JP2003111729A - Method and instrument for measuring ocular optical property - Google Patents

Method and instrument for measuring ocular optical property

Info

Publication number
JP2003111729A
JP2003111729A JP2001308963A JP2001308963A JP2003111729A JP 2003111729 A JP2003111729 A JP 2003111729A JP 2001308963 A JP2001308963 A JP 2001308963A JP 2001308963 A JP2001308963 A JP 2001308963A JP 2003111729 A JP2003111729 A JP 2003111729A
Authority
JP
Japan
Prior art keywords
light
retina
eye
source image
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001308963A
Other languages
Japanese (ja)
Other versions
JP3805227B2 (en
Inventor
Katsuhiko Kobayashi
克彦 小林
Hiromi Takahashi
裕美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2001308963A priority Critical patent/JP3805227B2/en
Publication of JP2003111729A publication Critical patent/JP2003111729A/en
Application granted granted Critical
Publication of JP3805227B2 publication Critical patent/JP3805227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the light transfer function of a retina by a mirror surface reflected luminous flux which gives influence to the characteristic of an image which can be recognized by a subject and to objectively recognize the property of the image which is recognized by the subject in ocular optical property measurement. SOLUTION: A light source image is projected to the retina 2 of the eye to be tested to obtain the light transfer function of the retina 2 of the eye to be tested by the mirror surface reflected luminous flux based on a light quantity distribution property obtained from the mirror surface reflected components in a reflected luminous flux from the retina and wave surface property obtained by a luminous flux emitted from the retina of the eye to be tested.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検眼の光学特性
を測定する為の、眼光学特性測定方法及び装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye optical characteristic measuring method and apparatus for measuring an optical characteristic of an eye to be examined.

【0002】[0002]

【従来の技術】従来の被検眼の光学特性を測定する装置
としては、被検眼の網膜に微小点光源を投影し、被検眼
の角膜から射出される光束の波面を例えばハルトマン絞
りを利用した波面センサ等で検出して、角膜から網膜に
至る眼球光学系の高次の収差を含む光学特性を検出する
装置が知られている。
2. Description of the Related Art As a conventional device for measuring the optical characteristics of an eye to be inspected, a minute point light source is projected on the retina of the eye to be inspected, and the wavefront of a light beam emitted from the cornea of the eye to be inspected is, for example, a wavefront using a Hartmann diaphragm. There is known an apparatus that detects optical characteristics including a high-order aberration of an eyeball optical system from a cornea to a retina by detecting with a sensor or the like.

【0003】然し乍ら、被検眼が像を観察する際、被検
者によって認識される像の特性は、角膜から網膜に至る
眼球光学系だけではなく、網膜の光伝達関数により影響
を受ける。一方、網膜では一部が網膜表層部に侵入する
ことで見られる散乱反射と網膜表面で反射される鏡面反
射があり、網膜により散乱反射される光束での光伝達関
数に関しては被検者が認識できる像の特性には影響を与
えず、又網膜により鏡面反射される光束での光伝達関数
が被検者が認識できる像の特性に影響を与えることが本
出願人により実験的に確かめられつつある。
However, when the subject's eye observes the image, the characteristics of the image recognized by the subject are affected not only by the optical system of the eye from the cornea to the retina but also by the light transfer function of the retina. On the other hand, in the retina, there are scattered reflections that can be seen when a part of the retina penetrates into the surface layer of the retina and specular reflections that are reflected on the retina surface, and the subject recognizes the light transfer function of the light flux scattered and reflected by the retina. It has been experimentally confirmed by the applicant that the optical transfer function of the light flux specularly reflected by the retina affects the characteristics of the image that can be recognized by the subject without affecting the characteristics of the image that can be obtained. is there.

【0004】[0004]

【発明が解決しようとする課題】然し乍ら、従来の眼光
学特性測定方法及び装置では、この網膜により鏡面反射
される光束での網膜の光伝達関数を測定することはでき
なかった。この為、被検者が認識する像の特性を他覚的
には正確には認識することができなかった。
However, in the conventional method and apparatus for measuring the optical characteristics of the eye, the optical transfer function of the retina with the light beam specularly reflected by the retina cannot be measured. Therefore, it was not possible to objectively and accurately recognize the characteristics of the image recognized by the subject.

【0005】本発明は斯かる実情に鑑み、被検者が認識
できる像の特性に影響を与える網膜の光伝達関数の測定
を可能とし、更に被検者が認識する像の特性を他覚的に
正確に認識可能とするものである。
In view of such circumstances, the present invention makes it possible to measure the optical transfer function of the retina that influences the characteristics of the image that can be recognized by the subject, and objectively determine the characteristics of the image that the subject recognizes. It enables accurate recognition.

【0006】[0006]

【課題を解決するための手段】本発明は、被検眼網膜に
光源像を投影し、網膜からの反射光束の内、鏡面反射成
分から求められる光量分布特性と、被検眼角膜から射出
される光束によって得られる波面特性に基づき鏡面反射
光束による被検眼網膜の光伝達関数を求める眼光学特性
測定方法に係り、又被検眼網膜に光源像を投影し、網膜
からの反射光束の内、鏡面反射成分から求められる光量
分布特性と、被検眼角膜から網膜に至る眼球光学特性に
基づき鏡面反射光束による被検眼網膜の光伝達関数を求
める眼光学特性側定方法に係り、又被検眼網膜に光源像
を投影する手段と、前記光源像の反射光束を受光する受
光素子と、前記光源像の反射光束の内、鏡面反射成分の
光束により受光素子上に光源像を形成する光学系と、前
記受光素子からの信号に基づき前記光源像の光量分布特
性を検出する光量分布特性検出手段と、被検眼網膜に投
影した光源像からの光束で被検眼角膜から射出される光
束の波面特性を検出する手段と、前記光量分布特性と前
記波面特性とから鏡面反射光束による網膜の光伝達関数
を演算する演算部とを具備する眼光学特性測定装置に係
り、更に又被検眼網膜に光源像を投影する手段と、前記
光源像の反射光束を受光する受光素子と、前記光源像の
反射光束の内、鏡面反射成分の光束により受光素子上に
光源像を形成する光学系と、前記受光素子からの信号に
基づき前記光源像の光量分布特性を検出する光量分布特
性検出手段と、前記被検眼について測定された既知の波
面特性と検出された前記光量分布特性とから鏡面反射光
束による網膜の光伝達関数を演算する演算部とを具備す
る眼光学特性測定装置に係るものである。
According to the present invention, a light source image is projected on a retina of an eye to be inspected, and a light amount distribution characteristic obtained from a specular reflection component in a light flux reflected from the retina and a light flux emitted from a cornea of an eye to be inspected. According to the eye optical characteristic measurement method for obtaining the light transfer function of the retina of the eye by the specularly reflected light flux based on the wavefront characteristics obtained by, the light source image is projected on the retina of the eye, and the specular reflection component of the light flux reflected from the retina Based on the light amount distribution characteristics obtained from the eye cornea and the optical characteristics of the eye from the cornea to the retina, the method of determining the optical transfer function of the retina of the eye by the specular reflection light flux is related to the method for determining the optical characteristics of the eye, and the light source image is placed on the retina of the eye. A means for projecting, a light receiving element for receiving the reflected light flux of the light source image, an optical system for forming a light source image on the light receiving element by a light flux of a specular reflection component of the reflected light flux of the light source image, and the light receiving element of A light quantity distribution characteristic detecting means for detecting a light quantity distribution characteristic of the light source image based on a signal, a means for detecting a wavefront characteristic of a light flux emitted from the cornea of the eye to be examined by a light flux from the light source image projected on the retina of the eye to be examined, The present invention relates to an eye-optical characteristic measuring device comprising a calculation unit for calculating a light transfer function of a retina by a specular reflection light flux from the light amount distribution characteristic and the wavefront characteristic, and further, means for projecting a light source image on a retina of an eye to be examined, A light receiving element for receiving a reflected light flux of a light source image, an optical system for forming a light source image on the light receiving element by a light flux of a specular reflection component of the reflected light flux of the light source image, and the light source based on a signal from the light receiving element A light quantity distribution characteristic detecting means for detecting a light quantity distribution characteristic of the image, and a light transfer function of the retina by the specular reflected light flux is calculated from the known wavefront characteristic measured for the eye to be examined and the detected light quantity distribution characteristic. Those of the eye's optical characteristic measuring apparatus comprising an arithmetic unit.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0008】先ず、図1、図2を参照して本発明の原理
を説明する。
First, the principle of the present invention will be described with reference to FIGS.

【0009】本発明は、波面検出機構によって求められ
る角膜から網膜に至る眼球光学系のシングルパス眼光学
特性(MTF)とスプレッドファンクション(PSF)
検出機構によって求められる網膜と眼球光学系の特性を
含むダブルパス眼光学特性(MTF)に基づき被検眼網
膜の光学特性(MTF)を求めるものである。
According to the present invention, the single-pass eye optical characteristic (MTF) and spread function (PSF) of the eye optical system from the cornea to the retina, which are obtained by the wavefront detection mechanism, are used.
The optical characteristic (MTF) of the retina of the eye to be examined is obtained based on the double-pass eye optical characteristic (MTF) including the characteristics of the retina and the eyeball optical system obtained by the detection mechanism.

【0010】前記波面検出機構の概略を図1により説明
する。
An outline of the wavefront detecting mechanism will be described with reference to FIG.

【0011】図1中、1は被検眼、2は網膜を示してい
る。
In FIG. 1, 1 is an eye to be inspected and 2 is a retina.

【0012】投影光学系3より射出された光束4は、ハ
ーフミラー等の偏向部材5により被検眼1に向けられ、
網膜2上に充分小さい点光源が投影される。該網膜2で
反射された反射光束は、角膜6、前記偏向部材5を透過
し、受光光学系7によりCCD等の2次元の受光素子8
に導かれる。前記受光光学系7はマイクロレンズ9が碁
盤目状に配設されたレンズアレイ10を具備し、前記角
膜6、前記偏向部材5を透過した反射光束が、前記レン
ズアレイ10を透過することで、複数の小光束11に分
割され、各小光束11は個々に前記受光素子8に結像さ
れる。前記小光束11の結像位置は角膜から網膜に至る
眼球光学系の特性の影響を受ける。
A light beam 4 emitted from the projection optical system 3 is directed to an eye 1 to be examined by a deflecting member 5 such as a half mirror.
A sufficiently small point light source is projected on the retina 2. The reflected light flux reflected by the retina 2 passes through the cornea 6 and the deflecting member 5, and the two-dimensional light receiving element 8 such as CCD is received by the light receiving optical system 7.
Be led to. The light receiving optical system 7 includes a lens array 10 in which microlenses 9 are arranged in a grid pattern, and the reflected light flux that has passed through the cornea 6 and the deflecting member 5 passes through the lens array 10, It is divided into a plurality of small luminous fluxes 11, and each small luminous flux 11 is individually imaged on the light receiving element 8. The image forming position of the small light flux 11 is affected by the characteristics of the eyeball optical system from the cornea to the retina.

【0013】従って、前記角膜6の形状が正常であった
場合に前記小光束11が結像される前記受光素子8上の
本来の位置と、前記被検眼1の網膜2からの小光束11
の結像位置とのずれδを検出し、ずれδの情報を基に、
眼球光学系の網膜2に点光源を置いた場合の、角膜から
射出される光束の波面形状が計測される。尚、この計測
結果は純粋に眼球光学系のみに起因し、網膜の特性には
起因しない。
Therefore, when the shape of the cornea 6 is normal, the original position on the light receiving element 8 where the small light beam 11 is imaged and the small light beam 11 from the retina 2 of the eye 1 to be inspected.
The deviation δ from the image forming position of is detected, and based on the information of the deviation δ,
When a point light source is placed on the retina 2 of the eyeball optical system, the wavefront shape of the light flux emitted from the cornea is measured. Note that this measurement result is purely due to the eyeball optical system and not due to the characteristics of the retina.

【0014】又、前記計測結果は、瞳位置での(x,
y)座標に対してz軸方向にどれだけ波面がずれている
かを示す波面収差である。これを瞳関数W(x,y)と
すると、瞳関数Wの自己相関が光伝達関数(OFT:O
ptical Transfer Function)
であるから、その絶対値が眼球光学系シングルパス眼光
学特性(MTF)となる。
Further, the measurement result is (x,
y) Wavefront aberration that indicates how much the wavefront is deviated in the z-axis direction from the coordinate. Letting this be the pupil function W (x, y), the autocorrelation of the pupil function W is the optical transfer function (OFT: OFT).
optical Transfer Function)
Therefore, the absolute value becomes the single-pass eye optical characteristic (MTF) of the eyeball optical system.

【0015】 E(U,V)=|∫∫-∞ w(x+U/2,y+V/2)×w* (x−U/ 2,y−V/2)dxdy| (1)E (U, V) = | ∫∫ −∞ w (x + U / 2, y + V / 2) × w * (x−U / 2, y−V / 2) dxdy | (1)

【0016】但し、w* はwの複素共役を表す。又、図
1中、R(U,V)は網膜のMTFを示している。尚、
図1中、中央の3本の波線は前記角膜6から射出される
光束の波面を模式的に表している。
However, w * represents a complex conjugate of w. Further, in FIG. 1, R (U, V) represents the MTF of the retina. still,
In FIG. 1, the three center wavy lines schematically represent the wavefront of the light beam emitted from the cornea 6.

【0017】次に、図2に於いて、スプレッドファンク
ション(PSF)検出機構の概略を説明する。
Next, referring to FIG. 2, an outline of the spread function (PSF) detection mechanism will be described.

【0018】図2中、図1中で示したものと同等のもの
には同符号を付している。
In FIG. 2, the same parts as those shown in FIG. 1 are designated by the same reference numerals.

【0019】充分小さい点光源oから発せられた投影光
束は投影光学系3により被検眼1に導かれ、網膜2に結
像する。該網膜2で鏡面反射された反射光束は受光光学
系7により受光素子8に導かれ結像する。又、鏡面反射
された光束は眼球光学系の光学特性と、網膜の光学特性
の影響を受ける。
A projection light beam emitted from a sufficiently small point light source o is guided to an eye 1 to be examined by a projection optical system 3 and forms an image on a retina 2. The reflected light beam specularly reflected by the retina 2 is guided to the light receiving element 8 by the light receiving optical system 7 and forms an image. Further, the specularly reflected light beam is affected by the optical characteristics of the eyeball optical system and the optical characteristics of the retina.

【0020】ここで、点光源o(x,y)、眼球光学系
の往路の振幅透過率p1(x,y)、網膜の振幅透過率
r(x,y)、眼球光学系の復路の振幅透過率p2
(x,y)とすると、前記受光素子8上に得られる反射
光束は前記被検眼1を2度通過したものであり、従っ
て、前記受光素子8上に得られるダブルパスPSFイメ
ージi(x,y)は、前記した点光源o(x,y)、眼
球光学系の往路の振幅透過率p1(x,y)、鏡面反射
光束による網膜の振幅透過率r(x,y)、眼球光学系
の復路の振幅透過率p2(x,y)これら全てのコンボ
リューション積分の結果として表される。
Here, the point light source o (x, y), the amplitude transmittance p1 (x, y) of the outward path of the eyeball optical system, the amplitude transmittance r (x, y) of the retina, and the amplitude of the return path of the eyeball optical system. Transmittance p2
If (x, y), the reflected light flux obtained on the light receiving element 8 has passed through the eye 1 to be inspected twice, and therefore the double-pass PSF image i (x, y) obtained on the light receiving element 8 is obtained. ) Is the point light source o (x, y), the amplitude transmittance p1 (x, y) of the outward path of the eyeball optical system, the amplitude transmittance r (x, y) of the retina due to the specular reflected light flux, and Return path amplitude transmittance p2 (x, y) is expressed as the result of convolution integration of all of these.

【0021】i(x,y)=o(x,y)※p1(x,
y)※r(x,y)※r(x,y)※p2(x,y) 両辺をフーリエ変換すると、網膜と眼球光学系の特性を
含むダブルパス眼光学特性(MTF)(I(U,V))
が得られる。
I (x, y) = o (x, y) * p1 (x,
y) * r (x, y) * r (x, y) * p2 (x, y) When Fourier transform is performed on both sides, double-pass eye optical characteristics (MTF) (I (U, V))
Is obtained.

【0022】 I(U,V)=O(U,V)×P1(U,V)×R(U,V)×R(U,V) ×P2(U,V) (2)[0022]   I (U, V) = O (U, V) × P1 (U, V) × R (U, V) × R (U, V) × P2 (U, V) (2)

【0023】ここで、前記点光源oは充分に小さいの
で、O(U,V)=1と置くことができ、又、P1
(U,V)とP2(U,V)は等しいので、P1(U,
V)=P2(U,V)=P(U,V)と置けば、前記数
式(2)は、 I(U,V)={P(U,V)×R(U,V)}2 従って、 R(U,V)=√{I(U,V)}/P(U,V) (3)
Since the point light source o is sufficiently small, O (U, V) = 1 can be set, and P1 can be set.
(U, V) and P2 (U, V) are equal, so P1 (U, V
V) = P2 (U, V) = P (U, V), the above formula (2) is: I (U, V) = {P (U, V) × R (U, V)} 2 Therefore, R (U, V) = √ {I (U, V)} / P (U, V) (3)

【0024】更に、P(U,V)は、前記波面検出機構
によって求めた、網膜2の光学特性を含まない眼球光学
系のシングルパス眼光学特性(MTF)、即ちE(U,
V)であるから、 P(U,V)=E(U,V) (4)
Further, P (U, V) is a single-pass eye optical characteristic (MTF) of the eyeball optical system which does not include the optical characteristic of the retina 2 obtained by the wavefront detection mechanism, that is, E (U, V).
V), P (U, V) = E (U, V) (4)

【0025】従って、数式(3)、数式(4)より、 R(U,V)=√{I(U,V)}/E(U,V) (5)Therefore, from the equations (3) and (4),   R (U, V) = √ {I (U, V)} / E (U, V) (5)

【0026】即ち、 網膜のMTF=√(PSF検出機構から求めたダブルパスMTF)/(波面検 出機構から求めたシングルパスMTF) (6) として、鏡面反射光束による網膜のMTFを求めること
ができる。
That is, the MTF of the retina due to the specularly reflected light beam can be obtained by MTF of the retina = √ (double-pass MTF obtained by the PSF detection mechanism) / (single-pass MTF obtained by the wavefront detection mechanism) (6)

【0027】次に、本発明の実施の形態について図3を
参照して説明する。尚、図3中、図1、図2中で示した
ものと同等のものには同符号を付してある。
Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals.

【0028】投影光学系3は光源21、該光源21から
発せられた投影光束を集光する投影レンズ22、該投影
レンズ22の光軸に対して挿脱可能であり、第1の偏光
方向の直線偏光成分(S直線偏光)を透過する第1偏光
板26、前記投影レンズ22の光軸上に配設されたハー
フミラー23、該ハーフミラー23を透過した投影光束
を被検眼1に向け反射して投影するハーフミラー5、該
ハーフミラー5の投影光軸に該ハーフミラー5側から配
設されたリレーレンズ24、対物レンズ12、該対物レ
ンズ12と、光軸に対して挿脱可能に設けられた1/4
波長板13、前記被検眼1の瞳18と略共役な位置(共
役な位置を含む)に配設され、投影光軸に対して挿脱可
能な開口絞り14を有する。該開口絞り14は前記被検
眼1を通過する光束の部位を規定する。
The projection optical system 3 has a light source 21, a projection lens 22 for condensing a projection light beam emitted from the light source 21, and an insertable / removable optical axis of the projection lens 22. A first polarizing plate 26 that transmits a linearly polarized light component (S linearly polarized light), a half mirror 23 disposed on the optical axis of the projection lens 22, and a projection light flux that has passed through the half mirror 23 is reflected toward the subject's eye 1. And the half mirror 5 for projecting, the relay lens 24 disposed from the half mirror 5 side to the projection optical axis of the half mirror 5, the objective lens 12, the objective lens 12, and being removable from the optical axis. 1/4 provided
The wavelength plate 13 and an aperture stop 14 which is arranged at a position (including a position conjugate) which is substantially conjugate with the pupil 18 of the eye 1 to be inspected and which can be inserted and removed with respect to the projection optical axis. The aperture stop 14 defines the portion of the light flux passing through the eye 1 to be inspected.

【0029】更に、前記ハーフミラー23に対向して固
視標15、集光レンズ16を有する固視標系17が配設
されている。前記光源21、固視標15は前記被検眼1
の網膜と共役な位置にあり、後述する様に、前記光源2
1、固視標15は網膜2に結像する。尚、前記光源21
と投影レンズ22とは一体に構成され、後述の合焦レン
ズ19と連動して光軸方向に沿って及び光軸に直交する
面内で移動可能となっている。
Further, a fixation target system 17 having a fixation target 15 and a condenser lens 16 is arranged facing the half mirror 23. The light source 21 and the fixation target 15 are the eye 1 to be examined.
The light source 2 is located at a position conjugate with the retina of the
1. The fixation target 15 forms an image on the retina 2. The light source 21
The projection lens 22 and the projection lens 22 are integrally formed, and are movable in conjunction with a focusing lens 19 described later along the optical axis direction and in a plane orthogonal to the optical axis.

【0030】受光光学系7は、前記ハーフミラー5、該
ハーフミラー5の投影光軸に配設された前記リレーレン
ズ24、対物レンズ12、1/4波長板13を前記投影
光学系3と共用している。
The light receiving optical system 7 shares the half mirror 5, the relay lens 24 disposed on the projection optical axis of the half mirror 5, the objective lens 12, and the quarter wavelength plate 13 with the projection optical system 3. is doing.

【0031】前記ハーフミラー5を透過する反射光軸上
には反射光軸に沿って移動可能な合焦レンズ19が設け
られ、又前記S直線偏光とは90°偏光方向が異なるP
直線偏光を透過する第2偏光板27が挿脱可能に設けら
れ、更に反射光軸上には結像レンズ20が配設され、該
結像レンズ20は前記被検眼1の網膜と共役な位置にあ
る受光素子8上に反射光束を結像させる。又、前記結像
レンズ20はレンズアレイ10と置換可能となってお
り、該レンズアレイ10に置換された場合、該レンズア
レイ10により前記網膜2からの反射光束が所定の小光
束11に分割され、それぞれの小光束11は前記受光素
子8へ結像される。
A focusing lens 19 movable along the reflected light axis is provided on the reflected light axis passing through the half mirror 5, and the polarization direction is 90 ° different from that of the S linearly polarized light.
A second polarizing plate 27 that transmits linearly polarized light is detachably provided, and an imaging lens 20 is further disposed on the reflection optical axis, and the imaging lens 20 is at a position conjugate with the retina of the eye 1 to be inspected. The reflected light beam is imaged on the light receiving element 8 at. Further, the imaging lens 20 is replaceable with the lens array 10, and when replaced with the lens array 10, the lens array 10 splits the reflected light beam from the retina 2 into a predetermined small light beam 11. , Each of the small luminous fluxes 11 is imaged on the light receiving element 8.

【0032】該受光素子8からの受光信号は信号処理部
30を介して記憶部31に記憶される。前記信号処理部
30から前記記憶部31へのデータの書込みは制御部3
2によって制御され、該制御部32は前記記憶部31に
記憶されたデータを基に所要の演算をし、又演算結果を
表示部33に表示する。
The light reception signal from the light receiving element 8 is stored in the storage unit 31 via the signal processing unit 30. The writing of data from the signal processing unit 30 to the storage unit 31 is performed by the control unit 3.
2, the control section 32 performs a required calculation based on the data stored in the storage section 31 and displays the calculation result on the display section 33.

【0033】以下、上記光学系の作用について説明す
る。
The operation of the above optical system will be described below.

【0034】前記合焦レンズ19を基準位置(正視眼で
合焦する状態)とし、前記被検眼1に前記固視標15を
注視させる。ここで、該固視標15を光軸上に配置すれ
ば、眼底網膜の黄斑部中心窩での測定が行われる。又、
前記固視標15を光軸と直交する面内で光軸外に移動さ
せることにより被検眼の視線方向を変えれば、網膜上の
所望部位での測定が可能である。
The focusing lens 19 is set to a reference position (a state where an emmetropic eye is in focus), and the eye 1 is made to gaze at the fixation target 15. Here, if the fixation target 15 is placed on the optical axis, measurement is performed in the fovea centralis of the fundus retina. or,
By changing the line-of-sight direction of the eye to be inspected by moving the fixation target 15 out of the optical axis in a plane orthogonal to the optical axis, it is possible to measure at a desired site on the retina.

【0035】前記被検眼1に前記固視標15を注視させ
た状態で、前記投影光学系3により投影光束が網膜2に
投影される。尚、前記固視標15に関しては、可視光が
用いられ、前記投影光束については赤外光又は可視光が
用いられる。
The projection optical system 3 projects a projection light beam onto the retina 2 while the eye 1 to be examined is gazing at the fixation target 15. Note that visible light is used for the fixation target 15, and infrared light or visible light is used for the projection light flux.

【0036】先ず、前記1/4波長板13、開口絞り1
4、結像レンズ20、第1偏光板26、第2偏光板27
が退出し、前記レンズアレイ10が挿入されている状態
で、眼球光学系のシングルパス眼光学特性(MTF)が
求められる。
First, the quarter wavelength plate 13 and the aperture stop 1
4, imaging lens 20, first polarizing plate 26, second polarizing plate 27
And the lens array 10 is inserted, the single-pass eye optical characteristic (MTF) of the eyeball optical system is required.

【0037】前記光源21からの投影光束が前記投影レ
ンズ22、ハーフミラー23を透過して前記ハーフミラ
ー5に至り、該ハーフミラー5で反射され、前記リレー
レンズ24を経て前記対物レンズ12により前記被検眼
1の網膜2に投影され、該網膜2上に略点光源像として
結像される。
The projection light beam from the light source 21 passes through the projection lens 22 and the half mirror 23, reaches the half mirror 5, is reflected by the half mirror 5, passes through the relay lens 24, and is passed through the objective lens 12 to be reflected by the objective lens 12. The image is projected onto the retina 2 of the eye 1 to be inspected, and is formed on the retina 2 as a substantially point light source image.

【0038】前記網膜2の点光源像から発せられた光束
は、前記対物レンズ12、リレーレンズ24、ハーフミ
ラー5、合焦レンズ19を透過し、前記レンズアレイ1
0に入射する。該レンズアレイ10で所定数の小光束1
1に分割され、更に前記受光素子8に結像される。
The light flux emitted from the point light source image of the retina 2 passes through the objective lens 12, the relay lens 24, the half mirror 5, and the focusing lens 19, and the lens array 1
It is incident on 0. The lens array 10 causes a predetermined number of small luminous fluxes 1
It is divided into 1 and further imaged on the light receiving element 8.

【0039】上記した様に、前記被検眼1の眼球光学系
の特性によって前記小光束11個々の結像位置が基準の
位置よりずれる。前記受光素子8の受光信号は前記信号
処理部30を経て前記記憶部31に記憶され、更に前記
制御部32により個々の結像位置のずれδが求められ、
更にずれδより前記眼球光学系のシングルパス眼光学特
性(MTF)、即ちE(U,V)が演算される。
As described above, the image forming position of each of the small light fluxes 11 is displaced from the reference position due to the characteristics of the eyeball optical system of the subject eye 1. The light receiving signal of the light receiving element 8 is stored in the storage unit 31 via the signal processing unit 30, and further the deviation δ of each image forming position is obtained by the control unit 32.
Further, a single-pass eye optical characteristic (MTF) of the eyeball optical system, that is, E (U, V) is calculated from the shift δ.

【0040】次に、網膜と眼球光学系の特性を含むダブ
ルパス眼光学特性(MTF)が求められる。
Next, the double-pass eye optical characteristics (MTF) including the characteristics of the retina and the eyeball optical system are obtained.

【0041】該ダブルパス眼光学特性(MTF)を検出
する場合は、上記した様に網膜2での鏡面反射された光
束が用いられる。
When the double-pass eye optical characteristic (MTF) is detected, the light flux specularly reflected by the retina 2 is used as described above.

【0042】前記1/4波長板13、開口絞り14、第
1偏光板26、第2偏光板27を光軸に挿入し、前記レ
ンズアレイ10を前記結像レンズ20に置換する。
The quarter wavelength plate 13, the aperture stop 14, the first polarizing plate 26, and the second polarizing plate 27 are inserted in the optical axis, and the lens array 10 is replaced with the imaging lens 20.

【0043】尚、前記合焦レンズ19は、眼球光学系の
シングルパス眼光学特性(MTF)と同条件、例えば上
記したと同様な基準位置とし、前記被検眼1に前記固視
標15を注視させる。
The focusing lens 19 is set under the same conditions as the single-pass eye optical characteristics (MTF) of the eyeball optical system, for example, at the same reference position as described above, and the fixation target 15 is focused on the eye 1 to be inspected. Let

【0044】前記被検眼1に前記固視標15を注視させ
た状態で、前記投影光学系3により投影光束が網膜2に
投影される。尚、前記固視標15に関しては、前記した
のと同様に可視光が用いられ、前記投影光束については
赤外光又は可視光が用いられる。
The projection optical system 3 projects a projection light beam onto the retina 2 while the eye 1 to be examined is gazing at the fixation target 15. The fixation target 15 uses visible light as described above, and the projection light flux uses infrared light or visible light.

【0045】前記光源21からの投影光束が前記投影レ
ンズ22、第1偏光板26、ハーフミラー23を透過し
て前記ハーフミラー5に至る。前記第1偏光板26はS
直線偏光を透過することで、前記ハーフミラー5により
S直線偏光が反射され、前記リレーレンズ24、開口絞
り14を経て前記対物レンズ12により前記1/4波長
板13を経て前記被検眼1の網膜2に投影され、該網膜
2上に第1指標像が結像される。
The projection light beam from the light source 21 passes through the projection lens 22, the first polarizing plate 26 and the half mirror 23 and reaches the half mirror 5. The first polarizing plate 26 is S
By transmitting the linearly polarized light, the S linearly polarized light is reflected by the half mirror 5, and passes through the relay lens 24, the aperture stop 14 and the objective lens 12 through the quarter wavelength plate 13 and the retina of the eye 1 to be inspected. 2 and the first index image is formed on the retina 2.

【0046】S直線偏光が前記1/4波長板13を透過
することで、右円偏光となる。前記被検眼1の網膜2で
投影光束が鏡面反射され、鏡面反射光束は網膜2で反射
されることで左円偏光となる。更に、鏡面反射光束が前
記1/4波長板13を透過することで、前記S直線偏光
とは偏光方向が90°異なるP直線偏光となる。
The S linearly polarized light passes through the quarter-wave plate 13 to become right circularly polarized light. The projection light flux is specularly reflected by the retina 2 of the eye 1 to be examined, and the specular reflection light flux is reflected by the retina 2 to become left circularly polarized light. Further, the specularly reflected light flux is transmitted through the quarter-wave plate 13 to become P linearly polarized light having a polarization direction different by 90 ° from the S linearly polarized light.

【0047】P直線偏光は前記対物レンズ12、リレー
レンズ24により前記ハーフミラー5に導かれ、該ハー
フミラー5、合焦レンズ19を透過し、前記第2偏光板
27に至る。該第2偏光板27はP直線偏光を透過する
ので、前記鏡面反射光束は前記結像レンズ20により前
記受光素子8上に第2次指標像として結像される。
The P linearly polarized light is guided to the half mirror 5 by the objective lens 12 and the relay lens 24, passes through the half mirror 5 and the focusing lens 19, and reaches the second polarizing plate 27. Since the second polarizing plate 27 transmits P linearly polarized light, the specularly reflected light flux is imaged on the light receiving element 8 by the imaging lens 20 as a secondary index image.

【0048】ところで、前記被検眼1の網膜2に投影さ
れた投影光束は網膜2で全て鏡面反射されるわけではな
く、一部は網膜2表面から表層内部に侵入し、散乱反射
される現象、所謂にじみ反射が発生する。この散乱反射
光束が、鏡面反射光束と共に前記受光素子8に受光され
ると、第2次指標像の光量強度分布のノイズとなり、正
確な眼球光学系の眼光学特性が測定できない。
By the way, the projection light flux projected on the retina 2 of the eye 1 is not all specularly reflected by the retina 2, but a part thereof penetrates from the surface of the retina 2 into the surface layer and is scattered and reflected. So-called bleeding reflection occurs. When this scattered reflection light beam is received by the light receiving element 8 together with the specular reflection light beam, it becomes noise in the light intensity distribution of the secondary index image, and accurate eye optical characteristics of the eyeball optical system cannot be measured.

【0049】斯かる散乱反射による光束の偏光状態はラ
ンダム状態である。この為、前記1/4波長板13を透
過し、直線偏光となった場合にP直線偏光と合致するも
のは限られた部分に限定され、前記ハーフミラー5によ
り散乱反射光束でP直線偏光と合致するもの以外は反射
される。従って、被検眼1の網膜2で全反射されたP直
線偏光分に対して散乱反射光束によるP直線偏光分の比
率は無視できる程度に小さくなる。
The polarization state of the light beam due to such scattering reflection is a random state. Therefore, when the light is transmitted through the quarter-wave plate 13 and becomes linearly polarized light, what is matched with P linearly polarized light is limited to a limited part, and the half mirror 5 converts the scattered reflected light into P linearly polarized light. Anything that does not match is reflected. Therefore, the ratio of the P linearly polarized light component due to the scattered reflected light flux to the P linearly polarized light component totally reflected by the retina 2 of the subject's eye 1 becomes negligibly small.

【0050】従って、前記受光素子8が受光するのは実
質上散乱反射光束分が除去された鏡面反射光束となる。
而して、前記1/4波長板13を投影光学系3、受光光
学系7の構成要素とすることで、正確な眼球光学系の眼
光学特性測定を可能とする。
Therefore, the light receiving element 8 receives the specular reflection light flux from which the scattered reflection light flux is substantially removed.
By using the ¼ wavelength plate 13 as a constituent element of the projection optical system 3 and the light receiving optical system 7, it is possible to accurately measure the eye optical characteristics of the eyeball optical system.

【0051】前記受光素子8が受光した第2次指標像の
光量強度分布は、網膜2及び眼球光学系の特性を含むダ
ブルパス眼光学特性(MTF)であり、前記受光素子8
の受光信号からダブルパス眼光学特性(MTF)が検出
される。
The light intensity distribution of the secondary index image received by the light receiving element 8 is a double-pass eye optical characteristic (MTF) including the characteristics of the retina 2 and the eyeball optical system.
The double-pass eye optical characteristic (MTF) is detected from the received light signal of.

【0052】而して、ダブルパス眼光学特性(MTF)
が求められ、鏡面反射光束による網膜のMTFは、上記
数式(6)より、 網膜のMTF=√(PSF検出機構から求めたダブルパ
スMTF)/(波面検出機構から求めたシングルパスM
TF) として求められる。
Thus, double-pass eye optical characteristics (MTF)
The MTF of the retina due to the specularly reflected light flux is calculated by the following formula (6): MTF of the retina = √ (double-pass MTF obtained from the PSF detection mechanism) / (single-pass M obtained from the wavefront detection mechanism)
TF).

【0053】尚、上記実施の形態では、波面検出機構に
よりシングルパス眼光学特性(MTF)を測定している
が、心理物理的な自覚測定方法等により算出された眼球
光学系の眼光学特性(MTF)値を用いて演算しても良
い。
In the above embodiment, the single-pass ocular optical characteristic (MTF) is measured by the wavefront detecting mechanism, but the ocular optical characteristic of the ocular optical system calculated by the psychophysical subjective measuring method or the like ( The calculation may be performed using the MTF) value.

【0054】又、上記実施の形態では、同一の眼光学特
性測定装置に波面検出機構、スプレッドファンクション
検出機構を組込んでいるが、いずれか一方の機構のみを
有し、演算装置としては、他方は既知のデータを入力す
ることで、網膜のMTFを演算する機能を具備してもよ
い。或は、PC(パソコン)がスプレッドファンクショ
ン検出機構から求めたダブルパスMTFと波面検出機構
から求めたシングルパスMTFに基づき網膜のMTFを
演算する機能を有し、各検出機構から個別に取得したデ
ータをPC(パソコン)に入力し、該PCにより網膜の
MTFを求めてもよい。
Further, in the above embodiment, the wavefront detection mechanism and the spread function detection mechanism are incorporated in the same eye optical characteristic measuring device, but only one of them is provided, and the other is used as the computing device. May have a function of calculating the MTF of the retina by inputting known data. Alternatively, the PC (personal computer) has a function of calculating the MTF of the retina based on the double-pass MTF obtained from the spread function detection mechanism and the single-pass MTF obtained from the wavefront detection mechanism, and the data individually obtained from each detection mechanism is used. The MTF of the retina may be obtained by inputting it to a PC (personal computer).

【0055】[0055]

【発明の効果】以上述べた如く本発明によれば、被検眼
網膜に光源像を投影し、網膜からの反射光束の内、鏡面
反射成分から求められる光量分布特性と、被検眼角膜か
ら射出される光束によって得られる波面特性に基づき鏡
面反射光束による被検眼網膜の光伝達関数を求めるの
で、被検者が認識できる像の特性に影響を与える網膜の
光伝達関数を測定することができ、被検眼がどの様な像
を認識できるのかを他覚的につかむことができるという
優れた効果を発揮する。
As described above, according to the present invention, the light source image is projected on the retina of the eye to be examined, and the light amount distribution characteristic obtained from the specular reflection component of the light flux reflected from the retina and the light emitted from the cornea of the eye to be examined. Since the light transfer function of the retina of the eye to be inspected by the specularly reflected light beam is obtained based on the wavefront characteristic obtained by the light flux of the retina, it is possible to measure the light transfer function of the retina that affects the characteristics of the image that the subject can recognize. It has an excellent effect of being able to objectively grasp what kind of image the optometry can recognize.

【図面の簡単な説明】[Brief description of drawings]

【図1】波面検出機構の概略図である。FIG. 1 is a schematic view of a wavefront detection mechanism.

【図2】スプレッドファンクション(PSF)検出機構
の概略図である。
FIG. 2 is a schematic diagram of a spread function (PSF) detection mechanism.

【図3】本発明の実施の形態を示す基本構成図である。FIG. 3 is a basic configuration diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被検眼 2 網膜 3 投影光学系 7 受光光学系 8 受光素子 10 レンズアレイ 11 小光束 13 1/4波長板 15 固視標 21 光源 26 第1偏光板 27 第2偏光板 30 信号処理部 32 制御部 1 Eye to be examined 2 retina 3 Projection optical system 7 Light receiving optical system 8 Light receiving element 10 lens array 11 small luminous flux 13 1/4 wave plate 15 fixation target 21 light source 26 First Polarizing Plate 27 Second polarizing plate 30 signal processor 32 control unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検眼網膜に光源像を投影し、網膜から
の反射光束の内、鏡面反射成分から求められる光量分布
特性と、被検眼角膜から射出される光束によって得られ
る波面特性に基づき鏡面反射光束による被検眼網膜の光
伝達関数を求めることを特徴とする眼光学特性測定方
法。
1. A mirror surface based on a light amount distribution characteristic obtained by projecting a light source image on a retina of an eye to be examined, which is obtained from a specular reflection component of a light flux reflected from the retina, and a wavefront characteristic obtained by a light flux emitted from a cornea of an eye to be examined. A method for measuring optical characteristics of an eye, which comprises obtaining a light transfer function of a retina of an eye to be examined by a reflected light beam.
【請求項2】 被検眼網膜に光源像を投影し、網膜から
の反射光束の内、鏡面反射成分から求められる光量分布
特性と、被検眼角膜から網膜に至る眼球光学特性に基づ
き鏡面反射光束による被検眼網膜の光伝達関数を求める
ことを特徴とする眼光学特性側定方法。
2. The light source image is projected on the retina of the eye to be examined, and the light quantity distribution characteristic obtained from the specular reflection component of the reflected light flux from the retina and the eyeball optical characteristic from the cornea of the eye to the retina are used to generate the specular reflected light flux. A method for determining the optical characteristics of an eye, characterized by obtaining a light transfer function of a retina of an eye to be examined.
【請求項3】 被検眼網膜に光源像を投影する手段と、
前記光源像の反射光束を受光する受光素子と、前記光源
像の反射光束の内、鏡面反射成分の光束により受光素子
上に光源像を形成する光学系と、前記受光素子からの信
号に基づき前記光源像の光量分布特性を検出する光量分
布特性検出手段と、被検眼網膜に投影した光源像からの
光束で被検眼角膜から射出される光束の波面特性を検出
する手段と、前記光量分布特性と前記波面特性とから鏡
面反射光束による網膜の光伝達関数を演算する演算部と
を具備することを特徴とする眼光学特性測定装置。
3. A means for projecting a light source image on a retina of an eye to be examined,
A light receiving element that receives the reflected light flux of the light source image, an optical system that forms a light source image on the light receiving element by a light flux of a specular reflection component of the reflected light flux of the light source image, and the optical system based on a signal from the light receiving element Light amount distribution characteristic detecting means for detecting the light amount distribution characteristic of the light source image, means for detecting the wavefront characteristic of the light beam emitted from the cornea of the eye to be inspected by the light beam from the light source image projected on the retina of the eye, and the light amount distribution characteristic, An ocular optical characteristic measuring device comprising: a calculation unit that calculates a light transfer function of the retina based on a specularly reflected light flux based on the wavefront characteristic.
【請求項4】 被検眼網膜に光源像を投影する手段と、
前記光源像の反射光束を受光する受光素子と、前記光源
像の反射光束の内、鏡面反射成分の光束により受光素子
上に光源像を形成する光学系と、前記受光素子からの信
号に基づき前記光源像の光量分布特性を検出する光量分
布特性検出手段と、前記被検眼について測定された既知
の波面特性と検出された前記光量分布特性とから鏡面反
射光束による網膜の光伝達関数を演算する演算部とを具
備することを特徴とする眼光学特性測定装置。
4. A means for projecting a light source image on a retina of an eye to be examined,
A light receiving element that receives the reflected light flux of the light source image, an optical system that forms a light source image on the light receiving element by a light flux of a specular reflection component of the reflected light flux of the light source image, and the optical system based on a signal from the light receiving element A light amount distribution characteristic detecting means for detecting the light amount distribution characteristic of the light source image, and a calculation for calculating the light transfer function of the retina by the specular reflected light flux from the known wavefront characteristic measured for the eye to be examined and the detected light amount distribution characteristic. And an optical optical characteristic measuring device.
JP2001308963A 2001-10-04 2001-10-04 Ophthalmic optical characteristic measuring device Expired - Fee Related JP3805227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308963A JP3805227B2 (en) 2001-10-04 2001-10-04 Ophthalmic optical characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308963A JP3805227B2 (en) 2001-10-04 2001-10-04 Ophthalmic optical characteristic measuring device

Publications (2)

Publication Number Publication Date
JP2003111729A true JP2003111729A (en) 2003-04-15
JP3805227B2 JP3805227B2 (en) 2006-08-02

Family

ID=19128192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308963A Expired - Fee Related JP3805227B2 (en) 2001-10-04 2001-10-04 Ophthalmic optical characteristic measuring device

Country Status (1)

Country Link
JP (1) JP3805227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096034A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Topcon Eyeground observation device and eyeground observation method
JP2017522143A (en) * 2014-07-31 2017-08-10 ウニベルジテート ポリテクニカ デ カタル−ニア Method, system and computer program for measuring light diffusion in the eyeball or visual region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096034A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Topcon Eyeground observation device and eyeground observation method
US7270415B2 (en) 2003-04-30 2007-09-18 Kabushiki Kaisha Topcon Retina observation apparatus and retina observation method
JP2017522143A (en) * 2014-07-31 2017-08-10 ウニベルジテート ポリテクニカ デ カタル−ニア Method, system and computer program for measuring light diffusion in the eyeball or visual region

Also Published As

Publication number Publication date
JP3805227B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP5417507B2 (en) System for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
EP1605815B1 (en) Moiré- aberrometer
JP4656791B2 (en) Wavefront sensor with off-axis illumination
EP1217939B1 (en) Method and apparatus for measuring refractive errors of an eye
US7887185B2 (en) Method and arrangement for the measurement of the anterior segment of the eye
JP2007508879A (en) Eye axis length interference measurement device with increased sensitivity
JP4716739B2 (en) Eye refractive power measuring device
JP4630126B2 (en) Ophthalmic optical characteristic measuring device
JP2002034919A (en) Eye optical characteristic measuring apparatus
JP2004159784A (en) Ocular characteristic measuring apparatus
JP2003111729A (en) Method and instrument for measuring ocular optical property
US7419264B1 (en) Ophthalmic aberrometer for measuring aberrations in the eye
US6789899B2 (en) Eye's optical characteristic measuring system
JP3821720B2 (en) Ophthalmic optical characteristic measuring device
JP2003070741A (en) Measurement unit for optical characteristics of eye
JP2004159779A (en) Ocular characteristic measuring apparatus
JP3633096B2 (en) Handheld ophthalmic equipment
JP2004129674A (en) Instrument and method for ophthalmological optics characteristic measuring
JPH0531073A (en) Ophthalmological measuring device
JPS61168330A (en) Automatic eye refractive force measuring apparatus
JPH0439332B2 (en)
JP2019058470A (en) Eye refractive characteristic measurement apparatus and method
JP2003038441A (en) Ophthalmologic measuring device
JPH04343036A (en) Device for measuring optical system refraction
JPH09192101A (en) Eye measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees