JP3482024B2 - Steel plate shape control and vibration control device - Google Patents

Steel plate shape control and vibration control device

Info

Publication number
JP3482024B2
JP3482024B2 JP00810495A JP810495A JP3482024B2 JP 3482024 B2 JP3482024 B2 JP 3482024B2 JP 00810495 A JP00810495 A JP 00810495A JP 810495 A JP810495 A JP 810495A JP 3482024 B2 JP3482024 B2 JP 3482024B2
Authority
JP
Japan
Prior art keywords
steel sheet
circuit
control
steel plate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00810495A
Other languages
Japanese (ja)
Other versions
JPH08197140A (en
Inventor
和弘 佃
浩二 亀田
宏規 藤岡
淳司 井上
真 末永
寛 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00810495A priority Critical patent/JP3482024B2/en
Publication of JPH08197140A publication Critical patent/JPH08197140A/en
Application granted granted Critical
Publication of JP3482024B2 publication Critical patent/JP3482024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、溶融金属を鋼板にメッ
キする溶融メッキライン等、製鉄プロセスラインにおい
て、走行する鋼板の形状を制御し、又は鋼板の振動を低
減させるための鋼板の形状制御及び制振装置に関する。 【0002】 【従来の技術】製鉄プロセスラインにおいては、鋼板を
帯状に長くした、鋼板を搬送させながら、溶融メッキ
や、焼鈍などの加工を行い製品化するのが通常である。 【0003】さらに、鋼板を搬送させる際には、鋼板の
形状をこれらの加工精度を良くする形状に矯正し、なお
かつ、振動を抑える必要がある。特に、亜鉛等の溶融メ
ッキ加工を行うメッキラインにおいては、メッキ鋼板の
品質向上を図るため、メッキ付着量の変動を最小限にし
て、溶融メッキの厚さを均一にする必要があり、このた
めには、加工装置を設置した位置における走行中の鋼板
の形状を、最適の加工ができる形状に矯正するととも
に、振動等による加工装置との相対的な動きを抑え、走
行方向の加工むらを最小限にする必要がある。 【0004】このような、鋼板の形状矯正、および振動
抑制を行う装置として、従来、メッキラインに使用され
ている鋼板の形状制御及び制振装置を図4、図5に示
す。図4(A)に示すように、図示しないメッキ槽内を
通り、長手方向に張力をかけながら、下方から上方に走
行する鋼板1の両側には、鋼板1の表面、裏面に、それ
ぞれ対向させて配設された電磁石3が、鋼板1の走行方
向に、間隔をおいて2対設けられている。また、鋼板1
の1側の面に対向させて配設された、2個の電磁石3の
略中央には、位置検出センサ2が設けられている。 【0005】この2対の電磁石3、および1個の位置検
出センサ2を一組とする矯正装置を走行する鋼板1の幅
方向に、図4(B)に示すように3組配設している。ま
た、鋼板1の上流側には、略鋼板1の全幅にわたって、
図示しないワイピングノズルを配設して、メッキ槽で鋼
板1に付着させた溶融金属の付着量を制御し、鋼板1の
走行方向、および幅方向とも、一定の厚みになるように
している。 【0006】そして、対向する鋼板1の走行位置を検出
した位置検出センサ2からの検出信号tは、図5に示す
ように、あらかじめ設定された走行位置を鋼板1を走行
させるときの目標信号pから減算器4で減算され、偏差
信号s′となって制御回路15′に出力される。 【0007】制御回路15′に入力された偏差信号s′
は、並列に配置された比例回路5と積分回路7に出力さ
れる。また、比例回路5と積分回路7からの信号は、位
相補償回路(微分回路)9に出力され、位相補償回路9
からの制御信号qは駆動回路10に出力され、駆動回路
10では、鋼板1が目標とする位置、すなわち、鋼板1
の幅方向に設置された、3組の電磁石3、および位置検
出センサ2からなる矯正装置が配設されている走行位置
で、予め目標とした位置を鋼板1がそれぞれ走行し、こ
れらの走行位置における鋼板1の形状を最適の加工がで
きる形状に矯正するとともに、振動による相対的な動き
を抑えて走行方向の変動を最小限にするような励磁電流
i、i′を電磁石3に出力し、電磁石3の吸引力で鋼板
1の形状矯正、および制振を行うようにしている。 【0008】しかしながら、上述した従来の鋼板の形状
及び制御装置においては、制御信号qの入り切りを行う
とき、駆動回路10から電磁石3へ供給される励磁電流
i、i′が急変するため、電磁石3の吸引力が急激に変
動し、鋼板1の走行位置が急激に変化し、鋼板1を走行
させる目標とする位置を行きすぎ、オーバーシュートを
起し、電磁石3等の前面に鋼板1が接触し、鋼板1に傷
がつき、鋼板1の品質低下をもたらす不具合が生じるこ
とがあった。 【0009】 【発明が解決しようとする課題】本発明は、鋼板の走行
面に対向して複数個の位置検出センサと電磁石を設置
し、走行する鋼板の形状を制御し、かつ制振を行う装置
において、鋼板を、目標とする位置に保持して走行させ
るため電磁石の吸引力を制御する制御信号を出力する制
御回路の入り切り時に、鋼板の走行位置が急激に変動し
てオーバーシュートを起すことがないようにして、鋼板
の電磁石等への接触を回避して、接触による品質の低下
を防止できる、鋼板の形状制御及び制振装置を提供する
ことを課題とする。 【0010】 【課題を解決するための手段】上記の課題を解決するた
め、本発明の鋼板の形状制御及び制振装置は次の手段と
した。位置検出センサからの検出信号から、予め設定し
た目標位置で前記鋼板を走行させる目標信号を減算した
偏差信号を入力し、鋼板が目標位置で走行する吸引力を
電磁石に発生させるように、励磁電流を供給する駆動回
路に制御信号を出力する、並列に配列された比例回路、
及び積分回路と、位相補償回路から構成される制御回路
の積分回路にスイッチを設置するとともに、積分回路お
よび比例回路の出力側と位相補償回路(微分回路)の入
力側と間にスイッチがオンとなった後にゲインが0か
ら1に変化し、前記スイッチがオフとなった後にゲイン
が1から0に変化するDCアンプを設置した。 【0011】 【作用】本発明の鋼板の形状制御及び制振装置は、上述
の手段の採用により、鋼板の走行位置を測定した位置検
出センサからの検出信号から、鋼板が走行路に定められ
た目標位置を走行するように予め定められた目標信号を
減算した偏差信号を、比例回路、および比例回路と並列
に配置された積分回路にON/OFFスイッチを経由し
て送り、比例回路からの信号と積分回路からの信号は、
ゲインを調整可能なDCアンプに入り、DCアンプから
の信号は位相補償回路(微分回路)に入り、位相補償回
路からの制御信号は電磁石を駆動する駆動回路へ送られ
る。これにより、駆動回路は電磁石に、鋼板が目標位置
を走行するような、すなわち、偏差信号を零にするよう
な位置を走行させるための吸引力を与える励磁電流を供
給する。 【0012】ここで、制御状態にする際は、積分回路の
入力側に設けたスイッチを入れ、DCアンプのゲインを
0から通常の制御時の1に増大させる。また、制御を切
る際は、積分回路入力側のスイッチを切り、積分信号を
一定値に保持する、この状態でDCアンプのゲインを1
から0に低減させる。 【0013】これにより、制御回路の入り切りにおい
て、電磁石に駆動回路から供給される励磁電流を徐々に
変化させることができ、励磁電流の急変に伴う鋼板変位
のオーバーシュートを無くすることができ、鋼板に傷を
つけることが無くなり、鋼板の品質を向上させることが
できる。 【0014】また、溶融メッキのワイピングノズル設置
位置等、加工装置を設けた位置における鋼板の形状をフ
ラットにできる等、鋼板の走行路に設置された加工装置
の近傍での鋼板の形状を加工精度を上げることの出来る
形状に制御でき、メッキ厚が均一化される等、製品の品
質向上をもたらすことができる。さらに、走行時におけ
る鋼板の振動も抑えることができるので、鋼板の振動に
よる鋼板搬送方向に生じる、メッキ厚さむら等の製品の
品質劣化を無くすこともできる。 【0015】 【実施例】以下、本発明の鋼板の形状制御及び制振装置
の実施例を、図面にもとづき説明する。図1は、本発明
の鋼板の形状制御及び制振装置の一実施例を示すブロッ
ク図、図2は、図1に示す実施例の制御回路のON−O
FF時の操作を示すブロック図と、制御回路のON−O
FFによる鋼板の変位を示す図、図3は、図1に示す実
施例と従来例における制御回路を、ONからOFFにし
たときのゲインと鋼板変位の過渡応答を示す図である。 【0016】本実施例の鋼板の形状制御及び制振装置
は、図1に示すように、走行する鋼板1の表、裏面に対
向して、対で配置されるとともに、鋼板1の走行方向に
間隔をあけて2対配設され、鋼板1に吸引力を作用させ
る電磁石3、鋼板1の表、裏面の何れか一方に配置され
た電磁石3のうちの走行方向の2個の電磁石3の間に設
置され、鋼板1の走行位置を検出し、検出信号tを出力
する位置検出センサ2、位置検出センサ2からの検出信
号tから、鋼板1が目標とする位置を走行するように予
め定められた目標信号pを減算し、その偏差信号sを制
御回路15に出力する減算器4からなる、図4に示すも
のと同様の装置が設けられている。 【0017】また、本実施例の制御回路15において
は、減算器4からの偏差信号sを入力し、比例及び積分
を行う、並列に配置された比例回路5と積分回路7、積
分回路7の入力側に設置されたON/OFFスイッチ
6、比例回路5と積分回路7からの信号を入力し、それ
にゲインを掛けるDCアンプ8、DCアンプ8からの信
号を入力し、位相補償を行う位相補償回路9(微分回
路)で構成されている。 【0018】本実施例の鋼板の形状制御及び制振装置
は、上述した図4に示したものと同様の装置、上述した
制御回路15、および位相補償回路9からの制御信号q
を入力し、電磁石3に鋼板1を目標する位置で走行させ
る励磁電流i、i′を送る駆動回路10で構成されてい
る。 【0019】そして、鋼板1を目標位置で走行させ、鋼
板1形状を所望の形状に制御すべく制御回路15を作動
させる場合は、図2(A)に示すよう、積分回路7の入
力側のスイッチ6をONとした後、DCアンプ8のゲイ
ンを0から1に変化させて、通常運転にはいり、鋼板1
は、図2(C)の実線で示す目標とする位置を走行す
る。また、制御を切る際は、図2(B)に示すように、
スイッチ6をOFFとし、積分回路7における積分信号
をロックした状態で、DCアンプ8のゲインを通常制御
時の1から0へ任意の速度で低減させ、制御を停止させ
ると、鋼板1は、図2(C)の点線で示す目標位置から
外れた位置を走行する。 【0020】さらに、制御回路15の入り切り時の鋼板
1変位の過渡応答を見ると、図4に示す、従来の制御回
路15′をもつ鋼板の形状制御および制振装置において
制御を切った場合は、図3(C)に示すように、制御O
FFと同時にゲインは1から0に落ち、鋼板1の位置
は、図3(D)に示すように目標位置から急激に変化し
大きなオーバーシュートを引き起こす。 【0021】これに比較して、本実施例の鋼板の形状制
御及び制振装置においては、スイッチ6をOFFにし
て、制御を切っても積分信号はロックされたままの状態
であり、この状態でDCアンプ8のゲインを図3(A)
に示すように、1から0に直線的に低減させることによ
り、図3(B)に示すように、鋼板1の位置も徐々に変
化し、オーバーシュートは無く、制御された図2(C)
の実線で示す目標位置から、制御の行われない図2
(C)の点線で示す位置にシフトする。 【0022】これにより、走行する鋼板を非接触で形状
制御・制振を行う際に、制御入り切りで、従来発生して
いた鋼板1位置の変位に、オーバーシュートを無くする
ことができ、鋼板1が電磁石3等に接触して生じていた
傷の発生がなくなり、鋼板1の品質低下を回避できる。 【0023】以上、図2(B)に示す制御ON→OFF
の場合について説明したが、本実施例では、図2(A)
に示す制御OFF→ONの場合についても同様に鋼板1
位置の変位にオーバーシュートを無くすることができる
ものである。また、DCアンプ8におけるゲインの低
減、または、増大の割合は、任意に調整できるものであ
る。 【0024】 【発明の効果】以上説明したように、本発明の鋼板の形
状制御及び制振装置は、走行する鋼板に対向して複数個
のセンサと電磁石を設置し、鋼板の形状を制御し、かつ
制振を行う装置において、制御の入り切り時に、鋼板の
変位がオーバーシュートしないような制御手段をとり、
オーバーシュートが原因であった、電磁石等への接触を
回避できる。 【0025】これにより、鋼板の電磁石等との接触によ
る品質の低下が無くなり、鋼板の形状制御・制振を行う
に際して生じた品質の低下を防止できる。特に、溶融メ
ッキラインに採用することにより、ワイピングノズル設
置位置で鋼板の形状をフラットする形状制御ができ、メ
ッキ厚が均一化されることと相俟って、製品の品質向上
をもたらすことができる。また、走行している鋼板の振
動も抑えるので、鋼板の振動による鋼板搬送方向のメッ
キ厚さむらを無くすこともでき、品質向上に寄与でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a running steel sheet in an iron making process line such as a hot-dip plating line for plating a molten metal on a steel sheet, or for controlling the shape of a steel sheet. The present invention relates to a shape control and a vibration damping device for a steel plate for reducing vibration. 2. Description of the Related Art In a steelmaking process line, a steel plate is usually formed into a strip by elongating the steel plate and performing a process such as hot-dip plating or annealing while transporting the steel plate. Further, when a steel sheet is transported, it is necessary to correct the shape of the steel sheet to a shape that improves the processing accuracy and suppress vibration. In particular, in a plating line that performs hot-dip plating of zinc or the like, in order to improve the quality of the plated steel sheet, it is necessary to minimize fluctuations in the amount of deposited coating and make the hot-dip plating uniform in thickness. In addition to correcting the shape of the running steel plate at the position where the processing device is installed, the shape of the steel plate can be optimized for processing, and the relative movement with the processing device due to vibration, etc. is suppressed, and processing unevenness in the running direction is minimized. It is necessary to limit. As a device for correcting the shape of a steel plate and suppressing vibration, a device for controlling and damping the shape of a steel plate conventionally used in a plating line is shown in FIGS. As shown in FIG. 4 (A), the steel sheet 1 that travels from below to above while applying tension in the longitudinal direction while passing through a plating tank (not shown) is opposed to the front and back surfaces of the steel sheet 1 respectively. And two pairs of electromagnets 3 arranged in the running direction of the steel plate 1 at intervals. In addition, steel plate 1
The position detection sensor 2 is provided at substantially the center of the two electromagnets 3 arranged opposite to the surface on one side. As shown in FIG. 4B, three sets of electromagnets 3 and one position detection sensor 2 are arranged in the width direction of the steel sheet 1 traveling on the straightening device as a set. I have. In addition, on the upstream side of the steel sheet 1, over substantially the entire width of the steel sheet 1,
A wiping nozzle (not shown) is provided to control the amount of the molten metal deposited on the steel sheet 1 in the plating tank so that the thickness of the steel sheet 1 is constant in both the running direction and the width direction. As shown in FIG. 5, a detection signal t from the position detection sensor 2 which has detected the traveling position of the opposed steel sheet 1 is a target signal p for traveling the steel sheet 1 at a predetermined traveling position. Is subtracted by the subtractor 4 from the control circuit 15 ', and is output to the control circuit 15' as a deviation signal s'. The deviation signal s 'input to the control circuit 15'
Is output to the proportional circuit 5 and the integrating circuit 7 arranged in parallel. The signals from the proportional circuit 5 and the integrating circuit 7 are output to a phase compensating circuit (differential circuit) 9,
Is output to the drive circuit 10 where the steel plate 1 is at a target position, that is, the steel plate 1
The steel plate 1 travels at a target position in advance at a traveling position where the straightening device including the three sets of electromagnets 3 and the position detection sensor 2 is disposed, and the traveling position is set in advance. In addition to correcting the shape of the steel plate 1 to a shape that allows optimal processing, the excitation currents i and i ′ are output to the electromagnet 3 so as to suppress relative movement due to vibration and minimize fluctuations in the running direction. The shape correction and vibration suppression of the steel plate 1 are performed by the attraction force of the electromagnet 3. However, in the above-described conventional steel sheet shape and control device, when the control signal q is turned on and off, the exciting currents i and i ′ supplied from the drive circuit 10 to the electromagnet 3 change suddenly. The attraction force of the steel plate 1 fluctuates rapidly, the running position of the steel plate 1 changes suddenly, overshoots the target position for running the steel plate 1, overshoot occurs, and the steel plate 1 comes into contact with the front surface of the electromagnet 3 or the like. In some cases, the steel sheet 1 was scratched, causing a problem that the quality of the steel sheet 1 was deteriorated. SUMMARY OF THE INVENTION The present invention provides a plurality of position detection sensors and electromagnets opposed to a running surface of a steel sheet to control the shape of the running steel sheet and perform vibration suppression. In the device, when the control circuit that outputs a control signal for controlling the attraction force of the electromagnet is turned on and off to cause the steel plate to travel while holding the steel plate at the target position, the running position of the steel plate fluctuates rapidly and causes overshoot. It is an object of the present invention to provide a shape control and vibration damping device for a steel sheet that can avoid contact of the steel sheet with an electromagnet or the like and prevent deterioration in quality due to the contact. [0010] In order to solve the above-mentioned problems, a steel sheet shape control and vibration damping device according to the present invention comprises the following means. From the detection signal from the position detection sensor, a deviation signal obtained by subtracting a target signal for running the steel sheet at a preset target position is input, and an exciting current is generated so that the electromagnet generates an attractive force for the steel sheet to travel at the target position. A proportional circuit arranged in parallel, which outputs a control signal to a drive circuit that supplies
And a switch is provided in the integration circuit of the control circuit composed of the integration circuit and the phase compensation circuit, and the switch is turned on between the output side of the integration circuit and the proportional circuit and the input side of the phase compensation circuit (differential circuit). Gain is 0 after
Change to 1 and gain after the switch is turned off.
A DC amplifier whose value changed from 1 to 0 was installed. The steel sheet shape control and vibration damping device of the present invention adopts the above-mentioned means to determine the steel sheet on the traveling path from the detection signal from the position detection sensor that measures the traveling position of the steel sheet. A deviation signal obtained by subtracting a predetermined target signal so as to travel at a target position is sent to a proportional circuit and an integrating circuit arranged in parallel with the proportional circuit via an ON / OFF switch, and a signal from the proportional circuit is transmitted. And the signal from the integration circuit
The signal enters the DC amplifier whose gain can be adjusted, the signal from the DC amplifier enters a phase compensation circuit (differential circuit), and the control signal from the phase compensation circuit is sent to a drive circuit that drives the electromagnet. As a result, the drive circuit supplies the electromagnet with an exciting current that provides an attractive force for running the steel sheet at the target position, that is, at a position where the deviation signal becomes zero. Here, when the control state is set, a switch provided on the input side of the integration circuit is turned on, and the gain of the DC amplifier is increased from 0 to 1 at the time of normal control. When the control is cut off, the switch on the input side of the integration circuit is turned off, and the integration signal is held at a constant value.
From 0 to 0. Thus, when the control circuit is turned on and off, the exciting current supplied from the drive circuit to the electromagnet can be gradually changed, and the overshoot of the displacement of the steel sheet due to the sudden change of the exciting current can be eliminated. And the quality of the steel plate can be improved. In addition, the shape of the steel plate in the vicinity of the processing device installed on the traveling path of the steel plate can be processed with high precision, for example, the shape of the steel plate at the position where the processing device is provided, such as the position of the wiping nozzle for hot-dip plating, can be made flat. The quality of the product can be improved, for example, the thickness can be controlled to be uniform, and the plating thickness can be made uniform. Further, since the vibration of the steel sheet during traveling can be suppressed, it is also possible to eliminate the quality deterioration of the product such as uneven plating thickness, which occurs in the steel sheet transport direction due to the vibration of the steel sheet. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a steel sheet shape control and vibration damping device according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a shape control and vibration damping device for a steel sheet according to the present invention, and FIG. 2 is an ON-O of a control circuit of the embodiment shown in FIG.
Block diagram showing the operation at the time of FF, and ON-O of the control circuit.
FIG. 3 is a diagram showing the displacement of the steel plate by the FF, and FIG. 3 is a diagram showing the transient response of the gain and the displacement of the steel plate when the control circuits in the embodiment shown in FIG. 1 and the conventional example are changed from ON to OFF. As shown in FIG. 1, the apparatus for controlling and damping the shape of a steel sheet according to the present embodiment is arranged in pairs facing the front and back surfaces of a running steel sheet 1 and in the running direction of the steel sheet 1. Two pairs of electromagnets 3 arranged at an interval to apply an attractive force to the steel plate 1 and between two electromagnets 3 in the running direction among the electromagnets 3 arranged on one of the front and back surfaces of the steel plate 1 And a position detection sensor 2 that detects a traveling position of the steel sheet 1 and outputs a detection signal t. The detection signal t from the position detection sensor 2 determines in advance that the steel sheet 1 travels at a target position. A device similar to that shown in FIG. 4 is provided, comprising a subtractor 4 for subtracting the target signal p and outputting the deviation signal s to the control circuit 15. In the control circuit 15 of this embodiment, the deviation signal s from the subtractor 4 is input, and the proportional circuit 5 and the integrating circuit 7, which perform proportional and integral operations, are arranged in parallel. A signal from an ON / OFF switch 6, a proportional circuit 5 and an integrating circuit 7 installed on the input side is input, a DC amplifier 8 for applying a gain thereto, and a signal from the DC amplifier 8 are input to perform phase compensation. It is composed of a circuit 9 (differential circuit). The apparatus for controlling and damping the shape of a steel sheet according to the present embodiment is the same as the apparatus shown in FIG. 4 described above, the control circuit 15 described above, and the control signal q from the phase compensation circuit 9.
And a drive circuit 10 for sending excitation currents i and i ′ for causing the electromagnet 3 to move the steel plate 1 at a target position. When the steel plate 1 is run at the target position and the control circuit 15 is operated to control the shape of the steel plate 1 to a desired shape, as shown in FIG. After the switch 6 is turned on, the gain of the DC amplifier 8 is changed from 0 to 1, and the normal operation is started.
Travels at a target position indicated by a solid line in FIG. When turning off the control, as shown in FIG.
When the switch 6 is turned OFF and the integration signal in the integration circuit 7 is locked, the gain of the DC amplifier 8 is reduced at an arbitrary speed from 1 during normal control to 0 to stop the control. The vehicle travels at a position deviating from the target position indicated by the dotted line of 2 (C). Further, looking at the transient response of the displacement of the steel plate 1 when the control circuit 15 is turned on and off, it can be seen from FIG. 4 that when the control is turned off in the conventional steel plate shape control and vibration damping device having the control circuit 15 '. , As shown in FIG.
At the same time as the FF, the gain drops from 1 to 0, and the position of the steel plate 1 rapidly changes from the target position as shown in FIG. In contrast, in the steel sheet shape control and vibration damping device of this embodiment, the integrated signal remains locked even when the switch 6 is turned off and the control is turned off. Fig. 3 (A) shows the gain of the DC amplifier 8
As shown in FIG. 3, by linearly reducing the value from 1 to 0, the position of the steel plate 1 gradually changes as shown in FIG.
2 where control is not performed from the target position indicated by the solid line of FIG.
The position is shifted to the position indicated by the dotted line in FIG. Thus, when controlling the shape and vibration of the running steel sheet in a non-contact manner, overshoot can be eliminated in the displacement of the steel sheet 1 which has occurred conventionally by turning off the control. Of the steel plate 1 can be avoided, and the deterioration of the quality of the steel plate 1 can be avoided. As described above, the control ON → OFF shown in FIG.
In the present embodiment, the case of FIG.
In the case of the control OFF → ON shown in FIG.
The overshoot can be eliminated in the displacement of the position. Further, the rate of reduction or increase of the gain in the DC amplifier 8 can be arbitrarily adjusted. As described above, the shape control and damping device for a steel sheet according to the present invention controls a shape of the steel sheet by installing a plurality of sensors and electromagnets facing the running steel sheet. And, in a device that performs vibration suppression, at the time of turning on and off the control, take control means such that the displacement of the steel plate does not overshoot,
Contact with an electromagnet or the like due to overshoot can be avoided. As a result, the deterioration of the quality due to the contact of the steel sheet with the electromagnet or the like is eliminated, and the deterioration of the quality caused when controlling the shape and controlling the vibration of the steel sheet can be prevented. In particular, by adopting the hot-dip plating line, it is possible to control the shape of the steel sheet to be flat at the position where the wiping nozzle is installed, and it is possible to improve the quality of the product in combination with the uniform plating thickness. . In addition, since vibration of the running steel sheet is suppressed, unevenness in the plating thickness in the steel sheet transport direction due to the vibration of the steel sheet can be eliminated, which can contribute to quality improvement.

【図面の簡単な説明】 【図1】本発明の鋼板の形状制御及び制振装置の一実施
例を示すブロック図、 【図2】図1に示す実施例における制御回路のON−O
FF時の、操作を示すブロック図と、操作による鋼板の
変位を示す図で、図2(A)は制御回路OFF→ON時
の操作を示すブロック図、図2(B)は制御回路OFF
→ON時の操作を示すブロック図、図2(C)は制御回
路ON−OFF時の鋼板走行位置を示す図、 【図3】図1に示す実施例と、従来例の制御回路をON
からOFFしたときの、ゲインと鋼板変位の過渡応答を
示す図で、図3(A)は図1に示す実施例のゲイン変動
図、図3(B)は図1に示す実施例の鋼板変位の過渡応
答図、図3(C)は従来例のゲイン変動図、図3(D)
は従来例の鋼板変位の過渡応答図、 【図4】鋼板の形状制御及び制振装置における電磁石、
位置検出センサ1の配置図で、図4(A)は側断面図、
図4(B)は図4(A)の矢視A−A平面図、 【図5】従来の鋼板の形状制御及び制振装置の一例を示
すブロック図である。 【符号の説明】 1 鋼板 2 位置検出センサ 3 電磁石 4 減算器 5 比例回路 6 スイッチ 7 積分回路 8 DCアンプ 9 位相補償回路、または微分回路 10 駆動回路 15、15′ 制御回路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a steel sheet shape control and vibration damping device according to the present invention; FIG. 2 is an ON-O control circuit in the embodiment shown in FIG.
FIG. 2A is a block diagram illustrating an operation when the control circuit is turned from OFF to ON, and FIG. 2B is a block diagram illustrating an operation when the steel plate is displaced by the operation.
FIG. 2C is a block diagram showing the operation when the control circuit is ON, and FIG. 2C is a diagram showing the traveling position of the steel sheet when the control circuit is ON and OFF. FIG. 3 is a diagram showing the embodiment shown in FIG.
FIGS. 3A and 3B are diagrams showing the transient response of the gain and the displacement of the steel sheet when turned off from FIG. 3. FIG. 3A is a diagram showing the gain variation of the embodiment shown in FIG. 1, and FIG. FIG. 3 (C) is a diagram of the gain variation of the conventional example, and FIG.
Fig. 4 is a transient response diagram of the displacement of the steel sheet of the conventional example, Fig. 4 is an electromagnet in the shape control and vibration damping device of the steel sheet,
FIG. 4A is a side sectional view of the arrangement of the position detection sensor 1,
FIG. 4B is a plan view taken along the line AA of FIG. 4A, and FIG. 5 is a block diagram showing an example of a conventional steel plate shape control and vibration control device. [Description of Signs] 1 Steel plate 2 Position detection sensor 3 Electromagnet 4 Subtractor 5 Proportional circuit 6 Switch 7 Integrating circuit 8 DC amplifier 9 Phase compensation circuit or differentiating circuit 10 Drive circuits 15, 15 'Control circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G05D 19/02 G05D 19/02 D (72)発明者 藤岡 宏規 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島製作所内 (72)発明者 井上 淳司 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 末永 真 福岡県北九州市戸畑区飛畑町1−1 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 飯田 寛 福岡県北九州市戸畑区飛畑町1−1 新 日本製鐵株式会社八幡製鐵所内 (56)参考文献 特開 平2−62355(JP,A) 特開 平5−245523(JP,A) 特開 昭47−38867(JP,A) 特開 平8−10847(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21D 1/05 C23C 2/20 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI G05D 19/02 G05D 19/02 D (72) Inventor Hiroki Fujioka 6-22, Kannonshinmachi, Nishi-ku, Hiroshima-shi Mitsubishi Heavy Industries, Ltd. At Hiroshima Works (72) Inventor Junji Inoue 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Inside Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. Hiroshi Iida (72) Inventor Hiroshi Iida 1-1 Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (56) References JP-A-2-62355 (JP) JP-A-5-245523 (JP, A) JP-A-47-38867 (JP, A) JP-A-8-10847 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) B21D 1/05 C23C 2/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 走行する鋼板面の表、裏にそれぞれ対向
させて前記鋼板の走行方向に2対配設した電磁石、前記
鋼板の1面側の2個の前記電磁石の間に配設され前記鋼
板の走行位置を検出し検出信号を出力する位置検出セン
サ、前記検出信号から、予め設定した目標位置で前記鋼
板を走行させる目標信号を減算した偏差信号を入力し、
制御信号を出力する、並列に配列された比例回路及び積
分回路と、位相補償回路からなる制御回路、前記制御信
号を入力し、前記鋼板を前記目標位置で走行させる磁励
電流を前記電磁石に出力する駆動回路で構成した鋼板の
形状制御及び制振装置において、前記積分回路に設置さ
れたスイッチと、前記比例回路及び積分回路と位相補償
回路の間に設置され、前記スイッチがオンとなった後に
ゲインが0から1に変化し、前記スイッチがオフとなっ
た後にゲインが1から0に変化するDCアンプを具えた
ことを特徴とする鋼板の形状制御及び制振装置。
(57) [Claims 1] An electromagnet arranged in two pairs in the traveling direction of the steel sheet so as to face the front and back of the running steel sheet surface, respectively, and two electromagnets on one side of the steel sheet. A position detection sensor disposed between the electromagnets for detecting a traveling position of the steel sheet and outputting a detection signal, and inputting a deviation signal obtained by subtracting a target signal for traveling the steel sheet at a preset target position from the detection signal. And
A control circuit that outputs a control signal, a proportional circuit and an integrating circuit arranged in parallel, and a control circuit including a phase compensation circuit, receives the control signal, and outputs a magnetizing current that causes the steel sheet to travel at the target position to the electromagnet. In the shape control and vibration damping device for a steel plate configured by a drive circuit, a switch provided in the integration circuit, and a switch provided between the proportional circuit and the integration circuit and the phase compensation circuit, and after the switch is turned on.
The gain changes from 0 to 1 and the switch turns off
A shape control and vibration damping device for a steel plate, comprising a DC amplifier whose gain changes from 1 to 0 after completion .
JP00810495A 1995-01-23 1995-01-23 Steel plate shape control and vibration control device Expired - Lifetime JP3482024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00810495A JP3482024B2 (en) 1995-01-23 1995-01-23 Steel plate shape control and vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00810495A JP3482024B2 (en) 1995-01-23 1995-01-23 Steel plate shape control and vibration control device

Publications (2)

Publication Number Publication Date
JPH08197140A JPH08197140A (en) 1996-08-06
JP3482024B2 true JP3482024B2 (en) 2003-12-22

Family

ID=11684001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00810495A Expired - Lifetime JP3482024B2 (en) 1995-01-23 1995-01-23 Steel plate shape control and vibration control device

Country Status (1)

Country Link
JP (1) JP3482024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611767A (en) * 2013-12-16 2014-03-05 南京埃斯顿自动化股份有限公司 Method for controlling position of sliding block of electro-hydraulic double-cylinder bending machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797277A1 (en) * 1999-08-05 2001-02-09 Lorraine Laminage METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A METAL SURFACE COATING ON A SLIP
JP2003105515A (en) * 2001-09-26 2003-04-09 Mitsubishi Heavy Ind Ltd Device and method for correcting steel plate shape
JP5223451B2 (en) * 2008-05-17 2013-06-26 Jfeスチール株式会社 Method for producing hot-dip metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611767A (en) * 2013-12-16 2014-03-05 南京埃斯顿自动化股份有限公司 Method for controlling position of sliding block of electro-hydraulic double-cylinder bending machine

Also Published As

Publication number Publication date
JPH08197140A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
US20090191360A1 (en) Strip crossbow reduction and strip vibration reduction method and hot dip coated strip manufacturing method using the strip stabilization method
KR101553129B1 (en) Electromagnetic device for stabilizing and reducing the deformation of a strip made of ferromagnetic material, and related process
KR20050014836A (en) Molten Metal Plated Steel Sheet Production Method and Apparatus
JPH10298727A (en) Vibration and shape controller for steel sheet
JP3482024B2 (en) Steel plate shape control and vibration control device
WO2010058837A1 (en) Electromagnetic vibration control device
JP2010144213A (en) Method for controlling metal strip and method for manufacturing hot-dip plated metal strip
SE0002890D0 (en) A method for controlling the thickness of a galvanizing coating on a metallic object
JP2629029B2 (en) Steel plate vibration suppression and position control device
JPH11100651A (en) Continuous hot dip metal coating device
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JP3233781B2 (en) Strip shape straightening device
JP2991922B2 (en) Metal strip support device
JPH08197139A (en) Controller for shape of steel plate
JP3002331B2 (en) Steel plate damping device
JP2923154B2 (en) Non-contact vibration suppression device for steel plate
JP2011183438A (en) Device for vibration damping and position straightening of metallic strip and method of manufacturing hot-dipped metallic strip using the same device
JP2941569B2 (en) Non-contact vibration suppression device for steel plate
JPH05245521A (en) Method and device for damping steel sheet
JPH06287736A (en) Continuous plating device
JPH10298728A (en) Method for controlling vibration and shape of steel sheet
JPH05245523A (en) Damping device of steel sheet
JP3046855B2 (en) Non-contact vibration reduction device
WO2016092601A1 (en) Metal strip stabilizer, and method of manufacturing hot-dip plated metal strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term