JP2003070741A - Measurement unit for optical characteristics of eye - Google Patents

Measurement unit for optical characteristics of eye

Info

Publication number
JP2003070741A
JP2003070741A JP2001268807A JP2001268807A JP2003070741A JP 2003070741 A JP2003070741 A JP 2003070741A JP 2001268807 A JP2001268807 A JP 2001268807A JP 2001268807 A JP2001268807 A JP 2001268807A JP 2003070741 A JP2003070741 A JP 2003070741A
Authority
JP
Japan
Prior art keywords
eye
light
image
fundus
light flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001268807A
Other languages
Japanese (ja)
Inventor
Raku Takeuchi
楽 竹内
Katsuhiko Kobayashi
克彦 小林
Masahiro Shibuya
雅博 渋谷
Hiromi Takahashi
裕美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2001268807A priority Critical patent/JP2003070741A/en
Publication of JP2003070741A publication Critical patent/JP2003070741A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a correct simulation image to observe a subject corresponding to characteristics of the eyeground and the simulation image can be easily obtained in real time, even when the light flux for measurement on the subject eyeground is in an arbitrary focusing condition, by only measuring light quantity distribution characteristics of the light flux on the eyeground of the subject in the condition. SOLUTION: This measurement unit for optical characteristics of an eye has a simulation image calculating part 26 comprising a projecting optical system 2 to project the light flux for measurement in an arbitrary focusing condition to the eyeground of the subject and a light intercepting optical system 3 to guide an image formed almost only by the light flux of a mirror-reflected component in the reflected light flux from the eyeground onto a photoelectric detector 21 to detect characteristics of light quantity distribution of the image by signals from the photoelectric detector 21 and the calculate a target image formed when a specific target 15 is projected on the eyeground in the focusing condition from the light quantity intensity distribution characteristics and a display part to display the target image based on signals in the simulation image calculating part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検眼眼底に投影
された測定用光束の光量分布特性を検出し、該光量分布
特性から、被検者がどの様な像として観察できるかを他
覚的に知ることができる眼光学特性測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a light amount distribution characteristic of a measuring light beam projected on a fundus of an eye to be examined, and determines from the light amount distribution characteristic what kind of image a subject can observe. The present invention relates to an eye-optical characteristic measuring device that can be known.

【0002】[0002]

【従来の技術】従来、被検眼眼球光学系の光学特性を測
定する装置に於いては、被検眼眼底上に点光源像等が形
成される様に測定用光束を投影し、この眼底上に形成さ
れる像の光量分布特性を光電的に検出し、該光量分布特
性から被検者が観察できる像を演算して、被検者がどの
様な状態で観察できるかを、シミュレーションにより容
易に認識することのできる装置が提案されている。
2. Description of the Related Art Conventionally, in a device for measuring the optical characteristics of an eyeball optical system to be inspected, a measuring light beam is projected so that a point light source image or the like is formed on the fundus of the eye to be inspected, The light amount distribution characteristic of the formed image is photoelectrically detected, an image that can be observed by the subject is calculated from the light amount distribution characteristic, and the state in which the subject can observe is easily simulated. Recognizable devices have been proposed.

【0003】[0003]

【発明が解決しようとする課題】然し乍ら、従来の眼光
学特性測定装置に於いては、人眼の眼底の光学特性に関
して充分な考慮がなされておらず、正確なシミュレーシ
ョン画像を得ることができなかったという欠点を有して
いた。
However, in the conventional eye optical characteristic measuring apparatus, sufficient consideration is not given to the optical characteristics of the fundus of the human eye, and an accurate simulation image cannot be obtained. It had the drawback that

【0004】又、従来の眼光学特性測定装置に於いて
は、被検眼の屈折力を矯正させ被検眼眼底で測定用光束
が合焦された状態、或いは、合焦レンズの移動により被
検眼眼底に測定用光束を合焦させた状態での光量分布特
性の測定結果に基づいて、被検眼上の視標像のシミュレ
ーション画像を演算する必要があり、任意の合焦状態で
の光量分布特性から、リアルタイムでその状態でのシミ
ュレーション画像を得ることができないという欠点を有
していた。
Further, in the conventional eye optical characteristic measuring apparatus, the refractive power of the eye to be inspected is corrected and the light beam for measurement is focused on the fundus of the eye to be inspected, or the fundus to be inspected by moving the focusing lens. Based on the measurement result of the light amount distribution characteristic in the state where the measurement light flux is focused on, it is necessary to calculate the simulation image of the target image on the eye to be examined, and from the light amount distribution characteristic in any focused state However, it had a drawback that a simulation image in that state could not be obtained in real time.

【0005】本発明は斯かる実情に鑑み、眼底の特性に
応じて、被検者が観察される正確なシミュレーション画
像を得ることができると共に、被検眼眼底上での測定用
光束が任意の合焦状態であっても、その状態での被検眼
眼底上の光束の光量分布特性を測定するだけで、リアル
タイムでシミュレーション画像を容易に得ることが可能
とするものである。
In view of such circumstances, the present invention makes it possible to obtain an accurate simulation image in which the subject is observed according to the characteristics of the fundus of the eye, and the luminous flux for measurement on the fundus of the eye to be examined is arbitrary. Even in the focused state, it is possible to easily obtain a simulation image in real time only by measuring the light amount distribution characteristic of the light flux on the fundus of the eye to be examined in that state.

【0006】[0006]

【課題を解決するための手段】本発明は、被検眼眼底に
任意の合焦状態で測定用の投影光束を投影する投影光学
系と、被検眼眼底からの反射光束の内、略鏡面反射され
た成分の光束のみから形成される像を光電検出器上に導
く受光光学系とからなり、前記光電検出器からの信号に
より像の光量強度分布特性を検出し、その光量強度分布
特性から前記合焦状態で被検眼の眼底に特定の視標を投
影した場合に形成される視標像を演算により算出するシ
ミュレーション画像演算部と、該シミュレーション画像
演算部の信号に基づき前記視標像を表示する為の表示部
を有する眼光学特性測定装置に係り、又前記測定用光束
は被検眼眼底に点光源像を形成する眼光学特性測定装置
に係り、更に又前記特定の視標は、視力検査用視標であ
る眼光学特性測定装置に係るものである。
According to the present invention, a projection optical system for projecting a projection light beam for measurement on the fundus of the eye to be examined in an arbitrary focused state, and a light beam reflected from the fundus of the eye to be examined are substantially specularly reflected. A light receiving optical system that guides an image formed from only the light flux of the component onto the photoelectric detector, detects the light intensity distribution characteristic of the image by the signal from the photoelectric detector, and detects the light intensity distribution characteristic from the light intensity distribution characteristic. A simulation image calculation unit that calculates a target image formed when a specific target is projected on the fundus of the eye to be examined in a focused state, and the target image is displayed based on a signal from the simulation image calculation unit. For measuring the optical characteristics of the eye, and the measuring light beam for measuring the optical characteristics of the eye to form a point light source image on the fundus of the eye to be inspected. Optical characteristic measurement of eye It relates to the location.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0008】先ず、人眼の眼底組織について略述する。First, the fundus tissue of the human eye will be briefly described.

【0009】図1は人眼の眼底組織の模式図を示してお
り、31は視細胞層、32は網膜色素上皮層、33は脈
絡膜、34は強膜を示している。
FIG. 1 is a schematic view of the fundus tissue of the human eye, where 31 is a photoreceptor layer, 32 is a retinal pigment epithelium layer, 33 is a choroid, and 34 is a sclera.

【0010】前記視細胞層31は前記網膜色素上皮層3
2に対して垂直な繊維状の視細胞の集合である。前記視
細胞層31(視細胞)を透過した光束は、前記網膜色素
上皮層32により鏡面反射される一方、一部の光束は該
網膜色素上皮層32を透過し、その後方の前記脈絡膜3
3、強膜34で散乱反射される。但し、この散乱反射光
は人が認識する像としては殆ど影響を与えない。
The photoreceptor layer 31 is the retinal pigment epithelium layer 3
It is a collection of fibrous photoreceptor cells perpendicular to 2. The light flux that has passed through the photoreceptor cell layer 31 (visual cells) is specularly reflected by the retinal pigment epithelium layer 32, while part of the light flux passes through the retinal pigment epithelium layer 32 and the choroid 3 behind it.
3. Scattered and reflected by the sclera 34. However, this scattered reflected light has almost no effect on an image recognized by a person.

【0011】ここで、前記視細胞層31に入射した光束
が視細胞を透過する際、視細胞内で略全反射を繰返して
透過することが実験上確かめられている。
Here, it has been experimentally confirmed that, when the light flux incident on the photoreceptor cell layer 31 passes through the photoreceptor cell, it is repeatedly transmitted through the photoreceptor cell by substantially total reflection.

【0012】図2は本実施の形態に係る眼光学特性測定
装置の基本構成を示している。
FIG. 2 shows the basic configuration of the eye optical characteristic measuring apparatus according to this embodiment.

【0013】図中、1は被検眼、2は投影光学系、3は
受光光学系を示す。
In the figure, 1 is an eye to be inspected, 2 is a projection optical system, and 3 is a light receiving optical system.

【0014】前記投影光学系2は光源5、該光源5から
発せられた投影光束を集光する投影レンズ6、該投影レ
ンズ6の光軸上に配設されたハーフミラー7、該ハーフ
ミラー7を透過した投影光束を前記被検眼1に向け第1
の偏光方向の直線偏光成分(P直線偏光)を反射して投
影すると共にP直線偏光とは偏光方向が90°異なるS
直線偏光を透過する偏光ビームスプリッタ8、該偏光ビ
ームスプリッタ8の投影光軸に前記偏光ビームスプリッ
タ8側から配設されたリレーレンズ9、対物レンズ1
1、該対物レンズ11と前記被検眼1との間に配設され
球面レンズで構成される矯正光学系12、1/4波長板
13を有する。更に、前記ハーフミラー7に対向して固
視標15、集光レンズ16を有する固視標系17が配設
されている。前記光源5、固視標15は前記被検眼1の
眼底と共役な位置にあり、後述する様に、前記光源5、
固視標15は眼底に結像する。尚、前記光源5と投影レ
ンズ6とは一体に構成され、後述の合焦レンズ19と連
動して光軸方向に沿って移動可能となっている。
The projection optical system 2 includes a light source 5, a projection lens 6 for condensing a projection light beam emitted from the light source 5, a half mirror 7 arranged on the optical axis of the projection lens 6, and a half mirror 7. The projection light beam that has passed through the
The linearly polarized light component (P linearly polarized light) of the polarization direction of is reflected and projected, and the polarization direction is different from the P linearly polarized light by 90 °.
Polarization beam splitter 8 that transmits linearly polarized light, relay lens 9 disposed on the projection optical axis of polarization beam splitter 8 from the side of polarization beam splitter 8, objective lens 1
1. A correction optical system 12, which is arranged between the objective lens 11 and the eye 1 to be inspected and is formed of a spherical lens, and a quarter wavelength plate 13. Further, a fixation target system 17 having a fixation target 15 and a condenser lens 16 is arranged facing the half mirror 7. The light source 5 and the fixation target 15 are located at a position conjugate with the fundus of the eye 1 to be inspected, and as will be described later, the light source 5,
The fixation target 15 forms an image on the fundus. The light source 5 and the projection lens 6 are integrally formed, and are movable in the optical axis direction in conjunction with a focusing lens 19 described later.

【0015】前記受光光学系3は、前記偏光ビームスプ
リッタ8、該偏光ビームスプリッタ8の投影光軸に配設
された前記リレーレンズ9、対物レンズ11、矯正光学
系12、1/4波長板13を前記投影光学系2と共用し
ている。
The light receiving optical system 3 includes the polarization beam splitter 8, the relay lens 9 arranged on the projection optical axis of the polarization beam splitter 8, the objective lens 11, the correction optical system 12, and the quarter wavelength plate 13. Is shared with the projection optical system 2.

【0016】前記偏光ビームスプリッタ8を透過する反
射光軸上には反射光軸に沿って移動可能な合焦レンズ1
9、結像レンズ20が配設され、該結像レンズ20は前
記被検眼1の眼底と共役な位置にある光電検出器21上
に反射光束を結像させる。
A focusing lens 1 which is movable along the reflection optical axis on the reflection optical axis passing through the polarization beam splitter 8.
9. An image forming lens 20 is provided, and the image forming lens 20 forms an image of the reflected light flux on the photoelectric detector 21 located at a position conjugate with the fundus of the eye 1 to be inspected.

【0017】該光電検出器21からの受光信号は信号処
理部26を介して記憶部27に記憶される。前記信号処
理部26から前記記憶部27へのデータの書込みは制御
部28によって制御され、該制御部28は前記記憶部2
7に記憶されたデータを基に所要の演算をし、又演算結
果を表示部29に表示する。
The received light signal from the photoelectric detector 21 is stored in the storage unit 27 via the signal processing unit 26. The writing of data from the signal processing unit 26 to the storage unit 27 is controlled by the control unit 28, which controls the storage unit 2
Required calculation is performed based on the data stored in 7, and the calculation result is displayed on the display unit 29.

【0018】以下、上記光学系の作用について説明す
る。
The operation of the above optical system will be described below.

【0019】前記合焦レンズ19を基準位置とし、前記
被検眼1に前記固視標15を注視させる。この時、前記
矯正光学系12は矯正量0に設定する。
The focusing lens 19 is used as a reference position, and the eye 1 to be examined is focused on the fixation target 15. At this time, the correction optical system 12 sets the correction amount to zero.

【0020】前記被検眼1に前記固視標15を注視させ
た状態で、前記投影光学系2により投影光束が被検眼眼
底に投影され、被検眼眼底には点光源像が形成される。
尚、前記固視標15に関しては、可視光が用いられ、前
記投影光束については赤外光が用いられる。
The projection optical system 2 projects a projection light beam onto the fundus of the eye to be examined while the eye 1 to be examined is gazing at the fixation target 15, and a point light source image is formed on the fundus of the eye to be examined.
Note that visible light is used for the fixation target 15, and infrared light is used for the projection light flux.

【0021】前記光源5からの投影光束(赤外光)が前
記投影レンズ6、ハーフミラー7を透過して前記偏光ビ
ームスプリッタ8に至り、該偏光ビームスプリッタ8で
P直線偏光分が反射され、前記リレーレンズ9を経て前
記対物レンズ11、矯正光学系12により前記1/4波
長板13を経て前記被検眼1の眼底に投影され、該眼底
上に第1視標像が結像される。
A projection light beam (infrared light) from the light source 5 passes through the projection lens 6 and the half mirror 7 to reach the polarization beam splitter 8, and the P linear polarization component is reflected by the polarization beam splitter 8. After passing through the relay lens 9, the objective lens 11 and the correction optical system 12 pass through the quarter-wave plate 13 to project the light onto the fundus of the eye 1 to be inspected, and a first optotype image is formed on the fundus.

【0022】P直線偏光が前記1/4波長板13を透過
することで、右円偏光となる。前記被検眼1の眼底で投
影光束が全反射され、全反射光束は眼底で反射されるこ
とで左円偏光となる。更に、全反射光束が前記1/4波
長板13を透過することで、前記P直線偏光とは偏光方
向が90°異なるS直線偏光となる。
When the P linearly polarized light passes through the quarter wavelength plate 13, it becomes right circularly polarized light. The projected light flux is totally reflected by the fundus of the eye 1 to be examined, and the totally reflected light flux is reflected by the fundus to be left circularly polarized light. Further, the totally reflected light flux passes through the quarter-wave plate 13 to become S linearly polarized light whose polarization direction is different from that of the P linearly polarized light by 90 °.

【0023】S直線偏光は前記矯正光学系12、対物レ
ンズ11、リレーレンズ9により前記偏光ビームスプリ
ッタ8に導かれる。該偏光ビームスプリッタ8はP直線
偏光を反射し、S直線偏光を透過するので、前記全反射
光束は該偏光ビームスプリッタ8を透過し、前記合焦レ
ンズ19、結像レンズ20により前記光電検出器21上
に第2視標像として結像される。
The S linearly polarized light is guided to the polarization beam splitter 8 by the correction optical system 12, the objective lens 11 and the relay lens 9. Since the polarization beam splitter 8 reflects P linearly polarized light and transmits S linearly polarized light, the totally reflected light beam passes through the polarization beam splitter 8, and the focusing lens 19 and the imaging lens 20 cause the photoelectric detector. A second target image is formed on 21.

【0024】ところで、前記被検眼1の眼底に投影され
た投影光束は眼底表面で全て鏡面反射されるわけではな
く、一部は眼底表面から表層内部に侵入し、散乱反射さ
れる現象、所謂にじみ反射が発生する。この散乱反射光
束が、鏡面反射光束と共に前記光電検出器21に受光さ
れると、第2視標像の光量強度分布のノイズとなり、正
確な眼球光学系の眼光学特性が測定できない。
By the way, the projection light beam projected on the fundus of the eye 1 is not entirely specularly reflected on the fundus surface, but a part thereof penetrates into the surface layer from the fundus surface and is scattered and reflected. Reflection occurs. When this scattered reflected light flux is received by the photoelectric detector 21 together with the specular reflected light flux, it becomes noise in the light amount intensity distribution of the second target image, and accurate eye optical characteristics of the eyeball optical system cannot be measured.

【0025】斯かる散乱反射による光束の偏光状態はラ
ンダム状態である。この為、前記1/4波長板13を透
過し、直線偏光となった場合にS直線偏光と合致するも
のは限られた部分に限定され、前記偏光ビームスプリッ
タ8により散乱反射光束でS直線偏光と合致するもの以
外は反射される。従って、前記被検眼1の眼底で鏡面反
射されたS直線偏光分に対して散乱反射光束によるS直
線偏光分の比率は無視できる程度に小さくなる。
The polarization state of the light beam due to such scattering reflection is a random state. Therefore, when the linearly polarized light is transmitted through the quarter-wave plate 13 and coincides with the S linearly polarized light, it is limited to a limited portion, and the polarized beam splitter 8 scatters and reflects the S linearly polarized light. All but those that match are reflected. Therefore, the ratio of the S linearly polarized light component that is specularly reflected by the fundus of the eye 1 to be inspected to the S linearly polarized light component due to the scattered reflected light flux becomes negligibly small.

【0026】従って、前記光電検出器21が受光するの
は実質上散乱反射光束分が除去された鏡面反射光束とな
る。而して、前記1/4波長板13を投影光学系2、受
光光学系3の構成要素とすることで、正確な眼球光学系
の眼光学特性測定を可能とする。前記信号処理部26は
後述する様に前記光電検出器21からの受光信号を基に
光量強度分布特性を演算し、更にシミュレーション画像
を演算する。
Therefore, the photoelectric detector 21 receives the specularly reflected light flux from which the scattered and reflected light flux is substantially removed. By using the quarter-wave plate 13 as a constituent element of the projection optical system 2 and the light receiving optical system 3, it is possible to accurately measure the eye optical characteristics of the eyeball optical system. The signal processing unit 26 calculates the light intensity distribution characteristic based on the received light signal from the photoelectric detector 21, as described later, and further calculates the simulation image.

【0027】以下の手順により、眼底光学特性を測定す
ることができる。
The optical characteristics of the fundus of the eye can be measured by the following procedure.

【0028】ここで図3(A)は眼底上に光束がピント
の合った状態であり、図3(B)は眼底上にピントが合
っていない状態を示すが、前述した眼底の細部構造の影
響により、いずれの状態でも前記被検眼1の眼球光学系
の振幅透過率をP(x,y)、前記網膜色素上皮層32
での反射特性を含む視細胞の振幅透過率をR(x,
y)、二次元検出器(光電検出器21)からの受光信号
に基づき演算され、測定される二次元検出器上の二次元
光量強度分布をI(x,y)とすると下記式が成立す
る。 P(x,y)※R(x,y)※P(x,y)=I(x,y) (1) ここで、※はコンボルーション積分を意味する。
Here, FIG. 3A shows a state in which the light beam is focused on the fundus, and FIG. 3B shows a state in which the light beam is out of focus on the fundus. Due to the influence, the amplitude transmittance of the eyeball optical system of the eye 1 to be examined is P (x, y) in any state, and the retinal pigment epithelium layer 32 is
The amplitude transmittance of photoreceptor cells including the reflection characteristics at R (x,
y), if the two-dimensional light intensity distribution on the two-dimensional detector calculated and measured based on the received light signal from the two-dimensional detector (photoelectric detector 21) is I (x, y), the following formula is established. . P (x, y) * R (x, y) * P (x, y) = I (x, y) (1) where * means convolution integration.

【0029】次に、(1)式の両辺をフーリエ変換す
る。ここで、眼球光学系の光伝達関数をp(u,v)、
視細胞の光伝達関数をr(u,v)、二次元検出器上の
二次元光伝達関数をi(u,v)とすると下記式が成立
する。 FT[P(x,y)]=p(u,v) FT[R(x,y)]=r(u,v) FT[I(x,y)]=i(u,v) 従って、(1)式をフーリエ変換すると、 p(u,v)×r(u,v)×p(u,v)=i(u,v) (2) となる。ここで、r(u,v)は、実験的に略1に近い
ため、略下記式が成立する。 [p(u,v)]2 =i(u,v) (3) 従って、 p(u,v)=√[i(u,v)] (4) となる。 ここで、|FT[I(x,y)]|=i(u,v) (5) であるから、測定される二次元検出器上の二次元光量強
度分布I(x,y)をフーリエ変換し、(5)式でi
(u,v)を求め、(4)式に代入して眼球光学系の光
伝達関数p(u,v)を算出する。
Next, Fourier transform is performed on both sides of the equation (1). Here, the optical transfer function of the eyeball optical system is p (u, v),
When the light transfer function of the photoreceptor cell is r (u, v) and the two-dimensional light transfer function on the two-dimensional detector is i (u, v), the following equation holds. FT [P (x, y)] = p (u, v) FT [R (x, y)] = r (u, v) FT [I (x, y)] = i (u, v) Therefore, When Fourier transform is performed on the equation (1), p (u, v) × r (u, v) × p (u, v) = i (u, v) (2) Here, since r (u, v) is experimentally close to about 1, the following formula is substantially established. [P (u, v)] 2 = i (u, v) (3) Therefore, p (u, v) = √ [i (u, v)] (4). Since | FT [I (x, y)] | = i (u, v) (5), the two-dimensional light intensity distribution I (x, y) on the measured two-dimensional detector is Fourier Convert and use i in equation (5)
(U, v) is obtained and substituted into the equation (4) to calculate the optical transfer function p (u, v) of the eyeball optical system.

【0030】次に、この算出されたp(u,v)を逆フ
ーリエ変換して、眼球光学系の振幅透過率P(x,y)
を算出する。 IFT[p(u,v)]=P(x,y) (6)
Next, the calculated p (u, v) is inverse-Fourier-transformed to obtain the amplitude transmittance P (x, y) of the eyeball optical system.
To calculate. IFT [p (u, v)] = P (x, y) (6)

【0031】この算出された眼球光学系の振幅透過率P
(x,y)と所望の視力検査用視標の光量強度分布関数
O(x,y)とをコンボルーション積分をすることによ
り、被検眼の眼底に投影されるイメージのシミュレーシ
ョン画像S(x,y)を下記式により演算することがで
きる。 S(x,y)=P(x,y)*O(x,y) (7)
The calculated amplitude transmittance P of the eyeball optical system
(X, y) and the desired light intensity distribution function O (x, y) of the visual acuity test target are subjected to convolution integration to obtain a simulation image S (x, y) can be calculated by the following equation. S (x, y) = P (x, y) * O (x, y) (7)

【0032】図4は、前記振幅透過率P(x,y)と前
記光量強度分布関数O(x,y)とをコンボルーション
積分して得られるイメージのシミュレーション画像S
(x,y)を図示したものである。図中、シミュレーシ
ョン画像S(x,y)の周辺をギザギザで表しているの
は、図がぼけていることを示している。図4では、視力
検査用視標としてランドルト環視標の例で述べたが、そ
の他、文字、図形等各種の視力検査用視標の光量強度分
布関数を選択すれば、必要に応じて、各種視標でのシミ
ュレーション画像S(x,y)を演算表示することがで
きる。
FIG. 4 is a simulation image S of an image obtained by convolution integration of the amplitude transmittance P (x, y) and the light intensity distribution function O (x, y).
(X, y) is illustrated. In the figure, the jagged edges around the simulation image S (x, y) indicate that the figure is blurred. In FIG. 4, the Landolt ring target is described as the target for the visual acuity test. However, if the light intensity distribution function of various targets for the visual acuity test such as characters and figures is selected, various visual targets can be selected as necessary. The simulation image S (x, y) on the mark can be calculated and displayed.

【0033】従って、前記矯正光学系12により所定量
矯正された状態、或いは、前記合焦レンズ19を所定量
移動させた状態であっても、即ち眼底上での測定用光束
が任意の合焦状態であっても、その状態で眼底上の光束
の光量分布特性を検出するだけで、正確なシミュレーシ
ョン画像S(x,y)をリアルタイムで演算することが
できる。その為、矯正量を任意に調整しても、或いは任
意に合焦調整しても、その状態で被検者が実際に認識し
ている像をリアルタイムで表示させることができ、検者
は、被検者が観察している像を他覚的にしかも正確に把
握することができる。
Therefore, even if the correction optical system 12 corrects a predetermined amount or the focusing lens 19 is moved by a predetermined amount, that is, the measuring light beam on the fundus is focused at an arbitrary position. Even in the state, an accurate simulation image S (x, y) can be calculated in real time only by detecting the light amount distribution characteristic of the light flux on the fundus in that state. Therefore, even if the correction amount is adjusted arbitrarily or the focus is adjusted arbitrarily, the image actually recognized by the subject in that state can be displayed in real time. It is possible to objectively and accurately grasp the image observed by the subject.

【0034】[0034]

【発明の効果】以上述べた如く本発明によれば、被検眼
眼底に任意の合焦状態で測定用の投影光束を投影する投
影光学系と、被検眼眼底からの反射光束の内、略鏡面反
射された成分の光束のみから形成される像を光電検出器
上に導く受光光学系とからなり、前記光電検出器からの
信号により像の光量強度分布特性を検出し、その光量強
度分布特性から前記合焦状態で被検眼の眼底に特定の視
標を投影した場合に形成される視標像を演算により算出
するシミュレーション画像演算部と、該シミュレーショ
ン画像演算部の信号に基づき前記視標像を表示する為の
表示部を有するので、測定中、検者が被検者の観察して
いる像を他覚的にしかも正確に把握することができると
いう優れた効果を発揮する。
As described above, according to the present invention, the projection optical system for projecting the projection light beam for measurement on the fundus of the eye to be examined in an arbitrary focus state, and the light flux reflected from the fundus of the eye to be examined are substantially mirror surfaces. It consists of a light receiving optical system that guides the image formed only from the light flux of the reflected component onto the photoelectric detector, detects the light intensity distribution characteristic of the image by the signal from the photoelectric detector, and from the light intensity distribution characteristic A simulation image calculation unit that calculates a target image formed by projecting a specific target onto the fundus of the eye to be examined in the focused state, and the target image based on the signal of the simulation image calculation unit. Since it has a display unit for displaying, it exhibits an excellent effect that the examiner can objectively and accurately grasp the image observed by the examinee during the measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】人眼の眼底の模式図である。FIG. 1 is a schematic diagram of a fundus of a human eye.

【図2】本実施の形態に係る眼光学特性測定装置の基本
構成図である。
FIG. 2 is a basic configuration diagram of an eye optical characteristic measuring device according to the present embodiment.

【図3】(A)(B)は該眼光学特性測定装置に於ける
被検眼眼底での反射状態を示す説明図である。
3 (A) and 3 (B) are explanatory views showing a reflection state at a fundus of an eye to be examined in the eye optical characteristic measuring apparatus.

【図4】視力検査用視標と演算されたシミュレーション
画像の説明図である。
FIG. 4 is an explanatory diagram of a simulation image calculated as a visual acuity test target.

【符号の説明】[Explanation of symbols]

1 被検眼 2 投影光学系 5 光源 12 矯正光学系 13 1/4波長板 15 固視標 17 固視標系 19 合焦レンズ 21 光電検出器 26 信号処理部 29 表示部 1 Eye to be examined 2 Projection optical system 5 light sources 12 Corrective optics 13 1/4 wave plate 15 fixation target 17 fixation target system 19 Focusing lens 21 Photoelectric detector 26 Signal processing unit 29 Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋谷 雅博 東京都板橋区蓮沼町75番1号 株式会社ト プコン内 (72)発明者 高橋 裕美 東京都板橋区蓮沼町75番1号 株式会社ト プコン内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Shibuya             75-1 Hasunumacho, Itabashi-ku, Tokyo             In Pucon (72) Inventor Hiromi Takahashi             75-1 Hasunumacho, Itabashi-ku, Tokyo             In Pucon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検眼眼底に任意の合焦状態で測定用の
投影光束を投影する投影光学系と、被検眼眼底からの反
射光束の内、略鏡面反射された成分の光束のみから形成
される像を光電検出器上に導く受光光学系とからなり、
前記光電検出器からの信号により像の光量強度分布特性
を検出し、その光量強度分布特性から前記合焦状態で被
検眼の眼底に特定の視標を投影した場合に形成される視
標像を演算により算出するシミュレーション画像演算部
と、該シミュレーション画像演算部の信号に基づき前記
視標像を表示する為の表示部を有することを特徴とする
眼光学特性測定装置。
1. A projection optical system for projecting a projection light flux for measurement on the fundus of the eye to be examined in an arbitrary focused state, and a light flux of a component which is substantially specularly reflected among the light flux reflected from the fundus of the eye to be examined. And an optical receiving system that guides the image onto the photoelectric detector,
The light intensity distribution characteristic of the image is detected by a signal from the photoelectric detector, and a target image formed when a specific target is projected on the fundus of the eye to be examined in the focused state from the light intensity distribution characteristic. An eye-optical characteristic measuring device comprising: a simulation image calculation section calculated by calculation; and a display section for displaying the optotype image based on a signal from the simulation image calculation section.
【請求項2】 前記測定用光束は被検眼眼底に点光源像
を形成する請求項1の眼光学特性測定装置。
2. The eye optical characteristic measuring device according to claim 1, wherein the measuring light beam forms a point light source image on the fundus of the eye to be examined.
【請求項3】 前記特定の視標は、視力検査用視標であ
る請求項1の眼光学特性測定装置。
3. The eye optical characteristic measuring device according to claim 1, wherein the specific optotype is a visual acuity test optotype.
JP2001268807A 2001-09-05 2001-09-05 Measurement unit for optical characteristics of eye Pending JP2003070741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268807A JP2003070741A (en) 2001-09-05 2001-09-05 Measurement unit for optical characteristics of eye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268807A JP2003070741A (en) 2001-09-05 2001-09-05 Measurement unit for optical characteristics of eye

Publications (1)

Publication Number Publication Date
JP2003070741A true JP2003070741A (en) 2003-03-11

Family

ID=19094738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268807A Pending JP2003070741A (en) 2001-09-05 2001-09-05 Measurement unit for optical characteristics of eye

Country Status (1)

Country Link
JP (1) JP2003070741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247234A (en) * 2005-03-14 2006-09-21 Topcon Corp Ocular optical characteristic measuring instrument
JP2006263082A (en) * 2005-03-23 2006-10-05 Topcon Corp Ocular optical characteristic measuring apparatus
JP2006263300A (en) * 2005-03-25 2006-10-05 Topcon Corp Ocular optical characteristic measuring method and ocular optical characteristic measuring apparatus
JP2006314591A (en) * 2005-05-13 2006-11-24 Topcon Corp Ocular optical characteristic measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100107A (en) * 1993-10-04 1995-04-18 Topcon Corp Optometric method and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100107A (en) * 1993-10-04 1995-04-18 Topcon Corp Optometric method and apparatus therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247234A (en) * 2005-03-14 2006-09-21 Topcon Corp Ocular optical characteristic measuring instrument
JP4598570B2 (en) * 2005-03-14 2010-12-15 株式会社トプコン Ophthalmic optical characteristic measuring device
JP2006263082A (en) * 2005-03-23 2006-10-05 Topcon Corp Ocular optical characteristic measuring apparatus
US7261416B2 (en) 2005-03-23 2007-08-28 Kabushiki Kaisha Topcon Eye's optical characteristics measuring system
JP4684700B2 (en) * 2005-03-23 2011-05-18 株式会社トプコン Ophthalmic optical characteristic measuring device
JP2006263300A (en) * 2005-03-25 2006-10-05 Topcon Corp Ocular optical characteristic measuring method and ocular optical characteristic measuring apparatus
JP4684702B2 (en) * 2005-03-25 2011-05-18 株式会社トプコン Eye optical characteristic measuring method and eye optical characteristic measuring apparatus
JP2006314591A (en) * 2005-05-13 2006-11-24 Topcon Corp Ocular optical characteristic measuring apparatus
JP4731989B2 (en) * 2005-05-13 2011-07-27 株式会社トプコン Ophthalmic optical characteristic measuring device

Similar Documents

Publication Publication Date Title
JP4769923B2 (en) Integrated device for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
US7341348B2 (en) Moiré aberrometer
US6409345B1 (en) Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components
US9931033B2 (en) System and method for controlling a fundus imaging apparatus
US8851672B2 (en) Fundus photographing apparatus
USRE42782E1 (en) Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components
JP4492847B2 (en) Eye refractive power measuring device
JP2007508879A (en) Eye axis length interference measurement device with increased sensitivity
JP2012161610A (en) Frequency domain oct
JPH04244133A (en) Eye refracting power measuring apparatus
US6704106B2 (en) Method and system for canceling system retardance error in an ophthalmological polarimeter
JP4716739B2 (en) Eye refractive power measuring device
JP2002034919A (en) Eye optical characteristic measuring apparatus
CN110215183A (en) Fixation Optical devices, ophthalmic measurement system and imaging method
JP4653906B2 (en) Model eye for optometry equipment
EP0663179A1 (en) Spatial refractometer
JP2003070741A (en) Measurement unit for optical characteristics of eye
JPS6125371B2 (en)
JP3821720B2 (en) Ophthalmic optical characteristic measuring device
JP4606560B2 (en) Ophthalmic optical characteristic measuring device
JP2003235802A (en) Ocular optical characteristic measuring instrument
JP3417602B2 (en) Ophthalmic measurement device
JPH07124114A (en) Ophthalmological measuring instrument
JP2003111729A (en) Method and instrument for measuring ocular optical property
JP3633096B2 (en) Handheld ophthalmic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705