to the present invention determines whether or not the secondary battery is in a fully charged state, and after determining that the secondary battery is in a fully charged state, information for identifying the secondary battery. It is characterized by updating.

本発明に係るパック電池は、直列接続された複数の二次電池と、該二次電池の満充電容量を算出する第1算出手段と、算出した満充電容量に基づいて前記複数の二次電池の残容量のデータを生成する生成手段とを備えるパック電池において、前記第1算出手段は、二次電池毎に満充電容量を検出するようにしてあり、各二次電池の開放電圧を検出する検出手段と、前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び前記検出手段が検出した開放電圧に基づいて、夫々の二次電池の相対残容量を算出する第2算出手段と、該第2算出手段が算出した相対残容量に夫々の二次電池の満充電容量を乗ずることにより、各二次電池の残容量を算出する第3算出手段とを備え、前記生成手段は、前記第3算出手段が算出した残容量のうち、最も小さい残容量のデータを生成するようにしてあることを特徴とする。   The battery pack according to the present invention includes a plurality of secondary batteries connected in series, first calculation means for calculating a full charge capacity of the secondary battery, and the plurality of secondary batteries based on the calculated full charge capacity. In the battery pack comprising the generating means for generating the remaining capacity data, the first calculating means detects the full charge capacity for each secondary battery, and detects the open voltage of each secondary battery. Based on the detection means, the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity with respect to the full charge capacity, and the open voltage detected by the detection means, the relative remaining capacity of each secondary battery is calculated. Second calculating means for calculating, and third calculating means for calculating the remaining capacity of each secondary battery by multiplying the relative remaining capacity calculated by the second calculating means by the full charge capacity of each secondary battery. The generating means includes the third calculating means. Of the remaining capacity out, characterized in that you have to produce data of the smallest remaining capacity.

本発明に係るパック電池は、前記二次電池の充電電流及び放電電流が所定電流より小さいか否かを時系列的に判定する手段と、該手段が小さいと判定する状態が所定時間以上継続するか否かを判定する第1判定手段とを備え、前記検出手段は、前記第1判定手段が継続すると判定した場合、各二次電池の開放電圧を検出するようにしてあることを特徴とする。   In the battery pack according to the present invention, means for determining in time series whether or not the charging current and discharging current of the secondary battery are smaller than a predetermined current, and the state of determining that the means are small continue for a predetermined time or more. First detection means for determining whether or not the detection means detects the open circuit voltage of each secondary battery when it is determined that the first determination means continues. .

本発明に係るパック電池は、前記第3算出手段が算出した残容量のうち、最も小さい残容量を有する二次電池を特定する手段と、該手段が特定した二次電池を識別する情報を記憶する記憶手段とを備え、前記生成手段は、前記記憶手段が記憶した情報によって識別される二次電池の残容量のデータを生成するようにしてあることを特徴とする。   The battery pack according to the present invention stores means for specifying the secondary battery having the smallest remaining capacity among the remaining capacity calculated by the third calculating means, and information for identifying the secondary battery specified by the means. Storage means, and the generation means generates data of the remaining capacity of the secondary battery identified by the information stored in the storage means.

本発明に係るパック電池は、前記二次電池が満充電状態にあるか否かを判定する第2判定手段を備え、前記記憶手段は、前記第2判定手段が満充電状態にあると判定した場合、前記二次電池を識別する情報を更新するようにしてあることを特徴とする。   The battery pack according to the present invention includes second determination means for determining whether or not the secondary battery is in a fully charged state, and the storage means determines that the second determination means is in a fully charged state. In this case, the information for identifying the secondary battery is updated.

本発明にあっては、直列接続された複数の二次電池夫々の満充電容量(FCC)を、それ自体公知の方法(例えば、任意の2つの時点におけるRSOCの変化量と前記2つの時点間での充放電量の変化量とに基づいて、二次電池のFCCを学習する技術;特許文献2に詳しい)によって算出する一方で、各二次電池の開放電圧(OCV)を検出し、検出したOCVを、二次電池のOCVとRSOCとの関係を示す放電特性に照らして各二次電池のRSOCを算出する。そして、算出したRSOCに夫々の二次電池のFCCを乗じて各二次電池のRCを算出し、算出したRCのうち最小のRCを、複数の二次電池全体の残容量とする。
これにより、直列に接続された複数の二次電池のRCを各別に算出し、算出したRCのうちの最小のRCによって複数の二次電池全体の残容量を代表させる。このため、自己放電量が他の二次電池より大きい(又は充放電可能な容量が他の二次電池より小さい)一の二次電池が、放電終止電圧より高い低電圧の状態になる前に、実際に放電終止の状態となるまでの適量の放電量が担保された上で、二次電池全体について適当に小さな残容量が算出される。
In the present invention, the full charge capacity (FCC) of each of a plurality of secondary batteries connected in series is determined by a method known per se (for example, the amount of change in RSOC at any two time points and the time between the two time points). Based on the amount of change in the amount of charge and discharge in the battery, it is calculated by a technique for learning FCC of the secondary battery (detailed in Patent Document 2), while detecting the open circuit voltage (OCV) of each secondary battery and detecting it The RSOC of each secondary battery is calculated based on the discharge characteristics indicating the relationship between the OCV of the secondary battery and the RSOC. Then, the RC of each secondary battery is calculated by multiplying the calculated RSOC by the FCC of each secondary battery, and the minimum RC among the calculated RCs is set as the remaining capacity of the plurality of secondary batteries as a whole.
Thereby, RC of the some secondary battery connected in series is calculated separately, and the remaining capacity of the whole some secondary battery is represented by the minimum RC of calculated RC. For this reason, before a secondary battery whose self-discharge amount is larger than other secondary batteries (or chargeable / dischargeable capacity is smaller than other secondary batteries) is in a low voltage state higher than the discharge end voltage, An adequately small remaining capacity is calculated for the entire secondary battery after securing an appropriate amount of discharge until the discharge is actually stopped.

本発明にあっては、時系列的に検出した二次電池の充電電流及び放電電流(以下、充放電電流ともいう)が所定電流より小さい状態、つまり充放電が行われていない状態が所定時間以上継続する場合に、各二次電池の開放電圧を検出する。
これにより、二次電池に対する充電及び放電の影響が取り除かれた状態で、開放電圧がより正確に検出される。
In the present invention, a state in which the charging current and discharging current (hereinafter also referred to as charging / discharging current) of the secondary battery detected in time series is smaller than the predetermined current, that is, the state in which charging / discharging is not performed is the predetermined time. When the operation is continued, the open circuit voltage of each secondary battery is detected.
Thereby, the open circuit voltage is detected more accurately in a state where the influence of charging and discharging on the secondary battery is removed.

本発明にあっては、一旦RCが最小と特定された二次電池はRCが最小であり続ける蓋然性が高いため、各別に算出した二次電池のRCのうちで最も小さいRCを有する二次電池を特定するための情報を記憶しておき、記憶した情報によって識別される二次電池のRCを、複数の二次電池全体の残容量とする。
これにより、前記情報が更新されるまで、複数の二次電池全体の残容量を決定付ける二次電池が固定されるため、残容量が不連続に変化することが防止される。また、前記情報が更新される間に、前回更新された情報によって特定される二次電池のRCから充放電量を加算/減算することにより、新たな残容量を適時算出することができる。
In the present invention, since the secondary battery once identified as having the smallest RC has a high probability of continuing the smallest RC, the secondary battery having the smallest RC among the RCs of the secondary batteries calculated separately. Is stored, and the RC of the secondary battery identified by the stored information is defined as the remaining capacity of the plurality of secondary batteries as a whole.
Accordingly, since the secondary battery that determines the remaining capacity of the entire plurality of secondary batteries is fixed until the information is updated, the remaining capacity is prevented from changing discontinuously. Further, while the information is updated, a new remaining capacity can be calculated in a timely manner by adding / subtracting the charge / discharge amount from the RC of the secondary battery specified by the previously updated information.

本発明にあっては、最も電池電圧が高い二次電池が満充電状態となった後に、RCが最小の二次電池を特定する情報を更新する。
これにより、RCの差が最も顕著に現れる電圧状態にて、RCが最小の二次電池が適切に特定される。また、残容量が不連続に変化する可能性のあるポイントが、満充電状態の検出後に特定される。
In the present invention, after the secondary battery with the highest battery voltage is fully charged, the information specifying the secondary battery with the smallest RC is updated.
Thereby, the secondary battery with the smallest RC is appropriately identified in the voltage state where the difference in RC is most prominent. Further, a point where the remaining capacity may change discontinuously is specified after detection of the full charge state.

本発明によれば、直列に接続された二次電池のRCを各別に算出し、算出したRCのうちの最小のRCによって複数の二次電池全体の残容量を代表させるため、一の二次電池が放電終止電圧より高い低電圧の状態になる前に、実際に放電終止の状態となるまでの適量の放電量が担保された上で、二次電池全体について適当に小さな残容量が算出される。
従って、複数直列に接続された二次電池の放電が進行して残容量(RC)又は相対残容量(RSOC)が一定の小さな容量以下になった場合であっても、適宜放電を継続することが可能となる。
また、二次電池の電池電圧が低下して所定のRSOCに対応する低電圧に近づいたときに、所定のRSOCより大きいRSOCが急に補正されて、数値が大きく異なる所定のRSOCに低下するのを防止することが可能となる。
According to the present invention, the RC of the secondary batteries connected in series is calculated separately, and the remaining capacity of all the secondary batteries is represented by the smallest RC among the calculated RCs. Before the battery goes into a low voltage state higher than the discharge end voltage, an adequate amount of discharge until the end of discharge is actually secured, and an adequately small remaining capacity is calculated for the entire secondary battery. The
Therefore, even when the discharge of secondary batteries connected in series progresses and the remaining capacity (RC) or the relative remaining capacity (RSOC) falls below a certain small capacity, the discharge should be continued as appropriate. Is possible.
Also, when the battery voltage of the secondary battery decreases and approaches a low voltage corresponding to the predetermined RSOC, the RSOC larger than the predetermined RSOC is suddenly corrected, and the value is decreased to a predetermined RSOC having a significantly different numerical value. Can be prevented.

本発明に係るパック電池の構成例を示すブロック図である。It is a block diagram which shows the structural example of the battery pack which concerns on this invention. 電池ブロックの開放電圧(OCV)と相対残容量(RSOC)との関係を例示する放電特性のグラフである。It is a graph of the discharge characteristic which illustrates the relationship between the open circuit voltage (OCV) of a battery block, and a relative remaining capacity (RSOC). 電池ブロックの放電に伴うRSOCの変化を説明するための説明図である。It is explanatory drawing for demonstrating the change of RSOC accompanying the discharge of a battery block. 二次電池の残容量を算出するCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which calculates the remaining capacity of a secondary battery. 二次電池の残容量を算出するCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which calculates the remaining capacity of a secondary battery.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1は、本発明に係るパック電池の構成例を示すブロック図である。図中10はパック電池であり、パック電池10は、パーソナルコンピュータ(PC)、携帯端末等の電気機器20に着脱可能に装着される。パック電池10は、例えばリチウムイオン電池からなる電池セル111,112,113,121,122,123,131,132,133を3個ずつ順に並列接続してなる電池ブロック11,12,13を、この順番に直列接続してなる二次電池1を備える。二次電池1は、電池ブロック13の正極及び電池ブロック11の負極が夫々正極端子及び負極端子となるようにしてある。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a block diagram showing a configuration example of a battery pack according to the present invention. In the figure, reference numeral 10 denotes a battery pack. The battery pack 10 is detachably attached to an electric device 20 such as a personal computer (PC) or a portable terminal. The battery pack 10 includes, for example, battery blocks 11, 12, and 13 that are formed by connecting three battery cells 111, 112, 113, 121, 122, 123, 131, 132, and 133, which are made of, for example, lithium ion batteries. A secondary battery 1 that is connected in series in order is provided. The secondary battery 1 is configured such that the positive electrode of the battery block 13 and the negative electrode of the battery block 11 become a positive electrode terminal and a negative electrode terminal, respectively.

電池ブロック11,12,13の電圧は、夫々独立してA/D変換部4のアナログ入力端子に与えられ、デジタルの電圧値に変換されてA/D変換部4のデジタル出力端子から、マイクロコンピュータからなる制御部5に与えられる。A/D変換部4のアナログ入力端子には、二次電池1に密接して配置されており、サーミスタを含む回路によって二次電池1の電池温度を検出する温度検出器3の検出出力と、二次電池1の負極端子側の充放電路に介装されており、二次電池1の充電電流及び放電電流を検出する抵抗器からなる電流検出器2の検出出力とが与えられている。これらの検出出力は、デジタルの検出値に変換されてA/D変換部4のデジタル出力端子から制御部5に与えられる。   The voltages of the battery blocks 11, 12, and 13 are each independently applied to the analog input terminal of the A / D conversion unit 4, converted into a digital voltage value, and from the digital output terminal of the A / D conversion unit 4 It is given to the control unit 5 comprising a computer. The analog input terminal of the A / D conversion unit 4 is arranged in close contact with the secondary battery 1, and the detection output of the temperature detector 3 that detects the battery temperature of the secondary battery 1 by a circuit including a thermistor, A detection output of a current detector 2, which is interposed in a charging / discharging path on the negative electrode terminal side of the secondary battery 1 and includes a resistor for detecting a charging current and a discharging current of the secondary battery 1, is given. These detection outputs are converted into digital detection values and given to the control unit 5 from the digital output terminal of the A / D conversion unit 4.

二次電池1の正極端子側の充放電路には、充電電流及び放電電流を夫々遮断するPチャネル型のMOSFET71,72からなる遮断器7が介装されている。MOSFET71,72は、ドレイン電極同士を突き合わせて直列に接続してある。MOSFET71,72夫々のドレイン電極及びソース電極間に並列接続されているダイオードは、寄生ダイオード(ボディダイオード)である。MOSFET71,72は、Nチャネル型であってもよい。   The charge / discharge path on the positive electrode terminal side of the secondary battery 1 is provided with a circuit breaker 7 composed of P-channel type MOSFETs 71 and 72 that block the charge current and the discharge current, respectively. The MOSFETs 71 and 72 are connected in series with their drain electrodes butted together. A diode connected in parallel between the drain electrode and the source electrode of each of the MOSFETs 71 and 72 is a parasitic diode (body diode). MOSFETs 71 and 72 may be N-channel type.

制御部5は、CPU51を有し、CPU51は、プログラム等の情報を記憶するROM52、一時的に発生した情報を記憶するRAM53、各種時間を並列的に計時するタイマ54、及びパック電池10内の各部に対して入出力を行うI/Oポート55と互いにバス接続されている。I/Oポート55は、A/D変換部4のデジタル出力端子、MOSFET71,72夫々のゲート電極、及び通信部9に接続されている。通信部9は、電気機器20が有する制御・電源部(充電部)21と通信する。ROM52は、フラッシュメモリからなる不揮発性メモリである。ROM52には、プログラムの他に、例えば満充電容量の学習値(学習容量)、及び充電電流の初期値(即ち設定電流)が記憶される。   The control unit 5 includes a CPU 51, which includes a ROM 52 that stores information such as programs, a RAM 53 that stores temporarily generated information, a timer 54 that measures various times in parallel, and a battery pack 10. The I / O port 55 for inputting / outputting each unit is connected to each other by a bus. The I / O port 55 is connected to the digital output terminal of the A / D conversion unit 4, the gate electrodes of the MOSFETs 71 and 72, and the communication unit 9. The communication unit 9 communicates with a control / power supply unit (charging unit) 21 included in the electrical device 20. The ROM 52 is a non-volatile memory composed of a flash memory. In addition to the program, the ROM 52 stores, for example, a learning value for the full charge capacity (learning capacity) and an initial value for the charging current (that is, a set current).

CPU51は、ROM52に予め格納されている制御プログラムに従って、演算及び入出力等の処理を実行する。例えば、CPU51は、250ms周期で電池ブロック11,12,13の電圧値と、二次電池1の充放電電流の検出値とを取り込み、取り込んだ電圧値及び検出値に基づいて二次電池1の充電電流若しくは充電電力又は放電電流若しくは放電電力を積算し、積算によって算出した充電量又は放電量をRAM53に記憶する。充放電電流,充放電電力を夫々積算した場合の充放電量の単位は、Ah,Whとなる。電圧値及び充放電電流の検出値の取り込み周期は250msに限定されない。CPU51は、また、残容量、相対残容量、充電電流等のデータを生成し、生成したデータを通信部9を介して電気機器20に送信する。   The CPU 51 executes processing such as calculation and input / output according to a control program stored in advance in the ROM 52. For example, the CPU 51 captures the voltage values of the battery blocks 11, 12, and 13 and the detection value of the charging / discharging current of the secondary battery 1 at a cycle of 250 ms, and the secondary battery 1 of the secondary battery 1 based on the captured voltage value and detection value. Charge current or charge power or discharge current or discharge power is integrated, and the charge amount or discharge amount calculated by the integration is stored in the RAM 53. The unit of charge / discharge amount when charge / discharge current and charge / discharge power are integrated is Ah, Wh. The fetch period of the voltage value and the detected value of the charge / discharge current is not limited to 250 ms. The CPU 51 also generates data such as remaining capacity, relative remaining capacity, and charging current, and transmits the generated data to the electrical device 20 via the communication unit 9.

遮断器7は、通常の充放電時にI/Oポート55からMOSFET71,72のゲート電極にL(ロウ)レベルのオン信号が与えられることにより、MOSFET71,72夫々のドレイン電極及びソース電極間が導通するようになっている。二次電池1の充電電流を遮断する場合、I/Oポート55からMOSFET71のゲート電極にH(ハイ)レベルのオフ信号が与えられることにより、MOSFET71のドレイン電極及びソース電極間の導通が遮断される。同様に二次電池1の放電電流を遮断する場合、I/Oポート55からMOSFET72のゲート電極にH(ハイ)レベルのオフ信号が与えられることにより、MOSFET72のドレイン電極及びソース電極間の導通が遮断される。MOSFET71,72をNチャネル型とした場合は、上記のL/Hレベルを反転させたH/Lレベルのオン信号/オフ信号をゲート電極に与えればよい。二次電池1が適当に充電された状態にある場合、遮断器7のMOSFET71,72は共にオンしており、二次電池1は放電及び充電が可能な状態となっている。   The breaker 7 is electrically connected between the drain electrode and the source electrode of each of the MOSFETs 71 and 72 when an ON signal of L (low) level is given from the I / O port 55 to the gate electrodes of the MOSFETs 71 and 72 during normal charge / discharge. It is supposed to be. When the charging current of the secondary battery 1 is cut off, the conduction between the drain electrode and the source electrode of the MOSFET 71 is cut off by applying an H (high) level off signal from the I / O port 55 to the gate electrode of the MOSFET 71. The Similarly, when the discharge current of the secondary battery 1 is cut off, an H (high) level off signal is applied from the I / O port 55 to the gate electrode of the MOSFET 72, thereby causing conduction between the drain electrode and the source electrode of the MOSFET 72. Blocked. When the MOSFETs 71 and 72 are N-channel type, an on / off signal of H / L level obtained by inverting the above L / H level may be given to the gate electrode. When the secondary battery 1 is in a properly charged state, the MOSFETs 71 and 72 of the circuit breaker 7 are both turned on, and the secondary battery 1 is in a state where it can be discharged and charged.

電気機器20は、制御・電源部21に接続された端末部22を備える。制御・電源部21は、図示しない商用電源より電力を供給されて端末部22を駆動すると共に、二次電池1の充放電路に充電電流を供給する。制御・電源部21は、また、商用電源から電力の供給が絶たれた場合、二次電池1の充放電路から供給される放電電流により、端末部22を駆動する。制御・電源部21が充電する二次電池1がリチウムイオン電池の場合は、例えば、定電流(MAX電流0.5〜1C程度)・定電圧(MAX4.2〜4.4V/電池セル程度)にて充電が行われる。電圧が最大の電池ブロックの電池電圧が満充電検出開始電圧以上、且つ充電電流が所定値以下の状態が一定時間以上継続したときに、CPU51が、二次電池1が満充電状態にある(以下、単に満充電ともいう)と判定する。また例えば、電圧が最大の電池ブロックにおいて、電池電圧が一定電圧以上となったときに一定期間(例えば、60分、または、15分〜90分)だけMOSFET71をオフさせて開放電圧(OCV=Open Circuit Voltage )を検出し、検出した開放電圧が一定電圧以上である場合、満充電と判定するようにしてもよい。開放電圧による満充電の判定に代えて、充電中の電圧が最大の電池ブロックで電池電圧が所定電圧以上である場合に、満充電と判定するようにしてもよい。   The electric device 20 includes a terminal unit 22 connected to a control / power supply unit 21. The control / power supply unit 21 is supplied with power from a commercial power source (not shown) to drive the terminal unit 22 and supplies a charging current to the charging / discharging path of the secondary battery 1. The control / power supply unit 21 also drives the terminal unit 22 by the discharge current supplied from the charge / discharge path of the secondary battery 1 when the supply of power from the commercial power supply is cut off. When the secondary battery 1 charged by the control / power supply unit 21 is a lithium ion battery, for example, a constant current (MAX current of about 0.5 to 1 C) and a constant voltage (MAX 4.2 to 4.4 V / battery cell) Is charged. When the battery voltage of the battery block with the maximum voltage is not less than the full charge detection start voltage and the state where the charging current is not more than a predetermined value continues for a certain period of time or longer, the CPU 51 is in the fully charged state (hereinafter referred to as the secondary battery 1). , Also referred to as full charge). Further, for example, in the battery block with the maximum voltage, when the battery voltage becomes a certain voltage or more, the MOSFET 71 is turned off for a certain period (for example, 60 minutes or 15 minutes to 90 minutes), and the open circuit voltage (OCV = Open Circuit Voltage) is detected, and when the detected open circuit voltage is equal to or higher than a certain voltage, it may be determined that the battery is fully charged. Instead of determining full charge by the open-circuit voltage, it may be determined that the battery is fully charged when the battery voltage being charged is the maximum and the battery voltage is equal to or higher than a predetermined voltage.

制御・電源部21及び通信部9間では、制御・電源部21をマスタに、通信部9を含む制御部5をスレーブにしてSMBus(System Management Bus )方式等の通信方式による通信が行われる。SMBus方式の場合、シリアルクロック(SCL)は制御・電源部21から供給され、シリアルデータ(SDA)は制御・電源部21及び通信部9間で双方向に授受される。本実施の形態では、制御・電源部21が通信部9を2秒周期でポーリングして通信部9が送信しようとするデータの内容を読み出す。ポーリング周期の2秒は、制御・電源部21側の設定による。   Communication between the control / power supply unit 21 and the communication unit 9 is performed by a communication method such as an SMBus (System Management Bus) method using the control / power supply unit 21 as a master and the control unit 5 including the communication unit 9 as a slave. In the case of the SMBus system, the serial clock (SCL) is supplied from the control / power supply unit 21, and the serial data (SDA) is transferred between the control / power supply unit 21 and the communication unit 9 in both directions. In the present embodiment, the control / power supply unit 21 polls the communication unit 9 at a cycle of 2 seconds and reads the content of data to be transmitted by the communication unit 9. The polling cycle of 2 seconds depends on the setting on the control / power supply unit 21 side.

このポーリングにより、例えば、二次電池1の残容量及び相対残容量のデータが、通信部9を介して制御・電源部21に2秒周期で受け渡され、電気機器20が有する図示しない表示器に相対残容量の値(%)として表示される。また、制御部5にて設定された充電電流の初期値、即ち充電電流のデータは、残容量のデータと同様に通信部9を介して制御・電源部21に送信される。制御・電源部21では、制御部5から送信された充電電流に基づいて、二次電池1を定電流・定電圧充電する。   By this polling, for example, the remaining capacity and relative remaining capacity data of the secondary battery 1 are transferred to the control / power supply section 21 via the communication section 9 in a cycle of 2 seconds, and the display device (not shown) included in the electric device 20 Is displayed as a value (%) of the relative remaining capacity. Further, the initial value of the charging current set by the control unit 5, that is, the charging current data is transmitted to the control / power supply unit 21 via the communication unit 9 in the same manner as the remaining capacity data. The control / power supply unit 21 charges the secondary battery 1 with a constant current / constant voltage based on the charging current transmitted from the control unit 5.

次に、二次電池1を構成する一の電池ブロックの満充電容量(FCC)を算出(学習)する方法について説明する。
図2は、電池ブロック11,12,13の開放電圧(OCV)と相対残容量(RSOC)との関係を例示する放電特性のグラフである。図中横軸は、満充電容量(FCC)に対する残容量(RC)の比として定義される相対残容量(%)を表し、縦軸は開放電圧(V)を表す。本実施の形態では、電池ブロック11,12,13が満充電状態となる電圧が4.2Vであり、放電終止電圧が3Vである。
Next, a method for calculating (learning) the full charge capacity (FCC) of one battery block constituting the secondary battery 1 will be described.
FIG. 2 is a graph of discharge characteristics illustrating the relationship between the open circuit voltage (OCV) and the relative remaining capacity (RSOC) of the battery blocks 11, 12, and 13. In the figure, the horizontal axis represents the relative remaining capacity (%) defined as the ratio of the remaining capacity (RC) to the full charge capacity (FCC), and the vertical axis represents the open circuit voltage (V). In the present embodiment, the voltage at which the battery blocks 11, 12, 13 are fully charged is 4.2V, and the end-of-discharge voltage is 3V.

FCCは、例えば特許文献2に詳しい公知の方法によって算出する。つまり、図2に示すグラフを関数又はテーブルとしてROM52又はRAM53に記憶しておき、任意の2つの時点で検出した一の電池ブロックのOCVを、記憶した関数又はテーブルに適用してRSOCを各別に算出し、算出したRSOCの差分(ΔRSOC)と、前記時点間における残容量の変化量(ΔRC)とを以下の式(1)に適用してFCCを算出する。式(1)による算出を適時繰り返すことにより、FCCを学習することができる。   The FCC is calculated by, for example, a known method detailed in Patent Document 2. In other words, the graph shown in FIG. 2 is stored as a function or table in the ROM 52 or RAM 53, and the OCV of one battery block detected at any two points in time is applied to the stored function or table, and the RSOC is separately set. The FCC is calculated by applying the calculated RSOC difference (ΔRSOC) and the change amount (ΔRC) of the remaining capacity between the time points to the following equation (1). The FCC can be learned by repeating the calculation according to the equation (1) in a timely manner.

FCC=ΔRC/(ΔRSOC/100)・・・・・・・・(1)
ここでは、時点1,時点2で検出した一の電池ブロックのOCVをOCV1,OCV2とするとき、図2よりΔRSOCが「RSOC1−RSOC2」として算出される。また、前記時点1,時点2間におけるΔRCは、その間の充放電電流を積算することによって算出される。但し、ここでの充電電流及び放電電流は、互いに符号が異なる値として検出されるものである。
FCC = ΔRC / (ΔRSOC / 100) (1)
Here, when the OCV of one battery block detected at time 1 and time 2 is OCV1 and OCV2, ΔRSOC is calculated as “RSOC1−RSOC2” from FIG. Further, ΔRC between the time point 1 and the time point 2 is calculated by integrating the charging / discharging current between the time points. However, the charging current and the discharging current here are detected as values having different signs.

次に、各電池ブロック11,12,13について算出(学習)したFCCに基づいて残容量を算出する本発明に係る方法について説明する。
残容量の算出に先立ち、先ず二次電池1の電池ブロック11,12,13のOCVが各別に検出される。この場合、各OCVがより正確に検出されるようにするため、二次電池1が充電も放電もされていない期間が所定時間(例えば1時間)以上継続したときにOCVが検出される。二次電池1が充電も放電もされていないことを確認するには、充放電電流(の絶対値)が所定電流より小さいことを確認すればよい。
Next, the method according to the present invention for calculating the remaining capacity based on the FCC calculated (learned) for each of the battery blocks 11, 12, and 13 will be described.
Prior to calculating the remaining capacity, first, OCVs of the battery blocks 11, 12, and 13 of the secondary battery 1 are detected separately. In this case, in order to detect each OCV more accurately, the OCV is detected when a period in which the secondary battery 1 is not charged or discharged continues for a predetermined time (for example, 1 hour) or more. In order to confirm that the secondary battery 1 is not charged or discharged, it is only necessary to confirm that the charge / discharge current (absolute value thereof) is smaller than a predetermined current.

以上のようにして検出された電池ブロック11,12,13のOCVを、上述のとおりROM52又はRAM53に記憶された関数又はテーブルに適用することにより、電池ブロック11,12,13のRSOCが各別に算出される。算出された各RSOCを、以下の式(2)に適用することにより、電池ブロック11,12,13のRCが各別に算出される。   By applying the OCV of the battery blocks 11, 12, 13 detected as described above to the function or table stored in the ROM 52 or RAM 53 as described above, the RSOC of the battery blocks 11, 12, 13 can be determined separately. Calculated. By applying each calculated RSOC to the following formula (2), RC of the battery blocks 11, 12, 13 is calculated separately.

RC=RSOC×FCC・・・・・・・・・・・・・・・・(2)
ここでFCCは、式(1)により、各電池ブロック11,12,13について算出(学習)されたものである。
RC = RSOC x FCC (2)
Here, the FCC is calculated (learned) for each of the battery blocks 11, 12, and 13 by the equation (1).

式(2)によって算出された各RCのうち、どのRCに基づいて二次電池1の残容量とするかが問題であるが、本実施の形態にあっては、最も値が小さいRCを二次電池1の残容量とする。そのようにする理由を、次に示す図3を用いて説明する。
図3は、電池ブロック11,12,13の放電に伴うRSOCの変化を説明するための説明図である。図中横軸は相対残容量(%)を表し、縦軸は開放電圧(V)を表す。図3における実線は、図2に示す実線と同様に、電池ブロック11,12,13のOCVとRSOCとの関係を例示するものである。
Of the RCs calculated by the equation (2), there is a problem of which RC is used as the remaining capacity of the secondary battery 1, but in the present embodiment, the RC having the smallest value is set to two. The remaining capacity of the secondary battery 1 is assumed. The reason for doing so will be described with reference to FIG.
FIG. 3 is an explanatory diagram for explaining a change in RSOC associated with the discharge of the battery blocks 11, 12, and 13. In the figure, the horizontal axis represents the relative remaining capacity (%), and the vertical axis represents the open circuit voltage (V). The solid line in FIG. 3 exemplifies the relationship between the OCV and the RSOC of the battery blocks 11, 12, and 13, similarly to the solid line shown in FIG. 2.

さて、電池ブロック11,12,13で充放電が可能な容量がほぼ揃っている場合であっても、電池ブロック11,12,13間で自己放電量に差が生じる場合がある。例えば、電池ブロック11,13の自己放電量が最小,最大である場合、図3の点A1で示すように電池ブロック11の電池電圧が4.2Vの満充電状態となっても、電池ブロック12,13の電池電圧は、点B1,点C1で示すように4.2Vより低い状態に留まっている。このような場合であっても、二次電池1が満充電状態にあると判定される。   Now, even if the battery blocks 11, 12, 13 have almost the same chargeable / dischargeable capacity, there may be a difference in the self-discharge amount between the battery blocks 11, 12, 13. For example, when the self-discharge amounts of the battery blocks 11 and 13 are minimum and maximum, the battery block 12 even when the battery voltage of the battery block 11 is 4.2 V as shown by the point A1 in FIG. , 13 remains at a level lower than 4.2 V as indicated by points B1 and C1. Even in such a case, it is determined that the secondary battery 1 is in a fully charged state.

一方、式(1)によって算出された電池ブロック11,12,13夫々のFCCは、電池ブロック11,12,13で充放電が可能な容量が略同一である限り、自己放電量の大小に関わらず略一定となる。そして、二次電池1が満充電状態となったときの残容量を上記FCCとし、そのときからの充放電量をFCCに加算/減算することによって二次電池1の残容量を適時算出するのが従来の方法である。   On the other hand, the FCC of each of the battery blocks 11, 12, and 13 calculated by the equation (1) is independent of the amount of self-discharge as long as the capacity that can be charged and discharged in the battery blocks 11, 12, and 13 is substantially the same. It becomes almost constant. The remaining capacity when the secondary battery 1 is fully charged is set as the FCC, and the remaining capacity of the secondary battery 1 is calculated in a timely manner by adding / subtracting the charge / discharge amount from the FCC to the FCC. Is the conventional method.

より具体的な例として、二次電池1が満充電状態となったときの電池ブロック11,12,13のRSOCが100%,96%,92%であり、その後、電池ブロック11のRSOCが11%に低下するまで二次電池1が放電した場合を想定する。電池ブロック11,12,13で充放電が可能な容量は略同一とする。このような場合、電池ブロック11が、図3に示す実線上を点A1から点A2まで移動する間に、電池ブロック12,13は、点B1,C1から夫々点B2,C2まで移動する。点B2,C2におけるRSOCは、7%,3%となる。   As a more specific example, the RSOC of the battery blocks 11, 12, 13 when the secondary battery 1 is fully charged is 100%, 96%, 92%, and then the RSOC of the battery block 11 is 11 Assume that the secondary battery 1 is discharged until it decreases to%. The capacity | capacitance which can be charged / discharged by the battery blocks 11, 12, and 13 shall be substantially the same. In such a case, while the battery block 11 moves on the solid line shown in FIG. 3 from the point A1 to the point A2, the battery blocks 12 and 13 move from the points B1 and C1 to the points B2 and C2, respectively. The RSOC at points B2 and C2 is 7% and 3%.

一般的には、電池ブロック11,12,13のうち、電圧が最小の電池ブロックの電池電圧が点B2(又は点C2)に対応する電圧まで低下した場合、二次電池1の残容量が7%(又は3%)に補正される。つまり、従来の方法によれば、電池ブロック13の電池電圧が、RSOCの7%(又は3%)に相当する低電圧に到達した場合、電圧が最大の電池ブロック11のRSOCは、満充電状態の100%から放電電流(又は放電電力)分が減算されて11%となるが、二次電池1全体のRSOCとしては、この11%から、急に、数値が大きく異なる7%(又は3%)に補正される。これにより、電池ブロック13による低電圧が検出されたときには、二次電池1全体としての残容量が、既に7%(又は3%)しか残されていないことが示される。   In general, when the battery voltage of the battery block having the smallest voltage among the battery blocks 11, 12, and 13 decreases to a voltage corresponding to the point B2 (or the point C2), the remaining capacity of the secondary battery 1 is 7 % (Or 3%) is corrected. That is, according to the conventional method, when the battery voltage of the battery block 13 reaches a low voltage corresponding to 7% (or 3%) of the RSOC, the RSOC of the battery block 11 having the maximum voltage is in a fully charged state. The amount of discharge current (or discharge power) is subtracted from 100% to 11%, but the RSOC of the secondary battery 1 as a whole is 7% (or 3%), which suddenly differs greatly from this 11%. ) Is corrected. Thereby, when the low voltage by the battery block 13 is detected, it is shown that only 7% (or 3%) of the remaining capacity of the secondary battery 1 is already left.

これに対し、本実施の形態では、二次電池1が満充電状態となったときから、電池ブロック13のRCに基づいて二次電池1の残容量が算出されるため、上述のように、それまで11%以上であった残容量が突然7%(又は3%)となることが防止される。また、電池ブロック11,12,13について各別にFCCが算出されるため、電池ブロック11,12,13で充放電が可能な容量に大小の差がある場合であっても、残容量が新たに算出されるときに、RCが最小の電池ブロックのRCに基づいて二次電池1の残容量が算出される。   On the other hand, in this embodiment, since the remaining capacity of the secondary battery 1 is calculated based on the RC of the battery block 13 from when the secondary battery 1 is fully charged, as described above, The remaining capacity that has been 11% or more until that time is prevented from suddenly becoming 7% (or 3%). Further, since the FCC is calculated for each of the battery blocks 11, 12, and 13, even if there is a difference in the capacity that can be charged and discharged in the battery blocks 11, 12, and 13, the remaining capacity is newly added. When calculated, the remaining capacity of the secondary battery 1 is calculated based on the RC of the battery block having the smallest RC.

尚、本実施の形態では、充電も放電もされていない期間が1時間以上継続する場合に、二次電池1の残容量を新たに算出したが、二次電池1が満充電状態にあることを検出した後に限定して、二次電池1の残容量を新たに算出するようにしてもよい。   In the present embodiment, the remaining capacity of the secondary battery 1 is newly calculated when the period in which neither charging nor discharging is continued for one hour or longer, the secondary battery 1 is in a fully charged state. The remaining capacity of the secondary battery 1 may be newly calculated only after the detection.

以下では、上述したパック電池の制御部5の動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM52に予め格納された制御プログラムに従ってCPU51により実行される。
図4,5は、二次電池1の残容量を算出するCPU51の処理手順を示すフローチャートである。図4の処理が起動される周期は、例えば250m秒であるが、これに限定されるものではない。
Below, operation | movement of the control part 5 of the battery pack mentioned above is demonstrated using the flowchart which shows it. The following processing is executed by the CPU 51 according to a control program stored in advance in the ROM 52.
4 and 5 are flowcharts showing the processing procedure of the CPU 51 for calculating the remaining capacity of the secondary battery 1. The period at which the process of FIG. 4 is started is, for example, 250 milliseconds, but is not limited thereto.

図4,5の処理で用いられる計時中フラグ及び満充電フラグは、RAM53に記憶されており、所定の初期化処理にて0にクリアされる。計時中フラグは、既に計時を開始していることを示すフラグであり、満充電フラグは、図4,5とは異なる図示しない処理にて、二次電池1の満充電状態が検出されたことを示すフラグである。その他の演算過程のデータについても、適宜RAM53に記憶される。加えて、図2に示したグラフに対応するテーブル値と、図示しない他の処理にて算出された各電池ブロック11,12,13のFCCとが、ROM52又はRAM53に記憶されている。   The time keeping flag and the full charge flag used in the processes of FIGS. 4 and 5 are stored in the RAM 53 and cleared to 0 by a predetermined initialization process. The timekeeping flag is a flag indicating that timekeeping has already started, and the full charge flag indicates that the fully charged state of the secondary battery 1 has been detected by a process (not shown) different from FIGS. It is a flag which shows. Other calculation process data is also stored in the RAM 53 as appropriate. In addition, the table values corresponding to the graph shown in FIG. 2 and the FCCs of the battery blocks 11, 12, 13 calculated by other processing (not shown) are stored in the ROM 52 or the RAM 53.

図4の処理が起動された場合、CPU51は、A/D変換部4を介して電流検出器2の電圧を取り込み、取り込んだ電圧を電流に換算して充放電電流を検出する(S11)。実際には、複数回取り込んだ電圧に基づいて充放電電流を検出するようにしてもよい。その後、CPU51は、検出した充放電電流が、例えば−5mA(放電電流の領域)より大きく、且つ20mA(充電電流の領域)より小さいか否かを判定し(S12)、この範囲内にない場合(S12:NO)、その後は何も実行せずに図4の処理を終了する。   When the process of FIG. 4 is activated, the CPU 51 captures the voltage of the current detector 2 via the A / D converter 4, converts the captured voltage into a current, and detects the charge / discharge current (S11). Actually, the charge / discharge current may be detected based on the voltage taken a plurality of times. Thereafter, the CPU 51 determines whether or not the detected charging / discharging current is larger than, for example, −5 mA (discharging current region) and smaller than 20 mA (charging current region) (S12). (S12: NO), after that, nothing is executed and the process of FIG. 4 is terminated.

ここでは、A/D変換部4に変換誤差がある点と、パック電池10内部に見かけ上の充電電流となる電流が存在する点とを考慮して、20mAより小さい充電電流、及び絶対値が5mAより小さい放電電流を充放電電流として検出しないようにする。但し、ステップS12で充放電電流と比較すべき電流値は、20mA及び−5mAに限定されるものではない。   Here, in consideration of the fact that there is a conversion error in the A / D converter 4 and the fact that there is a current that becomes an apparent charging current inside the battery pack 10, the charging current smaller than 20 mA and the absolute value are A discharge current smaller than 5 mA is not detected as a charge / discharge current. However, the current value to be compared with the charge / discharge current in step S12 is not limited to 20 mA and −5 mA.

検出した充放電電流が−5mAより大きく、且つ20mAより小さい場合(S12:YES)、充放電が行われていないと判定して差し支えないため、CPU51は、既に計時中であるか否かを確認するために、計時中フラグが1にセットされているか否かを判定する(S13)。1にセットされていない場合(S13:NO)、CPU51は、タイマ54を用いて計時を開始する(S14)と共に、計時中フラグを1にセットして(S15)図4の処理を終了する。   When the detected charging / discharging current is larger than −5 mA and smaller than 20 mA (S12: YES), it may be determined that charging / discharging is not performed, so the CPU 51 confirms whether or not the timing is already being performed. Therefore, it is determined whether or not the time keeping flag is set to 1 (S13). If it is not set to 1 (S13: NO), the CPU 51 starts measuring time using the timer 54 (S14), sets a counting flag to 1 (S15), and ends the processing of FIG.

ステップS13で計時中フラグが1にセットされている場合(S13:YES)、即ち既に計時が開始されている場合、CPU51は、計時を開始してから1時間が経過したか否かを判定し(S16)、経過していない場合(S16:NO)、一旦図4の処理を終了する。1時間が経過した場合(S16:YES)、CPU51は、次回の計時に備えて計時中フラグを0にクリアした(S17)後、A/D変換部4を介して各電池ブロック11,12,13のOCVを検出する(S18)。   When the timekeeping flag is set to 1 in step S13 (S13: YES), that is, when timekeeping has already started, the CPU 51 determines whether or not one hour has elapsed since the time measurement was started. (S16) If the time has not elapsed (S16: NO), the processing of FIG. 4 is once terminated. When one hour has elapsed (S16: YES), the CPU 51 clears the timekeeping flag to 0 for the next timekeeping (S17), and then each battery block 11, 12, 13 OCVs are detected (S18).

その後、CPU51は、検出したOCVを、ROM52又はRAM53に記憶したテーブルに適用することによって各電池ブロック11,12,13のRSOCを算出する(S19)。そして、上述のように、2つの時点で検出した各電池ブロック11,12,13のOCVが得られたとき、式(1)を利用することにより、各電池ブロック11,12,13のFCCを算出する。更に、CPU51は、算出したRSOCと、ROM52又はRAM53に記憶した各電池ブロック11,12,13のFCCとを式(2)に適用することにより、各電池ブロック11,12,13のRCを算出し(S20)、算出した各RCを、一時的にRAM53に記憶する(S21)。   Thereafter, the CPU 51 calculates the RSOC of each of the battery blocks 11, 12, and 13 by applying the detected OCV to a table stored in the ROM 52 or the RAM 53 (S19). As described above, when the OCV of each battery block 11, 12, 13 detected at two points in time is obtained, the FCC of each battery block 11, 12, 13 is obtained by using the equation (1). calculate. Further, the CPU 51 calculates the RC of each battery block 11, 12, 13 by applying the calculated RSOC and the FCC of each battery block 11, 12, 13 stored in the ROM 52 or RAM 53 to Equation (2). Then, each calculated RC is temporarily stored in the RAM 53 (S21).

次に図5に移って、CPU51は、満充電フラグが1にセットされているか否かを判定し(S22)、セットされていない場合(S22:NO)、後述するステップS26に処理を移す。満充電フラグが1にセットされている場合(S22:YES)、即ち二次電池1が満充電状態にあることが、図示しない他の処理にて検出された場合、CPU51は、次回の満充電状態の検出に備えて満充電フラグを0にクリアする(S23)。   Next, moving to FIG. 5, the CPU 51 determines whether or not the full charge flag is set to 1 (S <b> 22), and if it is not set (S <b> 22: NO), the process proceeds to step S <b> 26 described later. When the full charge flag is set to 1 (S22: YES), that is, when it is detected by other processing (not shown) that the secondary battery 1 is in the full charge state, the CPU 51 performs the next full charge. The full charge flag is cleared to 0 in preparation for the state detection (S23).

その後、CPU51は、RAM53に記憶した電池ブロック11,12,13のRCのうち、最もRCが小さい電池ブロックを特定し(S24)、特定した電池ブロックの通番(例えば1,2,3)をRAM53に記憶する(S25)。ここでの通番は、電池ブロック11,12,13を識別するための情報であり、通番以外の情報を用いて電池ブロック11,12,13が識別されるようにしてもよい。   Thereafter, the CPU 51 identifies the battery block having the smallest RC among the RCs of the battery blocks 11, 12, and 13 stored in the RAM 53 (S 24), and stores the serial number (eg, 1, 2, 3) of the identified battery block in the RAM 53. (S25). The serial numbers here are information for identifying the battery blocks 11, 12, and 13. The battery blocks 11, 12, and 13 may be identified using information other than the serial numbers.

次いで、CPU51は、RAM53に記憶した電池ブロックの通番を読み出し(S26)、読み出した通番によって識別される電池ブロックのRCをRAM53から読み出す(S27)。更に、CPU51は、読み出したRCから通信データを生成し(S28)、生成した通信データを、通信部9を介して制御・電源部21に送信した(S29)後、図5の処理を終了する。   Next, the CPU 51 reads the serial number of the battery block stored in the RAM 53 (S26), and reads the RC of the battery block identified by the read serial number from the RAM 53 (S27). Further, the CPU 51 generates communication data from the read RC (S28), and transmits the generated communication data to the control / power supply unit 21 via the communication unit 9 (S29), and then ends the process of FIG. .

以上のフローチャートにおいて、図示しない処理によって電池ブロック毎にFCCを算出する公知の手段が請求項に記載の「第1算出手段」に対応し、ステップS28が請求項に記載の「生成手段」に対応し、ステップS18が請求項に記載の「検出手段」に対応し、ステップS19が請求項に記載の「第2算出手段」に対応し、ステップS20が請求項に記載の「第3算出手段」に対応する。また、ステップS12が請求項に記載の「時系列的に判定する手段」に対応し、ステップS16が請求項に記載の「第1判定手段」に対応し、ステップS24が請求項に記載の「二次電池を特定する手段」に対応し、ステップS25及びRAM53が請求項に記載の「記憶手段」に対応し、ステップS22が請求項に記載の「第2判定手段」に対応する。   In the above flowchart, a known means for calculating the FCC for each battery block by a process not shown corresponds to the “first calculation means” recited in the claims, and step S28 corresponds to the “generation means” recited in the claims. Step S18 corresponds to the “detection means” described in the claims, step S19 corresponds to the “second calculation means” described in the claims, and step S20 corresponds to the “third calculation means” described in the claims. Corresponding to Further, step S12 corresponds to “means for determining in time series” described in the claims, step S16 corresponds to “first determination means” described in the claims, and step S24 corresponds to “ Step S25 and RAM 53 correspond to the “storage means” recited in the claims, and step S22 corresponds to the “second determination means” recited in the claims.

尚、本実施の形態にあっては、図5に示すステップS22で満充電フラグが1にセットされているか否かを判定したが、この判定を行うことなく、毎回ステップS24,S25を実行するようにしてもよい。この場合は、二次電池1が満充電状態にあるか否かに関わらず、残容量の算出が行われる。   In this embodiment, it is determined whether or not the full charge flag is set to 1 in step S22 shown in FIG. 5, but steps S24 and S25 are executed each time without making this determination. You may do it. In this case, the remaining capacity is calculated regardless of whether or not the secondary battery 1 is fully charged.

また、本実施の形態にあっては、二次電池1の充放電が行われていない間に残容量を算出したが、このようにして算出した残容量に対し、その後の充放電量を加算/減算することにより、随時残容量を算出するようにしてもよい。
更に、残容量の通信データのみを生成したが、算出した残容量をFCCで除することにより、RSOCを算出し、算出したRSOCからRSOCの通信データを生成して送信するようにしてもよい。
Further, in the present embodiment, the remaining capacity is calculated while the secondary battery 1 is not being charged / discharged. The subsequent charge / discharge amount is added to the remaining capacity thus calculated. The remaining capacity may be calculated at any time by subtracting.
Further, although only the remaining capacity communication data is generated, the calculated remaining capacity may be divided by FCC to calculate the RSOC, and RSOC communication data may be generated from the calculated RSOC and transmitted.

以上のように本実施の形態によれば、直列接続された3つの電池ブロック夫々のFCCを、それ自体公知の方法によって算出(学習)する一方で、各電池ブロックのOCVを検出し、検出したOCVを、電池ブロックのOCVとRSOCとの関係を示す放電特性に照らして各電池ブロックのRSOCを算出する。そして、算出したRSOCに夫々の電池ブロックのFCCを乗じて各電池ブロックのRCを算出し、算出したRCのうち最小のRCを、二次電池全体の残容量とする。
これにより、直列に接続された複数の電池ブロックのRCを各別に算出し、算出したRCのうちの最小のRCによって二次電池全体の残容量を代表させる。このため、自己放電量が他の電池ブロックより大きい(又は充放電可能な容量が他の電池ブロックより小さい)一の電池ブロックが、RSOCの7%又は3%に相当する低電圧の状態になる前に、例えば二次電池全体のRSOCが11%以上と算出され、且つ、3Vの放電終止の状態となるまでの適量の放電量が担保されることとなる。
従って、複数直列に接続された電池ブロックの放電が進行して残容量(RC)又は相対残容量(RSOC)が一定の小さな容量以下になった場合であっても、適宜放電を継続することが可能となる。
As described above, according to the present embodiment, the FCC of each of the three battery blocks connected in series is calculated (learned) by a method known per se, while the OCV of each battery block is detected and detected. The OCV is calculated based on the discharge characteristics indicating the relationship between the OCV of the battery block and the RSOC, and the RSOC of each battery block is calculated. Then, the RC of each battery block is calculated by multiplying the calculated RSOC by the FCC of each battery block, and the smallest RC among the calculated RCs is set as the remaining capacity of the entire secondary battery.
Thereby, RC of the some battery block connected in series is calculated separately, and the remaining capacity of the whole secondary battery is represented by the minimum RC of the calculated RC. For this reason, one battery block whose self-discharge amount is larger than other battery blocks (or the chargeable / dischargeable capacity is smaller than other battery blocks) is in a low voltage state corresponding to 7% or 3% of RSOC. Before, for example, the RSOC of the entire secondary battery is calculated to be 11% or more, and an appropriate amount of discharge is secured until the discharge is stopped at 3V.
Therefore, even when the discharge of a plurality of battery blocks connected in series progresses and the remaining capacity (RC) or the relative remaining capacity (RSOC) falls below a certain small capacity, it is possible to continue discharging appropriately. It becomes possible.

また、250m秒毎に検出した二次電池の充放電電流が20mAより小さく、且つ−5mAより大きい状態、つまり充放電が行われていない状態が1時間以上継続する場合に、各電池ブロックのOCVを検出する。
従って、電池ブロックに対する充電及び放電の影響が取り除かれた状態で、OCVをより正確に検出することが可能となる。
In addition, when the state in which the charging / discharging current of the secondary battery detected every 250 milliseconds is smaller than 20 mA and larger than −5 mA, that is, the state where charging / discharging is not performed continues for one hour or more, the OCV of each battery block Is detected.
Therefore, the OCV can be detected more accurately in a state where the influence of charging and discharging on the battery block is removed.

更に、一旦RCが最小と特定された電池ブロックはRCが最小であり続ける蓋然性が高いため、各別に算出した電池ブロックのRCのうちで最も小さいRCを有する電池ブロックを特定する通番をRAMに記憶しておき、記憶した通番によって識別される電池ブロックのRCを、二次電池全体の残容量とする。
従って、通番が更新されるまで、二次電池全体の残容量を決定付ける電池ブロックが固定されるため、残容量が不連続に変化するのを防止することが可能となる。また、通番が更新される間に、前回更新された通番によって特定される電池ブロックのRCから充放電量を加算/減算することにより、新たな残容量を適時算出することが可能となる。
Further, since the battery block once identified as having the smallest RC is likely to remain at the smallest RC, the serial number for identifying the battery block having the smallest RC among the RCs of the battery blocks calculated separately is stored in the RAM. The RC of the battery block identified by the stored serial number is set as the remaining capacity of the entire secondary battery.
Therefore, since the battery block that determines the remaining capacity of the entire secondary battery is fixed until the serial number is updated, it is possible to prevent the remaining capacity from changing discontinuously. Further, by adding / subtracting the charge / discharge amount from the RC of the battery block specified by the previously updated sequence number while the sequence number is updated, a new remaining capacity can be calculated in a timely manner.

更にまた、最も電池電圧が高い電池ブロックが満充電状態となった後に、RCが最小の電池ブロックを特定する通番を更新する。
従って、RCの差が最も顕著に現れる電圧状態にて、RCが最小の電池ブロックを適切に特定することが可能となる。また、残容量が不連続に変化する可能性のあるポイントを、満充電状態の検出後に特定することが可能となる。
Furthermore, after the battery block with the highest battery voltage is fully charged, the serial number for specifying the battery block with the smallest RC is updated.
Therefore, it is possible to appropriately specify the battery block having the smallest RC in the voltage state where the difference in RC is most prominent. In addition, it is possible to identify a point where the remaining capacity may change discontinuously after detection of the fully charged state.

今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 二次電池
11,12,13 電池ブロック
10 パック電池
2 電流検出器
4 A/D変換部
5 制御部
51 CPU
52 ROM
53 RAM
54 タイマ
71、72 MOSFET
9 通信部
20 電気機器
21 制御・電源部
DESCRIPTION OF SYMBOLS 1 Secondary battery 11, 12, 13 Battery block 10 Pack battery 2 Current detector 4 A / D conversion part 5 Control part 51 CPU
52 ROM
53 RAM
54 Timer 71, 72 MOSFET
9 Communication Department 20 Electrical Equipment 21 Control / Power Supply

Claims (8)

直列接続された複数の二次電池の満充電容量を算出し、算出した満充電容量に基づいて前記複数の二次電池の残容量を算出する方法において、
二次電池毎に満充電容量を算出し、
各二次電池の開放電圧を検出し、
前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び検出した開放電圧に基づいて、夫々の二次電池の相対残容量を算出し、
算出した相対残容量に夫々の二次電池の満充電容量を乗ずることにより、各二次電池の残容量を算出し、
算出した残容量のうち、最も小さい残容量を前記複数の二次電池の残容量とすること
を特徴とする二次電池の残容量算出方法。
In the method of calculating the full charge capacity of a plurality of secondary batteries connected in series, and calculating the remaining capacity of the plurality of secondary batteries based on the calculated full charge capacity,
Calculate the full charge capacity for each secondary battery,
Detect the open voltage of each secondary battery,
Based on the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity relative to the full charge capacity, and the detected open voltage, the relative remaining capacity of each secondary battery is calculated,
Calculate the remaining capacity of each secondary battery by multiplying the calculated relative remaining capacity by the full charge capacity of each secondary battery,
Of the calculated remaining capacities, the smallest remaining capacity is set as the remaining capacity of the plurality of secondary batteries.
前記二次電池の充電電流及び放電電流が所定電流より小さいか否かを時系列的に判定し、
小さいと判定する状態が所定時間以上継続するか否かを判定し、
継続すると判定した場合、各二次電池の開放電圧を検出すること
を特徴とする請求項1に記載の二次電池の残容量算出方法。
It is determined in time series whether the charging current and discharging current of the secondary battery are smaller than a predetermined current,
Determine whether the state that is determined to be small continues for a predetermined time or more,
The method for calculating the remaining capacity of the secondary battery according to claim 1, wherein when it is determined to continue, an open circuit voltage of each secondary battery is detected.
算出した残容量のうち、最も小さい残容量を有する二次電池を特定し、
特定した二次電池を識別する情報を記憶し、
記憶した情報によって識別される二次電池の残容量を、前記複数の二次電池の残容量とすること
を特徴とする請求項1又は2に記載の二次電池の残容量算出方法。
Of the calculated remaining capacity, identify the secondary battery with the smallest remaining capacity,
Stores information that identifies the specified secondary battery,
The method for calculating the remaining capacity of the secondary battery according to claim 1 or 2, wherein the remaining capacity of the secondary battery identified by the stored information is used as the remaining capacity of the plurality of secondary batteries.
前記二次電池が満充電状態にあるか否かを判定し、
満充電状態にあると判定した後に、前記二次電池を識別する情報を更新すること
を特徴とする請求項3に記載の二次電池の残容量算出方法。
Determining whether the secondary battery is fully charged,
The method for calculating the remaining capacity of the secondary battery according to claim 3, wherein information for identifying the secondary battery is updated after it is determined that the battery is in a fully charged state.
直列接続された複数の二次電池と、該二次電池の満充電容量を算出する第1算出手段と、算出した満充電容量に基づいて前記複数の二次電池の残容量のデータを生成する生成手段とを備えるパック電池において、
前記第1算出手段は、二次電池毎に満充電容量を検出するようにしてあり、
各二次電池の開放電圧を検出する検出手段と、
前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び前記検出手段が検出した開放電圧に基づいて、夫々の二次電池の相対残容量を算出する第2算出手段と、
該第2算出手段が算出した相対残容量に夫々の二次電池の満充電容量を乗ずることにより、各二次電池の残容量を算出する第3算出手段とを備え、
前記生成手段は、前記第3算出手段が算出した残容量のうち、最も小さい残容量のデータを生成するようにしてあること
を特徴とするパック電池。
A plurality of secondary batteries connected in series, a first calculation means for calculating a full charge capacity of the secondary battery, and data of remaining capacity of the plurality of secondary batteries based on the calculated full charge capacity In the battery pack comprising the generating means,
The first calculating means detects a full charge capacity for each secondary battery;
Detecting means for detecting an open voltage of each secondary battery;
A second calculating the relative remaining capacity of each secondary battery based on the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity with respect to the full charge capacity, and the open voltage detected by the detecting means. A calculation means;
Third calculation means for calculating the remaining capacity of each secondary battery by multiplying the relative remaining capacity calculated by the second calculation means by the full charge capacity of each secondary battery,
The battery pack is characterized in that the generation means generates data of the smallest remaining capacity among the remaining capacity calculated by the third calculation means.
前記二次電池の充電電流及び放電電流が所定電流より小さいか否かを時系列的に判定する手段と、
該手段が小さいと判定する状態が所定時間以上継続するか否かを判定する第1判定手段とを備え、
前記検出手段は、前記第1判定手段が継続すると判定した場合、各二次電池の開放電圧を検出するようにしてあること
を特徴とする請求項5に記載のパック電池。
Means for chronologically determining whether the charging current and discharging current of the secondary battery are smaller than a predetermined current;
First determination means for determining whether or not the state for determining that the means is small continues for a predetermined time or more,
6. The battery pack according to claim 5, wherein when the first determination unit determines that the first determination unit continues, the detection unit detects an open circuit voltage of each secondary battery.
前記第3算出手段が算出した残容量のうち、最も小さい残容量を有する二次電池を特定する手段と、
該手段が特定した二次電池を識別する情報を記憶する記憶手段とを備え、
前記生成手段は、前記記憶手段が記憶した情報によって識別される二次電池の残容量のデータを生成するようにしてあること
を特徴とする請求項5又は6に記載のパック電池。
Means for specifying a secondary battery having the smallest remaining capacity among the remaining capacity calculated by the third calculating means;
Storage means for storing information for identifying the secondary battery specified by the means;
7. The battery pack according to claim 5, wherein the generation unit generates data of a remaining capacity of the secondary battery identified by the information stored in the storage unit.
前記二次電池が満充電状態にあるか否かを判定する第2判定手段を備え、
前記記憶手段は、前記第2判定手段が満充電状態にあると判定した場合、前記二次電池を識別する情報を更新するようにしてあること
を特徴とする請求項7に記載のパック電池。
A second determination means for determining whether or not the secondary battery is in a fully charged state;
8. The battery pack according to claim 7, wherein the storage unit is configured to update information for identifying the secondary battery when the second determination unit determines that the battery is in a fully charged state.
JP2012018227A 2012-01-31 2012-01-31 Method for calculating residual capacity of secondary cell and battery pack Pending JP2013156202A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012018227A JP2013156202A (en) 2012-01-31 2012-01-31 Method for calculating residual capacity of secondary cell and battery pack
CN2012105008284A CN103226183A (en) 2012-01-31 2012-11-29 A residual capacity calculating method of a secondary battery and a combined battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018227A JP2013156202A (en) 2012-01-31 2012-01-31 Method for calculating residual capacity of secondary cell and battery pack

Publications (1)

Publication Number Publication Date
JP2013156202A true JP2013156202A (en) 2013-08-15

Family

ID=48836699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018227A Pending JP2013156202A (en) 2012-01-31 2012-01-31 Method for calculating residual capacity of secondary cell and battery pack

Country Status (2)

Country Link
JP (1) JP2013156202A (en)
CN (1) CN103226183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064350A (en) * 2016-10-12 2018-04-19 オンキヨー株式会社 Electronic equipment
CN113711069A (en) * 2020-01-15 2021-11-26 深圳市大疆创新科技有限公司 Battery abnormity detection method and system, battery and movable platform

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122190B2 (en) 2014-01-28 2018-11-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power adapter, terminal, and method for processing impedance exception of charging loop
WO2017201736A1 (en) * 2016-05-27 2017-11-30 广东欧珀移动通信有限公司 Battery protecting board, battery, and mobile terminal
WO2017202349A1 (en) 2016-05-27 2017-11-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery protection board, battery and mobile terminal
EP3444625A4 (en) * 2016-07-08 2020-01-15 Kaneka Corporation Electricity storage device, electricity storage system, and power supply system
CN106680729B (en) * 2017-01-04 2019-01-29 重庆长安汽车股份有限公司 A kind of battery remaining power evaluation method and system
WO2019135300A1 (en) * 2018-01-05 2019-07-11 株式会社カネカ Power storage device, power storage system, power supply system, and control method for power storage device
CN110542862B (en) * 2018-05-28 2022-02-18 宁德新能源科技有限公司 Test method, test system and readable storage medium
CN109188296B (en) * 2018-09-14 2021-07-16 郑州云海信息技术有限公司 BBU electric quantity verification method, device, terminal and FCC calculation method
CN110850305B (en) * 2019-12-02 2022-06-03 劢微机器人科技(深圳)有限公司 Method and device for calculating electric quantity of lead-acid battery and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (en) * 1994-07-15 1996-02-02 Toshiba Corp Method for estimating residual capacity of battery
JPH08317572A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Controller of charge state of battery assembly
JPH11174135A (en) * 1997-12-09 1999-07-02 Yazaki Corp Device for measuring remaining capacity of battery
JP2002042906A (en) * 2000-07-21 2002-02-08 Honda Motor Co Ltd Battery voltage detector and hybrid vehicle control device using the same
JP2003077548A (en) * 2001-06-08 2003-03-14 Toshitaka Takei Battery managing method and system for battery set

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (en) * 1994-07-15 1996-02-02 Toshiba Corp Method for estimating residual capacity of battery
JPH08317572A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Controller of charge state of battery assembly
JPH11174135A (en) * 1997-12-09 1999-07-02 Yazaki Corp Device for measuring remaining capacity of battery
JP2002042906A (en) * 2000-07-21 2002-02-08 Honda Motor Co Ltd Battery voltage detector and hybrid vehicle control device using the same
JP2003077548A (en) * 2001-06-08 2003-03-14 Toshitaka Takei Battery managing method and system for battery set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064350A (en) * 2016-10-12 2018-04-19 オンキヨー株式会社 Electronic equipment
CN113711069A (en) * 2020-01-15 2021-11-26 深圳市大疆创新科技有限公司 Battery abnormity detection method and system, battery and movable platform

Also Published As

Publication number Publication date
CN103226183A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP2013156202A (en) Method for calculating residual capacity of secondary cell and battery pack
JP5174104B2 (en) Secondary battery charging method and battery pack
JP5375110B2 (en) Battery pack, semiconductor integrated circuit, remaining capacity correction method, remaining capacity correction program
CN109671997B (en) Electronic device and charging method
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
US20130080094A1 (en) Device for Depth of Energy Prediction of a Battery and a Method for the Same
JP2015144562A (en) Charging method of secondary battery, charging control device, and battery pack
JP5119307B2 (en) Battery pack charge control method
US20120121952A1 (en) Battery status detecting device and battery pack where the battery status detecting device is provided
CN103001299A (en) Charger
JP2012115004A (en) Battery monitoring device and battery monitoring method
JP2012242135A (en) Residual capacity calculation method, pre-shipment adjustment method of packed battery, residual capacity calculation device, and packed battery
JP2013135510A (en) Determination method of charging current and battery pack
EP3444625A1 (en) Electricity storage device, electricity storage system, and power supply system
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
JP2014033604A (en) Charge/discharge state equalization method for battery system, charge/discharge state change method for battery system, and battery system
JP2014025738A (en) Residual capacity estimation device
JP4074596B2 (en) Rechargeable battery or rechargeable battery pack
JP4764971B2 (en) Battery level measuring device
JP2013178166A (en) Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery
JP4016881B2 (en) Battery level measuring device
JP2009052974A (en) Battery capacity estimating circuit and battery pack
JP2013250159A (en) Residual capacity calculation method for secondary battery, and pack battery
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
JP2014010005A (en) Relative residual capacity calculation method for secondary battery, and pack battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329