JP2003074833A - Coal combustion control system - Google Patents

Coal combustion control system

Info

Publication number
JP2003074833A
JP2003074833A JP2001267880A JP2001267880A JP2003074833A JP 2003074833 A JP2003074833 A JP 2003074833A JP 2001267880 A JP2001267880 A JP 2001267880A JP 2001267880 A JP2001267880 A JP 2001267880A JP 2003074833 A JP2003074833 A JP 2003074833A
Authority
JP
Japan
Prior art keywords
mill
coal
unburned
boiler
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001267880A
Other languages
Japanese (ja)
Other versions
JP4523742B2 (en
Inventor
Yoshinori Inosawa
祥規 猪澤
Koji Ikeda
幸治 池田
Yoshihiro Deguchi
祥啓 出口
Hitoshi Tarui
仁 樽井
Takashi Kumanhara
崇史 九萬原
Tokuo Watanabe
徳雄 渡辺
Tomihiro Ogawa
富弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2001267880A priority Critical patent/JP4523742B2/en
Publication of JP2003074833A publication Critical patent/JP2003074833A/en
Application granted granted Critical
Publication of JP4523742B2 publication Critical patent/JP4523742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve combustion efficiency by effecting optimization control of the unburnt content of coal ash at a real time. SOLUTION: An unburnt content of ash in a boiler 2 is measured by an LIBS device 6 capable of effecting real time measurement. Based on the measurement, a control device 9 controls the number of revolutions of the rotary classifier of a mill 1. When the number of revolutions of the rotary classifier of the mill 1 is increased, fineness of coal is increased, high efficient combustion of the unburnt content is effected in the boiler 2 to decrease an unburnt content. Meanwhile, when the number of revolutions of the rotary classifier is decreased, fineness of coal is decreased, excessive combustion is suppressed and the unburnt content is increased. By effecting optimization control of an unburnt content at a real time, combustion efficiency can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、微粉炭や高濃度
石炭水スラリ(CWM)などの石炭を燃料として使用す
る石炭焚ボイラの燃焼効率を向上できる石炭燃焼制御シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coal combustion control system capable of improving the combustion efficiency of a coal-fired boiler using coal such as pulverized coal or high-concentration coal water slurry (CWM) as a fuel.

【0002】[0002]

【従来の技術】石炭燃焼に伴い発生する石炭灰のうちの
約7割は未燃分の少ない石炭灰であるため、セメント原
料や混和材として再利用され、残りは埋立てなどにより
廃棄処分されているのが現状である。一方、石炭灰中の
未燃分が多くなるとセメント混和材としての再利用が不
可能となり、埋立処分する灰の量が多くなる。このた
め、石炭灰中の未燃分が少なくなるように燃焼を制御
し、再利用できる石炭灰が得られるようにすることが従
来から望まれていた。
2. Description of the Related Art About 70% of the coal ash generated by burning coal is unburned coal ash, so it is reused as a cement raw material or admixture, and the rest is disposed of by landfill. Is the current situation. On the other hand, if the unburned content in the coal ash increases, it becomes impossible to reuse it as a cement admixture, and the amount of ash to be landfilled increases. For this reason, it has been conventionally desired to control the combustion so that the unburned content in the coal ash is reduced so that reusable coal ash can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来で
は石炭灰中の未燃分値を測定することで燃焼状態を把握
するにあたり、排ガスから試料を採取して手作業により
分析を行うため、計測値の時間遅れが大きく、最適な燃
焼を得られるように制御することは困難であった。具体
的には、排ガスから試料を採取して手分析結果を得られ
るまでには約20分〜120分が必要となり、この手分
析結果に基づいて所定の燃焼条件を制御しても、好適な
燃焼状態は得られないのが現状であった。また、燃焼状
態を把握するために排ガスラインにCOガス分析計を設
けて監視を行う方式が知られているが、COガス分析計
の計測値の精度が低いため、制御に用いるには適当では
なかった。
However, in the past, when grasping the combustion state by measuring the value of unburned matter in the coal ash, a sample is taken from the exhaust gas and manually analyzed, so the measured value It was difficult to control so that optimum combustion could be obtained because of the large time delay. Specifically, it takes about 20 to 120 minutes to obtain a hand analysis result by collecting a sample from the exhaust gas, and even if a predetermined combustion condition is controlled based on the hand analysis result, it is preferable. The current situation is that the combustion state cannot be obtained. Further, a method is known in which a CO gas analyzer is installed in the exhaust gas line to monitor the combustion state in order to grasp the combustion state, but the accuracy of the measured value of the CO gas analyzer is low, so it is not suitable for use in control. There wasn't.

【0004】係る問題に対して、近年では特開平9−1
55293号公報にて本願出願人により提案されたレー
ザ誘起ブレークダウン方法(Laser Induced Breakdown
Spectroscopy:LIBS)が有力な計測手段として知ら
れるようになっている。このLIBS方法の原理は、図
3に示すように、レーザ光201を気体、液体、固体中
に集中して計測場202をプラズマ化させ、レーザ光2
01により生成したプラズマ光203を検出して計測場
202の成分濃度を計測すると共に、石炭灰の組成成分
であるSi、Al、Fe、Ca、Cの信号強度を検出
し、主成分であるSi、Al、Fe、CaとCとの強度
比を計算することで石炭灰中の未燃分を算出するもので
ある。
With respect to such a problem, in recent years, Japanese Patent Laid-Open No. 9-1
The laser-induced breakdown method proposed by the present applicant in Japanese Patent No. 55293 (Laser Induced Breakdown).
Spectroscopy (LIBS) has come to be known as a powerful measuring means. As shown in FIG. 3, the principle of this LIBS method is that the laser light 201 is concentrated in a gas, a liquid, or a solid to turn the measurement field 202 into plasma, and the laser light 2 is emitted.
The plasma light 203 generated by 01 is detected to measure the component concentration of the measurement field 202, and the signal intensities of Si, Al, Fe, Ca, and C which are the composition components of coal ash are detected, and the main component Si. , Al, Fe, Ca and C are calculated to calculate the unburned content in the coal ash.

【0005】図4は、そのようなLIBS装置の一例を
示す構成図である。このLIBS装置300は、パルス
レーザ装置301と、集光用のレンズ302と、配管3
03に設けた計測窓304と、プラズマ光を反射するミ
ラー305と、プラズマ光を集光するレンズ306と、
分光器307およびCCDカメラ308と、コンピュー
ター309とから構成されている。パルスレーザ装置3
01から出力されたレーザ光201は、レンズ302お
よび計測窓304を介して配管303内の計測場202
に集光される。配管303内には微粉炭やファライアッ
シュ等の測定対象物が流れており、レーザ光201の集
光により、計測場202に存在する微粒子が高温加熱さ
れてプラズマ化し、プラズマ化した成分物質からプラズ
マ光203が発生する。
FIG. 4 is a block diagram showing an example of such a LIBS device. The LIBS device 300 includes a pulse laser device 301, a condenser lens 302, and a pipe 3.
03, a measurement window 304, a mirror 305 that reflects plasma light, a lens 306 that collects plasma light,
It is composed of a spectroscope 307, a CCD camera 308, and a computer 309. Pulse laser device 3
The laser light 201 output from 01 is transmitted through the lens 302 and the measurement window 304 to the measurement field 202 in the pipe 303.
Is focused on. An object to be measured, such as pulverized coal or Farai ash, is flowing in the pipe 303. Due to the focusing of the laser light 201, the particles present in the measurement field 202 are heated to a high temperature and turned into plasma. Plasma light 203 is generated.

【0006】発生したプラズマ光203は計測場202
の計測窓304から外部に出力され、ミラー305で反
射され、更にレンズ306で集光されて分光器307に
入射される。この分光器307は、波長が190nm〜
500nmのプラズマ光203を分光すると共に当該分
光した光成分をCCDカメラ308に入力する。CCD
カメラ308は高速ゲートが可能であり、分光器307
にて分光された分光プラズマ光203を検出し、この分
光プラズマ光203に応じた信号をコンピューター30
9に転送する。なお、CCDカメラ308は、同期ライ
ン310を介してパルスレーザ装置301と接続され、
これによりCCDカメラ308のゲート制御とパルスレ
ーザ装置301との発振とが同期される。
The generated plasma light 203 is measured by the measurement field 202.
Is output to the outside through the measurement window 304, reflected by the mirror 305, condensed by the lens 306, and incident on the spectroscope 307. This spectroscope 307 has a wavelength of 190 nm-
The 500 nm plasma light 203 is dispersed, and the dispersed light components are input to the CCD camera 308. CCD
The camera 308 can have a high-speed gate, and the spectroscope 307
The spectroscopic plasma light 203 dispersed by is detected by the computer 30, and a signal according to the spectroscopic plasma light 203 is detected by the computer 30.
Transfer to 9. The CCD camera 308 is connected to the pulse laser device 301 via a synchronization line 310,
Thereby, the gate control of the CCD camera 308 and the oscillation of the pulse laser device 301 are synchronized.

【0007】コンピューター309は、各成分の発光強
度情報を有する信号を情報処理して、計測場202に存
在する微粉炭等の発熱量、未燃分、成分組成等をリアル
タイムで算出する。このように、LIBS装置300
は、測定対象物の組成成分の計測をリアルタイムで行う
ことができるので、当該計測結果に基づいてプラント等
の運転制御を行うことが可能となる。
The computer 309 processes the signal having the emission intensity information of each component to calculate in real time the calorific value, unburned content, component composition, etc. of the pulverized coal or the like existing in the measurement field 202. In this way, the LIBS device 300
Since the composition component of the measurement object can be measured in real time, it is possible to control the operation of the plant or the like based on the measurement result.

【0008】そこで、この発明は、上記に鑑みてなされ
たものであって、未燃分の最適化制御をリアルタイムで
行い、燃焼効率を向上できる石炭燃焼制御システムを提
供することを目的とする。
Therefore, the present invention has been made in view of the above, and an object of the present invention is to provide a coal combustion control system capable of improving combustion efficiency by performing optimization control of unburned components in real time.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1に係る石炭燃焼制御システムは、ミルで
微粉化した石炭を燃焼させるボイラから排出される石炭
灰中の未燃分をレーザ法により計測する計測手段と、計
測手段により計測した石炭灰中の未燃分に基づいて前記
ミルの運転状態を制御して微粉度を調整する制御手段と
を備えたことを特徴とする。
In order to achieve the above object, a coal combustion control system according to a first aspect of the present invention provides an unburned component in coal ash discharged from a boiler that burns coal pulverized by a mill. And a control means for adjusting the fineness by controlling the operating state of the mill based on the unburned content in the coal ash measured by the measuring means. .

【0010】すなわち、この発明では、レーザ法による
未燃分の計測結果に基づきミルの運転状態を制御し微粉
度を調整する。微粉度が上がれば石炭が燃焼し易くなり
石炭灰中の未燃分が減少する。一方、微粉度が下がれば
過度な燃焼を抑制して未燃分を増加でき、この結果、石
炭灰中の未燃分の最適化制御をリアルタイムで行うこと
ができる。なお、ミルの運転状態を制御する場合、ミル
回転分級機の回転数を制御することが好ましく、この他
にミルロール荷重油圧を制御するようにしてもよい。ま
た、レーザ法としてはLIBS法を用いるのが好ましい
が、レーザ誘起蛍光法(Laser Induced Fluorescence:
LIF)等の他のレーザ法を用いることもできる。更
に、制御手段は、下記実施の形態に示すような未燃分偏
差を入力することで制御するが、未燃分に基づいて制御
するものであればこれに限定されない。
That is, in the present invention, the fineness of fineness is adjusted by controlling the operating state of the mill based on the measurement result of the unburned component by the laser method. If the fineness increases, the coal is easily burned and the unburned content in the coal ash decreases. On the other hand, if the fineness decreases, excessive combustion can be suppressed and unburned content can be increased. As a result, optimization control of unburned content in coal ash can be performed in real time. When controlling the operating state of the mill, it is preferable to control the rotation speed of the mill rotation classifier, and in addition to this, the mill roll load hydraulic pressure may be controlled. Further, although it is preferable to use the LIBS method as the laser method, a laser induced fluorescence method (Laser Induced Fluorescence:
Other laser methods such as LIF) can also be used. Further, the control means controls by inputting the unburned component deviation as shown in the following embodiment, but the control means is not limited to this as long as it controls based on the unburned component.

【0011】また、請求項2に係る石炭燃焼制御装置
は、ミルで微粉化した石炭を燃焼させるボイラから排出
される石炭灰中の未燃分をレーザ法により計測する計測
手段と、計測手段により計測した石炭灰中の未燃分に基
づいて、ボイラ出口ガスO2設定値を増減することによ
り、ボイラに空気を供給するファンの動翼開度を制御
し、前記ボイラに対する空気流量を調整する制御手段と
を備えたことを特徴とする。
Further, the coal combustion control apparatus according to the second aspect of the present invention comprises a measuring means for measuring the unburned matter in the coal ash discharged from the boiler for burning the coal pulverized by the mill by the laser method, and the measuring means. By increasing or decreasing the boiler outlet gas O 2 setting value based on the measured unburned content in the coal ash, the blade opening of the fan that supplies air to the boiler is controlled, and the air flow rate to the boiler is adjusted. And a control means.

【0012】すなわち、計測手段による未燃分の計測結
果に基づいて、ボイラ出口ガスO2設定値を増減するこ
とにより、ファンの動翼開度を制御し、ボイラに対する
空気流量を調整することで未燃分の最適化を行う。空気
流量が増加すれば燃焼が促進されて未燃分を減少でき、
空気流量を減少させれば過渡な燃焼を抑制して未燃分を
増加でき、排ガス損失の低減、更にファン動力の低減に
よりランニングコストを抑えることができる。この結
果、石炭灰中の未燃分値の最適化制御をリアルタイムで
行うことができ、ボイラの燃焼効率を向上できる。ま
た、再利用可能な灰を増やすことができる。
That is, by increasing / decreasing the boiler outlet gas O 2 setting value based on the measurement result of the unburned component by the measuring means, the blade opening of the fan is controlled and the air flow rate to the boiler is adjusted. Optimize unburned components. If the air flow rate increases, combustion is promoted and unburned content can be reduced.
If the air flow rate is reduced, transient combustion can be suppressed to increase unburned components, exhaust gas loss can be reduced, and fan power can be reduced to reduce running costs. As a result, the optimization control of the unburned content value in the coal ash can be performed in real time, and the combustion efficiency of the boiler can be improved. It can also increase reusable ash.

【0013】また、上記石炭燃焼制御システムによれ
ば、ミルで微粉化した石炭を燃焼させるボイラから排出
される石炭灰中の未燃分をレーザ法により計測して、計
測手段により計測した石炭灰中の未燃分を適正値に調整
する事で、結果的にボイラに供給する石炭燃料の流量を
適正に保つことができる。
Further, according to the above coal combustion control system, the unburned matter in the coal ash discharged from the boiler for burning the coal pulverized by the mill is measured by the laser method, and the coal ash measured by the measuring means is measured. By adjusting the unburned content in the boiler to an appropriate value, the flow rate of the coal fuel supplied to the boiler can be maintained appropriately as a result.

【0014】すなわち、計測手段による石炭灰中未燃分
の計測結果に基づいて石炭灰中の未燃分を制御すること
で燃料流量の最適化が行われ、具体的には、未燃分を減
少させるように制御すれば結果的に燃料流量を減少で
き、ボイラの燃焼効率が向上する。また、再利用可能な
灰を増やすことができる。
That is, the fuel flow rate is optimized by controlling the unburned content in the coal ash based on the measurement result of the unburned content in the coal ash by the measuring means. If it is controlled so as to decrease, the fuel flow rate can be decreased as a result, and the combustion efficiency of the boiler is improved. It can also increase reusable ash.

【0015】[0015]

【発明の実施の形態】以下、この発明につき図面を参照
しつつ詳細に説明する。なお、この実施の形態によりこ
の発明が限定されるものではない。図1は、この発明の
実施の形態1に係る蒸気発生・石炭灰処理装置を示す構
成図である。図2は、図1に示した制御装置のブロック
図である。この蒸気発生・石炭灰処理装置100は、ミ
ル1、ボイラ2、電気集塵装置(EP)3および回転式
分級機4から構成され、輸送管5にはLIBS装置6が
接続されている。ボイラ2には、ファン8を含む空気供
給系が設けられている。ミル1の運転、空気供給系のフ
ァン8の動翼ピッチは、制御装置9により制御される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment. 1 is a configuration diagram showing a steam generation / coal ash processing apparatus according to Embodiment 1 of the present invention. FIG. 2 is a block diagram of the control device shown in FIG. The steam generating / coal ash processing apparatus 100 includes a mill 1, a boiler 2, an electrostatic precipitator (EP) 3 and a rotary classifier 4, and a LIBS device 6 is connected to a transportation pipe 5. The boiler 2 is provided with an air supply system including a fan 8. The operation of the mill 1 and the blade pitch of the fan 8 of the air supply system are controlled by the controller 9.

【0016】LIBS装置6は、上記図4に示した構成
と同様であるから詳細な説明は省略する。LIBS装置
6は制御装置9に接続され、計測結果の信号を制御装置
9に送出する。制御装置9は、ミル回転数制御部51、
ミルロール荷重油圧制御部52、空気流量制御部53を
備え、これらの制御対象を選択する選択部55、未燃分
目標値設定部56、多炭種対応制御部57を更に備えて
いる。また、この制御装置9は、専用のハードウエアに
より実現されるものであっても良いし、メモリおよびC
PU(中央演算装置)により構成され、各部の機能を実
現するためのプログラム(図示省略)をメモリにロード
して実行することによりその機能を実現させるものであ
っても良い。なお、前記プログラムは、図示しないハー
ドディスク装置や光磁気ディスク装置、フラッシュメモ
リ等の不揮発性のメモリや、CD−ROM等のような読
み出しのみが可能な記憶媒体、RAMのような揮発性の
メモリに記憶され得る。
Since the LIBS device 6 has the same configuration as that shown in FIG. 4, detailed description thereof will be omitted. The LIBS device 6 is connected to the control device 9 and sends a signal of the measurement result to the control device 9. The control device 9 includes a mill rotation speed control unit 51,
A mill roll load hydraulic pressure control unit 52 and an air flow rate control unit 53 are provided, and a selection unit 55 for selecting these control targets, an unburned content target value setting unit 56, and a multi-coal type control unit 57 are further provided. Further, the control device 9 may be realized by dedicated hardware, or may be a memory and a C.
The function may be realized by loading a program (not shown) for realizing the function of each unit into the memory and executing the program, which is configured by a PU (Central Processing Unit). The program is stored in a hard disk device, a magneto-optical disk device (not shown), a non-volatile memory such as a flash memory, a read-only storage medium such as a CD-ROM, or a volatile memory such as a RAM. Can be remembered.

【0017】ミル1から供給された微粉炭がボイラ2で
燃焼することにより石炭灰が生じ、この石炭灰は輸送管
5を流れてEP3に至り集塵される。EP3で集塵され
た石炭灰は、輸送管10を経て回転式分級機4に送ら
れ、細粉石炭灰と粗粉石炭灰とに分別される。
When the pulverized coal supplied from the mill 1 is burned in the boiler 2, coal ash is produced, and the coal ash flows through the transport pipe 5 to reach EP3 where dust is collected. The coal ash collected in EP3 is sent to the rotary classifier 4 through the transport pipe 10 and is separated into fine coal ash and coarse coal ash.

【0018】輸送管5を流れる石炭灰の未燃分はLIB
S装置6により計測され、その計測値は信号ライン11
を介して制御装置9に送られる。制御装置9は、未燃分
値に基づいてミル回転分級機(図示省略)の回転数を制
御する。未燃分目標値設定部56では、石炭の種類毎に
好ましい未燃分値を設定して記憶しており、LIBS装
置6での計測値と比較して偏差を求め、補正信号をミル
回転数制御部51に送る。ミル回転数制御部51は、補
正信号に基づいてミル回転分級機の回転数を制御する
が、具体的には未燃分が多い場合は燃焼が効率良く行わ
れていないものとしてミル回転分級機の回転数を上げ、
石炭の微粉度を小さくして良く燃焼できるように制御す
る。一方、未燃分が少ない場合は燃焼が過度に行われて
おり、ミル動力を必要以上に消費しているものとして、
ミル回転分級機の回転数を下げて目標値に近づくように
制御する。
The unburned content of the coal ash flowing through the transport pipe 5 is LIB.
Measured by the S device 6, and the measured value is the signal line 11
Is sent to the control device 9 via. The control device 9 controls the rotation speed of a mill rotation classifier (not shown) based on the unburned component value. The unburned-mass target value setting unit 56 sets and stores a preferable unburned-mass value for each type of coal, compares the measured value with the LIBS device 6 to obtain a deviation, and outputs a correction signal to the mill rotation speed. It is sent to the control unit 51. The mill rotation speed control unit 51 controls the rotation speed of the mill rotation classifier based on the correction signal. Specifically, if there is a large amount of unburned components, it is assumed that combustion is not being carried out efficiently. Increase the rotation speed of
Control the fineness of coal so that it burns well. On the other hand, if the unburned content is small, it means that the combustion is excessive and that the mill power is consumed more than necessary.
Reduce the rotation speed of the mill rotation classifier to control it so that it approaches the target value.

【0019】また、灰中未燃分とミル回転分級機の回転
数との関係は、実測によりその相関関係を求め、ミル回
転数制御部51にてテーブル化して格納しておく。発明
者らの試験研究によれば、例えばミル回転分級機の回転
数を5rpm変化させたときの未燃分の変化量は約0.
5%となるものと推定できており、ミル回転分級機の回
転数を±5rpmの範囲で変化させてもミル負荷の許容
範囲内に収まること等から、ミル回転分級機の回転数制
御により未燃分の最適化を効果的に行うことが可能であ
ると結論できた。この蒸気発生・石炭灰処理装置100
では、石炭灰中未燃分値の最適化を行うことで、燃焼効
率を向上できると共に灰の再利用を促進できる。なお、
ミル回転分級機の回転数を上げることでミル電動機の動
力が増加することになるが、ボイラ効率が向上するため
トータルのランニングコストを低減できる。
As for the relationship between the unburned ash content and the rotation speed of the mill rotation classifier, the correlation is found by actual measurement, and the mill rotation speed control unit 51 stores it in a table. According to the test research conducted by the inventors, for example, when the rotation speed of the mill rotary classifier is changed by 5 rpm, the change amount of the unburned component is about 0.
It can be estimated that it will be 5%, and even if the rotation speed of the mill rotation classifier is changed within ± 5 rpm, it remains within the allowable range of the mill load. It was concluded that it is possible to effectively optimize the fuel content. This steam generation / coal ash processing device 100
Then, by optimizing the unburned carbon content in the coal ash, the combustion efficiency can be improved and the reuse of the ash can be promoted. In addition,
Although the power of the mill motor is increased by increasing the rotation speed of the mill rotary classifier, the total running cost can be reduced because the boiler efficiency is improved.

【0020】また、未燃分値の最適化制御はミル回転分
級機の回転数の制御のみならず、ミルロール荷重油圧の
制御、空気流量の制御によっても可能である。上記同
様、発明者らの試験研究により、灰中未燃分とミルロー
ル荷重油圧との相関関係を推定したところ、例えばミル
ロール荷重油圧を2MPa変化させると、未燃分の変化
量が0.1%程度になることから、適正なミルロールリ
フトの確保を条件として未燃分の最適化が可能であると
判った。なお、ミルロール荷重油圧制御は、未燃分の変
化量を稼ぐために油圧を大きく変化させる必要があるた
め、上記ミル回転分級機の回転数制御の方が未燃分値の
最適化制御に好適である。
The unburned component value optimization control can be performed not only by controlling the rotational speed of the mill rotary classifier but also by controlling the mill roll load hydraulic pressure and the air flow rate. Similarly to the above, when the correlation between the unburned ash content and the mill roll load hydraulic pressure was estimated by the inventors' test studies, for example, when the mill roll load hydraulic pressure was changed by 2 MPa, the change amount of the unburned content was 0.1%. It was found that it is possible to optimize the unburned content on the condition that an appropriate mill roll lift is secured. In the mill roll load hydraulic pressure control, the hydraulic pressure needs to be greatly changed in order to obtain the amount of change in the unburned content. Therefore, the rotation speed control of the mill rotation classifier is more suitable for the optimization control of the unburned content value. Is.

【0021】ミルロール荷重油圧制御部52は、未燃分
目標値設定部56の目標値とLIBS装置6の未燃分値
とから求めた偏差の補正信号に基づき油圧系統(図示省
略)を制御し、未燃分が多い場合はミルロール荷重を増
加させて石炭の微粉度を小さくし、良く燃焼できるよう
にする。一方、未燃分が少ない場合は燃焼が過度に行わ
れており、ミル動力を必要以上に消費しているものとし
て、ミルロール荷重を下げて目標値に近づくように制御
する。このようにしても、燃焼効率を向上できると共に
灰の再利用を促進できる。
The mill roll load hydraulic control unit 52 controls a hydraulic system (not shown) based on a deviation correction signal obtained from the target value of the unburned component target value setting unit 56 and the unburned component value of the LIBS device 6. If there is a large amount of unburned matter, increase the mill roll load to reduce the fineness of coal so that it can burn well. On the other hand, when the unburned amount is small, it means that the combustion is excessive and the mill power is consumed more than necessary, and the mill roll load is reduced to control the load to approach the target value. Even in this case, the combustion efficiency can be improved and the reuse of ash can be promoted.

【0022】次に、ボイラ出口ガスO2設定値を増減す
ることにより、空気流量の制御により未燃分値の最適化
を行う場合、空気流量制御部53は、同じく未燃分値と
目標値との偏差に基づいて空気流量を制御する。具体的
には、ファン8の動翼のピッチを変更する等してボイラ
2内に流入する空気量を調整する。未燃分が多いときは
良好な燃焼が行われていないものとして空気流量を増加
し、酸素量を増やして燃焼を促進させる。一方、未燃分
が少ないときは空気流量を減少させて適正な燃焼状態と
する。ここで排ガス損失、ファン動力による損失は相当
大きく、従来から問題となっていたため、未燃分が少な
い場合にボイラ出口O2設定値を下げて排ガス損失とフ
ァン動力を低減することで、蒸気発生・石炭灰処理装置
100のランニングコストを効果的に低減できるように
なる。
Next, when the unburned component value is optimized by controlling the air flow rate by increasing / decreasing the boiler outlet gas O 2 set value, the air flow rate control unit 53 similarly sets the unburned component value and the target value. The air flow rate is controlled based on the deviation between and. Specifically, the amount of air flowing into the boiler 2 is adjusted by changing the pitch of the moving blades of the fan 8. When there is a large amount of unburned fuel, it is determined that good combustion is not being performed, and the air flow rate is increased to increase the amount of oxygen and promote combustion. On the other hand, when the amount of unburned fuel is small, the air flow rate is reduced to bring about an appropriate combustion state. Here, since exhaust gas loss and fan power loss are considerably large and have been a problem from the past, steam generation is reduced by reducing the exhaust gas loss and fan power by lowering the boiler outlet O 2 setting value when the unburned content is small. -The running cost of the coal ash processing apparatus 100 can be effectively reduced.

【0023】また、未燃分値を適正値に制御することに
より結果的に燃料である石炭の流量を最適化できる。未
燃分が多いときは、未燃分値を下げることにより結果的
に燃料流量を減少させて燃焼状態を向上させることがで
き、一方、未燃分が少ないときは良好な燃焼が行われて
いるが、必要十分な未燃分値とすることでミル負荷を下
げ、補機動力の低減を行うようにできる。これにより、
蒸気発生・石炭灰処理装置100のランニングコストを
低減できる。
Further, by controlling the unburned content value to an appropriate value, the flow rate of coal as fuel can be optimized as a result. When there is a large amount of unburned matter, it is possible to reduce the fuel flow rate and improve the combustion state as a result by lowering the unburned matter value.On the other hand, when the amount of unburned matter is small, good combustion is performed. However, by setting the necessary and sufficient unburned content value, the mill load can be reduced and the auxiliary machine power can be reduced. This allows
The running cost of the steam generation / coal ash processing apparatus 100 can be reduced.

【0024】選択部55は、上記ミル回転数制御部5
1、ミルロール荷重油圧制御部52、空気流量制御部5
3のいずれか又は二つ以上を用いることで、制御対象を
選択できる。制御対象の選択は、石炭灰の品質、ランニ
ングコスト、ボイラ効率等の観点から適宜行うことがで
きる。また、制御対象の選択は、所定のプラグラムに基
づいて自動的に行うようにしても、ユーザの手動で行う
ようにしても良い。
The selection unit 55 is the mill rotation speed control unit 5 described above.
1, mill roll load hydraulic pressure control unit 52, air flow rate control unit 5
The controlled object can be selected by using any one of the three or two or more. The control target can be appropriately selected from the viewpoints of coal ash quality, running cost, boiler efficiency, and the like. Further, the selection of the control target may be automatically performed based on a predetermined program, or may be manually performed by the user.

【0025】また、選択部55により二つ以上の制御対
象を選択し、これらを両方同時または順番で制御して未
燃分値を最適化するようにしても良い。これにより目標
値への追従性が高まり、より再利用に適した石炭灰を得
ることができる。
It is also possible to select two or more control targets by the selector 55 and control both of them simultaneously or in order to optimize the unburned component value. As a result, the ability to follow the target value is enhanced, and coal ash more suitable for reuse can be obtained.

【0026】また、制御装置には多炭種対応制御部57
が備えられており、図示しないが当該多炭種対応制御部
57の補正信号によりミル1の負荷が常に制御されてい
る。多炭種対応制御部57は、ミル電流が高い場合、ミ
ル1が過負荷になるのを避けるためにミル回転分級機の
回転数を下げ、ミル電流が低い場合、ミル負荷に余裕が
あるためミル回転分級機の回転数を上げるように制御
し、微粉度を高くしようとするものである。
In addition, the control device includes a control unit 57 for handling multiple coal types.
Although not shown, the load of the mill 1 is always controlled by a correction signal of the multi-coal species control unit 57 (not shown). When the mill current is high, the multi-coal species control unit 57 lowers the rotation speed of the mill rotary classifier to avoid overloading the mill 1, and when the mill current is low, the mill load has a margin. The mill rotation classifier is controlled to increase the number of rotations to increase the fineness.

【0027】ここで、未燃分値が低い場合、未燃分値偏
差に基づきミル回転数制御部51がミル回転分級機の回
転数を減少させる補正信号を出力することになるが、回
転数の減少によりミル電流が低下するため多炭種対応制
御部57はミル負荷に余裕があるものと判断してミル回
転分級機の回転数を増加させる補正信号を出力する。こ
の結果、ミル回転数制御部51の補正信号と、多炭種対
応制御部57の補正信号とが干渉するおそれが生じる
が、補正信号の干渉によって問題が生じない場合は、そ
のまま両方の制御を行えば良い。
Here, when the unburned-mass value is low, the mill rotation speed control unit 51 outputs a correction signal for reducing the rotation speed of the mill rotation classifier based on the deviation of the unburned-mass value. Since the mill current is reduced due to the decrease of, the multi-coal-type control unit 57 determines that the mill load has a margin and outputs a correction signal for increasing the rotation speed of the mill rotation classifier. As a result, there is a risk that the correction signal of the mill rotation speed control unit 51 and the correction signal of the multi-coal species control unit 57 interfere with each other. Just go.

【0028】一方、補正信号が干渉して看過できない状
態となる場合等は、各補正信号の効き具合(補正量の強
弱)を選択部55で調整するか、または選択部55によ
って制御対象をミル回転数制御から別のものに切り替え
るようにできる。例えばミル回転数制御部51の補正信
号と多炭種対応制御部57の補正信号とが干渉して、未
燃分値の最適化が進まないと判断した場合は、選択部5
5によって空気流量制御部53による空気流量制御に切
り替える。これにより、ミル1に対する補正信号の干渉
問題を回避しつつ、未燃分値の最適化制御を行うことが
できる。
On the other hand, when the correction signals interfere with each other and cannot be overlooked, the effect of each correction signal (strength of correction amount) is adjusted by the selection unit 55, or the control target is milled by the selection unit 55. The speed control can be switched to another one. For example, if it is determined that the correction signal of the mill speed control unit 51 and the correction signal of the multi-coal species control unit 57 interfere with each other and optimization of the unburned component value does not proceed, the selection unit
5, the air flow rate control unit 53 switches to the air flow rate control. As a result, the unburned component value optimization control can be performed while avoiding the problem of interference of the correction signal with the mill 1.

【0029】以上、この蒸気発生・石炭灰処理装置10
0によれば、LIBS装置6により灰中未燃分をリアル
タイムで計測し、制御装置9がこの計測結果に基づきミ
ル回転分級機の回転数を制御して石炭の微粉度を調整す
るから、石炭焚きボイラの燃焼状態を未燃分値に基づい
てリアルタイムで制御することが可能となり、従来不可
能であった最適化制御を実現することができる。これに
伴い、灰中未燃分が適正値となるため、灰の有効利用に
貢献できるといった利点がある。
As described above, this steam generation / coal ash processing apparatus 10
According to 0, the LIBS device 6 measures the unburned ash content in real time, and the control device 9 controls the rotation speed of the mill rotary classifier based on the measurement result to adjust the fineness of the coal. It becomes possible to control the combustion state of the fired boiler in real time based on the unburned component value, and it is possible to realize optimization control that was impossible in the past. As a result, the unburned content in the ash becomes an appropriate value, which has the advantage of contributing to the effective use of the ash.

【0030】[0030]

【発明の効果】以上説明したように、この発明の石炭燃
焼制御システム(請求項1)では、ミルで微粉化した石
炭を燃焼させるボイラから排出される石炭灰中の未燃分
をレーザ法により計測し、この未燃分に基づいて前記ミ
ルの運転状態を制御して微粉度を調整することで、リア
ルタイムで灰中未燃分の最適化制御を行うことができ
る。この結果、ボイラの燃焼効率を向上でき、再利用で
きる灰を増やすことができる。
As described above, in the coal combustion control system (Claim 1) of the present invention, the unburned matter in the coal ash discharged from the boiler that combusts the coal pulverized by the mill is analyzed by the laser method. By measuring and controlling the operating state of the mill based on this unburned content to adjust the fineness, it is possible to perform optimization control of the unburned content in ash in real time. As a result, the combustion efficiency of the boiler can be improved and the ash that can be reused can be increased.

【0031】また、この発明の石炭燃焼制御システム
(請求項2)では、ミルで微粉化した石炭を燃焼させる
ボイラから排出される石炭灰中の未燃分をレーザ法によ
り計測し、その未燃分に基づいて、ボイラ出口ガスO2
設定値を増減することにより、ボイラに空気を供給する
ファンの動翼開度を制御し、前記ボイラに対する空気流
量を調整するので、リアルタイムで灰中未燃分の最適化
制御を行うことができる。この結果、ボイラの燃焼効率
を向上でき、再利用できる灰を増やすことができる。
Further, in the coal combustion control system of the present invention (claim 2), the unburned matter in the coal ash discharged from the boiler for burning the coal pulverized by the mill is measured by the laser method and the unburned matter is measured. Boiler outlet gas O 2 based on minutes
By increasing or decreasing the set value, the blade opening of the fan that supplies air to the boiler is controlled, and the air flow rate to the boiler is adjusted, so that optimization control of unburned ash content can be performed in real time. . As a result, the combustion efficiency of the boiler can be improved and the ash that can be reused can be increased.

【0032】また、この発明の石炭燃焼制御システムに
よれば、ミルで微粉化した石炭を燃焼させるボイラから
排出される石炭灰中の未燃分をレーザ法により計測し、
その未燃分を適正値に調整することにより結果的にボイ
ラに供給する燃料流量を適正に保つことができる。この
結果、ボイラの燃焼効率を向上でき、再利用できる灰を
増やすことができる。
Further, according to the coal combustion control system of the present invention, the unburned matter in the coal ash discharged from the boiler that burns the coal pulverized by the mill is measured by the laser method,
By adjusting the unburned amount to a proper value, the fuel flow rate to be supplied to the boiler can be consequently kept proper. As a result, the combustion efficiency of the boiler can be improved and the ash that can be reused can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態1に係る蒸気発生・石炭
灰処理装置を示す構成図である。
FIG. 1 is a configuration diagram showing a steam generation / coal ash processing apparatus according to Embodiment 1 of the present invention.

【図2】図1に示した制御装置のブロック図である。FIG. 2 is a block diagram of the control device shown in FIG.

【図3】LIBSの原理を示す説明図である。FIG. 3 is an explanatory diagram showing the principle of LIBS.

【図4】LIBS装置の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a LIBS device.

【符号の説明】[Explanation of symbols]

100 蒸気発生・石炭灰処理装置 1 ミル 2 ボイラ 3 電気集塵装置 4 回転式分級機 5 輸送管 6 LIBS装置 8 ファン 9 制御装置 10 輸送管 11 信号ライン 51 ミル回転数制御部 52 ミルロール荷重油圧制御部 53 空気流量制御部 55 選択部 56 未燃分目標値設定部 57 多炭種対応制御部 100 Steam generation / coal ash processing equipment 1 mil 2 boiler 3 Electric dust collector 4 rotary classifier 5 transportation pipes 6 LIBS equipment 8 fans 9 Control device 10 Transport pipe 11 signal line 51 Mill speed controller 52 Mill roll load hydraulic control unit 53 Air flow controller 55 Selector 56 Unburned Target Value Setting Section 57 Polycarbonate type control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 幸治 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 出口 祥啓 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 樽井 仁 宮城県仙台市青葉区一番町3丁目7番1号 東北電力株式会社本店火力部内 (72)発明者 九萬原 崇史 宮城県仙台市青葉区一番町3丁目7番1号 東北電力株式会社本店火力部内 (72)発明者 渡辺 徳雄 福島県原町市金沢字大船サク54 東北電力 株式会社原町火力発電所内 (72)発明者 小川 富弘 福島県原町市金沢字大船サク54 東北電力 株式会社原町火力発電所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Ikeda             1-1 Satinoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries             Nagasaki Shipyard Co., Ltd. (72) Inventor Yoshihiro Deguchi             3-5-1, 717-1, Fukahori-cho, Nagasaki-shi, Nagasaki             Hishi Heavy Industries Ltd. Nagasaki Research Center (72) Inventor Hitoshi Tarui             3-7-1 Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture               Tohoku Electric Power Co., Inc. (72) Inventor Takashi Kumahara             3-7-1 Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture               Tohoku Electric Power Co., Inc. (72) Inventor Norio Watanabe             54 Tohoku Electric Power, Ofuna Saku 54, Kanazawa, Haramachi, Fukushima Prefecture             Haramachi Thermal Power Plant Co., Ltd. (72) Inventor Tomihiro Ogawa             54 Tohoku Electric Power, Ofuna Saku 54, Kanazawa, Haramachi, Fukushima Prefecture             Haramachi Thermal Power Plant Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ミルで微粉化した石炭を燃焼させるボイ
ラから排出される石炭灰中の未燃分をレーザ法により計
測する計測手段と、 計測手段により計測した石炭灰中の未燃分に基づいて前
記ミルの運転状態を制御して微粉度を調整する制御手段
と、を備えたことを特徴とする石炭燃焼制御システム。
1. A measuring means for measuring an unburned content in a coal ash discharged from a boiler that burns pulverized coal by a mill by a laser method, and based on the unburned content in the coal ash measured by the measuring means. And a control means for controlling the operating state of the mill to adjust the fineness of the mill.
【請求項2】 ミルで微粉化した石炭を燃焼させるボイ
ラから排出される石炭灰中の未燃分をレーザ法により計
測する計測手段と、 計測手段により計測した石炭灰中の未燃分に基づいてボ
イラに空気を供給するファンの動翼開度を制御し、前記
ボイラに対する空気流量を調整する制御手段と、を備え
たことを特徴とする石炭燃焼制御システム。
2. A measuring means for measuring the unburned content in the coal ash discharged from a boiler that burns coal pulverized by a mill by a laser method, and based on the unburned content in the coal ash measured by the measuring means. And a control means for controlling a blade opening of a fan for supplying air to the boiler to adjust an air flow rate to the boiler.
JP2001267880A 2001-09-04 2001-09-04 Coal combustion control system Expired - Lifetime JP4523742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267880A JP4523742B2 (en) 2001-09-04 2001-09-04 Coal combustion control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267880A JP4523742B2 (en) 2001-09-04 2001-09-04 Coal combustion control system

Publications (2)

Publication Number Publication Date
JP2003074833A true JP2003074833A (en) 2003-03-12
JP4523742B2 JP4523742B2 (en) 2010-08-11

Family

ID=19093948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267880A Expired - Lifetime JP4523742B2 (en) 2001-09-04 2001-09-04 Coal combustion control system

Country Status (1)

Country Link
JP (1) JP4523742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228995A (en) * 2008-03-24 2009-10-08 Hitachi Ltd Coal type discriminating device and coal type discriminating method for coal burning boiler
JP2015083893A (en) * 2013-10-25 2015-04-30 三菱日立パワーシステムズ株式会社 Boiler
CN111853848A (en) * 2020-06-29 2020-10-30 东北电力大学 Optimization method for fuel quantity distribution among different-layer combustors of coal-fired boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410021A (en) * 1987-07-01 1989-01-13 Mitsubishi Heavy Ind Ltd Computing device for unburnt part in ash at coal-fired boiler
JPH02106615A (en) * 1988-10-13 1990-04-18 Hitachi Ltd Monitoring or control method of combustion state and its device
JPH09500954A (en) * 1993-12-29 1997-01-28 コンバッション エンヂニアリング インコーポレーテッド Low emission and low excess air system
JPH09155293A (en) * 1995-12-11 1997-06-17 Mitsubishi Heavy Ind Ltd Coal ash treatment
JPH09170753A (en) * 1995-12-19 1997-06-30 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for controlling primary air pressure in coal igniting boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410021A (en) * 1987-07-01 1989-01-13 Mitsubishi Heavy Ind Ltd Computing device for unburnt part in ash at coal-fired boiler
JPH02106615A (en) * 1988-10-13 1990-04-18 Hitachi Ltd Monitoring or control method of combustion state and its device
JPH09500954A (en) * 1993-12-29 1997-01-28 コンバッション エンヂニアリング インコーポレーテッド Low emission and low excess air system
JPH09155293A (en) * 1995-12-11 1997-06-17 Mitsubishi Heavy Ind Ltd Coal ash treatment
JPH09170753A (en) * 1995-12-19 1997-06-30 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for controlling primary air pressure in coal igniting boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228995A (en) * 2008-03-24 2009-10-08 Hitachi Ltd Coal type discriminating device and coal type discriminating method for coal burning boiler
JP2015083893A (en) * 2013-10-25 2015-04-30 三菱日立パワーシステムズ株式会社 Boiler
CN111853848A (en) * 2020-06-29 2020-10-30 东北电力大学 Optimization method for fuel quantity distribution among different-layer combustors of coal-fired boiler
CN111853848B (en) * 2020-06-29 2022-09-30 东北电力大学 Optimization method for fuel quantity distribution among different-layer combustors of coal-fired boiler

Also Published As

Publication number Publication date
JP4523742B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
CN103244964B (en) Combustion optimization control system based on acoustically-measured hearth temperature field, and control method thereof
JP4919844B2 (en) Fuel adjustment device and fuel adjustment method
JP6927127B2 (en) Waste incinerator method
US10954854B2 (en) Power plant methods and apparatus
JP6803747B2 (en) Rotation speed control device for mill classifier and fuel ratio calculation device suitable for this
JP2018054212A (en) Fly ash heating apparatus and modification method for fly ash under application of fly ash heating apparatus
JP2003074833A (en) Coal combustion control system
JP2011214808A (en) Drying device, drying facility and drying method
CN101706668A (en) Method and device for controlling induced draft temperature of grate cooler of cement afterheat generation system
JP2003161420A (en) Combustion control method and combustion control device of stoker incinerator
CN101596477B (en) Method and assembly for regulating the grind drying procedure of a coal dust ventilator mill
JP4809230B2 (en) Apparatus and method for optimizing exhaust gas combustion in a combustion facility
JP3790504B2 (en) Pulverized coal combustion system
CN1534234A (en) Automatic combustion controlling method for charging device type refuse incinerator
JP2004245702A (en) In-ash unburnt combustible content measuring system
JP7093757B2 (en) Combustion equipment control device, combustion equipment control method and program
JP5243840B2 (en) Combustion method of stoker type incinerator
JP2010127653A (en) Apparatus for measuring component in gas and pulverized coal firing system
JP3782425B2 (en) Method and system for drying and deodorizing organic sludge
JP2009150626A (en) Combustion control system for combustion furnace and its combustion control method
JP4958037B2 (en) How to adjust the waste incineration plant using the operation of the support burner
JPH08270931A (en) Combustion apparatus and method for pulverized coal
JPH08100916A (en) Combustion controller
WO2020203247A1 (en) Exhaust heat recovery system and method for operating same
Kurihara et al. Optimal Boiler Control through Real-time Monitoring of Unburned Carbon in Fly Ash Using Laser Induced Breakdown Spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4523742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term