JP2003073792A - Damping device for steel sheet - Google Patents

Damping device for steel sheet

Info

Publication number
JP2003073792A
JP2003073792A JP2001259193A JP2001259193A JP2003073792A JP 2003073792 A JP2003073792 A JP 2003073792A JP 2001259193 A JP2001259193 A JP 2001259193A JP 2001259193 A JP2001259193 A JP 2001259193A JP 2003073792 A JP2003073792 A JP 2003073792A
Authority
JP
Japan
Prior art keywords
steel sheet
electromagnet
control
constant
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001259193A
Other languages
Japanese (ja)
Other versions
JP3901969B2 (en
Inventor
Masami Kawanishi
正美 川西
Junji Inoue
淳司 井上
Yoji Teramoto
洋二 寺本
Kazuhisa Nakashio
和寿 中塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001259193A priority Critical patent/JP3901969B2/en
Publication of JP2003073792A publication Critical patent/JP2003073792A/en
Application granted granted Critical
Publication of JP3901969B2 publication Critical patent/JP3901969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a damping device for a steel sheet superior in general versatility, which can easily change and set optimal control parameters corresponding to a line, even when line conditions are changed. SOLUTION: This device controls magnetic force of electric magnets 9 and 10 arranged at each side of the steel sheet 1 moving by suspension between an inlet side roller 2 and an outlet side roller 3, with a control system through detecting a distance between the moving steel sheet and the magnets 9 and 10 by a sensor 11 to approach the distance to a desired valve. The device also automatically changes the control parameters of the controlling system to the optimal values, based on conditions of the steel sheet such as sheet thickness, sheet width, and tensile strength, and on a roll span, which is a distance between the inlet side roller 2 and the outlet side roller 3.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は鋼板の制振装置に関
し、特に入側ローラと出側ローラとの間に懸架されて鋼
板が走行する、例えば亜鉛等の溶融メッキライン、コー
ティングライン等に適用して有用なものである。 【0002】 【従来の技術】図3は従来技術に係る溶融亜鉛メッキラ
インに適用した鋼板の制振装置を当該ラインの一部とと
もに概念的に示す説明図である。同図に示すにように、
当該ラインにおいて鋼板1は、シンクローラである入側
ローラ2と出側ローラ3との間に懸架され、シンク4内
の溶融亜鉛メッキ浴5内を通過して走行する。さらに詳
言すると、鋼板1は溶融めっき浴5内をシンク4内に配
設された入側ローラ2やサポートローラとしてのコレク
ティングローラ6とスタビライジングローラ7とに案内
・支持されて走行する間に溶融めっき浴5内の溶融亜鉛
がめっきされる。ここで、溶融めっき浴5の出口に隣接
する位置にはワイピングノズル(気体絞り装置)8が鋼
板1の各面に対し対向設置されており、このワイピング
ノズル8により、めっき直後のストリップ1の表面に対
して空気等の気体が吹き付けられ、めっき厚が均一にな
るようにコントロールされる。 【0003】ところが、圧延加工された鋼板1には、一
般に、入側ローラ2での曲げによりその幅方向の反りが
残留しており、いわゆるC反りを発生する。かかるC反
りが発生したままでは、鋼板1の表面に対する空気の吹
き付け状態が幅方向に均一にならず、めっき厚のコント
ロールがうまく行われない。かかる不都合は、走行に伴
う入側ローラ2と出側ローラ3との間での鋼板1の振動
によっても発生する。 【0004】そこで、この種のラインには、一般に、上
述の如きC反りを矯正するとともに走行中の鋼板1の振
動を防止するため、入側ローラ2と出側ローラ3との間
に配設した制振装置を有している。この制振装置は、入
側ローラ2と出側ローラ3との間で鋼板1を挟んで両側
にそれぞれ配設した電磁石9、10と、この電磁石9、
10に隣接する位置で鋼板1との間の距離を検出するセ
ンサ11を有しており、このセンサ11で検出した距離
が目標値になるよう電磁石9、10の磁力を制御回路部
12で電磁石駆動部13を介して制御するようにしたも
のである。ここで、目標値は目標値設定部14に予め設
定してあり、この目標値とセンサ11よる実測値とに基
づき両者の偏差を減算器15で演算し、この偏差が零と
なるように電磁石駆動部13により電磁石9、10に供
給する励磁電流の値を制御する。 【0005】 【発明が解決しようとする課題】ところで、上述の如き
溶融亜鉛メッキラインを含む、入側ローラ2と出側ロー
ラ3との間に懸架した鋼板1を走行させて所定の処理を
行うストリップラインにおいては、板厚、板幅、張力等
の鋼板条件が異なる複数種類の鋼板1を連続的に処理す
る場合がある。このときは、先行する鋼板1の後端と次
の鋼板1の先端とを溶接して連続的なストリップとして
処理している。 【0006】一方、当該制振装置の制御系の制御定数
は、その最適値が鋼板条件によって異なる。従来技術に
係る鋼板の制振装置における前記制御定数は、当該ライ
ンで処理する代表的な鋼板1の鋼板条件に基づいて最適
な値を設定し、これを固定値として用いていた。 【0007】この結果、制御定数を決定する際の基準と
なった鋼板1以外の鋼板1を走行させてその制振を行う
場合には、当該制振装置の制御系の制御定数が最適なも
のとなっておらず、走行中の鋼板1の制振効果が低減す
る等、制振制御を十分良好に行うことができない場合が
ある。 【0008】さらに、従来技術においては、ライン毎に
試験を行い、制御定数を決定していたので、一つのライ
ンの制御定数の設定作業と他のラインのそれとが全く独
立した作業となっていた。そこで、ラインが異なっても
最適な制御定数を設定できる制振装置の出現が待望され
ている。 【0009】本発明は、上記従来技術に鑑み、ラインが
変わっても、これに対応する最適な制御定数を容易に変
更・設定することができる汎用性に優れた鋼板の制振装
置を提供する鋼板の制振装置を提供することを目的とす
る。 【0010】 【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。 【0011】1) 入側ローラと出側ローラとの間に懸
架されて走行する鋼板の各面と相対向するよう、この鋼
板を挟んで両側にそれぞれ配設した電磁石を有し、この
電磁石に隣接する位置で前記鋼板との間の距離をセンサ
で検出することによりこの距離が目標値になるよう前記
電磁石の磁力を制御系で制御して走行中の鋼板の制振を
行う鋼板の制振装置において、板厚、板幅、張力等の鋼
板条件と、前記入口側ローラ及び出口側ローラ間の距離
であるロールスパンとに基づき前記制御系における制御
定数を可変としたこと。 【0012】2) 入側ローラと出側ローラとの間に懸
架されて走行する鋼板の各面と相対向するよう、この鋼
板を挟んで両側にそれぞれ配設した電磁石を有し、この
電磁石に隣接する位置で前記鋼板との間の距離をセンサ
で検出することによりこの距離が目標値になるよう前記
電磁石の磁力を制御系で制御して走行中の鋼板の制振を
行う鋼板の制振装置において、板厚、板幅、張力等の鋼
板条件と、入側ローラ及び出側ローラ間の距離であるロ
ールスパンとに基づく前記制御系における制御定数を表
すデータ及びこの制御定数を決定する際の基礎となるパ
ラメータを表すデータであるマスターデータを有すると
ともに、鋼板の走行に伴いリアルタイムで変化する前記
鋼板条件に基づく数値を変数とする所定の関数を用いて
前記マスターデータに基づき前記鋼板条件の変更に伴う
前記制御系における制御定数を変更するようにしたこ
と。 【0013】3) 入側ローラと出側ローラとの間に懸
架されて走行する鋼板の各面と相対向するよう、この鋼
板を挟んで両側にそれぞれ配設した電磁石を有し、この
電磁石に隣接する位置で前記鋼板との間の距離をセンサ
で検出することによりこの距離が目標値になるよう前記
電磁石の磁力を制御系で制御して走行中の鋼板の制振を
行う鋼板の制振装置において、板厚、板幅、張力等の鋼
板条件と、入口側ローラ及び出口側ローラ間の距離であ
るロールスパンと、前記センサ及び電磁石の特性とに基
づく前記制御系における制御定数を表すデータ及びこの
制御定数を決定する際の基礎となるパラメータを表すデ
ータであるマスターデータを有するとともに、鋼板の走
行に伴いリアルタイムで変化する鋼板条件に基づく数値
と、当該制振装置毎に固有の前記センサ及び電磁石の特
性等に基づく数値とを変数とする所定の関数を用いて前
記マスターデータに基づき前記鋼板条件と、前記ロール
スパンと、前記センサ及び電磁石の特性との変更に伴う
前記制御系における制御定数を変更するようにしたこ
と。 【0014】4) 上記1)乃至3)に記載する何れか
一つの鋼板の制振装置において、制御系は、比例・積分
制御部と単段又は複数段の位相補償部とを有すること。 【0015】5) 上記1)又は2)に記載する鋼板の
制振装置において、制御系は、比例・積分制御部と単段
又は複数段の位相補償部とを有するとともに、変更する
制御定数は、比例・積分制御部の比例定数及び積分定
数、位相補償部の極点及び零点であること。 【0016】6) 上記1)又は3)に記載する何れか
一つの鋼板の制振装置において、制御系は、比例・積分
制御部と単段又は複数段の位相補償部とを有するととも
に、変更する制御定数は、比例・積分制御部の比例定数
及び積分定数、位相補償部の極点及び零点並びにセンサ
及び電磁石に関する定数であること。 【0017】 【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。 【0018】図1は本発明の実施の形態に係る溶融亜鉛
メッキラインに適用した鋼板の制振装置を当該ラインの
一部とともに概念的に示す説明図である。同図に示すよ
うに、本形態に係る制振装置は、図3に示す従来技術に
係る制振装置に上位コントローラ21及び制御定数演算
部22を追加したものであり、他の構成は従来技術と同
一である。そこで、図3と同一部分には同一番号を付
し、重複する説明は省略する。 【0019】上位コントローラ21には、当該ラインで
処理する複数種類の鋼板1の板厚、板幅、張力等の各鋼
板条件、板継ぎ部の位置等に関するデータを有してい
る。マスターデータ記憶装置23には、代表的な鋼板1
の板厚、板幅、張力等の鋼板条件、入口側ローラ2及び
出口側ローラ3間の距離であるロールスパンに基づく制
御回路部12の制御定数を表すデータ及びこの制御定数
を決定する際の基礎となるパラメータを表すデータであ
るマスターデータが格納してある。 【0020】制御定数演算部22は、上位コントローラ
21及びマスターデータ記憶装置23から供給されるデ
ータに基づき、当該ラインで実際に処理する鋼板1の走
行に伴いリアルタイムで変化する板厚、板幅、張力等の
鋼板条件に基づく数値を変数とする所定の関数を用いて
前記鋼板条件の変更に伴う制御回路部12における制御
定数を変更する。かかる制御定数の変更は板継ぎ部の情
報に基づき処理する鋼板1の鋼板条件が変わる毎に、ま
た張力に大きな変更があった場合には板継ぎ部であるな
しに関わらず、最適なものに自動的に変更する。 【0021】図2は本形態に係る制振装置の制御系の一
例を示すブロック線図である。同図に示すように、本形
態における制御回路部12は比例制御部24、積分制御
部25及び3段の位相補償部26、27、28からな
り、一次遅れ要素として表せるセンサ11及び電磁石1
3とともに制御系を構成している。かくして、鋼板1の
変位に基づき比例制御部24及び積分制御部25で比例
・積分処理をするとともに、各位相補償部26、27、
28で位相補償をした後、前記変位に対応する張力を電
磁石13が発生するよう、この電磁石13を制御するの
であるが、当該ラインにおいて複数種類の連続する鋼板
1を処理する場合には、図1に示す制御定数演算部22
で演算した各鋼板1に対応する最適な制御定数に変更さ
れる。この場合、変更の対象となる制御定数は、制御回
路部12の制御定数、すなわち比例ゲインKP 、積分ゲ
インKI 、第1段乃至第3段の位相補償部26、27、
28における零点Tzib (i=1,2,3)及び極点T
pi(i=1,2,3)である。 【0022】上述の如き比例ゲインKP 、積分ゲインK
I 、零点Tzi(i=1,2,3)及び極点Tpi(i=
1,2,3)は、例えばマスターデータを基に次の様な
演算により求めることができる。すなわち、制御回路部
12の零点と極を各鋼板1に対し、次式(1)のように
変更する。 KIn/KPn・KPb/KIb=fIn/f1bzib /Trin =f1n/f1b ・・・・(1) Tpib /Tpin =f1n/f1b ここで、i=1,2,3、添字bはベースとなるマスタ
ーデータのものであることを、また添字nは変更する新
しい鋼板1に対するものであることを示す。また、f1
は鋼板1をストリングと見なしたときの一次固有振動数
を示す。 【0023】上述の如く、本例の場合は、一次固有振動
数を、制御定数を決定する際の基礎となるパラメータと
するもので、これに基づき各制御定数を求めるものであ
る。ちなみに、一次固有振動数は、ロールスパン、ライ
ンの張力、鋼板1の密度等に基づき求めることができ
る。また、KPnは次式(2)により求める。 (KS ・KPn・KAn+KMn)/(KS ・KPn・KAb+KMb) =f2 1n・mc1n /f2 1b・mc1b ・・・・(2) ここで、KS はセンサ11のゲイン、KA は電磁石13
のゲイン、KM は電磁石13を受動とした負バネのゲイ
ン、mc1は鋼板1の一次固有振動数の等価マスをそれぞ
れ示す、また、他の文字及び添字の意味は前式(1)と
同様である。 【0024】ラインが決まれば、式(2)におけるゲイ
ンKS 、KAn、KMnは所定の計算等により求まる既知の
値である。また、添字にbを付した値はマスタデータで
あるので予め与えられている。したがって、式(2)に
より新しい比例ゲインKPnが求まる。次に、この比例ゲ
インKPnを式(1)の第一番目の式に代入することによ
り新しい積分ゲインKInが求まる。一方、零点T
zib (i=1,2,3)及び極点Tpi(i=1,2,
3)は、式(1)の第二番目及び第三番目の式により一
次固有振動数f1 を媒介として求まる。 【0025】かくして、本形態によれば、ラインにおけ
る処理に伴い鋼板条件が変わる毎に制御回路部12の制
御定数を自動的に変更することができる。 【0026】上記実施の形態は、制御回路部12の制御
定数のみを鋼板条件に応じて変更する装置であるが、マ
スタデータを利用すれば、条件が異なるライン毎に、セ
ンサ11及び電磁石13を含む制御系の最適な制御定数
の変更も可能であり、本発明はかかる実施の形態として
も実現し得る。この場合には、ラインに固有のセンサ1
2及び電磁石13の特性を加味した値を変数とする関数
を作り、この関数とマスターデータとに基づき、例えば
センサ11のゲインKS 及び電磁石13のゲインKA
を上記実施の形態と同様の手順で変更・設定する。 【0027】かかる作業により、特定のラインに関する
制御定数を設定した後は、鋼板1を走行させての所定の
処理の際の鋼板条件の変更に対応させて、必要な制御定
数をリアルタイムで変更する。 【0028】なお、制御対象は上記実施の形態における
制御回路部12の構成に限定する必要は、勿論ない。要
は、制御系の制御定数を鋼板条件及びロールスパンに基
づき変更するものであれば本発明の技術思想に含まれ
る。 【0029】 【発明の効果】以上実施の形態とともに具体的に説明し
た通り、〔請求項1〕に記載する発明は、入側ローラと
出側ローラとの間に懸架されて走行する鋼板の各面と相
対向するよう、この鋼板を挟んで両側にそれぞれ配設し
た電磁石を有し、この電磁石に隣接する位置で前記鋼板
との間の距離をセンサで検出することによりこの距離が
目標値になるよう前記電磁石の磁力を制御系で制御して
走行中の鋼板の制振を行う鋼板の制振装置において、板
厚、板幅、張力等の鋼板条件と、前記入口側ローラ及び
出口側ローラ間の距離であるロールスパンとに基づき前
記制御系における制御定数を可変としたので、電磁石の
制御系を常に最適な制御定数とすることができる。この
結果、良好な制振制御を行うことができ、処理鋼板の無
駄を生じることがなく、良好な歩留りを保証することが
できる。 【0030】〔請求項2〕に記載する発明は、入側ロー
ラと出側ローラとの間に懸架されて走行する鋼板の各面
と相対向するよう、この鋼板を挟んで両側にそれぞれ配
設した電磁石を有し、この電磁石に隣接する位置で前記
鋼板との間の距離をセンサで検出することによりこの距
離が目標値になるよう前記電磁石の磁力を制御系で制御
して走行中の鋼板の制振を行う鋼板の制振装置におい
て、板厚、板幅、張力等の鋼板条件と、入口側ローラ及
び出口側ローラ間の距離であるロールスパンとに基づく
前記制御系における制御定数を表すデータ及びこの制御
定数を決定する際の基礎となるパラメータを表すデータ
であるマスターデータを有するとともに、鋼板の走行に
伴いリアルタイムで変化する前記鋼板条件に基づく数値
を変数とする所定の関数を用いて前記マスターデータに
基づき前記鋼板条件の変更に伴う前記制御系における制
御定数を変更するようにしたので、ラインにおいて処理
する鋼板の鋼板条件が変化するのに対応させて、制御定
数が最適なものに変更される。しかも、この変更をマス
ターデータを用いて行う。この結果、変更する制御定数
の演算を容易に行うことができる。 【0031】〔請求項3〕に記載する発明は、入側ロー
ラと出側ローラとの間に懸架されて走行する鋼板の各面
と相対向するよう、この鋼板を挟んで両側にそれぞれ配
設した電磁石を有し、この電磁石に隣接する位置で前記
鋼板との間の距離をセンサで検出することによりこの距
離が目標値になるよう前記電磁石の磁力を制御系で制御
して走行中の鋼板の制振を行う鋼板の制振装置におい
て、板厚、板幅、張力等の鋼板条件と、入側ローラ及び
出側ローラ間の距離であるロールスパンと、前記センサ
及び電磁石の特性とに基づく前記制御系における制御定
数を表すデータ及びこの制御定数を決定する際の基礎と
なるパラメータを表すデータであるマスターデータを有
するとともに、鋼板の走行に伴いリアルタイムで変化す
る鋼板条件に基づく数値と、当該制振装置毎に固有の前
記センサ及び電磁石の特性等に基づく数値とを変数とす
る所定の関数を用いて前記マスターデータに基づき前記
鋼板条件と、前記ロールスパンと、前記センサ及び電磁
石の特性との変更に伴う前記制御系における制御定数を
変更するようにしたので、〔請求項2〕と同様の作用・
効果に加え、ラインが変わってもこれに対応する固有の
制御定数を容易に変更・設定することができる。この結
果、適用するラインが変化しても最適な制御定数を容易
に設定し得る汎用性に優れた装置となる。 【0032】〔請求項4〕に記載する発明は、〔請求項
1〕乃至〔請求項3〕に記載する何れか一つの鋼板の制
振装置において、制御系は、比例・積分制御部と単段又
は複数段の位相補償部とを有するので、〔請求項1〕乃
至〔請求項3〕に記載するのと同様の作用・効果を得
る。 【0033】〔請求項5〕に記載する発明は、〔請求項
1〕又は〔請求項2〕に記載する鋼板の制振装置におい
て、制御系は、比例・積分制御部と単段又は複数段の位
相補償部とを有するとともに、変更する制御定数は、比
例・積分制御部の比例定数及び積分定数、位相補償部の
極点及び零点であるので、〔請求項1〕又は〔請求項
2〕に記載するのと同様の作用・効果を得る。 【0034】〔請求項6〕に記載する発明は、〔請求項
1〕又は〔請求項3〕に記載する何れか一つの鋼板の制
振装置において、制御系は、比例・積分制御部と単段又
は複数段の位相補償部とを有するとともに、変更する制
御定数は、比例・積分制御部の比例定数及び積分定数、
位相補償部の極点及び零点並びにセンサ及び電磁石に関
する定数であるので、〔請求項1〕又は〔請求項3〕に
記載するのと同様の作用・効果を得る。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a vibration damping device for a steel sheet, and more particularly, to a steel sheet running between an entrance roller and an exit roller. It is useful when applied to hot-dip plating lines, coating lines, etc. 2. Description of the Related Art FIG. 3 is an explanatory view conceptually showing a vibration damping device for a steel sheet applied to a hot-dip galvanizing line according to the prior art together with a part of the line. As shown in the figure,
In this line, the steel sheet 1 is suspended between an entrance roller 2 and an exit roller 3 as sink rollers, and travels through a hot-dip galvanizing bath 5 in a sink 4. More specifically, the steel sheet 1 travels in the hot-dip plating bath 5 while being guided and supported by the entrance roller 2 disposed in the sink 4, the collecting roller 6 as a support roller, and the stabilizing roller 7. The hot-dip zinc in the hot-dip plating bath 5 is plated. Here, a wiping nozzle (gas squeezing device) 8 is installed at a position adjacent to the outlet of the hot-dip plating bath 5 so as to face each surface of the steel plate 1. A gas such as air is blown against the substrate to control the plating thickness to be uniform. However, in the rolled steel sheet 1, warpage in the width direction generally remains due to bending by the entrance roller 2, so-called C warpage is generated. If such a C warpage is generated, the state of blowing air to the surface of the steel sheet 1 is not uniform in the width direction, and the plating thickness cannot be controlled well. Such inconvenience also occurs due to the vibration of the steel sheet 1 between the entrance roller 2 and the exit roller 3 during traveling. Therefore, this type of line is generally provided between the entrance roller 2 and the exit roller 3 in order to correct the C warpage as described above and to prevent the vibration of the steel sheet 1 during traveling. It has a vibration damping device. The vibration damping device includes electromagnets 9 and 10 disposed on both sides of the steel plate 1 between the entrance roller 2 and the exit roller 3, and the electromagnets 9 and 10.
A sensor 11 for detecting the distance between the steel plate 1 and a position adjacent to the sensor 10 is provided. The control circuit 12 controls the magnetic force of the electromagnets 9 and 10 so that the distance detected by the sensor 11 becomes a target value. This is controlled via the drive unit 13. Here, the target value is set in the target value setting unit 14 in advance, and the difference between the two is calculated by the subtractor 15 based on the target value and the value actually measured by the sensor 11, and the electromagnet is set so that the difference becomes zero. The drive unit 13 controls the value of the exciting current supplied to the electromagnets 9 and 10. [0005] By the way, the steel plate 1 including the hot-dip galvanizing line and suspended between the inlet roller 2 and the outlet roller 3 is run to perform a predetermined process. In a strip line, a plurality of types of steel sheets 1 having different steel sheet conditions such as sheet thickness, sheet width, and tension may be continuously processed. At this time, the rear end of the preceding steel plate 1 and the front end of the next steel plate 1 are welded and processed as a continuous strip. On the other hand, the optimum value of the control constant of the control system of the vibration damping device differs depending on the steel sheet condition. As the control constant in the conventional steel plate vibration damping device, an optimal value is set based on the steel plate condition of the representative steel plate 1 to be processed in the line, and this is used as a fixed value. As a result, when a steel sheet 1 other than the steel sheet 1 used as a reference for determining the control constant is traveled to control the vibration, the control constant of the control system of the vibration damping device is optimized. In some cases, the vibration suppression control cannot be performed sufficiently satisfactorily, for example, the vibration suppression effect of the steel sheet 1 during running is reduced. Further, in the prior art, since a test is performed for each line to determine a control constant, the operation of setting the control constant of one line and the operation of another line are completely independent. . Therefore, the emergence of a vibration damping device that can set an optimal control constant even if the line is different is expected. In view of the above prior art, the present invention provides a highly versatile steel plate vibration damping device capable of easily changing and setting an optimum control constant corresponding to a line change even if the line changes. It is an object of the present invention to provide a steel plate vibration control device. [0010] The structure of the present invention that achieves the above object has the following features. 1) Electromagnets are provided on both sides of the steel sheet so as to face each surface of the steel sheet running while being suspended between the entrance roller and the exit roller. By detecting the distance between the steel sheet and the steel sheet at an adjacent position by a sensor, the magnetic force of the electromagnet is controlled by a control system so that the distance becomes a target value, thereby damping the steel sheet during traveling. In the apparatus, a control constant in the control system is made variable based on a steel plate condition such as a plate thickness, a plate width, and a tension, and a roll span that is a distance between the entrance-side roller and the exit-side roller. 2) Electromagnets are provided on both sides of the steel sheet so as to face each surface of the steel sheet running while being suspended between the entrance roller and the exit roller. By detecting the distance between the steel sheet and the steel sheet at an adjacent position by a sensor, the magnetic force of the electromagnet is controlled by a control system so that the distance becomes a target value, thereby damping the steel sheet during traveling. In the apparatus, when determining the data representing the control constants in the control system based on the steel sheet conditions such as the plate thickness, the plate width, and the tension, and the roll span which is the distance between the entrance roller and the exit roller, and determining the control constants Having a master data which is data representing a parameter which is the basis of the master data, and using a predetermined function having a variable based on a numerical value based on the steel sheet condition which changes in real time as the steel sheet travels using the master data. And changing the control constants in the control system in accordance with the change of the steel sheet condition based on the condition. 3) Electromagnets are provided on both sides of the steel sheet so as to face each surface of the steel sheet running while being suspended between the entrance roller and the exit roller. By detecting the distance between the steel sheet and the steel sheet at an adjacent position by a sensor, the magnetic force of the electromagnet is controlled by a control system so that the distance becomes a target value, thereby damping the steel sheet during traveling. In the apparatus, steel plate conditions such as plate thickness, plate width, and tension, a roll span that is a distance between an inlet roller and an outlet roller, and data representing a control constant in the control system based on characteristics of the sensor and the electromagnet. And a master data that is data representing a parameter serving as a basis for determining the control constant, and a numerical value based on a steel sheet condition that changes in real time as the steel sheet travels, and In accordance with the change of the steel sheet condition, the roll span, and the characteristics of the sensor and the electromagnet based on the master data by using a predetermined function having a variable based on a characteristic based on the characteristics of the sensor and the electromagnet, etc. The control constants in the control system are changed. 4) In any one of the above-described steel sheet vibration damping devices 1) to 3), the control system includes a proportional / integral control unit and a single-stage or multiple-stage phase compensation unit. 5) In the vibration damping device for a steel sheet according to 1) or 2), the control system has a proportional / integral control unit and a single-stage or multiple-stage phase compensation unit, and the control constant to be changed is: , The proportional and integral constants of the proportional / integral control section, and the pole and zero points of the phase compensation section. 6) In the vibration damping device for a steel sheet according to any one of the above 1) and 3), the control system has a proportional / integral control unit and a single-stage or multiple-stage phase compensating unit. The control constants to be performed are proportional and integral constants of the proportional / integral control unit, poles and zeros of the phase compensation unit, and constants related to the sensor and the electromagnet. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view conceptually showing a steel sheet damping device applied to a hot-dip galvanizing line according to an embodiment of the present invention, together with a part of the line. As shown in the drawing, the vibration damping device according to the present embodiment is obtained by adding a host controller 21 and a control constant calculation unit 22 to the vibration damping device according to the conventional technology shown in FIG. Is the same as Therefore, the same portions as those in FIG. 3 are denoted by the same reference numerals, and duplicate description will be omitted. The upper controller 21 has data relating to each steel sheet condition such as the sheet thickness, the sheet width, the tension, etc. of the plurality of types of steel sheets 1 to be processed in the line, the position of the sheet joint, and the like. The master data storage device 23 has a typical steel plate 1
Indicating the control constants of the control circuit section 12 based on the steel sheet conditions such as the sheet thickness, the sheet width, and the tension, the roll span which is the distance between the entrance-side roller 2 and the exit-side roller 3, and the control constants for determining the control constants. Master data, which is data representing underlying parameters, is stored. Based on data supplied from the higher-level controller 21 and the master data storage device 23, the control constant calculation unit 22 calculates a sheet thickness, a sheet width, The control constant in the control circuit unit 12 is changed according to the change in the steel sheet condition, using a predetermined function having a variable based on a steel sheet condition such as tension as a variable. The control constant is changed each time the steel sheet condition of the steel sheet 1 to be processed is changed based on the information of the joint, and when there is a large change in the tension, regardless of whether the joint is the joint or not. Change automatically. FIG. 2 is a block diagram showing an example of a control system of the vibration damping device according to this embodiment. As shown in the figure, the control circuit unit 12 according to the present embodiment includes a proportional control unit 24, an integral control unit 25, and three-stage phase compensation units 26, 27, and 28. The sensor 11 and the electromagnet 1 can be expressed as first-order lag elements.
3 together with a control system. Thus, based on the displacement of the steel plate 1, the proportional control unit 24 and the integral control unit 25 perform the proportional / integral processing, and each of the phase compensating units 26, 27,
After the phase compensation at 28, the electromagnet 13 is controlled so that the electromagnet 13 generates a tension corresponding to the displacement. In the case of processing a plurality of types of continuous steel plates 1 in the line, FIG. The control constant calculator 22 shown in FIG.
Is changed to the optimal control constant corresponding to each steel plate 1 calculated in. In this case, the control constants to be changed are the control constants of the control circuit unit 12, that is, the proportional gain K P , the integral gain K I , the first to third stage phase compensation units 26 and 27,
28, the zero point T zib (i = 1, 2, 3) and the pole T
pi (i = 1, 2, 3). As described above, the proportional gain K P and the integral gain K
I , zero Tzi (i = 1, 2, 3) and pole Tpi (i =
1, 2, 3) can be obtained by, for example, the following calculation based on master data. That is, the zero point and the pole of the control circuit unit 12 are changed for each steel plate 1 as in the following equation (1). K In / K Pn K Pb / K Ib = f In / f 1b T zib / T rin = f 1n / f 1b ··· (1) T pib / T pin = f 1n / f 1b where i = 1, 2, 3, the subscript b indicates that it is the master data serving as a base, and the subscript n indicates that it is for a new steel plate 1 to be changed. F 1
Indicates a primary natural frequency when the steel plate 1 is regarded as a string. As described above, in the case of this example, the primary natural frequency is used as a parameter serving as a basis for determining the control constant, and each control constant is determined based on this. Incidentally, the primary natural frequency can be determined based on the roll span, line tension, the density of the steel sheet 1, and the like. K Pn is obtained by the following equation (2). (K S · K Pn · K An + K Mn) / (K S · K Pn · K Ab + K Mb) = f 2 1n · m c1n / f 2 1b · m c1b ···· (2) where, K S is the gain of the sensor 11, K A is the electromagnet 13
, K M is the gain of the negative spring with the electromagnet 13 being passive, m c1 is the equivalent mass of the primary natural frequency of the steel plate 1, and the other letters and subscripts are defined by the above equation (1). The same is true. Once the line is determined, the gains K S , K An , and K Mn in equation (2) are known values obtained by a predetermined calculation or the like. The value with the subscript "b" is given in advance because it is master data. Therefore, a new proportional gain K Pn is obtained from equation (2). Next, a new integral gain K In is obtained by substituting the proportional gain K Pn into the first equation of the equation (1). On the other hand, the zero point T
zib (i = 1, 2, 3) and the pole T pi (i = 1, 2, 2)
3) is obtained as an intermediary primary natural frequency f 1 by the second and the third equations of equation (1). Thus, according to the present embodiment, the control constants of the control circuit section 12 can be automatically changed each time the steel sheet condition changes with the processing in the line. Although the above embodiment is an apparatus for changing only the control constant of the control circuit unit 12 in accordance with the steel sheet condition, if the master data is used, the sensor 11 and the electromagnet 13 are changed for each line having different conditions. It is possible to change the optimal control constants of the control system including the control system, and the present invention can be realized as such an embodiment. In this case, the line-specific sensor 1
2 and a function that takes a value taking into account the characteristics of the electromagnet 13 as a variable, and based on this function and the master data, for example, the gain K S of the sensor 11 and the gain K A of the electromagnet 13 are similar to those in the above-described embodiment. Change and set in the procedure. After setting the control constants relating to the specific line by this operation, the necessary control constants are changed in real time in accordance with the change in the steel sheet condition at the time of the predetermined processing while running the steel sheet 1. . It is needless to say that the control target need not be limited to the configuration of the control circuit section 12 in the above embodiment. In short, if the control constant of the control system is changed based on the steel sheet condition and the roll span, it is included in the technical idea of the present invention. As described above in detail with the embodiments, the invention described in [Claim 1] is characterized in that each of the steel plates running while being suspended between the entrance roller and the exit roller. It has electromagnets disposed on both sides of the steel plate so as to face the surface, and this distance is set to a target value by detecting the distance between the steel plate and the sensor at a position adjacent to the electromagnet by a sensor. In a steel sheet damping device for controlling a magnetic force of the electromagnet by a control system to control a running steel sheet, the steel sheet conditions such as sheet thickness, sheet width, and tension, and the inlet roller and the outlet roller. Since the control constants in the control system are made variable based on the roll span which is the distance between them, the control system of the electromagnet can always be set to the optimal control constants. As a result, good vibration damping control can be performed, and a good yield can be guaranteed without waste of the treated steel sheet. According to a second aspect of the present invention, each of the steel plates is disposed on both sides of the steel plate so as to be opposed to each surface of the steel plate running while being suspended between the input roller and the output roller. The electromagnet having the electromagnet, and detecting the distance between the electromagnet and the steel plate at a position adjacent to the electromagnet by a sensor, and controlling the magnetic force of the electromagnet by a control system so that the distance becomes a target value. In a vibration damping device for a steel sheet that performs vibration damping, a steel plate condition such as a plate thickness, a plate width, and a tension, and a control constant in the control system based on a roll span that is a distance between an inlet-side roller and an outlet-side roller. While having master data which is data representing data and parameters serving as a basis for determining this control constant, a predetermined numerical value based on the steel sheet condition which changes in real time with the running of the steel sheet as a variable Since the control constant in the control system is changed according to the change of the steel sheet condition based on the master data using a number, the control constant is changed in accordance with the change of the steel sheet condition of the steel sheet to be processed in the line. It will be changed to the optimal one. In addition, this change is made using the master data. As a result, the calculation of the control constant to be changed can be easily performed. [0031] The invention described in [Claim 3] is arranged on both sides of the steel plate so as to face each surface of the steel plate running while being suspended between the entrance roller and the exit roller. The electromagnet having the electromagnet, and detecting the distance between the electromagnet and the steel plate at a position adjacent to the electromagnet by a sensor, and controlling the magnetic force of the electromagnet by a control system so that the distance becomes a target value. In a vibration damping device for a steel sheet that performs vibration damping, based on steel sheet conditions such as sheet thickness, sheet width, and tension, a roll span that is a distance between an entrance-side roller and an exit-side roller, and characteristics of the sensor and the electromagnet. Having master data which is data representing a control constant in the control system and data representing a parameter which is a basis for determining the control constant, based on steel sheet conditions which change in real time as the steel sheet travels Value, and the steel sheet condition based on the master data using a predetermined function with a variable based on the characteristics of the sensor and the electromagnet unique to the sensor and the electromagnet for each vibration damping device, the roll span, the sensor and Since the control constant in the control system is changed in accordance with the change in the characteristics of the electromagnet, the same operation and effect as in [Claim 2] can be obtained.
In addition to the effect, even if the line changes, the unique control constant corresponding to this can be easily changed and set. As a result, the apparatus has excellent versatility in which the optimum control constant can be easily set even if the line to be applied changes. According to a fourth aspect of the present invention, in the vibration damping device for a steel sheet according to any one of the first to third aspects, the control system includes a proportional / integral control unit and a single unit. Since it has a stage or a plurality of stages of phase compensators, the same operation and effect as those described in [Claim 1] to [Claim 3] are obtained. According to a fifth aspect of the present invention, in the steel sheet vibration damping device according to the first or second aspect, the control system includes a proportional / integral control unit and a single-stage or multiple-stage control unit. And the control constants to be changed are the proportional and integral constants of the proportional / integral control unit and the poles and zeros of the phase compensating unit, so that [Claim 1] or [Claim 2] The same operations and effects as described are obtained. According to a sixth aspect of the present invention, in the vibration damping device for a steel sheet according to any one of the first to third aspects, the control system includes a proportional / integral control unit and a single unit. Having a stage or a plurality of stages of phase compensators, and changing control constants are proportional and integral constants of a proportional / integral controller,
Since the constants are related to the poles and zeros of the phase compensator, the sensor and the electromagnet, the same operations and effects as described in [1] or [3] are obtained.

【図面の簡単な説明】 【図1】本発明の実施の形態に係る鋼板の制振装置を、
これを適用するラインの一部とともに概念的に示す説明
図である。 【図2】図1の制御系を抽出して示すブロック線図であ
る。 【図3】従来技術に係る鋼板の制振装置を、これを適用
するラインの一部とともに概念的に示す説明図である。 【符号の説明】 1 鋼板 2 入側ローラ 3 出側ローラ 9、10 電磁石 11 センサ 12 制御回路部 13 電磁石駆動部 21 上位コントローラ 22 制御定数演算部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a steel plate vibration damping device according to an embodiment of the present invention.
It is explanatory drawing which shows notionally with some lines to which this is applied. FIG. 2 is a block diagram showing a control system extracted from FIG. 1; FIG. 3 is an explanatory view conceptually showing a conventional steel plate vibration damping device together with a part of a line to which the device is applied. [Description of Signs] 1 Steel plate 2 Inlet roller 3 Outlet roller 9, 10 Electromagnet 11 Sensor 12 Control circuit unit 13 Electromagnet drive unit 21 Upper controller 22 Control constant calculator

フロントページの続き (72)発明者 寺本 洋二 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 中塩 和寿 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 Fターム(参考) 4K027 AA05 AA22 AB42 AD11 AD16 AD29 Continuation of front page    (72) Inventor Yoji Teramoto             Hiroshima Prefecture Hiroshima City Nishi-ku Kanon Shinmachi 4-chome 6-22               Hiroshima Works of Mitsubishi Heavy Industries, Ltd. (72) Inventor Kazuhisa Nakashio             Hiroshima Prefecture Hiroshima City Nishi-ku Kanon Shinmachi 4-chome 6-22               Hiroshima Works of Mitsubishi Heavy Industries, Ltd. F term (reference) 4K027 AA05 AA22 AB42 AD11 AD16                       AD29

Claims (1)

【特許請求の範囲】 【請求項1】 入側ローラと出側ローラとの間に懸架さ
れて走行する鋼板の各面と相対向するよう、この鋼板を
挟んで両側にそれぞれ配設した電磁石を有し、この電磁
石に隣接する位置で前記鋼板との間の距離をセンサで検
出することによりこの距離が目標値になるよう前記電磁
石の磁力を制御系で制御して走行中の鋼板の制振を行う
鋼板の制振装置において、 板厚、板幅、張力等の鋼板条件と、前記入口側ローラ及
び出口側ローラ間の距離であるロールスパンとに基づき
前記制御系における制御定数を可変としたことを特徴と
する鋼板の制振装置。 【請求項2】 入側ローラと出側ローラとの間に懸架さ
れて走行する鋼板の各面と相対向するよう、この鋼板を
挟んで両側にそれぞれ配設した電磁石を有し、この電磁
石に隣接する位置で前記鋼板との間の距離をセンサで検
出することによりこの距離が目標値になるよう前記電磁
石の磁力を制御系で制御して走行中の鋼板の制振を行う
鋼板の制振装置において、 板厚、板幅、張力等の鋼板条件と、入側ローラ及び出側
ローラ間の距離であるロールスパンとに基づく前記制御
系における制御定数を表すデータ及びこの制御定数を決
定する際の基礎となるパラメータを表すデータであるマ
スターデータを有するとともに、鋼板の走行に伴いリア
ルタイムで変化する前記鋼板条件に基づく数値を変数と
する所定の関数を用いて前記マスターデータに基づき前
記鋼板条件の変更に伴う前記制御系における制御定数を
変更するようにしたことを特徴とする鋼板の制振装置。 【請求項3】 入側ローラと出側ローラとの間に懸架さ
れて走行する鋼板の各面と相対向するよう、この鋼板を
挟んで両側にそれぞれ配設した電磁石を有し、この電磁
石に隣接する位置で前記鋼板との間の距離をセンサで検
出することによりこの距離が目標値になるよう前記電磁
石の磁力を制御系で制御して走行中の鋼板の制振を行う
鋼板の制振装置において、 板厚、板幅、張力等の鋼板条件と、入口側ローラ及び出
口側ローラ間の距離であるロールスパンと、前記センサ
及び電磁石の特性とに基づく前記制御系における制御定
数を表すデータ及びこの制御定数を決定する際の基礎と
なるパラメータを表すデータであるマスターデータを有
するとともに、鋼板の走行に伴いリアルタイムで変化す
る鋼板条件に基づく数値と、当該制振装置毎に固有の前
記センサ及び電磁石の特性等に基づく数値とを変数とす
る所定の関数を用いて前記マスターデータに基づき前記
鋼板条件と、前記ロールスパンと、前記センサ及び電磁
石の特性との変更に伴う前記制御系における制御定数を
変更するようにしたことを特徴とする鋼板の制振装置。 【請求項4】 〔請求項1〕乃至〔請求項3〕に記載す
る何れか一つの鋼板の制振装置において、 制御系は、比例・積分制御部と単段又は複数段の位相補
償部とを有することを特徴とする鋼板の制振装置。 【請求項5】 〔請求項1〕又は〔請求項2〕に記載す
る鋼板の制振装置において、 制御系は、比例・積分制御部と単段又は複数段の位相補
償部とを有するとともに、変更する制御定数は、比例・
積分制御部の比例定数及び積分定数、位相補償部の極点
及び零点であることを特徴とする鋼板の制振装置。 【請求項6】 〔請求項1〕又は〔請求項3〕に記載す
る何れか一つの鋼板の制振装置において、 制御系は、比例・積分制御部と単段又は複数段の位相補
償部とを有するとともに、変更する制御定数は、比例・
積分制御部の比例定数及び積分定数、位相補償部の極点
及び零点並びにセンサ及び電磁石に関する定数であるこ
とを特徴とする鋼板の制振装置。
Claims: 1. An electromagnet disposed on both sides of a steel plate so as to face each surface of a steel plate running while being suspended between an entrance roller and an exit roller. A sensor detects a distance between the electromagnet and the steel sheet at a position adjacent to the electromagnet, and controls a magnetic force of the electromagnet by a control system so that the distance becomes a target value. In the vibration damping device for a steel sheet, a control constant in the control system is made variable based on a steel sheet condition such as a sheet thickness, a sheet width, and a tension, and a roll span that is a distance between the entrance-side roller and the exit-side roller. A vibration damping device for a steel sheet. 2. An electromagnet disposed on both sides of the steel plate so as to oppose each surface of the steel plate running while being suspended between an entrance roller and an exit roller. By detecting the distance between the steel sheet and the steel sheet at an adjacent position by a sensor, the magnetic force of the electromagnet is controlled by a control system so that the distance becomes a target value, thereby damping the steel sheet during traveling. In the apparatus, when determining data indicating a control constant in the control system based on a steel sheet condition such as a sheet thickness, a sheet width, and a tension, and a roll span which is a distance between an entrance roller and an exit roller, and determining the control constant. With master data that is data representing the parameters underlying the, the master data using a predetermined function with a variable based on the steel sheet condition that changes in real time with the running of the steel sheet as a variable Vibration damping device of steel plate characterized by being adapted to change the control constant in the control system due to a change of the steel sheet conditions Hazuki. 3. An electromagnet disposed on both sides of the steel plate so as to face each surface of a steel plate running while being suspended between an inlet roller and an output roller. By detecting the distance between the steel sheet and the steel sheet at an adjacent position by a sensor, the magnetic force of the electromagnet is controlled by a control system so that the distance becomes a target value, thereby damping the steel sheet during traveling. In the device, data representing a steel plate condition such as a plate thickness, a plate width, a tension, a roll span which is a distance between an inlet roller and an outlet roller, and a control constant in the control system based on characteristics of the sensor and the electromagnet. And having master data that is data representing the parameters that are the basis for determining this control constant, and a numerical value based on steel sheet conditions that change in real time with the running of the steel sheet, The steel plate condition based on the master data using a predetermined function with a variable based on a value based on the characteristics of the sensor and the electromagnet having the steel plate condition, the roll span, and the change in the characteristics of the sensor and the electromagnet. A vibration damping device for a steel sheet, wherein a control constant in a control system is changed. 4. The vibration damping device for a steel sheet according to any one of claims 1 to 3, wherein the control system includes a proportional / integral control unit, a single-stage or multiple-stage phase compensation unit. A vibration damping device for a steel sheet, comprising: 5. The vibration damping device for a steel sheet according to claim 1 or claim 2, wherein the control system has a proportional / integral control unit and a single-stage or multiple-stage phase compensation unit. The control constant to be changed is proportional
A vibration damping device for a steel sheet, comprising a proportional constant and an integral constant of an integral control unit, and a pole and a zero of a phase compensation unit. 6. The vibration damping device for a steel sheet according to claim 1 or 3, wherein the control system includes a proportional / integral control unit, a single-stage or multiple-stage phase compensation unit, and And the control constant to be changed is proportional
A vibration damping device for a steel sheet, wherein the constant is a proportional constant and an integral constant of an integral control unit, a pole and a zero point of a phase compensating unit, and a constant relating to a sensor and an electromagnet.
JP2001259193A 2001-08-29 2001-08-29 Steel plate damping device Expired - Fee Related JP3901969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259193A JP3901969B2 (en) 2001-08-29 2001-08-29 Steel plate damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259193A JP3901969B2 (en) 2001-08-29 2001-08-29 Steel plate damping device

Publications (2)

Publication Number Publication Date
JP2003073792A true JP2003073792A (en) 2003-03-12
JP3901969B2 JP3901969B2 (en) 2007-04-04

Family

ID=19086605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259193A Expired - Fee Related JP3901969B2 (en) 2001-08-29 2001-08-29 Steel plate damping device

Country Status (1)

Country Link
JP (1) JP3901969B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871920A1 (en) * 2005-03-24 2008-01-02 Abb Research Ltd. A device and a method for stabilizing a steel sheet
JP2009275280A (en) * 2008-05-17 2009-11-26 Jfe Steel Corp Production method of hot-dip plated metal sheet
WO2009024353A3 (en) * 2007-08-22 2010-01-21 Sms Siemag Ag Process and hot-dip coating system for stabilizing a strip guided between stripping dies of the hot-dip coating system and provided with a coating
WO2010058837A1 (en) * 2008-11-21 2010-05-27 シンフォニアテクノロジー株式会社 Electromagnetic vibration control device
JP2011183438A (en) * 2010-03-10 2011-09-22 Jfe Steel Corp Device for vibration damping and position straightening of metallic strip and method of manufacturing hot-dipped metallic strip using the same device
JP2011195905A (en) * 2010-03-19 2011-10-06 Sinfonia Technology Co Ltd Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
CN102803544A (en) * 2010-03-19 2012-11-28 昕芙旎雅有限公司 Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
KR20150074941A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Apparatus for controlling strip vibration
US10982307B2 (en) 2016-02-23 2021-04-20 Fontaine Engineering Und Maschinen Gmbh Method for operating a coating device for coating a metal strip, and coating device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871920A1 (en) * 2005-03-24 2008-01-02 Abb Research Ltd. A device and a method for stabilizing a steel sheet
EP1871920A4 (en) * 2005-03-24 2010-11-10 Abb Research Ltd A device and a method for stabilizing a steel sheet
WO2009024353A3 (en) * 2007-08-22 2010-01-21 Sms Siemag Ag Process and hot-dip coating system for stabilizing a strip guided between stripping dies of the hot-dip coating system and provided with a coating
AU2008290746B2 (en) * 2007-08-22 2011-09-08 Sms Siemag Ag Process and hot-dip coating system for stabilizing a strip guided between stripping dies of the hot-dip coating system and provided with a coating
JP2009275280A (en) * 2008-05-17 2009-11-26 Jfe Steel Corp Production method of hot-dip plated metal sheet
WO2010058837A1 (en) * 2008-11-21 2010-05-27 シンフォニアテクノロジー株式会社 Electromagnetic vibration control device
JP2011183438A (en) * 2010-03-10 2011-09-22 Jfe Steel Corp Device for vibration damping and position straightening of metallic strip and method of manufacturing hot-dipped metallic strip using the same device
JP2011195905A (en) * 2010-03-19 2011-10-06 Sinfonia Technology Co Ltd Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
CN102803544A (en) * 2010-03-19 2012-11-28 昕芙旎雅有限公司 Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
US9080232B2 (en) 2010-03-19 2015-07-14 Sinfonia Technology Co., Ltd. Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
KR20150074941A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Apparatus for controlling strip vibration
KR101657748B1 (en) * 2013-12-24 2016-09-19 주식회사 포스코 Apparatus for controlling strip vibration
US10982307B2 (en) 2016-02-23 2021-04-20 Fontaine Engineering Und Maschinen Gmbh Method for operating a coating device for coating a metal strip, and coating device

Also Published As

Publication number Publication date
JP3901969B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
EP2190600B1 (en) Mode based metal strip stabilizer
JP2003073792A (en) Damping device for steel sheet
JPH05200420A (en) Plate thickness controller for rolling mat roll
KR100758240B1 (en) Molten Metal Plated Steel Sheet Production Method
JP3530514B2 (en) Steel plate shape correction device and method
JP2005118809A (en) Feedforward thickness controller for rolling mill and method for controlling it
JPWO2010058837A1 (en) Electromagnetic damping device
JP2002285309A (en) Device and method for correcting shape of strip
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
JPH08197139A (en) Controller for shape of steel plate
JPH05245521A (en) Method and device for damping steel sheet
JP3482024B2 (en) Steel plate shape control and vibration control device
JP4660911B2 (en) Non-magnetic material transfer device
JP2923154B2 (en) Non-contact vibration suppression device for steel plate
JPH08120432A (en) Steel sheet warpage straightening device
JPH05295510A (en) Noncontact damping equipment for steel sheet
JPH0570843A (en) Method for controlling tension of steel sheet
JPH10298728A (en) Method for controlling vibration and shape of steel sheet
JP2003112213A (en) Controller, controlling method, computer program and computer readable recording medium for rolling mill
JPH0739007B2 (en) Flatness control device
JP3504154B2 (en) Automatic thickness control method and apparatus for rolling mill
JPH07267444A (en) Meandering control method and device for steel plate conveyance
JPH0625814A (en) Contactless vibration damping device for steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040916

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061227

R151 Written notification of patent or utility model registration

Ref document number: 3901969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees