JPH05245521A - Method and device for damping steel sheet - Google Patents

Method and device for damping steel sheet

Info

Publication number
JPH05245521A
JPH05245521A JP4890392A JP4890392A JPH05245521A JP H05245521 A JPH05245521 A JP H05245521A JP 4890392 A JP4890392 A JP 4890392A JP 4890392 A JP4890392 A JP 4890392A JP H05245521 A JPH05245521 A JP H05245521A
Authority
JP
Japan
Prior art keywords
current
electromagnets
steel plate
steel sheet
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4890392A
Other languages
Japanese (ja)
Inventor
Hiroki Ueda
宏樹 上田
Akira Sakurai
明 桜井
Minoru Kato
稔 加藤
Yoshihiro Hamazaki
義弘 浜崎
Masaya Nakamura
雅哉 中村
Kazuhiko Gondo
和彦 権藤
Yutaka Kurita
裕 栗田
Original Assignee
Kobe Steel Ltd
株式会社神戸製鋼所
Shinko Electric Co Ltd
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, 株式会社神戸製鋼所, Shinko Electric Co Ltd, 神鋼電機株式会社 filed Critical Kobe Steel Ltd
Priority to JP4890392A priority Critical patent/JPH05245521A/en
Publication of JPH05245521A publication Critical patent/JPH05245521A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the controlled variable, to prevent the delay at the rise time and the fall time of the control current, and to effectively dump the steel sheet from vibrating. CONSTITUTION:The vibration of a steel sheet 10 is damped by detecting the deviated amount of the belt like steel sheet 10 running along a running path 11 with a position detecting unit 14, making flow current to electromagnets 12, 13 based on the signal of this position detecting unit 14, and changing the attracting force of this electromagnets 12, 13 against the steel sheet 10. Normal voltage circuits 27, 28 for the normal current, adding units 29, 30 which make flow current to the electromagnets 12, 13 by overlapping the electric current and the normal current, and electric current minor compensating units 33, 34 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄設備の圧延ライ
ン、表面処理ライン等において、その走路面を走行中の
帯板状の鋼板の振動を制振する鋼板の制振方法及び装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate damping method and device for damping the vibration of a strip-shaped steel plate running on the road surface of a rolling line, a surface treatment line, etc. of a steelmaking facility. Is.

【0002】[0002]

【従来の技術】例えば溶融亜鉛メッキラインにおいて、
加圧空気又は加圧ガスをスリット状の噴出口を有するノ
ズルから噴出させ、この噴出流を溶融亜鉛槽を通過して
引上げられて来る被メッキ鋼板に噴射することによって
過剰な溶融亜鉛を吹き落し、所要のメッキ厚みにするこ
とが一般的に行われている。
2. Description of the Related Art For example, in a hot dip galvanizing line,
Excessive molten zinc is blown off by ejecting pressurized air or pressurized gas from a nozzle having a slit-shaped ejection port, and ejecting this ejected flow onto a steel sheet to be plated that is pulled up through a molten zinc bath. Generally, the required plating thickness is achieved.

【0003】このような場合、鋼板が走路面に対して振
動すれば、ノズルと鋼板との距離が変動し、その結果、
噴射力が変動してメッキ厚みが不均一となり、品質の劣
化を招くことがある。そこで、従来、特公平2−62355
号公報に記載のように、電磁石を利用して走行中の鋼板
の振動を制振する方法が採られている。
In such a case, if the steel plate vibrates with respect to the running surface, the distance between the nozzle and the steel plate changes, and as a result,
The ejection force may fluctuate and the plating thickness may become non-uniform, resulting in deterioration of quality. Therefore, conventionally, Japanese Patent Publication No.
As described in Japanese Patent Laid-Open Publication No. 2004-242242, a method of damping vibration of a steel plate during traveling by using an electromagnet is adopted.

【0004】これは、図11に示すように、帯板状の鋼板
1 が矢印方向に走行する走路面2 に対して一対の電磁石
3,4 を配置すると共に、その一方の電磁石4 の近傍に非
接触式の変位検出器5 を配置し、この変位検出器5 から
の信号に応じて制御器6 により各電磁石3,4 の吸引力を
相互に切替えながら、走行する鋼板1 の振動及びC反り
を低減させる技術である。
This is a strip-shaped steel plate, as shown in FIG.
1 is a pair of electromagnets with respect to the track surface 2 traveling in the direction of the arrow
3 and 4 are arranged, a non-contact type displacement detector 5 is arranged near one of the electromagnets 4, and the controller 6 responds to the signal from the displacement detector 5 to attract the electromagnets 3 and 4. It is a technology that reduces the vibration and C-warp of the running steel plate 1 while switching between the forces.

【0005】[0005]

【発明が解決しようとする課題】従来の制振技術では、
一対の電磁石3,4 の吸引力を相互に切替えているため、
例えば電磁石3 が吸引状態の時には、電磁石4 は非吸引
状態となっている。この場合、電磁石3,4 は電流の二乗
に吸引力が比例する関係にあるので、電流値ゼロ近辺で
は制御電流の変動分に対する吸引力の変動が小さい。従
って、制御電流の変動範囲を電流値の大きいところにし
た方が、吸引力の変動分が大きくなるため、鋼板1 に対
する制振効果が良好になる。
In the conventional damping technology,
Since the attraction forces of the pair of electromagnets 3 and 4 are switched to each other,
For example, when the electromagnet 3 is in the attracting state, the electromagnet 4 is in the non-attracting state. In this case, since the attraction force of the electromagnets 3 and 4 is in proportion to the square of the current, the variation of the attraction force with respect to the variation of the control current is small near the current value zero. Therefore, when the fluctuation range of the control current is set to a place where the current value is large, the fluctuation amount of the suction force becomes large, so that the vibration damping effect on the steel plate 1 becomes better.

【0006】しかし、従来は、電流値ゼロからの変動分
になるため、良好な制振効果を得ることができないとい
う問題がある。電磁石3,4 における入力電流と吸引力と
の関係を図12に示す。図12において、一点鎖線は電
流と吸引力との関係を、ΔI1、ΔI2は電流変動、ΔF1
ΔF2は電流変動に対する吸引力の変動を示している。
However, conventionally, there is a problem that a good vibration damping effect cannot be obtained because the amount of fluctuation is from zero current value. FIG. 12 shows the relationship between the input current and the attractive force in the electromagnets 3 and 4. In FIG. 12, the alternate long and short dash line shows the relationship between the current and the attractive force, ΔI 1 and ΔI 2 are current fluctuations, ΔF 1 and
ΔF 2 indicates the fluctuation of the attraction force with respect to the fluctuation of the current.

【0007】ここで、鋼板1 の振動に減衰を与える制御
量は、ΔF /Δt (t:時間)である。また、この制御
量は、ΔF /Δt =ΔF /ΔI ・ΔI /Δt の関係があ
る。ΔI /Δt は鋼板1 の振動Δxを位置検出器5 の信
号を微分した振動速度Δx /Δtに比例する。従って、
対向する一対の電磁石3,4 の吸引力を切替える方式で
は、制御電流は図12のΔI1のように電流値ゼロからの
変動分になるので、これに対するΔF1/ΔI1が最も小さ
くなる。このため減衰を与える制御量ΔF1/Δt が最も
小さい範囲で使用することになり、良好な制振効果を得
ることができない。
Here, the control amount for damping the vibration of the steel sheet 1 is ΔF / Δt (t: time). Further, this control amount has a relationship of ΔF / Δt = ΔF / ΔI · ΔI / Δt. ΔI / Δt is proportional to the vibration speed Δx / Δt obtained by differentiating the signal of the position detector 5 from the vibration Δx of the steel plate 1. Therefore,
In the method for switching the suction force of the pair of electromagnets 3, 4 facing the control current since the variation from the current value of zero as the [Delta] I 1 in FIG. 12, ΔF 1 / ΔI 1 becomes minimum for this. Therefore, the control amount ΔF 1 / Δt that gives damping is used in the smallest range, and a good vibration damping effect cannot be obtained.

【0008】本発明は、かかる従来の課題に鑑み、制御
量が大きく、しかも制御電流の立上がり、立下がり時の
遅れを防止でき、鋼板の振動をより良好に制振できる鋼
板の制振方法及び装置を提供することを目的とする。
In view of the above conventional problems, the present invention provides a method of damping a steel sheet which has a large control amount, can prevent a delay in rising and falling of a control current, and can more effectively suppress the vibration of the steel sheet. The purpose is to provide a device.

【0009】[0009]

【課題を解決するための手段】本発明の制振方法は、走
路面11に沿って走行する帯板状の鋼板10の変位量を位置
検出器14により検出し、この位置検出器14の信号に基づ
いて電磁石12,13 に電流を流し、この電磁石12,13 の鋼
板10に対する吸引力を変化させて鋼板10の振動を抑える
鋼板の制振方法において、前記電流に定常電流を加える
と共に、電磁石12,13 に流れる電流を前記電流と定常電
流との重畳電流に負帰還させるものである。
According to a vibration damping method of the present invention, a displacement of a strip-shaped steel plate 10 traveling along a track surface 11 is detected by a position detector 14, and a signal from the position detector 14 is detected. In order to suppress the vibration of the steel sheet 10 by changing the attracting force of the electromagnets 12 and 13 to the steel sheet 10 in order to suppress the vibration of the steel sheet 10, a steady current is added to the current and The current flowing through the currents 12 and 13 is negatively fed back to the superimposed current of the above current and the steady current.

【0010】また、本発明の制振装置は、走路面11に沿
って走行する帯板状の鋼板10の変位量を位置検出器14に
より検出し、この位置検出器14からの信号に基づいて電
磁石12,13 に電流を流し、この電磁石12,13 の鋼板10に
対する吸引力を変化させて鋼板10の振動を抑えるように
した鋼板の制振装置において、定常電流用の定常電圧回
路27,28 と、前記電流と定常電流とを重畳して電磁石1
2,13 に流す加算器29,30 と、電磁石12,13 に流れる電
流を加算器29,30 の入力側に負帰還させる電流マイナー
補償器33,34 とを備えたものである。
Further, the vibration damping device of the present invention detects the amount of displacement of the strip-shaped steel plate 10 traveling along the track surface 11 by the position detector 14, and based on the signal from this position detector 14. In a steel plate damping device in which a current is passed through the electromagnets 12 and 13 to change the attractive force of the electromagnets 12 and 13 against the steel plate 10 to suppress the vibration of the steel plate 10, a steady voltage circuit 27, 28 for steady current is used. And the above-mentioned current and the steady current are superposed, the electromagnet 1
It is provided with adders 29 and 30 that flow to the electromagnets 2 and 13 and current minor compensators 33 and 34 that negatively feed back the current that flows to the electromagnets 12 and 13 to the input side of the adders 29 and 30.

【0011】[0011]

【作用】走路面11に沿って走行する帯板状の鋼板10の変
位量を位置検出器14で検出し、その信号に基づいた電流
を電磁石12,13 に流し、電磁石12,13 の吸引力を変化さ
せて鋼板10の振動を抑える。この時、定常電圧回路27,2
8 から定常電流を加算器29,30 に入力し、加算器29,30
で加算器26からの電流に定常電流を重畳してその重畳電
流を電磁石12,13 に流す。一方、電磁石12,13 に流れる
電流を電流マイナー補償器33,34 により加算器29,30 の
入力側に戻し、重畳電流に負帰還をかける。
[Operation] The amount of displacement of the strip-shaped steel plate 10 traveling along the track surface 11 is detected by the position detector 14, and the current based on the signal is applied to the electromagnets 12 and 13 to attract the electromagnets 12 and 13. To suppress the vibration of the steel plate 10. At this time, the steady voltage circuit 27,2
Input the steady-state current from 8 into the adders 29,30,
At, the steady current is superposed on the current from the adder 26 and the superposed current is passed through the electromagnets 12, 13. On the other hand, the current flowing through the electromagnets 12 and 13 is returned to the input side of the adders 29 and 30 by the current minor compensators 33 and 34, and the superimposed current is negatively fed back.

【0012】従って、重畳電流を用いるため、制御中の
電流変動に対する吸引力の変化が大きくなり、大きな減
衰を鋼板10に与えることができる。また電磁石12,13 に
流れる電流を重畳電流に負帰還させるので、制御電流の
立上がり、立下がり時の遅れを防止できる。
Therefore, since the superposed current is used, the change in the attraction force with respect to the current fluctuation during control becomes large, and a large damping can be given to the steel plate 10. Further, since the current flowing through the electromagnets 12 and 13 is negatively fed back to the superimposed current, it is possible to prevent a delay in rising and falling of the control current.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。図1において、10は帯板状の鋼板、11は鋼板10が
矢印方向に走行する走路面である。12,13 は電磁石で、
走路面11から所定の間隔をあけた状態で、走路面11の左
右両側に対称に配置されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. In FIG. 1, 10 is a strip-shaped steel plate, and 11 is a track surface on which the steel plate 10 travels in the arrow direction. 12,13 are electromagnets,
They are symmetrically arranged on the left and right sides of the track surface 11 with a predetermined distance from the track surface 11.

【0014】14は鋼板10の変位を検出する非接触式の位
置検出器で、一対の電磁石12,13 の内、その一方の電磁
石13の中央部に組込まれている。即ち、各電磁石12,13
はコ字状の鉄心15,16 の両脚部に夫々一対コイル17,18
を巻装したものである。そして、一方の電磁石13には鉄
心16の中央部から一対のコイル17,18 間に向かって支持
体19が突設され、その支持体19の先端に位置検出器14が
取付けられている。従って、位置検出器14は電磁石13の
コイル18間の中央に位置されている。
Reference numeral 14 denotes a non-contact type position detector for detecting the displacement of the steel plate 10, which is incorporated in the center of one of the pair of electromagnets 12, 13. That is, each electromagnet 12, 13
Is a pair of coils 17,18 on both legs of the U-shaped iron core 15,16
Is wrapped around. A support 19 is provided on one of the electromagnets 13 so as to project from the center of the iron core 16 between the pair of coils 17 and 18, and a position detector 14 is attached to the tip of the support 19. Therefore, the position detector 14 is located in the center between the coils 18 of the electromagnet 13.

【0015】20は位置検出器14の信号に基づいて各電磁
石12,13 を制御する制御器で、図2に示すように、増幅
器21、基準位置設定回路22、比例補償器23、微分補償器
24、積分補償器25、加算器26、定常電圧回路27,28 、加
算器29,30 、電力増幅器31,32 、電流マイナー補償器3
3,34 等により構成されている。基準位置設定回路22は
鋼板10の反りを矯正する際の基準位置、即ちゼロ点位置
を設定するためのものである。比例補償器23は鋼板10の
変位に比例した電流を電磁石12,13 に流すためのもので
ある。微分補償器24は鋼板10の速度に比例した電流を電
磁石12,13 に流すためのものである。積分補償器25は走
路面11からの鋼板10のずれを積分して電流を電磁石12,1
3 に流すためのものである。加算器26は比例補償、微分
補償及び積分補償された信号を加算するためのものであ
る。電力増幅器31,32 、加算器29,30 によって加算され
た信号を電磁石12,13 の駆動に必要な電力に増幅するた
めのものである。
Reference numeral 20 is a controller for controlling the electromagnets 12 and 13 based on the signal from the position detector 14, and as shown in FIG. 2, an amplifier 21, a reference position setting circuit 22, a proportional compensator 23, and a derivative compensator.
24, integral compensator 25, adder 26, steady-state voltage circuit 27, 28, adder 29, 30, power amplifier 31, 32, current minor compensator 3
It is composed of 3,34 etc. The reference position setting circuit 22 is for setting a reference position when correcting the warp of the steel plate 10, that is, a zero point position. The proportional compensator 23 is for supplying a current proportional to the displacement of the steel plate 10 to the electromagnets 12 and 13. The differential compensator 24 is for passing a current proportional to the speed of the steel sheet 10 through the electromagnets 12, 13. The integral compensator 25 integrates the deviation of the steel plate 10 from the track surface 11 to convert the current into the electromagnets 12, 1
It is meant to be sent to 3. The adder 26 is for adding the signals which have been proportionally compensated, differentially compensated and integral compensated. This is for amplifying the signals added by the power amplifiers 31, 32 and the adders 29, 30 to the power required for driving the electromagnets 12, 13.

【0016】定常電圧回路27,28 は加算器26からの電流
に重畳する定常電流を流すための定常電圧を印加するも
のである。加算器29,30 は加算器26からの電流に定常電
流を加算するためのものである。電流マイナー補償器3
3,34 は電磁石12,13 に流れる電流を加算器29,30 の入
力側に戻し、重畳電流に負帰還をかけるためのものであ
る。
The steady voltage circuits 27 and 28 are for applying a steady voltage for flowing a steady current superimposed on the current from the adder 26. The adders 29 and 30 are for adding a steady current to the current from the adder 26. Current minor compensator 3
3,34 are for returning the current flowing in the electromagnets 12,13 to the input side of the adders 29,30 and for negatively feeding back the superimposed current.

【0017】上記構成において、位置検出器14で鋼板10
の変位を検出し、その出力信号に基づいて制御器20の比
例補償器23、微分補償器24、積分補償器25で比例補償、
微分補償、積分補償を行う。比例補償は、鋼板10の変位
に比例した電流を各電磁石12,13 に流して力を発生させ
るため、鋼板10に正のバネを付加したのと同じ効果が生
じる。また微分補償は、鋼板10の速度に比例した電流を
電磁石12,13 に流して力を発生させるため、鋼板10に対
して正の減衰を付加することになる。更に、積分補償
は、走路面11からの鋼板10のずれを積分して電磁石12,1
3 に電流を流し力を発生させるため、鋼板10の走路面11
からのずれがゼロになるように制振する。
In the above structure, the position detector 14 is used to
Displacement is detected, and proportional compensation is performed by the proportional compensator 23, the differential compensator 24, and the integral compensator 25 of the controller 20 based on the output signal,
Perform differential compensation and integral compensation. In the proportional compensation, a current proportional to the displacement of the steel plate 10 is caused to flow through the electromagnets 12 and 13 to generate a force, so that the same effect as adding a positive spring to the steel plate 10 is produced. In the differential compensation, a current proportional to the speed of the steel plate 10 is caused to flow through the electromagnets 12 and 13 to generate a force, so that positive damping is added to the steel plate 10. Furthermore, integral compensation is performed by integrating the deviation of the steel plate 10 from the track surface 11 into the electromagnets 12, 1
In order to generate a force by passing an electric current through the
Vibration is controlled so that the deviation from is zero.

【0018】これらの比例補償、微分補償及び積分補償
された信号を加算器26で加算して各加算器29,30 に送
る。そして、各加算器29,30 で加算器26からの電流と定
常電圧回路27,28 からの定常電流とを加算し、電流に定
常電流を重畳した後、その重畳電流を電力増幅器31,32
で電力増幅して各電磁石12,13 を駆動する。一方、電磁
石12,13 に流れる電流を電流マイナー補償器33,34 によ
り加算器29,30 の入力側に戻し、重畳電流に負帰還をか
ける。これによって電磁石12,13 に発生する吸引力を発
生させ、鋼板10に力を加えて振動を抑える。
The signals subjected to the proportional compensation, the differential compensation and the integral compensation are added by the adder 26 and sent to the respective adders 29 and 30. Then, in each adder 29, 30, the current from the adder 26 and the steady-state current from the steady-state voltage circuits 27, 28 are added, and the steady-state current is superposed on the current.
The power is amplified by and each electromagnet 12, 13 is driven. On the other hand, the current flowing through the electromagnets 12 and 13 is returned to the input side of the adders 29 and 30 by the current minor compensators 33 and 34, and the superimposed current is negatively fed back. As a result, an attractive force generated in the electromagnets 12 and 13 is generated, and a force is applied to the steel plate 10 to suppress vibration.

【0019】この場合、比例、積分、微分の信号処理を
行った後の制御電流に定常電圧を加算して定常電流を流
すことによって、図12に示すように、制御中の電流変
動の位置がΔI2(ΔI1=ΔI2 )になるので、この電流変
動に対する吸引力ΔF2は従来のΔF1よりも大きくなる。
このためΔF2/ΔI2>ΔF1/ΔI1となり、より大きな減
衰を鋼板10に与えることができる。
In this case, by adding a steady voltage to the control current after performing the proportional, integral, and derivative signal processing to allow the steady current to flow, the position of the current fluctuation during the control is controlled as shown in FIG. Since ΔI 2 (ΔI 1 = ΔI 2 ), the attraction force ΔF 2 with respect to this current fluctuation becomes larger than the conventional ΔF 1 .
Therefore, ΔF 2 / ΔI 2 > ΔF 1 / ΔI 1 is established , and a larger damping can be given to the steel sheet 10.

【0020】しかも、電磁石12,13 に流れている電流を
負帰還させているので、電流の立上がり、立下がり時の
遅れを防止できる。特に定常電流がなければ、負帰還に
よる補償は電流の立上がり時にしか効果がないが、定常
電流を入力することによって電流の立下がり時にも効果
を持たせることができる。今、仮りに電磁石12,13 に図
3に示すようにステップ状の電流を流して吸引力を変化
させたいとする。
Moreover, since the currents flowing through the electromagnets 12 and 13 are negatively fed back, it is possible to prevent delays in rising and falling of the currents. In particular, if there is no steady current, the compensation by negative feedback is effective only when the current rises. However, by inputting the steady current, the effect can be provided even when the current falls. Now, suppose that a stepwise current is applied to the electromagnets 12 and 13 to change the attractive force, as shown in FIG.

【0021】電流マイナー補償、定常電流がない従来の
場合には、電磁石12,13 に時定数があり、電流の変化は
電圧の変化に対して高周波になるほど遅れる特性がある
ため、図4の(A) の如く電圧をステップ状に変化させて
も、電流は図4の(B) に示すように応答性が悪く、立上
がりが遅れることになる。しかし、電流マイナー補償を
かければ、目標電流に対して実際に流れている電流を負
帰還し、図5の(A) に示すように電圧を変化させること
ができるので、電流は図5の(B) に示すように立上がり
ステップ状に近くなる。
In the conventional case where there is no current minor compensation or steady current, the electromagnets 12 and 13 have a time constant, and the current change has a characteristic of being delayed as the frequency becomes higher with respect to the voltage change. Even if the voltage is changed stepwise as shown in A), the current has poor responsiveness as shown in FIG. 4B and the rise is delayed. However, if current minor compensation is applied, the current actually flowing with respect to the target current can be negatively fed back, and the voltage can be changed as shown in FIG. As shown in B), it approaches a rising step.

【0022】また定常電流がなければ、立下がりの場
合、電圧は図6の(A) に示すように、ゼロV以下にはな
らないので(現実的には可能であるが、回路の実現が困
難になる) 、電流は図6の(B) に示す如く応答が鈍くな
る。これに比べ定常電圧をかけていると、図7の(A) に
示すように電圧が急激に立下がるため、図7の(B) に示
すように電流の立下がり時の応答性を速めることが可能
である。つまり、定常電圧をかけておけば、立下がりに
対しても電流マイナー補償をかけることが可能であり、
応答を速めることができる。
If there is no steady current, the voltage does not fall below zero V as shown in FIG. 6 (A) in the case of a fall (realistically possible, but it is difficult to realize the circuit. However, the current becomes slower in response as shown in FIG. 6 (B). Compared to this, when a steady voltage is applied, the voltage drops sharply as shown in Fig. 7 (A). Therefore, as shown in Fig. 7 (B), the response at the time of current fall should be accelerated. Is possible. In other words, if a steady voltage is applied, it is possible to apply current minor compensation even for a fall,
You can speed up the response.

【0023】図8は鋼板10の制振特性を示し、実線は本
発明に係る制振装置を作動させた場合、点線は制振装置
を用いない場合である。なお、図8において、山の高い
部分は、その振動数で鋼板10が振動しやすいことを示
す。この図8によれば、本発明を用いることによって、
鋼板10が振動しやすい振動数、即ち鋼板10の固有振動数
に対して有効に制振がかけられており、振幅を1/10以下
に抑えられることが判る。
FIG. 8 shows the damping characteristics of the steel plate 10. The solid line shows the case where the damping device according to the present invention is operated, and the dotted line shows the case where the damping device is not used. Note that, in FIG. 8, the high mountain portion indicates that the steel plate 10 is likely to vibrate at the frequency. According to this FIG. 8, by using the present invention,
It is understood that the vibration is effectively applied to the frequency at which the steel plate 10 easily vibrates, that is, the natural frequency of the steel plate 10, and the amplitude can be suppressed to 1/10 or less.

【0024】これに対し、定常吸引力がない場合の制振
特性を図9に示す。この図9によれば、全周波数にわた
って制振効果が悪いことが判る。図10は本発明の別の
実施例を示し、鋼板10の幅方向の反りを矯正しながら制
振する場合である。走路面11の両側には、鋼板10の幅方
向に等間隔をおいて複数個、例えば4個づつの電磁石12
a,12b,12c,12d 、13a,13b,13c,13d が対称に配置され、
その一方の各電磁石12a,12b,12c,12d に位置検出器14a,
14b,14c,14d が夫々組込まれている。
On the other hand, FIG. 9 shows the damping characteristics when there is no steady suction force. According to FIG. 9, it can be seen that the damping effect is poor over all frequencies. FIG. 10 shows another embodiment of the present invention, in which vibration is suppressed while correcting the warp of the steel sheet 10 in the width direction. On both sides of the track surface 11, a plurality of, for example, four electromagnets 12 are arranged at equal intervals in the width direction of the steel plate 10.
a, 12b, 12c, 12d, 13a, 13b, 13c, 13d are arranged symmetrically,
Position detectors 14a, 12a, 12b, 12c, 12d on one of the electromagnets
14b, 14c and 14d are incorporated respectively.

【0025】この場合には、各部位の鋼板10の変位を位
置検出器14a,14b,14c,14d で検出し、各電磁石12a,12b,
12c,12d 、13a,13b,13c,13d の電流を制御するが、図1
0の状態では鋼板10との間の間隔が大である電磁石12a,
12d,13b,13c と、その間隔が小である電磁石12b,12c,13
a,13d との吸引力に差をつけることにより、鋼板10の反
りを矯正できる。
In this case, the displacements of the steel plate 10 at each portion are detected by the position detectors 14a, 14b, 14c, 14d, and the electromagnets 12a, 12b,
The current of 12c, 12d, 13a, 13b, 13c, 13d is controlled.
In the state of 0, the distance between the steel plate 10 and the electromagnet 12a is large,
12d, 13b, 13c and electromagnets 12b, 12c, 13 with small intervals
The warp of the steel plate 10 can be corrected by making a difference in the attraction force between the steel plates 13a and 13d.

【0026】なお、電磁石12,13 、位置検出器14は、鋼
板10の走行方向に2個以上設けることも可能である。ま
た位置検出器14としては、変位変換器、速度変換器等を
用いれば良い。更に制御器20は、比例補償、微分補償、
積分補償の代わりに最適制御補償を行うようにしても良
いし、制振機能のみを持たせる場合には、微分補償の
み、又は微分補償と比例補償のみでも良い。
Two or more electromagnets 12 and 13 and position detectors 14 may be provided in the traveling direction of the steel plate 10. Further, as the position detector 14, a displacement converter, a speed converter or the like may be used. Further, the controller 20 has proportional compensation, differential compensation,
Optimal control compensation may be performed instead of integral compensation, and when only a damping function is provided, only differential compensation or only differential compensation and proportional compensation may be performed.

【0027】[0027]

【発明の効果】本発明の制振方法によれば、走路面11に
沿って走行する帯板状の鋼板10の変位量を位置検出器14
により検出し、この位置検出器14の信号に基づいて電磁
石12,13 に電流を流し、この電磁石12,13 の鋼板10に対
する吸引力を変化させて鋼板10の振動を抑える鋼板の制
振方法において、前記電流に定常電流を加えると共に、
電磁石12,13 に流れる電流を前記電流と定常電流との重
畳電流に負帰還させるので、制御量を大きくできると共
に、電流の立上がり及び立下がり時の遅れを防止でき、
鋼板10の振動をより良好に制振できる。
According to the damping method of the present invention, the position detector 14 detects the displacement amount of the strip-shaped steel plate 10 traveling along the track surface 11.
In order to suppress the vibration of the steel sheet 10 by changing the attracting force of the electromagnets 12 and 13 to the steel sheet 10 based on the signal from the position detector 14, the electromagnets 12 and 13 are controlled to suppress the vibration of the steel sheet 10. , Adding a steady current to the current,
Since the current flowing through the electromagnets 12 and 13 is negatively fed back to the superimposed current of the current and the steady current, the control amount can be increased and the delay in the rise and fall of the current can be prevented,
The vibration of the steel plate 10 can be damped better.

【0028】また本発明の制振装置によれば、走路面11
に沿って走行する帯板状の鋼板10の変位量を位置検出器
14により検出し、この位置検出器14からの信号に基づい
て電磁石12,13 に電流を流し、この電磁石12,13 の鋼板
10に対する吸引力を変化させて鋼板10の振動を抑えるよ
うにした鋼板の制振装置において、定常電流用の定常電
圧回路27,28 と、前記電流と定常電流とを重畳して電磁
石12,13 に流す加算器29,30 と、電磁石12,13 に流れる
電流を加算器29,30 の入力側に負帰還させる電流マイナ
ー補償器33,34 とを備えているので、簡単な装置で効率
的な制振が可能である。
Further, according to the vibration damping device of the present invention, the running surface 11
The position detector detects the amount of displacement of the strip-shaped steel plate 10 traveling along
14 and a current is sent to the electromagnets 12 and 13 based on the signal from the position detector 14, and the steel plates of the electromagnets 12 and 13 are detected.
In a vibration control device for a steel plate that suppresses the vibration of the steel plate 10 by changing the attractive force to the 10, a steady voltage circuit 27, 28 for a steady current and an electromagnet 12, 13 by superposing the current and the steady current. It is equipped with the adders 29 and 30 that flow into the electromagnets 12 and 13 and the current minor compensators 33 and 34 that negatively feed back the currents flowing in the electromagnets 12 and 30 to the input side of the adders 29 and 30, so that a simple device and efficient Vibration control is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】同制御系のブロック図である。FIG. 2 is a block diagram of the control system.

【図3】目標電流の波形図である。FIG. 3 is a waveform diagram of a target current.

【図4】電流マイナー及び定常電流がない場合の電圧・
電流の波形図である。
[Figure 4] Voltage when there is no current minor or steady current
It is a wave form diagram of an electric current.

【図5】定常電流がない場合の電圧・電流の波形図であ
る。
FIG. 5 is a voltage / current waveform diagram when there is no steady current.

【図6】定常電流がない場合の電圧・電流の波形図であ
る。
FIG. 6 is a voltage / current waveform diagram when there is no steady current.

【図7】電流マイナー及び定常電流がある場合の電圧・
電流の波形図である。
FIG. 7: Voltage when there is a current minor and steady current
It is a wave form diagram of an electric current.

【図8】本発明の振動特性図である。FIG. 8 is a vibration characteristic diagram of the present invention.

【図9】従来の振動特性図である。FIG. 9 is a conventional vibration characteristic diagram.

【図10】本発明の別の実施例を示す構成図である。FIG. 10 is a configuration diagram showing another embodiment of the present invention.

【図11】従来例を示す構成図である。FIG. 11 is a configuration diagram showing a conventional example.

【図12】電流と吸引力の関係を示す図である。FIG. 12 is a diagram showing a relationship between current and attraction force.

【符号の説明】[Explanation of symbols]

10 鋼板 11 走路面 12 電磁石 13 電磁石 14 位置検出器 20 制御器 26 加算器 27 定常電圧回路 28 定常電圧回路 29 加算器 30 加算器 33 電流マイナー補償器 34 電流マイナー補償器 10 Steel plate 11 Track surface 12 Electromagnet 13 Electromagnet 14 Position detector 20 Controller 26 Adder 27 Steady-state voltage circuit 28 Steady-state voltage circuit 29 Adder 30 Adder 33 Current minor compensator 34 Current minor compensator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05D 19/02 D 8914−3H (72)発明者 加藤 稔 兵庫県神戸市灘区土山町8−35−514 (72)発明者 浜崎 義弘 兵庫県神戸市西区学園東町1−2−102 (72)発明者 中村 雅哉 兵庫県加古川市平岡町二俣1001 (72)発明者 権藤 和彦 兵庫県加古川市平岡町二俣1001 (72)発明者 栗田 裕 三重県伊勢市竹ケ鼻町100 伊勢製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location G05D 19/02 D 8914-3H (72) Inventor Minoru Kato 8-Tsuchiyama-cho, Nada-ku, Kobe-shi, Hyogo 35-514 (72) Inventor Yoshihiro Hamasaki 1-2-102 Gakuen Higashi-cho, Nishi-ku, Kobe-shi, Hyogo (72) Inventor Masaya Nakamura 1001 Futamata, Hiraoka-cho, Kakogawa-shi, Hyogo 1001 (72) Inventor Kazuhiko Gondo Hiraoka-cho, Kakogawa-shi, Hyogo Futamatata 1001 (72) Inventor Yutaka Kurita 100 Takegahana-cho, Ise City, Mie Prefecture 100 Ise Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 走路面(11)に沿って走行する帯板状の鋼
板(10)の変位量を位置検出器(14)により検出し、この位
置検出器(14)の信号に基づいて電磁石(12)(13)に電流を
流し、この電磁石(12)(13)の鋼板(10)に対する吸引力を
変化させて鋼板(10)の振動を抑える鋼板の制振方法にお
いて、前記電流に定常電流を加えると共に、電磁石(12)
(13)に流れる電流を前記電流と定常電流との重畳電流に
負帰還させることを特徴とする鋼板の制振方法。
1. A position detector (14) detects a displacement amount of a strip-shaped steel plate (10) traveling along a track surface (11), and an electromagnet is detected based on a signal from the position detector (14). (12) In the method of damping a steel sheet in which a current is passed through the electromagnets (12) and (13) to suppress the vibration of the steel sheet (10) by changing the attractive force of the electromagnet (12) and (13) against the steel sheet (10), Applying electric current and electromagnet (12)
A method for damping a steel sheet, characterized in that the current flowing in (13) is negatively fed back to a superimposed current of the current and a steady current.
【請求項2】 走路面(11)に沿って走行する帯板状の鋼
板(10)の変位量を位置検出器(14)により検出し、この位
置検出器(14)からの信号に基づいて電磁石(12)(13)に電
流を流し、この電磁石(12)(13)の鋼板(10)に対する吸引
力を変化させて鋼板(10)の振動を抑えるようにした鋼板
の制振装置において、定常電流用の定常電圧回路(27)(2
8)と、前記電流と定常電流とを重畳して電磁石(12)(13)
に流す加算器(29)(30)と、電磁石(12)(13)に流れる電流
を加算器(29)(30)の入力側に負帰還させる電流マイナー
補償器(33)(34)とを備えたことを特徴とする鋼板の制振
装置。
2. A position detector (14) detects a displacement amount of a strip-shaped steel plate (10) traveling along a track surface (11), and based on a signal from the position detector (14). In a vibration control device for a steel plate, a current is passed through the electromagnets (12) (13), and the attractive force of the electromagnets (12) (13) to the steel plate (10) is changed to suppress the vibration of the steel plate (10). Steady-state voltage circuit for steady-state current (27) (2
8), and the electromagnets (12) (13) by superposing the current and the steady current.
To the input side of the adder (29) (30) and the current minor compensator (33) (34) that causes the current flowing in the electromagnets (12) (13) to be negatively fed back to the input side of the adder (29) (30). A steel plate vibration damping device characterized by being provided.
JP4890392A 1992-03-05 1992-03-05 Method and device for damping steel sheet Pending JPH05245521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4890392A JPH05245521A (en) 1992-03-05 1992-03-05 Method and device for damping steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4890392A JPH05245521A (en) 1992-03-05 1992-03-05 Method and device for damping steel sheet

Publications (1)

Publication Number Publication Date
JPH05245521A true JPH05245521A (en) 1993-09-24

Family

ID=12816230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4890392A Pending JPH05245521A (en) 1992-03-05 1992-03-05 Method and device for damping steel sheet

Country Status (1)

Country Link
JP (1) JPH05245521A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014574A1 (en) * 2000-08-11 2002-02-21 Abb Ab A device and a method for controlling the thickness of a coating on a metallic object
WO2006101446A1 (en) * 2005-03-24 2006-09-28 Abb Research Ltd A device and a method for stabilizing a steel sheet
JP2009275280A (en) * 2008-05-17 2009-11-26 Jfe Steel Corp Production method of hot-dip plated metal sheet
JP2015160959A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
CN107000952A (en) * 2014-11-20 2017-08-01 杰富意钢铁株式会社 The stabilising arrangement of metal tape and the manufacture method for melting coating metal band using it
JP2018024906A (en) * 2016-08-09 2018-02-15 Jfeスチール株式会社 Stabilization apparatus for metallic strip and method of manufacturing hot-dip plated metallic strip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014574A1 (en) * 2000-08-11 2002-02-21 Abb Ab A device and a method for controlling the thickness of a coating on a metallic object
WO2006101446A1 (en) * 2005-03-24 2006-09-28 Abb Research Ltd A device and a method for stabilizing a steel sheet
US8062711B2 (en) 2005-03-24 2011-11-22 Abb Research Ltd. Device and a method for stabilizing a steel sheet
JP2009275280A (en) * 2008-05-17 2009-11-26 Jfe Steel Corp Production method of hot-dip plated metal sheet
JP2015160959A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
CN107000952A (en) * 2014-11-20 2017-08-01 杰富意钢铁株式会社 The stabilising arrangement of metal tape and the manufacture method for melting coating metal band using it
CN107000952B (en) * 2014-11-20 2019-11-08 杰富意钢铁株式会社 The manufacturing method of the stabilising arrangement of metal tape and the melting coating metal band using it
US10876194B2 (en) 2014-11-20 2020-12-29 Jfe Steel Corporation Metal strip stabilization apparatus and method for manufacturing hot-dip coated metal strip using same
JP2018024906A (en) * 2016-08-09 2018-02-15 Jfeスチール株式会社 Stabilization apparatus for metallic strip and method of manufacturing hot-dip plated metallic strip

Similar Documents

Publication Publication Date Title
JPH05245521A (en) Method and device for damping steel sheet
WO2010058837A1 (en) Electromagnetic vibration control device
JP2000053295A (en) Vibration suppressing device for steel strip
JP3002331B2 (en) Steel plate damping device
JPH05245523A (en) Damping device of steel sheet
JP2629029B2 (en) Steel plate vibration suppression and position control device
KR101774073B1 (en) Electromagnetic vibration suppression device and computer-readable storage medium having electromagnetic vibration suppression control program
JPH05245522A (en) Damping device for steel sheet
JP3125640B2 (en) Band-shaped body damping method and its damping device
JP3901969B2 (en) Steel plate damping device
JP3054261B2 (en) Steel plate damping device
JP3531278B2 (en) Vibration device
JPH11100651A (en) Continuous hot dip metal coating device
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JPH09184055A (en) Vibration controller in hot dip metal coating equipment
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JP3482024B2 (en) Steel plate shape control and vibration control device
JPH0664806A (en) Vibration damping device for steel strip
JP2576196Y2 (en) Non-contact vibration suppression device
KR960023194A (en) Plating amount variation prevention device of continuous hot dip galvanizing system
JPH0810847A (en) Shape straightening and vibration damping device for strip
JPH07277559A (en) Metal strip supporting device
JP2923154B2 (en) Non-contact vibration suppression device for steel plate
JPH0664807A (en) Vibration damping device for steel strip
JP2508360B2 (en) Continuous hot dip coating equipment