JP2003075125A - Thickness measuring method and thickness measuring device of wafer - Google Patents

Thickness measuring method and thickness measuring device of wafer

Info

Publication number
JP2003075125A
JP2003075125A JP2001269762A JP2001269762A JP2003075125A JP 2003075125 A JP2003075125 A JP 2003075125A JP 2001269762 A JP2001269762 A JP 2001269762A JP 2001269762 A JP2001269762 A JP 2001269762A JP 2003075125 A JP2003075125 A JP 2003075125A
Authority
JP
Japan
Prior art keywords
measured
thickness
light
light receiving
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001269762A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Tomio Kubo
富美夫 久保
Yoshinori Tanno
好徳 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2001269762A priority Critical patent/JP2003075125A/en
Publication of JP2003075125A publication Critical patent/JP2003075125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thickness measuring device capable of measuring the wafer thickness and a thickness distribution highly accurately, even in the case of a flexible silicon wafer having the thickness of 30-50 μm or in the case of a wafer on which a transparent protective film is laminated. SOLUTION: In this thickness measuring device 1, a measuring object loaded on a loading stand 36 having sucking function is moved onto a measuring stage A where a floodlight means and a pair of optical sensors 10, 10 equipped with a light receiving means equipped with a two-dimensional light receiving element, and a signal processing means are fixed vertically at a passable distance of the measuring object, and a slit beam is floodlighted onto a detection area of the measuring object from the floodlight means, and reflected light from the detection area is received by the two-dimensional light receiving element (CCD) 20, and the thickness, the height or a step of the measuring object in the detection area are calculated by the signal processing means 29 from a second floodlight distribution existing on the near side of the floodlight means among light-receiving quantity distributions on the two-dimensional light receiving element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、厚みが20〜15
0μmと薄厚の可撓性ウエハの肉厚および厚み分布、並
びに、保護樹脂フィルムによりデバイスパタ−ンが保護
されている薄厚ウエハのウエハ部分の厚みおよび厚み分
布を測定できるウエハの厚み測定装置に関する。
TECHNICAL FIELD The present invention has a thickness of 20 to 15
The present invention relates to a wafer thickness measuring device capable of measuring the thickness and thickness distribution of a thin flexible wafer having a thickness of 0 μm, and the thickness and thickness distribution of a wafer portion of a thin wafer whose device pattern is protected by a protective resin film.

【0002】[0002]

【従来の技術】半導体基板の製造において、得られる半
導体基板の製造失敗の原因を究明しやすくするため製造
の前工程、後工程等における次工程に進む前に加工され
た基板をテストし、評価することが行なわれる。ウエハ
の厚みを測定することもその一例である。ウエハの厚み
測定装置としては、静電容量式厚み計が一般に使用され
ている(特開平5−67660号)。一般にウエハ(基
板)の厚みは、基板の中心点の厚み、基板の中心点
を通る2つの直角交差線上の定められた9点の位置の厚
さ、基板の中心点を通る4本の交差線により形成され
る断面形状を示す厚み分布が測定される。
2. Description of the Related Art In manufacturing a semiconductor substrate, the processed substrate is tested and evaluated before proceeding to the next step in the pre-process and post-process in order to easily find out the cause of the manufacturing failure of the obtained semiconductor substrate. To be done. Measuring the thickness of the wafer is one example. As a wafer thickness measuring device, a capacitance type thickness meter is generally used (Japanese Patent Laid-Open No. 5-67660). In general, the thickness of a wafer (substrate) is the thickness of the center point of the substrate, the thickness at nine defined points on two right-angled intersection lines passing through the center point of the substrate, and four intersection lines passing through the center point of the substrate. The thickness distribution showing the cross-sectional shape formed by is measured.

【0003】基板の径が200mmから300mmと拡
径するにつれ、より多くのチップを採取できるように基
板の周縁近傍まで、例えば1mm近傍までデバイス模様
を印刷し、形成することが試みられている。
As the diameter of the substrate increases from 200 mm to 300 mm, it has been attempted to print a device pattern up to the vicinity of the peripheral edge of the substrate, for example, up to 1 mm so that more chips can be collected.

【0004】また、スマ−トカ−ド、フラッシュメモリ
−カ−ドのように厚みが30〜150μm、好ましくは
50〜120μmの薄厚基板も提案され、一部実用化さ
れている。更に、デバイス面を保護樹脂フィルムで被覆
し、基板裏面をバックグラインド(裏面研削)し、洗浄
後、さらに研削面を研磨(特開2000−254857
号)した基板、基板裏面をバックグラインド(裏面研
削)し、洗浄後、さらに研削面をエッチング(特開平1
1−265869号)した基板、フレ−ムに貼設された
粘着テ−プ上に保護樹脂フィルムでデバイス面が保護さ
れたウエハを貼付し、ついで保護樹脂フィルムを剥離し
た基板等の基板の厚みを測定することも試みられてい
る。
A thin substrate having a thickness of 30 to 150 μm, preferably 50 to 120 μm, such as a smart card and a flash memory card, has been proposed and partially put into practical use. Furthermore, the device surface is covered with a protective resin film, the back surface of the substrate is back-ground (back surface grinding), and after cleaning, the ground surface is further polished (JP-A-2000-254857).
No.) substrate and the back surface of the substrate are back-ground (back surface grinding), and after cleaning, the ground surface is further etched.
1-265869), the thickness of the substrate such as a substrate obtained by pasting a wafer whose device surface is protected by a protective resin film on an adhesive tape attached to the frame, and then peeling off the protective resin film. Have also been attempted to measure.

【0005】前記静電容量式厚み計では、ウエハ周縁部
の3mm近傍の厚みは測定困難で、300mm径のウエ
ハでは295〜297mm幅の厚み範囲しか測定できな
い。また、可撓性ウエハや樹脂フィルム貼付ウエハで
は、ウエハ厚み測定に誤差が生じ易いことが判明した。
With the capacitance type thickness meter, it is difficult to measure the thickness in the vicinity of 3 mm at the peripheral portion of the wafer, and for a wafer having a diameter of 300 mm, only the thickness range of 295 to 297 mm width can be measured. Further, it has been found that in a flexible wafer or a wafer to which a resin film is attached, an error easily occurs in the wafer thickness measurement.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、樹脂フ
ィルムや紙の厚みを測定するのに用いられている光式変
位センサとも光式厚さセンサとも呼ばれる光式センサを
基板の厚みの測定に利用できないかと種々の光式センサ
を検討したところ、投光手段と、受光手段と信号処理手
段を有する備えた光式センサであり、前記投光手段は投
光手段と受光手段との並び方向に対して垂直方向に細長
く伸びたスリットビ−ムを被測定対象物の検出域に投光
するものであり、前記受光手段は、前記検出域からの反
射光を集光する集光レンズと、該集光レンズを介して受
光する2次元受光素子とを有するものであり、前記信号
処理手段は、前記受光手段の2次元受光素子上の受光量
分布のうち前記投光手段に近い側にある第2の受光分布
とから、検出域にある被測定対象物のの厚さ、高さまた
は段差を算出するものである信号処理手段を備える光式
センサ(特開2000−28317号、同2000−9
7629号、同2000−97630号、同2000−
93634号、同2000−93635号公報参照)、
例えば、オムロン株式会社のZ300−S2(商品名)
は、不透明物も透明物も厚みが測定でき、しかもウエハ
の周縁部0.5mm近傍まで(300mmウエハの29
9mm幅)測定できることを見出し、この光式センサを
利用し、基板の厚み測定に適した構造に設計した厚み測
定装置を提供するものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have developed an optical sensor, which is also called an optical displacement sensor or an optical thickness sensor, used to measure the thickness of a resin film or paper, for measuring the thickness of a substrate. When various optical sensors were examined for use in measurement, it was an optical sensor having a light projecting means, a light receiving means, and a signal processing means, and the light projecting means was a combination of the light projecting means and the light receiving means. A slit beam that is elongated in the direction perpendicular to the direction is projected onto the detection area of the object to be measured, and the light receiving means is a condenser lens that collects reflected light from the detection area. A two-dimensional light receiving element for receiving light through the condenser lens, and the signal processing means is on the side closer to the light projecting means in the received light amount distribution on the two-dimensional light receiving element of the light receiving means. From the second received light distribution to the detection area That the thickness of the measurement object, the optical sensor (JP 2000-28317 comprising signal processing means and calculates the height or level difference, the 2000-9
7629, 2000-97630, 2000-
No. 93634 and 2000-93635),
For example, Z300-S2 (trade name) of OMRON Corporation
Can measure the thickness of both opaque materials and transparent materials, and can measure the thickness of the wafer up to the vicinity of 0.5 mm (29 mm for a 300 mm wafer).
The present invention provides a thickness measuring device which is designed to have a structure suitable for measuring the thickness of a substrate by using this optical sensor.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1は、投
光手段と、受光手段と信号処理手段を有する備えた光式
センサであり、前記投光手段は投光手段と受光手段との
並び方向に対して垂直方向に細長く伸びたスリットビ−
ムを被測定対象物の検出域に投光するものであり、前記
受光手段は、前記検出域からの反射光を集光する集光レ
ンズと、該集光レンズを介して受光する2次元受光素子
とを有するものであり、前記信号処理手段は、前記受光
手段の2次元受光素子上の受光量分布のうち前記投光手
段に近い側にある第2の投光分布とから、検出域にある
被測定対象物の厚さ、高さまたは段差を算出する信号処
理手段である光式センサを用いて、被測定対象物である
ウエハの厚みを測定する厚み測定装置であって、該厚み
測定装置は、厚み測定装置の基台上に設けた移動台に立
設した支持体に前記一対の光式センサを被測定対象物が
通過できる距離をもって上下に固定した測定ステ−ジ、
前記測定ステ−ジの移動台を前後方向に移動させるサ−
ボ機能を有する移動機構、上下に流体通路を有する支持
管を前記測定ステ−ジの前位置に立設し、該支持管の上
部フランジ部に支持管の流体通路に連通する流体通路を
有する円盤状下プレ−トを固定し、円盤状下プレ−トの
上面に前記光式センサが通過できる切り欠き部を少なく
とも8箇所等間隔に設けた円筒状支持体を固定して設
け、底部に流体通路室を有する円盤状枠プレ−トを前記
円筒状支持体の上部に固定し、該円盤状枠プレ−ト内に
光式センサの投光部より投光された光が被測定対象物に
達し、その反射光が光式センサに達するように少なくと
も4条の溝が円盤状枠プレ−トの軸心で交差して形成さ
れるように吸引部材を敷設して被測定対象物搭載台を形
成し、円盤状下プレ−トの流体通路と円盤状枠プレ−ト
の流体通路室を管で連通させ、支持管の流体通路に減圧
空気供給管と加圧空気供給管が切替えられる切替えバル
ブを有する管が結合されている被測定対象物搭載ステ−
ジ(但し、被測定対象物搭載ステ−ジを構成する支持管
の軸心、円盤状下プレ−トの軸心、円筒状支持体の軸心
および円盤状枠プレ−トの軸心は同一鉛直線上に存在す
る。)、および、前記支持管を水平方向に回動させるサ
−ボ機能を有する回動機構、とを備えることを特徴とす
るウエハの厚み測定装置を提供するものである。
A first aspect of the present invention is an optical sensor having a light projecting means, a light receiving means and a signal processing means, wherein the light projecting means comprises a light projecting means and a light receiving means. Slit beer that is elongated in the direction perpendicular to the arrangement direction of
And a two-dimensional light receiving means for receiving light through the condenser lens for converging the reflected light from the detection area. And a second light projection distribution on the side closer to the light projection means in the received light quantity distribution on the two-dimensional light receiving element of the light receiving means, and the signal processing means sets the detection area in the detection area. A thickness measuring device for measuring the thickness of a wafer, which is an object to be measured, using an optical sensor, which is a signal processing means for calculating the thickness, height, or step of an object to be measured. The apparatus is a measurement stage in which the pair of optical sensors are vertically fixed to a support erected on a moving table provided on the base of the thickness measuring apparatus with a distance that allows the object to be measured to pass therethrough,
A service for moving the moving stage of the measuring stage in the front-back direction.
A disk having a moving mechanism having a bob function, a support pipe having upper and lower fluid passages provided upright in front of the measuring stage, and a fluid passage communicating with the fluid passage of the support pipe at an upper flange portion of the support pipe. -Shaped lower plate is fixed, and a cylindrical support body is fixedly provided on the upper surface of the disk-shaped lower plate, and at least eight notch portions through which the optical sensor can pass are fixedly provided. A disk-shaped frame plate having a passage chamber is fixed to the upper portion of the cylindrical support, and the light projected from the light-projecting section of the optical sensor in the disk-shaped frame plate is the object to be measured. The suction member is laid so that at least four grooves intersect each other at the axis of the disc-shaped frame plate so that the reflected light reaches the optical sensor. The disc-shaped lower plate fluid passage and the disc-shaped frame plate fluid passage chamber are formed by pipes. Through so, the object to be measured vacuum air supply pipe and the compressed air supply pipe to the fluid passage is a tube having a switching valve that is switched is coupled to the support tube mounted stearate -
(However, the axis of the support tube, the axis of the disk-shaped lower plate, the axis of the cylindrical support, and the axis of the disk-shaped frame plate that form the stage for mounting the object to be measured are the same. Existing on a vertical line), and a rotation mechanism having a servo function for horizontally rotating the support tube, and a wafer thickness measuring device.

【0008】本発明の請求項2は、投光手段と、受光手
段と信号処理手段を有する備えた光式センサであり、前
記投光手段は投光手段と受光手段との並び方向に対して
垂直方向に細長く伸びたスリットビ−ムを被測定対象物
の検出域に投光するものであり、前記受光手段は、前記
検出域からの反射光を集光する集光レンズと、該集光レ
ンズを介して受光する2次元受光素子とを有するもので
あり、前記信号処理手段は、前記受光手段の2次元受光
素子上の受光量分布のうち前記投光手段に近い側にある
第2の投光分布とから、検出域にある被測定対象物の厚
さ、高さまたは段差を算出する信号処理手段である光式
センサを用い、前後移動および回転駆動可能な支持体に
軸承された搭載台に被測定対象物を載せ、光式センサの
投光部より被測定対象物の検出域に投光し、その反射光
を2次元受光素子で受光し、その受光量分布のうち前記
投光手段に近い側にある第2の投光分布とから、検出域
にある被測定対象物の厚さを信号処理手段より算出させ
ることを特徴とする、ウエハの厚み測定方法を提供する
ものである。
A second aspect of the present invention is an optical sensor having a light projecting means, a light receiving means and a signal processing means, wherein the light projecting means is arranged in a direction in which the light projecting means and the light receiving means are arranged. A slit beam, which is elongated in the vertical direction, is projected onto a detection area of an object to be measured, and the light receiving means includes a condenser lens that collects reflected light from the detection area, and the condenser lens. And a two-dimensional light receiving element for receiving light via the light receiving means, wherein the signal processing means includes a second light emitting element located on a side closer to the light emitting means in a light receiving amount distribution on the two-dimensional light receiving element of the light receiving means. A mounting base that is supported by a support that can be moved back and forth and rotated using an optical sensor that is a signal processing means that calculates the thickness, height, or step of the measured object in the detection area from the light distribution. Place the object to be measured on and measure it from the light emitting part of the optical sensor. The light is projected to the detection area of the elephant, the reflected light is received by the two-dimensional light receiving element, and it is in the detection area from the second light distribution which is closer to the light projecting means in the received light amount distribution. The present invention provides a wafer thickness measuring method, characterized in that the thickness of an object to be measured is calculated by a signal processing means.

【0009】被測定対象物であるウエハを搭載ステ−ジ
に載置し、バキュ−ムで固定するので、被測定対象物が
30〜150μmと薄厚のウエハであっても撓むことが
なく、高精度て厚みを測定できる。また、搭載ステ−ジ
の被測定対象物搭載台は回転駆動で位置合わせを、測定
ステ−ジはサ−ボ機構を有するリニア駆動で位置合わせ
を行なうので、位置合わせが自動化でき、かつ、予め、
光式センサの光軸が被測定対象物搭載台の軸芯と一致し
た位置を0点と決めておけば、光式センサの信号処理手
段で算出される厚み分布のウエハの中心点位置はこの0
点に一致することとなり、デ−タ処理が容易となる。
Since the wafer to be measured is placed on the mounting stage and fixed with a vacuum, even if the object to be measured is a thin wafer of 30 to 150 μm, it does not warp. The thickness can be measured with high accuracy. Further, since the mounting base of the object to be measured on the mounting stage is rotationally driven for alignment, and the measuring stage is linearly driven with a servo mechanism, the positioning can be automated and can be performed in advance. ,
If the position where the optical axis of the optical sensor coincides with the axis of the mounting base of the object to be measured is defined as 0 point, the center point position of the wafer in the thickness distribution calculated by the signal processing means of the optical sensor is 0
Since the points coincide with each other, data processing becomes easy.

【0010】さらに、ウエハ厚み測定後は、加圧空気を
被測定対象物搭載台下面の流体通路室に供給すればウエ
ハを搭載ステ−ジから容易に外すことができる。
Further, after the wafer thickness is measured, the wafer can be easily removed from the mounting stage by supplying pressurized air to the fluid passage chamber under the object mounting base.

【0011】[0011]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【実施例】以下、図面を用いて本発明を詳細に説明す
る。図1は本発明の光式センサを備えたウエハの厚み測
定装置の平面図、図2はウエハの厚み測定装置の正面
図、図3はウエハの厚み測定装置の側面図、図4は本発
明に用いる光式センサの構成を示すブロック図、図5は
光式センサのアプリケ−ションメニュ−の図、図6は光
式センサと被測定対象物までの距離および各部の関係を
示す図、図7は2個の光式センサを用い、裏面研削され
たウエハの厚みを測定している状態を示す図、および図
8は裏面研削されたウエハのデバイス面に貼付された透
明の保護樹脂フィルムが光式センサの2次元受光素子C
CD上で表した受光量分布を示す図である。
The present invention will be described in detail below with reference to the drawings. 1 is a plan view of a wafer thickness measuring apparatus equipped with the optical sensor of the present invention, FIG. 2 is a front view of the wafer thickness measuring apparatus, FIG. 3 is a side view of the wafer thickness measuring apparatus, and FIG. 5 is a block diagram showing the configuration of an optical sensor used in FIG. 5, FIG. 5 is a diagram of an application menu of the optical sensor, and FIG. 6 is a diagram showing the distance between the optical sensor and an object to be measured and the relationship between each part. FIG. 7 shows a state in which the thickness of a back-ground wafer is measured using two optical sensors, and FIG. 8 shows a transparent protective resin film attached to the device surface of the back-ground wafer. Two-dimensional light receiving element C of optical sensor
It is a figure which shows the received light amount distribution represented on CD.

【0012】本発明のウエハの厚み測定装置1は主とし
て、一対の光式センサを備える測定ステ−ジA、被測定
対象物搭載ステ−ジB、該測定ステ−ジを被測定対象物
搭載ステ−ジ側へ移動、または測定ステ−ジを被測定対
象物搭載ステ−ジ側へ遠ざけるサ−ボ機能を有する前後
移動機構C、および被測定対象物搭載ステ−ジを回動さ
せるサ−ボ機能を有する回動機構Dよりなる。
The wafer thickness measuring apparatus 1 of the present invention mainly comprises a measuring stage A having a pair of optical sensors, a measuring object mounting stage B, and a measuring stage mounting the measuring object mounting stage. A front-rear moving mechanism C having a servo function of moving to the stage side or moving the measurement stage away from the measurement target mounting stage side, and a servo for rotating the measurement target mounting stage. The rotation mechanism D has a function.

【0013】図1、図2および図3に示すように、測定
ステ−ジAは、基台2上に設けた移動台50に立設した
支柱3に固定した支持フレ−ム4に2次元CCDを備え
る光式センサ10,10を厚さ測定装置の被測定対象物
が通過できる距離を隔てて上下に固定する構造をとる。
As shown in FIGS. 1, 2 and 3, the measuring stage A is two-dimensionally mounted on a supporting frame 4 fixed to a column 3 standing on a moving table 50 provided on the base 2. A structure is adopted in which the optical sensors 10 and 10 equipped with CCDs are vertically fixed with a distance that allows an object to be measured of the thickness measuring device to pass therethrough.

【0014】被測定対象物搭載ステ−ジBは、上下に流
体通路31aを有する支持管31を中央に円筒状空所を
有するガイド30を通して立設し、該支持管の上部フラ
ンジ部31bに支持管の流体通路31aに連通する流体
通路32a(32bは栓である)を有する円盤状下プレ
−ト32を固定し、円盤状下プレ−トの上面に前記光式
センサ10が通過できる切り欠き部33aを少なくとも
8箇所等間隔に設けた円筒状支持体33を固定して設
け、底部に流体通路室35aを有する円盤状枠プレ−ト
35を前記円筒状支持体の上部に固定し、該円盤状枠プ
レ−ト35内に光式センサ10の投光部(投光素子)1
3より投光された光が被測定対象物に達し、その反射光
が光式センサ10の2次元受光素子CCD20に達する
ように少なくとも4条の溝36a,36a…が円盤状枠
プレ−トの軸心Oで交差して形成されるように吸引部材
8個36b,36b…を敷設して被測定対象物搭載台3
6を形成し、円盤状下プレ−トの流体通路32aと円盤
状枠プレ−ト35の流体通路室35aを管34,34で
連通させ、支持管の流体通路31aに減圧空気供給管3
7と加圧空気供給管38が切替えられる切替えバルブ3
9を有する管40がロ−タリ−ジョイント41を介して
結合されている構造を取っている。
In the stage B for mounting the object to be measured, a support pipe 31 having upper and lower fluid passages 31a is erected upright through a guide 30 having a cylindrical hollow at the center, and is supported by an upper flange portion 31b of the support pipe. A disc-shaped lower plate 32 having a fluid passage 32a (32b is a plug) communicating with the fluid passage 31a of the pipe is fixed, and a notch through which the optical sensor 10 can pass on the upper surface of the disc-shaped lower plate. Cylindrical support 33 is fixedly provided with at least eight portions 33a, and a disk-shaped frame plate 35 having a fluid passage chamber 35a at the bottom is fixed to the upper part of the cylindrical support, The light projecting portion (light projecting element) 1 of the optical sensor 10 is provided in the disk-shaped frame plate 35.
The light projected from 3 reaches the object to be measured, and the reflected light thereof reaches the two-dimensional light receiving element CCD 20 of the optical sensor 10 so that at least four grooves 36a, 36a ... Eight suction members 36b, 36b ... are laid so as to be formed so as to intersect with each other at the axis O, and the measured object mounting base 3 is provided.
6, the fluid passage 32a of the disc-shaped lower plate and the fluid passage chamber 35a of the disc-shaped frame plate 35 are connected by the pipes 34, 34, and the depressurized air supply pipe 3 is connected to the fluid passage 31a of the support pipe.
Switching valve 3 for switching between 7 and pressurized air supply pipe 38
The tube 40 having the structure 9 is connected via a rotary joint 41.

【0015】被測定対象物搭載ステ−ジBの前記被測定
対象物搭載ステ−ジを構成する支持管の軸心、円盤状下
プレ−トの軸心、円筒状支持体の軸心および円盤状枠プ
レ−トの軸心は同一鉛直線上Zに存在する。
The axis of the support tube which constitutes the object mounting stage of the object B to be measured, the axis of the disk-shaped lower plate, the axis of the cylindrical support and the disk. The axis of the frame plate lies on the same vertical line Z.

【0016】被測定対象物搭載台36を形成する吸引部
材36bの材質としては、ポリ(テトラフロロエチレ
ン)、ポリ(トリフロロモノクロロエチレン)、ナイロ
ン、ポリアセタ−ル、ポリスルホン等の樹脂燒結体が挙
げられる。このものは連通する微細な空隙を有し、表面
が平滑な成形体である。
Examples of the material of the suction member 36b forming the object mounting base 36 include a resin sintered body such as poly (tetrafluoroethylene), poly (trifluoromonochloroethylene), nylon, polyacetal or polysulfone. To be This is a molded product having fine voids communicating with each other and having a smooth surface.

【0017】よって、支持管31の流体通路31aを減
圧すれば、被測定対象物搭載台36上に載置された被測
定対象物は搭載台36上に減圧(バキュ−ム)固定され
る。逆に、支持管31の流体通路31aに加圧空気を供
給すれば、被測定対象物搭載台36上に載置された被測
定対象物は浮き上がる。これら8個の吸引部材36b
は、光式センサの投光素子から照射された光が被測定対
象物に入射し、その反射光が光式センサの受光素子に到
るように0.5〜3mmの隙間をもって交差した4条の
線状溝36aを形成するよう敷設される。
Therefore, if the fluid passage 31a of the support pipe 31 is decompressed, the object to be measured placed on the object to be measured mounting base 36 is decompressed (vacuum) and fixed on the mounting base 36. On the contrary, if pressurized air is supplied to the fluid passage 31a of the support tube 31, the measured object placed on the measured object mounting base 36 floats. These eight suction members 36b
Are four sections intersecting with a gap of 0.5 to 3 mm so that the light emitted from the light projecting element of the optical sensor enters the object to be measured and the reflected light reaches the light receiving element of the optical sensor. Is laid so as to form the linear groove 36a.

【0018】搭載されるウエハの軸芯Oを搭載台36の
軸心Zに一致させやすいように、ウエハに付されている
ノッチまたは切り欠きまたはトンボ(目印)位置に符号
させてウエハを載置するよう円盤状枠プレ−ト35の枠
上面には、トンボ(目印)を付してもよい。また、ウエ
ハ芯出装置(位置合わせ機構)を搭載ステ−ジBに付属
させてもよい。
In order to make the axis O of the wafer to be mounted easily coincide with the axis Z of the mounting table 36, the notch or notch or the register mark (mark) position provided on the wafer is coded to mount the wafer. Therefore, a registration mark (mark) may be provided on the upper surface of the disc-shaped frame plate 35. Further, a wafer centering device (positioning mechanism) may be attached to the mounting stage B.

【0019】移動機構Cは測定ステ−ジAを被測定対象
物搭載ステ−ジB側へ移動または測定ステ−ジAを被測
定対象物搭載ステ−ジB側から遠ざけるものである。こ
の移動機構Cは、移動台50の下面に設けられた案内部
材50aが基台2上に設けられたレ−ル51,51上を
移動する構造となっている。図1、図2および図3で
は、ボ−ルネジ52に螺合した螺合体53が固定部材5
4により移動台50下面に固定され、サ−ボモ−タ55
の回転駆動をボ−ルネジの軸に設けたプ−リ−が受けて
ボ−ルネジ52を回転駆動させて移動台50を直線位上
に移動させる構造を取っている。移動台50の移動機構
の駆動は、リニアサ−ボ機構を備えたリニアモ−タ駆動
であっても、油圧シリンダ駆動であってもよい。
The moving mechanism C moves the measuring stage A to the side B of the object to be measured or moves the measuring stage A away from the side B of the object to be measured. The moving mechanism C has a structure in which a guide member 50a provided on the lower surface of the moving table 50 moves on rails 51, 51 provided on the base 2. In FIGS. 1, 2 and 3, the screw body 53 screwed into the ball screw 52 is the fixing member 5.
4 is fixed to the lower surface of the moving table 50, and the servo motor 55
The pulley provided on the shaft of the ball screw receives the rotational drive of the ball screw 52 to rotationally drive the ball screw 52 to move the movable table 50 in a linear position. The driving mechanism of the moving table 50 may be driven by a linear motor having a linear servo mechanism or by a hydraulic cylinder.

【0020】被測定対象物搭載ステ−ジBの搭載台36
を回動させるサ−ボ機能を有する回動機構Dは、位置を
検出するパルス信号を発するサ−ボ機構61を備えるモ
−タの軸60aに設けたプ−リ62が軸の回転駆動をベ
ルト63により前記搭載ステ−ジAの支持管31の下方
に設けたプ−リ43に伝達することにより行なう構造を
取っている。
The mounting base 36 of the stage B for mounting the object to be measured.
In the rotating mechanism D having a servo function for rotating the shaft, a pulley 62 provided on a shaft 60a of a motor equipped with a servo mechanism 61 that outputs a pulse signal for detecting a position drives the rotation of the shaft. The belt 63 transmits the power to the pulley 43 provided below the support tube 31 of the mounting stage A, so that the structure is performed.

【0021】光式センサ10は、図4および図7に示す
ように、投光手段11と、受光手段17と信号処理手段
25を有する備えた光式センサである。前記投光手段1
1は、光ビ−ムを被測定対象物18の検出域に投光する
ものであり、駆動回路12によって駆動される発光ダイ
オ−ドやレ−ザダイオ−ド等の投光素子13と、投光素
子より照射された光を平行光とする14、投光手段11
と受光手段17との並び方向(X軸方向)に対して垂直
方向(Y軸方向)に細長く伸びたスリットを有するスリ
ット板15およびシリンドリカルレンズ16を有してい
る。シリンドリカルレンズ16はスリット板15のスリ
ットを通過した狭いスリット状の光を更にX軸方向に収
束させる。
As shown in FIGS. 4 and 7, the optical sensor 10 is an optical sensor having a light projecting means 11, a light receiving means 17 and a signal processing means 25. The light projecting means 1
Reference numeral 1 is for projecting an optical beam onto the detection area of the object to be measured 18, which includes a light emitting element 13 such as a light emitting diode or a laser diode driven by a drive circuit 12, and a light emitting element 13. The light emitted from the optical element is converted into parallel light 14, and the light projecting means 11
It has a slit plate 15 and a cylindrical lens 16 each having a slit elongated in a direction (Y-axis direction) perpendicular to the arrangement direction (X-axis direction) with the light receiving means 17. The cylindrical lens 16 further converges the narrow slit-shaped light passing through the slit of the slit plate 15 in the X-axis direction.

【0022】受光手段17は、前記検出域からの反射光
を集光する集光レンズ19と、該集光レンズを介して受
光する2次元の受光素子20、例えばCCDとCCDド
ライバ21を有するものである。2次元の受光素子20
は、CCDに限らず、BBD、CPD等の他の固体撮像
デバイスやビジコン撮像管を用いてもよい。実施例では
256画素X256画素のCCDを用いた。
The light receiving means 17 has a condenser lens 19 for condensing the reflected light from the detection area, and a two-dimensional light receiving element 20 for receiving light through the condenser lens, for example, a CCD and a CCD driver 21. Is. Two-dimensional light receiving element 20
Is not limited to CCD, and other solid-state imaging device such as BBD or CPD or vidicon imaging tube may be used. In the embodiment, a CCD having 256 pixels × 256 pixels was used.

【0023】CCD20には図4に示すようにCCDド
ライバ21が接続され、各画素信号はCCDドライバ2
1によって読み出される。読み出された信号は、増幅器
22によって増幅され、A/D変換器23によってA/
D変換されて画像メモリ24に転送される。画像メモリ
24は転送された一画面分の画像信号を記憶するもので
ある。画像メモリ24には演算処理手段25が接続さ
れ、演算処理手段25はピ−ク位置算出のためのレジス
タやマイクロコンピュ−タを有し、画像メモリ24のデ
−タに基づいてピ−ク位置を検出し、被測定対象物18
までの距離や被測定対象物の検出物体の厚み等を検出す
る。
A CCD driver 21 is connected to the CCD 20 as shown in FIG. 4, and each pixel signal is transferred to the CCD driver 2.
Read by 1. The read signal is amplified by the amplifier 22 and is A / D converted by the A / D converter 23.
It is D-converted and transferred to the image memory 24. The image memory 24 stores the transferred image signal for one screen. The arithmetic processing means 25 is connected to the image memory 24, and the arithmetic processing means 25 has a register and a microcomputer for calculating the peak position, and the peak position is calculated based on the data of the image memory 24. Object to be measured 18
The distance to and the thickness of the detected object of the object to be measured are detected.

【0024】前記増幅器22の出力端には映像信号を外
部に出力するためのバッファアンプ26およびビデオ出
力端子27が接続されている。これら増幅器22、A/
D変換機23、画像メモリ24および演算処理手段2
5、バッファアンプ26およびは、受光素子20に得ら
れる受光量分布に基づいて、被測定対象物18までの距
離や被測定対象物の検出物体の厚み等を算出する信号処
理手段29を構成する。
A buffer amplifier 26 for outputting a video signal to the outside and a video output terminal 27 are connected to the output terminal of the amplifier 22. These amplifiers 22, A /
D converter 23, image memory 24, and arithmetic processing means 2
5. The buffer amplifier 26 and the signal processing means 29 for calculating the distance to the object to be measured 18, the thickness of the detected object of the object to be measured, and the like, based on the received light amount distribution obtained by the light receiving element 20. .

【0025】ビデオ出力端子27には画像表示手段28
が接続され、操者は画像表示手段28の画面でCCD2
0から出力されるモニタ画像を見ることができる。
Image display means 28 is provided at the video output terminal 27.
Is connected, and the operator displays the CCD 2 on the screen of the image display means 28.
The monitor image output from 0 can be seen.

【0026】受光素子CCD20は周期的に電荷蓄積時
間と電荷転送時間を繰返しており、電荷蓄積時間で蓄積
された電荷が画像メモリ24に転送されるので、投光時
間のパルス幅を変化させることにより投光レベル(感
度)を調整できる。感度調整はCCDのダイナミックレ
ンジの範囲内で出力が直線的に得られる高いレベルとす
ることで、ピ−ク位置の検出を正確に行なうことができ
る。
The light receiving element CCD 20 periodically repeats the charge storage time and the charge transfer time, and the charge accumulated during the charge storage time is transferred to the image memory 24. Therefore, the pulse width of the light projection time should be changed. The light emission level (sensitivity) can be adjusted by. Sensitivity adjustment is performed at a high level where the output is linearly obtained within the dynamic range of the CCD, so that the peak position can be accurately detected.

【0027】ピ−ク位置が検出できれば、その位置は被
測定対象物の検出体までの距離に対応するので、被測定
対象物までの距離が近ければ画像表示パネル28でモニ
タされるピ−ク位置は左方向に移動し、距離が短かけれ
ば右方向に移動する。従って、被測定対象物18を搭載
台36の所定位置に配置した際にその反射光がほぼモニ
タが画像の中心位置にピ−クが得られるように光式セン
サ10を取り付ける。言いかえれば、被測定対象物18
をCCDのほぼ中心位置となるようにセンサヘッドを固
定する。また、画像表示パネル28からCCDの受光状
態を確認できることは、検出物体が変化したとき、正常
なレベルの反射光が得られているか否か、および光式セ
ンサの取付位置が適切か否か常に確認できる。
If the peak position can be detected, the position corresponds to the distance to the object to be measured. Therefore, if the distance to the object to be measured is short, the peak is monitored by the image display panel 28. The position moves to the left, and to the right if the distance is short. Therefore, the optical sensor 10 is attached so that when the object to be measured 18 is placed at a predetermined position on the mounting table 36, the reflected light thereof is almost picked up by the monitor at the center of the image. In other words, the measured object 18
The sensor head is fixed so that is at the substantially central position of the CCD. The fact that the light receiving state of the CCD can be confirmed from the image display panel 28 means that when the detected object changes, whether or not the reflected light at a normal level is obtained, and whether or not the mounting position of the optical sensor is appropriate. I can confirm.

【0028】ピ−ク位置が検出できれば、その位置は検
出物体までの距離に対応しているので、ピ−ク位置より
検出物体までの距離を算出することができる。図5にオ
ムロン株式会社の光式センサZ300−S2(商品名)
のアプリケ−ション メニュ−の一例を示す。例示した
検出物体までの距離、段差、不透明物体の厚み、透明体
の厚みの他に、検出物体に設けられた孔の深さ、突起物
の高さ等も測定できる。
If the peak position can be detected, the position corresponds to the distance to the detected object, so that the distance from the peak position to the detected object can be calculated. Fig. 5 shows optical sensor Z300-S2 (trade name) manufactured by OMRON Corporation.
An example of the application menu of is shown. In addition to the distance to the detection object, the step, the thickness of the opaque object, the thickness of the transparent body, the depth of the hole provided in the detection object, the height of the protrusion, and the like can be measured.

【0029】図6は不透明の検出物体18の表面までの
距離を測定する例示である。受光レンズ19の中心から
の投光軸までの距離をK、投光軸とこの線分に交差する
点からの検出物体18までの距離をLとし、受講レンズ
19の中心からCCDまでの投光軸に平行な線分をDと
する。また、CCD20と線分Dとの交点からCCD2
0の端部までの距離をJ、端部から反射光の結像位置ま
での距離をEとする。反射光軸と投光軸、線分Kからな
る三角形および、反射光軸と線分D、CCD20の受光
面上でこれらを結ぶ線分でなす三角形は相似するので、
次の関係式が成り立つ。 L:K=D:J−E よって、検出物体18までの距離Lは、L=K/D/
(J−E)で算出される。そして光式センサ10におい
て線分K,D,Jの距離は定数であるので、CCDの受
光分布により定まるEに基づいて光式センサから検出物
体18までの距離Lが算出される(特開2000−28
317号公報参照)。なお、LとKの交点から光式セン
サ10のケ−ス前面までの距離をQとすると物体までの
距離は、L−Qと考えられる。
FIG. 6 shows an example of measuring the distance to the surface of the opaque detection object 18. Let K be the distance from the center of the light-receiving lens 19 to the projection axis and L be the distance from the intersection of the projection axis and this line segment to the detection object 18, and project from the center of the lens 19 to the CCD. Let D be the line segment parallel to the axis. Also, from the intersection of CCD 20 and line segment D, CCD 2
Let J be the distance to the end of 0 and E be the distance from the end to the imaging position of the reflected light. Since the triangle formed by the reflected light axis, the projected light axis, and the line segment K, and the triangle formed by the reflected light axis, the line segment D, and the line segment connecting these on the light receiving surface of the CCD 20 are similar,
The following relational expression holds. L: K = D: J-E Therefore, the distance L to the detection object 18 is L = K / D /
It is calculated by (JE). In the optical sensor 10, since the distances between the line segments K, D, and J are constants, the distance L from the optical sensor to the detection object 18 is calculated based on E determined by the light reception distribution of the CCD (Japanese Patent Laid-Open No. 2000-2000). -28
317). When the distance from the intersection of L and K to the front surface of the case of the optical sensor 10 is Q, the distance to the object is considered to be LQ.

【0030】従って、光式センサ10から搭載台36ま
での距離Lが判明すれば、被測定対象物18の厚みt
はL−Lとして算出される。なお、光式センサ10か
ら搭載台36までの距離Lは光式センサ10で測定で
きる。
Therefore, if the distance L 1 from the optical sensor 10 to the mounting base 36 is known, the thickness t of the object to be measured 18 is measured.
Is calculated as L 1 -L. The distance L 1 from the optical sensor 10 to the mounting table 36 can be measured by the optical sensor 10.

【0031】図7は、被測定対象物18が裏面研削され
たデバイス基板である例を示すものである。不透明のシ
リコン基板18aのデバイス面表面を透明の保護樹脂フ
ィルム18bで被覆した裏面研削盤18を、保護樹脂フ
ィルム18b側が上向きとなるように搭載ステ−ジBの
搭載台36に載せる。被測定対象物18の保護樹脂フィ
ルム18bは透明体であるので、その表面と裏面とから
同時に反射光が得られ、図8に示す平行な2本のピ−ク
画像が画像表示パネル28に表示される。この受光パタ
−ンの間隔に基づいて透明樹脂フィルム18bの厚みt
が算出される(特開2000−28317号、同20
00−97635号公報参照)。
FIG. 7 shows an example in which the object to be measured 18 is a device substrate whose back surface is ground. The back surface grinder 18 in which the device surface of the opaque silicon substrate 18a is covered with the transparent protective resin film 18b is placed on the mounting base 36 of the mounting stage B so that the protective resin film 18b side faces upward. Since the protective resin film 18b of the object to be measured 18 is a transparent body, reflected light is simultaneously obtained from the front surface and the back surface thereof, and two parallel peak images shown in FIG. 8 are displayed on the image display panel 28. To be done. Based on the distance between the light receiving patterns, the thickness t of the transparent resin film 18b
2 is calculated (Japanese Patent Laid-Open Nos. 2000-28317 and 20).
No. 00-97635).

【0032】被測定対象物18が透明体の場合、透明体
の屈折率と空気の屈折率が異なるので、より正確な透明
体の厚みを表示させるには、測定対象の透明体の屈折率
nが既知であるときは予め演算処理手段25のマイクロ
コンピュ−タのメモリ内にその屈折率nの値を記憶させ
ておき、測定された厚さtを補正(キャリブレ−ショ
ン)して次式に示される実際の厚さt'を算出する
(特開2000−28317号公報参照)。 t'=tx{(n−sinθ)/(1−sin
θ)}1/2 また、厚みが既知Tの同一材質でできた透明体の厚み
を光式センサ10で測定し、測定結果Tから補正係数
αを式 α=T/T より求め、この値αをキャリ
ブレ−ション係数としてマイクロコンピュ−タの記録部
に記憶させ、演算処理部24が光式センサ10で測定さ
れた厚みtに補正係数αを掛けて透明体18bの実際
の厚みを算出する(キャリブレ−ション)ようにしても
よい。
When the object 18 to be measured is a transparent body, the refractive index of the transparent body and the refractive index of air are different. Therefore, in order to display the thickness of the transparent body more accurately, the refractive index n of the transparent body to be measured is displayed. Is known, the value of the refractive index n is stored in advance in the memory of the microcomputer of the arithmetic processing means 25, and the measured thickness t 2 is corrected (calibrated) to obtain the following equation. The actual thickness t ′ 2 shown in (1) is calculated (see Japanese Patent Laid-Open No. 2000-28317). t ′ 2 = t 2 x {(n 2 −sin 2 θ) / (1-sin
2 θ)} 1/2 Further , the thickness of the transparent body made of the same material having a known thickness T 0 is measured by the optical sensor 10, and the correction coefficient α is calculated from the measurement result T i by the formula α = T 0 / T i The value α is obtained as a calibration coefficient and is stored in the recording unit of the microcomputer, and the arithmetic processing unit 24 multiplies the thickness t 2 measured by the optical sensor 10 by the correction coefficient α to obtain the transparent body 18b. The actual thickness may be calculated (calibration).

【0033】裏面研削盤18の不透明なシリコン基板1
8aの厚さt1は、裏面研削盤18の厚さt0より透明体
の樹脂フィルムの厚みt'を差し引く(t=t
t' )ことにより求められる。裏面研削盤18の厚さ
0は、搭載台36表面と上側の光式センサ10間の距
離Lから透明体の樹脂フィルム表面と上側の光式セン
サ10間の距離Lを差引くことにより求められる。
Opaque silicon substrate 1 of backside grinding machine 18
8a thickness t1Is the thickness t of the backside grinding machine 18.0More transparent
Resin film thickness t 'TwoSubtract (t1= T0
t ' Two) Is required. Thickness of backside grinder 18
t0Is the distance between the surface of the mounting table 36 and the upper optical sensor 10.
Distance L0From the transparent resin film surface and the upper optical sensor
It is obtained by subtracting the distance L between the sensors 10.

【0034】この光式センサ10は、オムロン株式会社
より光式センサZ300−2S(商品名)として市販さ
れている。この光式センサZ300−2Sを2台備えた
図1、図2および図3に示す厚み測定装置1を用いて裏
面研削基板18の厚みを測定する手順を次に記述する。
原点復帰は、測定ステ−ジAにおける原点を、光式セン
サの光軸が搭載ステ−ジBの搭載台36の軸心Gと一致
した位置 0.000mmとする。また、搭載ステ−ジ
Bの搭載台36の回転軸Gの座標を0.000度とす
る。
The optical sensor 10 is commercially available from OMRON Corporation as an optical sensor Z300-2S (trade name). A procedure for measuring the thickness of the backside grinding substrate 18 using the thickness measuring device 1 shown in FIGS. 1, 2 and 3 equipped with two optical sensors Z300-2S will be described below.
The origin return is performed at the position of 0.000 mm where the optical axis of the optical sensor coincides with the axis G of the mounting base 36 of the mounting stage B. Further, the coordinate of the rotation axis G of the mounting table 36 of the mounting stage B is 0.000 degree.

【0035】搭載ステ−ジBの軸芯Zと被測定対象物1
8の軸芯が一致するように透明樹脂フィルムの厚みが既
知の被測定対象物(基準検出体)18を搭載台36上に
載せ、支持管31の流体通路31aをバキュ−ム吸引し
て被測定対象物18の位置合わせを行ない、ついで、ボ
−ルネジ52をサ−ボモ−タ55で回転駆動させて移動
台50を搭載ステ−ジB側へ前進移動させ、光式センサ
の光軸が搭載ステ−ジBの搭載台36の軸心Gと一致し
た位置(図1で仮想線で示す測定ステ−ジAの位置)で
停止させる。
The axis Z of the mounting stage B and the object to be measured 1
An object to be measured (reference detection body) 18 having a known transparent resin film thickness is placed on the mounting table 36 so that the axes of 8 coincide with each other, and the fluid passage 31a of the support tube 31 is vacuum-sucked. The object to be measured 18 is aligned, and then the ball screw 52 is rotationally driven by the servo motor 55 to move the movable table 50 forward to the mounting stage B side, and the optical axis of the optical sensor is changed. It is stopped at a position that coincides with the axis G of the mounting base 36 of the mounting stage B (the position of the measurement stage A shown by a virtual line in FIG. 1).

【0036】電源を入れ、画像表示盤28に表示された
光式センサ10のメニュより設定を選択し、上段の光式
センサ10は透明体厚みのメニュを選択した後、CCD
モ−ド(1/10/60)のいずれか、例えばモ−ド1
0を選択し、デ−タ転送速度をノ−マルと選択し、測定
領域(表面に対する測定領域、ついで測定領域の右下位
置、2面に対する測定領域の左上位置、右下位置の指
定)を設定する。
After turning on the power and selecting the setting from the menu of the optical sensor 10 displayed on the image display panel 28, the upper optical sensor 10 selects the menu of the transparent body thickness and then the CCD.
Any of the modes (1/10/60), for example mode 1
Select 0, select the data transfer rate as normal, and set the measurement area (measurement area for the surface, then the lower right position of the measurement area, upper left position, lower right position of the measurement area for two surfaces). Set.

【0037】ついで、光の屈折率を考慮したキャリブレ
−ション値を設定する画面が表示されたらENTキィを
押し、表面の位置を入力し、ENTキィを押すと2面
(透明樹脂フィルムの裏面)の測定画面が表示され2面
に対する測定が行なわれる。ついで透明樹脂フィルムの
厚みを入力し、ENTキィ押すと実行確認画面が表示さ
れ、キャリブレ−ションが設定され、設定内容を確認す
る画面が表示され、設定内容を確認したら登録を選ぶ。
設定内容を確認後、表面、2面それぞれの測定値をOU
T1、OUT2に割り当てて設定を完了する。
Then, when the screen for setting the calibration value in consideration of the refractive index of light is displayed, press the ENT key, enter the position of the front surface, and press the ENT key to display two surfaces (the back surface of the transparent resin film). The measurement screen of is displayed and the measurement is performed on the two surfaces. Next, enter the thickness of the transparent resin film and press the ENT key to display the execution confirmation screen, the calibration is set, the screen for confirming the setting contents is displayed, and after confirming the setting contents, select registration.
After confirming the setting contents, OU the measured values on the front and back sides
The setting is completed by assigning it to T1 and OUT2.

【0038】下段の光式センサ10は厚みのメニュを選
択した後、CCDモ−ド(1/10/60)のいずれ
か、例えばモ−ド10を選択し、デ−タ転送速度をノ−
マルと選択し、ついで、測定領域を設定、厚みを入力し
た後、設定内容を確認後、センサ0の測定値をOUT1
に、センサ1の測定値をOUT2に割り当てて設定を完
了する。
For the optical sensor 10 in the lower stage, after selecting the thickness menu, one of the CCD modes (1/10/60), for example, the mode 10 is selected, and the data transfer rate is set.
After selecting the circle, setting the measurement area, inputting the thickness, and confirming the settings, set the measured value of sensor 0 to OUT1.
Then, the measurement value of the sensor 1 is assigned to OUT2 and the setting is completed.

【0039】ついで、ボ−ルネジ52をサ−ボモ−タ5
5で逆方向に回転駆動させて移動台50を搭載ステ−ジ
B側から図1で実線で示す測定ステ−ジA側へと後退移
動させ、停止する。測定支持管31の流体通路31aの
バキュ−ムを解放して大気圧に戻した後、流体通路31
a内に加圧空気を瞬時供給してキャリブレ−ションの測
定に供した基準検出体18を浮き上がらせ、手で搭載台
36上から取り去る。
Then, the ball screw 52 is attached to the servomotor 5
In step 5, the rotary table 50 is driven to rotate in the opposite direction, and the movable table 50 is moved backward from the mounting stage B side to the measurement stage A side shown by the solid line in FIG. After releasing the vacuum of the fluid passage 31a of the measurement support tube 31 to return to atmospheric pressure, the fluid passage 31a
Pressurized air is instantaneously supplied into a to raise the reference detection body 18 used for the measurement of the calibration, and the reference detection body 18 is manually removed from the mounting base 36.

【0040】厚みを測定すべき被測定対象物18を、搭
載ステ−ジBの軸芯Zと被測定対象物18の軸芯が一致
するように透明樹脂フィルム側を上に向けて搭載台36
上に載せ、支持管31の流体通路31aをバキュ−ム吸
引して被測定対象物18の位置合わせを行ない、つい
で、ボ−ルネジ52をサ−ボモ−タ55で回転駆動させ
て移動台50を前進移動させて厚み測定ステ−ジAを搭
載ステ−ジB側へと移動させ、光式センサの光軸が搭載
ステ−ジBの搭載台36の軸心Gと一致した位置で停止
させる。
The object 18 to be measured whose thickness is to be measured is mounted on the mounting base 36 with the transparent resin film side facing upward so that the axis Z of the mounting stage B and the axis 18 of the object 18 to be measured coincide with each other.
Then, the fluid passage 31a of the support tube 31 is vacuum sucked to align the object 18 to be measured, and then the ball screw 52 is rotationally driven by the servo motor 55 to move the movable table 50. Is moved forward to move the thickness measuring stage A to the mounting stage B side, and is stopped at a position where the optical axis of the optical sensor coincides with the axis G of the mounting base 36 of the mounting stage B. .

【0041】画像表示パネル28に表示された光式セン
サ10のメニュより測定を選択するとマイクロコンピュ
タの記憶部に記憶されている測定プログラムに従って、
被測定対象物18の厚み測定、厚み算出が自動的になさ
れる。先に、ボ−ルネジ52をサ−ボモ−タ55で回転
駆動させて厚み測定ステ−ジAをさらに前進移動させ、
光式センサの光軸が搭載ステ−ジBの搭載台36に載せ
られた被測定対象物18の後側外周より若干外(1〜2
mm)となったら移動台50を停止させ、ついで、前記
設定メニュ−で定められた測定領域に従いボ−ルネジ5
2をサ−ボモ−タ55で回転駆動させて測定ステ−ジA
を順次後退移動させ、光式センサの光軸が被測定対象物
18の前側外周より若干手前(1〜2mm)となったら
移動台50を停止させ、1ライン300mm幅の厚み測
定が行なわれ、記録、表示される。
When measurement is selected from the menu of the optical sensor 10 displayed on the image display panel 28, according to the measurement program stored in the storage unit of the microcomputer,
The thickness of the object to be measured 18 is automatically measured and calculated. First, the ball screw 52 is rotationally driven by the servo motor 55 to further move the thickness measuring stage A forward,
The optical axis of the optical sensor is slightly outside the rear side outer periphery of the object to be measured 18 mounted on the mounting base 36 of the mounting stage B (1-2
mm), the movable table 50 is stopped, and then the ball screw 5 is moved in accordance with the measurement area defined in the setting menu.
2 is rotated by a servo motor 55 to measure stage A
Are sequentially moved backward, and when the optical axis of the optical sensor is slightly before (1 to 2 mm) from the outer circumference of the front side of the object to be measured 18, the moving table 50 is stopped, and the thickness of one line 300 mm width is measured, Recorded and displayed.

【0042】ついで、ボ−ルネジ52をサ−ボモ−タ5
5で回転駆動させて測定ステ−ジAを搭載ステ−ジB側
から図1で実線で示す測定ステ−ジ側Aへとさらに後退
移動させ、停止し、支持管31をサ−ボモ−タ60で9
0度時計廻り方向に回転させ、停止させる。
Next, the ball screw 52 is attached to the servomotor 5
5, the measurement stage A is driven to rotate and further moved backward from the mounting stage B side to the measurement stage side A shown by the solid line in FIG. 1 and stopped, and the support tube 31 is turned into a servo motor. 60 in 9
Turn 0 degrees clockwise and stop.

【0043】ついで、前記と同様に、ボ−ルネジ52を
サ−ボモ−タ55で回転駆動させて厚み測定ステ−ジA
側を搭載ステ−ジB側へと前進移動させ、光式センサの
光軸が搭載ステ−ジBの搭載台36に載せられた被測定
対象物18の後側外周より若干外(1〜2mm)となっ
たら停止させ、ついで、前記設定メニュ−で定められた
測定領域に従いボ−ルネジ52をサ−ボモ−タ55で回
転駆動させて測定ステ−ジAを順次前進移動させ、光式
センサの光軸が被測定対象物18の前側外周より若干手
前(1〜2mm)となったら停止させ、前記ラインと直
交する別の1ライン300mm幅の厚み測定が行なわ
れ、記録、表示される。
Then, in the same manner as described above, the ball screw 52 is rotationally driven by the servo motor 55, and the thickness measuring stage A is obtained.
Side is moved forward to the mounting stage B side, and the optical axis of the optical sensor is slightly outside the rear side outer periphery of the object to be measured 18 mounted on the mounting base 36 of the mounting stage B (1-2 mm). ), The ball screw 52 is rotationally driven by the servomotor 55 in accordance with the measurement area defined in the setting menu, and the measurement stage A is sequentially moved forward to move the optical sensor. When the optical axis of (1) is slightly before (1 to 2 mm) from the outer circumference of the front side of the object to be measured 18, the measurement is stopped, and the thickness of another line 300 mm width orthogonal to the above line is measured, recorded, and displayed.

【0044】ついで、ボ−ルネジ52をサ−ボモ−タ5
5で回転駆動させて搭載ステ−ジB側から遠ざかるよう
に図1で実線で示す測定ステ−ジ側へとさらに後退移動
させ、停止する。
Next, the ball screw 52 is attached to the servomotor 5
At 5 it is rotated and driven so as to move away from the mounting stage B side, and is further moved backward to the measurement stage side shown by the solid line in FIG. 1 and stopped.

【0045】かかる操作で被測定対象物のウエハのセン
タ−厚み、ウエハ9点の位置厚み(TV9)が測定され
る。ウエハのクロスセクション(ウエハの4箇所の断面
形状)もプログラミングされているときは、支持体31
を45度時計の逆方向に回転させることにより搭載台3
6上の被測定対象物18を時計の逆方向に45度回転さ
せ、ついで、前記と同様に、ボ−ルネジ52をサ−ボモ
−タ55で回転駆動させて厚み測定ステ−ジAを搭載ス
テ−ジB側へと前進移動させ、光式センサの光軸が搭載
ステ−ジBの搭載台36に載せられた被測定対象物18
の後側外周より若干外(1〜2mm)となったら停止さ
せ、ついで、前記設定メニュ−で定められた測定領域に
従いボ−ルネジ52をサ−ボモ−タ55で回転駆動させ
て測定ステ−ジAを順次前進移動させ、光式センサの光
軸が被測定対象物18の前側外周より若干手前(1〜2
mm)となったら停止させ、前記ラインとは別の1ライ
ン300mm幅の厚み測定が行なわれ、記録、表示され
る。
By this operation, the center thickness of the wafer to be measured and the position thickness (TV9) of the nine wafers are measured. When the cross section of the wafer (the cross-sectional shape of the four points on the wafer) is also programmed, the support 31
The mounting base 3 can be rotated by rotating the
The object to be measured 18 on 6 is rotated by 45 degrees in the counterclockwise direction, and then the ball screw 52 is rotationally driven by the servo motor 55 in the same manner as described above to mount the thickness measuring stage A. The object to be measured 18 is moved forward to the stage B side, and the optical axis of the optical sensor is mounted on the mounting base 36 of the mounting stage B.
When it is slightly outside (1 to 2 mm) from the outer periphery of the rear side, it is stopped, and then the ball screw 52 is rotationally driven by the servo motor 55 according to the measurement area defined in the setting menu, and the measurement step is performed. J is moved forward sequentially, and the optical axis of the optical sensor is slightly in front of the front outer periphery of the object to be measured 18 (1-2
mm), the measurement is stopped, and the thickness of one line 300 mm width different from the above line is measured, recorded and displayed.

【0046】ついで、ボ−ルネジ52をサ−ボモ−タ5
5で回転駆動させて測定ステ−ジAを搭載ステ−ジB側
より遠ざかる後退移動させ、図1で実線で示す測定ステ
−ジA位置となったら移動台50を停止する。支持体3
1を45度時計の逆方向に回転させることにより搭載台
36上の被測定対象物18を時計方向に90度回転さ
せ、ついで、前記と同様に、ボ−ルネジ52をサ−ボモ
−タ55で回転駆動させて厚み測定ステ−ジA側を前進
移動させ、光式センサの光軸が搭載ステ−ジBの搭載台
36に載せられた被測定対象物18の後側外周より若干
外(1〜2mm)となったら停止させ、ついで、前記設
定メニュ−で定められた測定領域に従いボ−ルネジ52
をサ−ボモ−タ55で回転駆動させて測定ステ−ジAを
順次前進移動させ、光式センサの光軸が被測定対象物1
8の前側外周より若干手前(1〜2mm)となったら停
止させ、前記ラインと直交する別の1ライン300mm
幅の厚み測定が行なわれ、記録、表示される。ついで、
ボ−ルネジ52をサ−ボモ−タ55で回転駆動させて測
定ステ−ジAを図1で実線で示す測定ステ−ジA位置ま
で後退移動させ、停止する。これによりクロスセクショ
ンの測定が終了する。プログラムは画面を被測定対象物
の回転中心Oで接合し、ウエハの平均形状を表示する。
結果は、プリンタで出力することもできる。
Then, the ball screw 52 is attached to the servomotor 5
In step 5, the measurement stage A is moved backwards away from the mounting stage B side, and when the measurement stage A position shown by the solid line in FIG. 1 is reached, the moving table 50 is stopped. Support 3
1 is rotated 45 degrees counterclockwise to rotate the object to be measured 18 on the mounting base 36 90 degrees clockwise, and then the ball screw 52 and the servomotor 55 are rotated in the same manner as described above. Is rotated to move the thickness measuring stage A side forward, and the optical axis of the optical sensor is slightly outside the rear side outer periphery of the object to be measured 18 placed on the mounting base 36 of the mounting stage B ( (1 to 2 mm), and then the ball screw 52 according to the measurement area defined in the setting menu.
Is rotated by a servo motor 55 to sequentially move the measurement stage A forward so that the optical axis of the optical sensor is the object to be measured 1.
When it is slightly before (1 to 2 mm) from the front outer circumference of 8, it is stopped, and another line 300 mm orthogonal to the above line is 300 mm.
The width and thickness are measured and recorded and displayed. Then,
The ball screw 52 is rotationally driven by the servo motor 55 to move the measuring stage A backward to the measuring stage A position shown by the solid line in FIG. 1 and stop. This completes the measurement of the cross section. The program joins the screens at the rotation center O of the object to be measured and displays the average shape of the wafer.
The result can also be output by a printer.

【0047】以上、被測定対象物が透明体と不透明体と
の積層物それぞれの厚みの測定方法について記述した
が、被測定対象物が透明体単独または不透明体単独であ
ってもその厚みを測定できることは勿論である。さら
に、透明体の複層積層物であってもそれぞれの透明対の
厚みをそれぞれのピ−ク画像のピ−ク間距離から求める
ことができるのは勿論のことである(特開2000−2
8317号公報参照)。
The method of measuring the thickness of each of the laminate of the transparent body and the opaque body as the object to be measured has been described above, but the thickness is measured even if the object to be measured is the transparent body alone or the opaque body alone. Of course you can. Furthermore, it is needless to say that the thickness of each transparent pair can be obtained from the peak-to-peak distance of each peak image even in the case of a multi-layered laminate of transparent bodies (JP-A 2000-2).
8317).

【0048】また、実施例の厚み測定方法では、測定ス
テ−ジAを直線前後移動させて搭載ステ−ジB側に近づ
けたり、搭載ステ−ジB側から遠ざける移動の例で記述
したが、測定ステ−ジAを固定位置とし、搭載ステ−ジ
Bを直線前後移動させて測定ステ−ジA側に近づけた
り、測定ステ−ジA側から遠ざける前後移動を行なって
もよい。
In the thickness measuring method of the embodiment, an example of moving the measuring stage A straight forward and backward to bring it closer to the mounting stage B side or moving it away from the mounting stage B side has been described. The measurement stage A may be set at a fixed position, and the mounting stage B may be moved linearly back and forth to approach the measurement stage A side, or may be moved back and forth away from the measurement stage A side.

【0049】[0049]

【発明の効果】本発明の厚み測定装置1は、被測定対象
物18を平面が面一の搭載台36にバキュ−ム固定して
厚みを測定するので、可撓性の被測定対象物であっても
基準面の搭載台表面上で被測定対象物は撓むことがない
ので、厚みを高精度に測定できる。
Since the thickness measuring device 1 of the present invention measures the thickness of the object 18 to be measured by vacuum-fixing the object 18 to be measured on the mounting table 36 having a flat surface, the object 18 is flexible. Even if there is, the object to be measured does not bend on the surface of the mounting table which is the reference surface, so that the thickness can be measured with high accuracy.

【0050】また、光式センサ10は2次元受光素子C
CDを用いて検出ポイントを10または60ラインに分
割して測定し、画素毎の平均化デ−タを出すことができ
るのでデ−タのバタツキがない。なお、1次元受光素子
CCDを用いる光式センサではCCD上のバタツキがそ
のまま出力されてしまう。また、従来の光ビ−ムを検知
領域に照射し、それと一定距離隔てて配置された位置検
出素子(PSD)に得られる反射光の受光位置に基づい
て被測定対象物までの距離を検知する光式変位センサで
は、被測定対象物が透明体のときは表面の反射光の他に
裏面または背景(ここでは搭載台またはシリコンウエハ
等)からの反射光によりPSDが反射光の位置を誤認識
するため正確な表面までの距離を測定できなかったが、
本発明の2次元受光素子CCD利用厚み測定装置は、表
面および裏面の反射光を区別して検出でき、厚みを高精
度に測定できる。
The optical sensor 10 is a two-dimensional light receiving element C.
Since the detection points are divided into 10 or 60 lines by using the CD for measurement and the averaged data for each pixel can be output, there is no fluttering of the data. An optical sensor using a one-dimensional light receiving element CCD outputs the flutter on the CCD as it is. Further, the conventional light beam is applied to the detection region, and the distance to the object to be measured is detected based on the light receiving position of the reflected light obtained by the position detection element (PSD) arranged at a certain distance from the detection region. In the optical displacement sensor, when the measured object is a transparent body, the PSD erroneously recognizes the position of the reflected light due to the reflected light from the back surface or the background (here, the mounting table or the silicon wafer) in addition to the reflected light on the front surface. Therefore, it was not possible to measure the accurate distance to the surface,
The thickness measuring device using the two-dimensional light receiving element CCD of the present invention can detect the reflected light on the front surface and the back surface separately, and can measure the thickness with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光式センサを備えたウエハの厚み測
定装置の平面図である。
FIG. 1 is a plan view of a wafer thickness measuring apparatus including an optical sensor of the present invention.

【図2】 ウエハの厚み測定装置の正面図である。FIG. 2 is a front view of a wafer thickness measuring device.

【図3】 ウエハの厚み測定装置の側面図である。FIG. 3 is a side view of a wafer thickness measuring device.

【図4】 本発明に用いる光式センサの構成を示すブロ
ック図である。
FIG. 4 is a block diagram showing a configuration of an optical sensor used in the present invention.

【図5】 光式センサのアプリケ−ションメニュ−の図
である。
FIG. 5 is a diagram of an application menu of the optical sensor.

【図6】 光式センサと被測定対象物までの距離および
各部の関係を示す図である。
FIG. 6 is a diagram showing a distance between an optical sensor and an object to be measured and a relationship between respective parts.

【図7】 2個の光式センサを用い、裏面研削されたウ
エハの厚みを測定している状態を示す図である。
FIG. 7 is a diagram showing a state in which the thickness of a wafer whose back surface is ground is measured using two optical sensors.

【図8】 裏面研削されたウエハのデバイス面に貼付さ
れた透明の保護樹脂フィルムが光式センサの2次元受光
素子CCD上で表した受光量分布を示す図である。
FIG. 8 is a diagram showing a received light amount distribution represented by a transparent protective resin film attached to a device surface of a wafer whose back surface has been ground, on a two-dimensional light receiving element CCD of an optical sensor.

【符号の説明】[Explanation of symbols]

1 厚み測定計 2 基台 A 測定ステ−ジ B 搭載ステ−ジ C 前後方向移送機構 D 搭載台回動機構 10 光式センサ 18 被測定対象物 20 2次元受光素子 31 支持管 36 搭載台 50 移動台 1 Thickness meter 2 bases A measurement stage B mounting stage C Front-rear transfer mechanism D mounting platform rotation mechanism 10 Optical sensor 18 Object to be measured 20 Two-dimensional light receiving element 31 Support tube 36 mounting base 50 mobile platform

フロントページの続き Fターム(参考) 2F065 AA02 AA06 AA20 AA22 AA24 AA25 AA30 BB02 BB03 BB22 BB23 CC02 CC19 FF04 FF09 FF41 FF61 FF65 FF67 GG06 GG07 GG12 HH03 HH05 HH12 JJ03 JJ05 JJ08 JJ19 JJ26 LL08 LL28 MM03 MM04 NN01 NN15 PP12 PP22 QQ03 QQ24 QQ26 QQ29 QQ31 QQ42 RR06 RR09 4M106 AA01 BA10 CA48 CA50 DH03 DH12 DH31 DH38 DJ02 DJ04 DJ06 DJ20 DJ21 Continued front page    F term (reference) 2F065 AA02 AA06 AA20 AA22 AA24                       AA25 AA30 BB02 BB03 BB22                       BB23 CC02 CC19 FF04 FF09                       FF41 FF61 FF65 FF67 GG06                       GG07 GG12 HH03 HH05 HH12                       JJ03 JJ05 JJ08 JJ19 JJ26                       LL08 LL28 MM03 MM04 NN01                       NN15 PP12 PP22 QQ03 QQ24                       QQ26 QQ29 QQ31 QQ42 RR06                       RR09                 4M106 AA01 BA10 CA48 CA50 DH03                       DH12 DH31 DH38 DJ02 DJ04                       DJ06 DJ20 DJ21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投光手段と、受光手段と信号処理手段を
有する備えた光式センサであり、前記投光手段は投光手
段と受光手段との並び方向に対して垂直方向に細長く伸
びたスリットビ−ムを被測定対象物の検出域に投光する
ものであり、前記受光手段は、前記検出域からの反射光
を集光する集光レンズと、該集光レンズを介して受光す
る2次元受光素子とを有するものであり、前記信号処理
手段は、前記受光手段の2次元受光素子上の受光量分布
のうち前記投光手段に近い側にある第2の投光分布とか
ら、検出域にある被測定対象物の厚さ、高さまたは段差
を算出する信号処理手段である光式センサを用いて、被
測定対象物であるウエハの厚みを測定する厚み測定装置
であって、該厚み測定装置は、 厚み測定装置の基台上に設けた移動台に立設した支持体
に前記一対の光式センサを被測定対象物が通過できる距
離をもって上下に固定した測定ステ−ジ、 前記測定ステ−ジの移動台を前後方向に移動させるサ−
ボ機能を有する移動機構、 上下に流体通路を有する支持管を前記測定ステ−ジの前
位置に立設し、該支持管の上部フランジ部に支持管の流
体通路に連通する流体通路を有する円盤状下プレ−トを
固定し、円盤状下プレ−トの上面に前記光式センサが通
過できる切り欠き部を少なくとも8箇所等間隔に設けた
円筒状支持体を固定して設け、底部に流体通路室を有す
る円盤状枠プレ−トを前記円筒状支持体の上部に固定
し、該円盤状枠プレ−ト内に光式センサの投光部より投
光された光が被測定対象物に達し、その反射光が光式セ
ンサに達するように少なくとも4条の溝が円盤状枠プレ
−トの軸心で交差して形成されるように吸引部材を敷設
して被測定対象物搭載台を形成し、円盤状下プレ−トの
流体通路と円盤状枠プレ−トの流体通路室を管で連通さ
せ、支持管の流体通路に減圧空気供給管と加圧空気供給
管が切替えられる切替えバルブを有する管が結合されて
いる被測定対象物搭載ステ−ジ(但し、被測定対象物搭
載ステ−ジを構成する支持管の軸心、円盤状下プレ−ト
の軸心、円筒状支持体の軸心および円盤状枠プレ−トの
軸心は同一鉛直線上に存在する。)、 および、 前記支持管を水平方向に回動させるサ−ボ機能を有する
回動機構、とを備えることを特徴とするウエハの厚み測
定装置。
1. An optical sensor having a light projecting means, a light receiving means and a signal processing means, wherein the light projecting means is elongated in a direction perpendicular to a direction in which the light projecting means and the light receiving means are arranged. The slit beam is projected onto the detection area of the object to be measured, and the light receiving means receives the reflected light from the detection area through a condenser lens and 2 through the condenser lens. A two-dimensional light receiving element, and the signal processing means detects from the second light projecting distribution on the side closer to the light projecting means in the received light amount distribution on the two-dimensional light receiving element of the light receiving means. A thickness measuring device for measuring the thickness of a wafer, which is an object to be measured, using an optical sensor that is a signal processing means for calculating the thickness, height, or step of the object to be measured in a region, The thickness measuring device should be placed on a moving table installed on the base of the thickness measuring device. And said pair of optical type object to be measured a sensor support is fixed vertically at a distance that can pass through the measurement stearyl - di, the measurement stearyl - Sa moving the moving stand di in the longitudinal direction -
A moving mechanism having a bob function, a disc having a support pipe having upper and lower fluid passages standing upright in front of the measuring stage, and a fluid passage communicating with the fluid passage of the support pipe at an upper flange portion of the support pipe. -Shaped lower plate is fixed, and a cylindrical support body is fixedly provided on the upper surface of the disk-shaped lower plate, and at least eight notch portions through which the optical sensor can pass are fixedly provided. A disk-shaped frame plate having a passage chamber is fixed to the upper portion of the cylindrical support, and the light projected from the light-projecting section of the optical sensor in the disk-shaped frame plate is the object to be measured. The suction member is laid so that at least four grooves intersect each other at the axis of the disc-shaped frame plate so that the reflected light reaches the optical sensor. The disc-shaped lower plate fluid passage and the disc-shaped frame plate fluid passage chamber are formed by pipes. A stage for mounting an object to be measured (however, a stage for mounting an object to be measured is connected to a pipe having a switching valve for switching between a depressurized air supply pipe and a pressurized air supply pipe in a fluid passage of a support pipe. The axis of the support tube, the axis of the disk-shaped lower plate, the axis of the cylindrical support, and the axis of the disk-shaped frame plate that form the z-axis are on the same vertical line.), And And a rotation mechanism having a servo function for horizontally rotating the support tube.
【請求項2】 投光手段と、受光手段と信号処理手段を
有する備えた光式センサであり、前記投光手段は投光手
段と受光手段との並び方向に対して垂直方向に細長く伸
びたスリットビ−ムを被測定対象物の検出域に投光する
ものであり、前記受光手段は、前記検出域からの反射光
を集光する集光レンズと、該集光レンズを介して受光す
る2次元受光素子とを有するものであり、前記信号処理
手段は、前記受光手段の2次元受光素子上の受光量分布
のうち前記投光手段に近い側にある第2の投光分布とか
ら、検出域にある被測定対象物の厚さ、高さまたは段差
を算出する信号処理手段である光式センサを用い、 前後移動および回転駆動可能な支持体に軸承された搭載
台に被測定対象物を載せ、光式センサの投光部より被測
定対象物の検出域に投光し、その反射光を2次元受光素
子で受光し、その受光量分布のうち前記投光手段に近い
側にある第2の投光分布とから、検出域にある被測定対
象物の厚さを信号処理手段より算出させることを特徴と
する、ウエハの厚み測定方法。
2. An optical sensor having a light projecting means, a light receiving means and a signal processing means, wherein the light projecting means is elongated in a direction perpendicular to a direction in which the light projecting means and the light receiving means are arranged. The slit beam is projected onto the detection area of the object to be measured, and the light receiving means receives the reflected light from the detection area through a condenser lens and 2 through the condenser lens. A two-dimensional light receiving element, and the signal processing means detects from the second light projecting distribution on the side closer to the light projecting means in the received light amount distribution on the two-dimensional light receiving element of the light receiving means. Using an optical sensor that is a signal processing means that calculates the thickness, height or step of the measured object in the area, mount the measured object on a mounting base that is supported by a support that can be moved back and forth and rotated. On the detection area of the object to be measured from the light emitting part of the optical sensor. Then, the reflected light is received by the two-dimensional light receiving element, and the thickness of the object to be measured in the detection area is determined from the second light projection distribution on the side closer to the light projecting means in the received light quantity distribution. A method for measuring the thickness of a wafer, which is calculated by a signal processing means.
JP2001269762A 2001-09-06 2001-09-06 Thickness measuring method and thickness measuring device of wafer Pending JP2003075125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269762A JP2003075125A (en) 2001-09-06 2001-09-06 Thickness measuring method and thickness measuring device of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269762A JP2003075125A (en) 2001-09-06 2001-09-06 Thickness measuring method and thickness measuring device of wafer

Publications (1)

Publication Number Publication Date
JP2003075125A true JP2003075125A (en) 2003-03-12

Family

ID=19095520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269762A Pending JP2003075125A (en) 2001-09-06 2001-09-06 Thickness measuring method and thickness measuring device of wafer

Country Status (1)

Country Link
JP (1) JP2003075125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804291A1 (en) * 2004-10-20 2007-07-04 Sumitomo Bakelite Company, Limited Semiconductor wafer and semiconductor device
JP2008094060A (en) * 2006-10-16 2008-04-24 Seiko Epson Corp Recording apparatus and liquid jetting device
JP2008141064A (en) * 2006-12-04 2008-06-19 Lintec Corp Inspection device and sheet pasting apparatus
JP2011166172A (en) * 2011-05-18 2011-08-25 Lintec Corp Inspection device, and sheet pasting device
CN108572368A (en) * 2017-03-07 2018-09-25 台濠科技股份有限公司 The method for measuring wafer thickness with infrared ray
TWI705229B (en) * 2019-01-14 2020-09-21 亦立科技有限公司 Wafer thickness detecting device and method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804291A1 (en) * 2004-10-20 2007-07-04 Sumitomo Bakelite Company, Limited Semiconductor wafer and semiconductor device
EP1804291A4 (en) * 2004-10-20 2010-09-01 Sumitomo Bakelite Co Semiconductor wafer and semiconductor device
JP2008094060A (en) * 2006-10-16 2008-04-24 Seiko Epson Corp Recording apparatus and liquid jetting device
JP2008141064A (en) * 2006-12-04 2008-06-19 Lintec Corp Inspection device and sheet pasting apparatus
JP2011166172A (en) * 2011-05-18 2011-08-25 Lintec Corp Inspection device, and sheet pasting device
CN108572368A (en) * 2017-03-07 2018-09-25 台濠科技股份有限公司 The method for measuring wafer thickness with infrared ray
TWI705229B (en) * 2019-01-14 2020-09-21 亦立科技有限公司 Wafer thickness detecting device and method thereof

Similar Documents

Publication Publication Date Title
US5324381A (en) Semiconductor chip mounting method and apparatus
US6624879B2 (en) Exposure apparatus and method for photolithography
US20100024723A1 (en) Substrate alignment apparatus and substrate processing apparatus
JP2009135166A (en) Exposure method and exposure device, exposure unit, and device manufacturing method
CN101640181A (en) Substrate alignment apparatus and substrate processing apparatus
KR20110085888A (en) Imprint apparatus and article manufacturing method
CN214149172U (en) Wafer measuring device
JP6120710B2 (en) Cutting equipment
TWI726748B (en) High-precision bond head positioning method and apparatus
JP2003075124A (en) Thickness measuring device of wafer
JP2003075125A (en) Thickness measuring method and thickness measuring device of wafer
JP5930699B2 (en) Imprint apparatus, imprint method, and device manufacturing method
TWI795563B (en) Inspection fixture and inspection method
TW201843012A (en) Wafer waviness detection method and grinding device in which the wafer waviness detection method includes a holding step, a contact step and an irradiation step
JP6643654B2 (en) Groove depth detecting device and groove depth detecting method
TWI543294B (en) Method for aligning of semiconductor wafer
JP2007075772A (en) Paste applicator and paste application method
JP2007098487A (en) Wafer chamfering device
US7053393B2 (en) Alignment apparatus for object on stage
JP2007305696A (en) Accuracy measuring method of positioning apparatus
JPH05160245A (en) Circular board positioning apparatus
TWI740266B (en) Apparatus and method for inspecting bonded semiconductor dice
US20140368635A1 (en) On-axis focus sensor and method
JPH09199573A (en) Positioning stage apparatus and aligner using the same
CN218647213U (en) Lens assembling equipment