JP2006314591A - Ocular optical characteristic measuring apparatus - Google Patents

Ocular optical characteristic measuring apparatus Download PDF

Info

Publication number
JP2006314591A
JP2006314591A JP2005140970A JP2005140970A JP2006314591A JP 2006314591 A JP2006314591 A JP 2006314591A JP 2005140970 A JP2005140970 A JP 2005140970A JP 2005140970 A JP2005140970 A JP 2005140970A JP 2006314591 A JP2006314591 A JP 2006314591A
Authority
JP
Japan
Prior art keywords
image
eye
measurement
measurement range
optical characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005140970A
Other languages
Japanese (ja)
Other versions
JP4731989B2 (en
Inventor
Koji Nishio
幸治 西尾
Hiroaki Okada
浩昭 岡田
Katsuhiko Kobayashi
克彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2005140970A priority Critical patent/JP4731989B2/en
Publication of JP2006314591A publication Critical patent/JP2006314591A/en
Application granted granted Critical
Publication of JP4731989B2 publication Critical patent/JP4731989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set an optimum measurement range and to select an optimum image for measurement without interposing the individual difference of an examiner in the case of setting a measurement range for acquiring light receiving images and selecting an image suitable for the measurement from the plurality of acquired images in the case of measuring ocular optical characteristics from the light intensity distribution of the light receiving images for which a visual target image from the eye fundus of an eye to be examined is light-received. <P>SOLUTION: This ocular optical characteristic measuring apparatus comprises: a visual target projection optical system 2 for projecting the visual target image to the eye fundus of the eye to be examined; a light receiving means 21 for light-receiving the visual target image from the visual target image projection system reflected from the eye fundus of the eye to be examined; and a control part 28 capable of acquiring the plurality of visual target images light-received by the light receiving means corresponding to diopters, deciding the shapes of the plurality of acquired images and correlating the shapes with the diopters. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被検眼眼底に投影された視標像の光強度分布特性に基づき被検眼の眼光学特性を演算可能な眼光学特性測定装置に関するものである。   The present invention relates to an eye optical characteristic measuring apparatus capable of calculating an eye optical characteristic of a subject's eye based on a light intensity distribution characteristic of a target image projected on the fundus of the subject's eye.

従来、被検眼眼底に視標像を投影する為の視標投影手段と、前記視標像を光電検出器上に導く為の受光手段とを有し、前記光電検出器により検出された視標像の光強度分布に基づき、被検眼の眼光学特性を演算により求める眼光学特性測定装置が知られている。   Conventionally, it has a target projection means for projecting a target image on the fundus of the eye to be examined and a light receiving means for guiding the target image onto a photoelectric detector, and the target detected by the photoelectric detector 2. Description of the Related Art An eye optical property measuring apparatus that obtains an eye optical property of an eye to be examined by calculation based on a light intensity distribution of an image is known.

又、特許文献1に示される様に本出願人は、求められた眼光学特性から被検眼眼底に視標像を投影した場合に形成されるであろう眼底上のシミュレーション画像を演算表示し、被検眼眼底にどの様な画像が形成されるか、被検者がどの様に視覚しているのかを他覚的に観察可能とした眼光学特性測定装置を提案している。   Further, as shown in Patent Document 1, the present applicant computes and displays a simulation image on the fundus that will be formed when a target image is projected onto the fundus of the eye to be examined from the obtained eye optical characteristics, An eye optical characteristic measuring apparatus has been proposed that can objectively observe what kind of image is formed on the fundus of the subject's eye and how the subject is viewing.

該眼光学特性測定装置に於いては、測定の対象となる光強度分布画像を複数枚取得し、その内の1の画像から眼光学特性を求めている。   In the eye optical characteristic measuring apparatus, a plurality of light intensity distribution images to be measured are acquired, and eye optical characteristics are obtained from one of the images.

上述の眼光学特性の測定に於いては、レフラクトメータ等で測定される被検眼の度数に比べて演算に用いられる画像の測定位置のディオプタ値を詳細に知る必要がある。この為、測定目標位置を含む測定範囲で粗いディオプタ位置移動量でラフ測定を行い、続けて測定範囲とディオプタ位置移動量を再度設定して、眼光学特性を演算する為の詳細なディオプタ位置に於ける画像を取得する為の本測定を行っている。   In the above-described measurement of the optical characteristics of the eye, it is necessary to know in detail the diopter value of the measurement position of the image used for the calculation as compared with the power of the eye to be measured measured with a refractometer or the like. For this reason, rough measurement is performed with the coarse diopter position movement amount in the measurement range including the measurement target position, and then the measurement range and diopter position movement amount are set again to obtain detailed diopter positions for calculating the optical characteristics of the eye. This measurement is performed to obtain images in

この際、粗いディオプタ位置の移動量で測定した後の、本測定を行う為の測定範囲等の設定は複数の画像を検者自身が比較して判断せねばならず、大変煩わしく、又時間が掛かるという問題があった。更に測定範囲の設定等が検者の主観的な判断に任される為に同一の検者であっても同一条件の画像が選択されるとは限らず、同一の被検眼であるにも拘わらず異なる測定結果となる可能性があった。   At this time, after measuring with the amount of movement of the rough diopter position, setting of the measurement range and the like for performing the main measurement must be judged by the examiner himself comparing a plurality of images, which is very troublesome and time consuming. There was a problem of hanging. Furthermore, since setting of the measurement range, etc. is left to the subjective judgment of the examiner, images of the same condition are not necessarily selected even by the same examiner, even though they are the same eye to be examined. There was a possibility of different measurement results.

又、上述の眼光学特性の測定範囲について、取得される複数の画像中に於いて、演算に用いられる最小錯乱円を有する画像の他に、その前後焦線についての画像が含まれていると被検眼の診断に大変有用である。この為、検者はその測定範囲が前後焦線画像が含まれる様に設定する必要があるが、その設定についても検者の主観的な判断に基づいて行われる為に、実際の測定時には前記前後焦線画像が測定範囲内で取得できず、再度測定範囲を設定して測定し直す必要が生じ、被検者の負担が大きくなるという問題があった。   In addition, regarding the measurement range of the above-described ocular optical characteristics, in the plurality of acquired images, in addition to the image having the minimum circle of confusion used for calculation, an image of the front and rear focal lines is included. It is very useful for diagnosis of the eye to be examined. For this reason, it is necessary for the examiner to set the measurement range so that the front and rear focal line images are included, but since the setting is also made based on the subjective judgment of the examiner, at the time of actual measurement, There was a problem that the front and rear focal line images could not be acquired within the measurement range, and it was necessary to set the measurement range again and perform measurement again, increasing the burden on the subject.

更に、被検眼のディオプタ値が事前に不明の場合には測定初期の目標位置すら検者が主観的な判断し、測定範囲を決定しているので、上記問題が生じることが更に多い。   Furthermore, when the diopter value of the eye to be examined is unknown in advance, the examiner makes a subjective judgment and determines the measurement range even for the target position at the initial stage of measurement, and thus the above-mentioned problem occurs more frequently.

特開2003−70741号公報JP 2003-70741 A

特開2002−209852号公報JP 2002-209852 A

本発明は斯かる実情に鑑み、被検眼眼底からの視標像を受光した受光画像の光強度分布から眼光学特性を測定する場合に、受光画像を取得する測定範囲を設定し、取得した複数の画像から測定に適した画像を選択する場合に、検者の個人差が介在せず、最適な測定範囲の設定、最適な測定用画像の選択を行える様にするものである。   In view of such a situation, the present invention sets a measurement range for acquiring a received light image when measuring eye optical characteristics from a light intensity distribution of a received light image that has received a target image from the fundus of the subject's eye. When an image suitable for measurement is selected from these images, an optimum measurement range can be set and an optimum measurement image can be selected without any individual differences between examiners.

本発明は、被検眼眼底に視標像を投影する為の視標投影光学系と、被検眼眼底から反射された前記視標像投影系からの視標像を受光する受光手段と、該受光手段が受光した視標像をディオプタと対応させて複数取得可能であり、取得した複数の画像の形状を判断し、形状とディオプタとの関連付けを行う様にした制御部とを具備した眼光学特性測定装置に係り、又前記制御部は、取得した複数の画像の形状に基づき、測定範囲を設定する様にした眼光学特性測定装置に係り、又前記制御部は、取得した複数の画像の内、画像形状の判断から最小錯乱円を認定して選択し、測定範囲の基準として最小錯乱円を設定する様にした眼光学特性測定装置に係り、又前記制御部により前記最小錯乱円の画像を中心として測定範囲が設定される眼光学特性測定装置に係り、又前記制御部は、取得した複数の画像の形状判断から、最小錯乱円、前焦線、後焦線と認定できる画像を選択可能である眼光学特性測定装置に係り、又設定された測定範囲で、画像が所定ディオプタピッチで取得され、取得された画像から形状判断により最小錯乱円の画像が選択される眼光学特性測定装置に係り、又前記制御部は、選択された最小錯乱円画像の複数の経線方向の光強度分布を求め、該光強度分布に基づき被検眼の眼光学特性を演算する眼光学特性測定装置に係り、又前記制御部は、設定された測定範囲に応じてディオプタピッチを設定可能とした眼光学特性測定装置に係り、更に又測定条件を設定可能な操作部を具備し、該操作部を介し前記最小錯乱円の画像を中心として測定範囲を設定可能とした眼光学特性測定装置に係るものである。   The present invention provides a target projection optical system for projecting a target image on the fundus of the subject's eye, a light receiving means for receiving a target image from the target image projection system reflected from the fundus of the subject's eye, and the light reception A plurality of optotype images received by the means can be acquired in correspondence with the diopter, and an ophthalmic optical characteristic comprising a control unit that determines the shape of the acquired images and associates the shape with the diopter. The control unit relates to an ophthalmic optical characteristic measurement device configured to set a measurement range based on a plurality of acquired image shapes, and the control unit includes a plurality of acquired images. , By determining and selecting the minimum circle of confusion from the judgment of the image shape, and relating to an eye optical characteristic measuring apparatus configured to set the minimum circle of confusion as a reference of the measurement range, and also, by the control unit, image of the minimum circle of confusion Ophthalmic optical characteristics with the measurement range as the center The control unit relates to an ophthalmic optical characteristic measuring apparatus capable of selecting an image that can be identified as a minimum circle of confusion, a front focal line, and a rear focal line from the shape determination of a plurality of acquired images. The present invention relates to an ophthalmic optical characteristic measuring apparatus in which an image is acquired at a predetermined diopter pitch in a set measurement range, and an image of a minimum circle of confusion is selected from the acquired image by shape determination, and the control unit is selected The present invention relates to an eye optical characteristic measurement device that calculates light intensity distributions in a plurality of meridian directions of a minimum confusion circle image and calculates the eye optical characteristics of the eye to be examined based on the light intensity distribution, and the control unit has a set measurement range In addition, the present invention relates to an ophthalmic optical characteristic measurement apparatus that can set a diopter pitch according to the above, and further includes an operation unit that can set measurement conditions, and sets a measurement range centering on the image of the minimum circle of confusion through the operation unit. Possible ophthalmic optics Those relating to sexual measuring device.

本発明によれば、被検眼眼底に視標像を投影する為の視標投影光学系と、被検眼眼底から反射された前記視標像投影系からの視標像を受光する受光手段と、該受光手段が受光した視標像をディオプタと対応させて複数取得可能であり、取得した複数の画像の形状を判断し、形状とディオプタとの関連付けを行う様にした制御部とを具備したので、被検眼眼底から反射された視標像の形状と被検眼のディオプタとの関連付けが客観的に行われ、画像に基づき測定範囲の設定、被検眼の眼屈折力の情報が容易に得られる。   According to the present invention, a target projection optical system for projecting a target image on the fundus of the subject's eye, and a light receiving means for receiving the target image from the target image projection system reflected from the fundus of the subject's eye, Since a plurality of target images received by the light receiving means can be acquired in correspondence with the diopter, and the control unit is configured to determine the shapes of the acquired images and to associate the shapes with the diopters. Then, the shape of the target image reflected from the fundus of the eye to be examined and the diopter of the eye to be examined are objectively associated, and the setting of the measurement range and the information on the eye refractive power of the eye to be examined can be easily obtained based on the image.

又本発明によれば、前記制御部は、取得した複数の画像の形状判断から、最小錯乱円、前焦線、後焦線と認定できる画像を選択可能であり、眼屈折力測定が検者の個人差なく測定可能となる。   Further, according to the present invention, the control unit can select an image that can be recognized as the minimum circle of confusion, the front focal line, and the rear focal line from the obtained shape determination of the plurality of images, and the eye refractive power measurement can be performed by the examiner. Measurement is possible without individual differences.

又本発明によれば、前記制御部は、選択された最小錯乱円画像の複数の経線方向の光強度分布を求め、該光強度分布に基づき被検眼の眼光学特性を演算するので、検者の主観に頼らず適切な最小錯乱円の選択が可能であり、検者が異なった場合でも同一の測定結果が得られ、信頼性が向上すると共に検者の作業量が減少し、測定時間の短縮操作性の向上が図れる等の優れた効果を発揮する。   According to the invention, the control unit obtains light intensity distributions in a plurality of meridian directions of the selected minimum confusion circle image, and calculates the optical optical characteristics of the eye to be examined based on the light intensity distributions. It is possible to select an appropriate minimum circle of confusion without depending on the subjectivity of the tester, and the same measurement result can be obtained even if the examiner is different, improving the reliability and reducing the workload of the examiner. Excellent effects such as improved shortening operability are exhibited.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明が実施される眼光学特性測定装置の光学系について説明する。   First, referring to FIG. 1, an optical system of an eye optical characteristic measuring apparatus in which the present invention is implemented will be described.

図中、1は被検眼、2は被検眼に点状の視標像を投影する投影光学系、3は被検眼眼底から反射して得られる視標像を受光器に導く為の受光光学系、4は光源5、リレーレンズ6から構成される光源部を示す。   In the figure, 1 is an eye to be examined, 2 is a projection optical system for projecting a point-like target image on the eye to be examined, and 3 is a light receiving optical system for guiding a target image obtained by reflection from the fundus of the eye to be examined to a light receiver. Reference numeral 4 denotes a light source unit including a light source 5 and a relay lens 6.

前記投影光学系2は光源5、該光源5から発せられた投影光束を集光するリレーレンズ6、該リレーレンズ6の光軸上に配設されたハーフミラー7、該ハーフミラー7を透過した投影光束を前記被検眼1に向け第1の偏光方向の直線偏光成分(S直線偏光)を反射して投影する偏光ビームスプリッタ8、該偏光ビームスプリッタ8の投影光軸に前記偏光ビームスプリッタ8側から配設されたリレーレンズ9、対物レンズ11、1/4波長板13を有する。前記投影光学系2の所要位置、例えば前記ハーフミラー7と前記偏光ビームスプリッタ8との間に投影系開口絞り14が設けられている。更に、前記ハーフミラー7に対向して固視標15、リレーレンズ16を有する固視標系17が配設されている。   The projection optical system 2 is transmitted through a light source 5, a relay lens 6 that condenses the projection light beam emitted from the light source 5, a half mirror 7 disposed on the optical axis of the relay lens 6, and the half mirror 7. A polarizing beam splitter 8 for projecting a projected light beam toward the eye 1 to be reflected and reflecting a linearly polarized light component (S linearly polarized light) in the first polarization direction, and the polarizing beam splitter 8 side on the projection optical axis of the polarizing beam splitter 8 A relay lens 9, an objective lens 11, and a quarter-wave plate 13. A projection system aperture stop 14 is provided at a required position of the projection optical system 2, for example, between the half mirror 7 and the polarization beam splitter 8. Further, a fixation target system 17 having a fixation target 15 and a relay lens 16 is disposed opposite to the half mirror 7.

前記光源5、固視標15は前記被検眼1の眼底と共役な位置にあり、後述する様に、前記光源5、固視標15は瞳18を通して眼底に結像される。該瞳18は前記投影系開口絞り14と共役、或は略共役の位置となっている。前記固視標15には視力検査用の視標、例えばランドルト環が記されている。ここで、前記光源部4は前記光源5とリレーレンズ6とが一体的に構成され、前記光源部4は、後述の合焦レンズ19と連動して光軸方向に沿って移動可能となっており、前記光源部4、前記合焦レンズ19の移動は図示しない駆動部によって実行され、該駆動部は後述する制御部28によって制御される。   The light source 5 and the fixation target 15 are in a conjugate position with the fundus of the eye 1 to be examined. As will be described later, the light source 5 and the fixation target 15 are imaged on the fundus through the pupil 18. The pupil 18 is in a conjugate or substantially conjugate position with the projection system aperture stop 14. The fixation target 15 is marked with a visual acuity test target, for example, a Landolt ring. Here, in the light source unit 4, the light source 5 and the relay lens 6 are integrally formed, and the light source unit 4 is movable along the optical axis direction in conjunction with a focusing lens 19 described later. The movement of the light source unit 4 and the focusing lens 19 is executed by a driving unit (not shown), and the driving unit is controlled by a control unit 28 described later.

前記受光光学系3は、前記偏光ビームスプリッタ8、該偏光ビームスプリッタ8の投影光軸に配設された前記リレーレンズ9、対物レンズ11、1/4波長板13を前記投影光学系2と共用している。   The light receiving optical system 3 shares the projection optical system 2 with the polarizing beam splitter 8, the relay lens 9, the objective lens 11, and the quarter wavelength plate 13 disposed on the projection optical axis of the polarizing beam splitter 8. is doing.

前記偏光ビームスプリッタ8を透過する反射光軸上には反射光軸に沿って受光系開口絞り22、移動可能な前記合焦レンズ19、結像レンズ20が配設され、該結像レンズ20は光電検出器21上に反射光束を結像させる。該光電検出器21と前記被検眼1の眼底とは共役、又は略共役な位置となっている。   A light receiving system aperture stop 22, a movable focusing lens 19, and an imaging lens 20 are disposed along the reflected optical axis on the reflected optical axis that passes through the polarizing beam splitter 8. The reflected light beam is imaged on the photoelectric detector 21. The photoelectric detector 21 and the fundus of the subject eye 1 are in a conjugate or substantially conjugate position.

図2は、前記投影系開口絞り14、前記受光系開口絞り22を示しており、本実施の形態では前記投影系開口絞り14と前記受光系開口絞り22とは同一のものが用いられている。以下、投影系開口絞り14について説明する。   FIG. 2 shows the projection system aperture stop 14 and the light receiving system aperture stop 22. In the present embodiment, the projection system aperture stop 14 and the light receiving system aperture stop 22 are the same. . Hereinafter, the projection system aperture stop 14 will be described.

該投影系開口絞り14は円板に所要数、例えば6つの絞り孔23a,23b,23c,23d,23e,23fが穿設されたものであり、該絞り孔23a,23b,23c,23d,23e,23fは同一円周上の6等分した位置に設けられ、孔径は瞳の大きさを考慮してφ1mm〜φ8mm程度となっている。例えば、φ1mm、φ2mm、φ3mm、φ4mm、φ5mm、φ6mmが選択される。   The projection system aperture stop 14 is a disc in which a required number, for example, six aperture holes 23a, 23b, 23c, 23d, 23e, and 23f are formed, and the aperture holes 23a, 23b, 23c, 23d, and 23e are formed. , 23f are provided at six equal positions on the same circumference, and the hole diameter is about φ1 mm to φ8 mm in consideration of the size of the pupil. For example, φ1 mm, φ2 mm, φ3 mm, φ4 mm, φ5 mm, and φ6 mm are selected.

前記投影系開口絞り14、前記受光系開口絞り22は回転可能に設けられ、前記絞り孔23a,23b,23c,23d,23e,23fの中心が前記投影光学系2の光軸、前記受光光学系3の光軸に合致する様になっている。   The projection system aperture stop 14 and the light receiving system aperture stop 22 are rotatably provided, and the centers of the aperture holes 23a, 23b, 23c, 23d, 23e, and 23f are the optical axes of the projection optical system 2 and the light receiving optical system. It matches with the optical axis of 3.

前記投影系開口絞り14、前記受光系開口絞り22は、例えばステッピングモータ(図示せず)に取付けられ、該ステッピングモータは前記制御部28によって間欠回転される様に制御され、該ステッピングモータが60°ずつ間欠回転することで前記絞り孔23a,23b,23c,23d,23e,23fの所要の絞り孔が選択される様になっている。又、それぞれのステッピングモータは後述する制御部28によって独立して制御される。前記絞り孔23a,23b,23c,23d,23e,23fの選択は、被検者の瞳径に合わせ選択され、又前記投影系開口絞り14で選択された絞り孔23の径と前記受光系開口絞り22で選択した絞り孔23の径を変えることで、例えば前記投影系開口絞り14で選択された絞り孔23の径に対し、前記受光系開口絞り22で選択した絞り孔23の径を大きく設定すると、前記光電検出器21で得られる画像からPTF(Phase Tranfer Function)が算出可能である。   The projection system aperture stop 14 and the light receiving system aperture stop 22 are attached to, for example, a stepping motor (not shown), and the stepping motor is controlled to be intermittently rotated by the control unit 28. The required throttling holes of the throttling holes 23a, 23b, 23c, 23d, 23e, and 23f are selected by intermittently rotating at a time. Each stepping motor is independently controlled by a control unit 28 described later. Selection of the apertures 23a, 23b, 23c, 23d, 23e, and 23f is selected according to the pupil diameter of the subject, and the diameter of the aperture 23 selected by the projection system aperture stop 14 and the light receiving system aperture are selected. By changing the diameter of the aperture 23 selected by the aperture 22, for example, the diameter of the aperture 23 selected by the light receiving system aperture stop 22 is made larger than the diameter of the aperture 23 selected by the projection system aperture stop 14. When set, a PTF (Phase Transfer Function) can be calculated from an image obtained by the photoelectric detector 21.

前記光電検出器21はCCD受光センサ等、受光面が画素の集合であり、受光信号は各画素からの信号の集合であり、受光信号に基づき受光面内での各画素の位置、受光面での像の形状等を検出可能となっている。各画素の位置、像の形状については、受光面上に座標を設定し、各画素の座標値を算出することで決定される。前記光電検出器21からの受光信号は信号処理部26を介して記憶部27に記憶される。   The photoelectric detector 21 is a CCD light receiving sensor or the like, and the light receiving surface is a set of pixels, and the light receiving signal is a set of signals from each pixel. Based on the light receiving signal, the position of each pixel in the light receiving surface, the light receiving surface The shape of the image can be detected. The position of each pixel and the shape of the image are determined by setting coordinates on the light receiving surface and calculating the coordinate value of each pixel. The received light signal from the photoelectric detector 21 is stored in the storage unit 27 via the signal processing unit 26.

該記憶部27はデータ格納部(図示せず)とプログラム格納部(図示せず)とを有し、前記データ格納部には前記信号処理部26で処理された信号が書込まれ、書込みは前記制御部28によって制御される様になっている。該制御部28は上記した様に、駆動機構の制御を行うと共に眼光学特性演算手段として機能し、シミュレーション画像演算部(図示せず)と、視力演算部(図示せず)とを有し、前記記憶部27に記憶されたデータを基に所要の演算をし、又演算結果を表示部29に表示する。   The storage unit 27 has a data storage unit (not shown) and a program storage unit (not shown), and a signal processed by the signal processing unit 26 is written into the data storage unit, and writing is performed. It is controlled by the control unit 28. As described above, the control unit 28 controls the driving mechanism and functions as an eye optical characteristic calculation unit, and includes a simulation image calculation unit (not shown) and a visual acuity calculation unit (not shown). Based on the data stored in the storage unit 27, a required calculation is performed, and the calculation result is displayed on the display unit 29.

前記記憶部27には、前記光電検出器21からの信号に基づき受光像の状態を判定する受光画像判定プログラム、検者からの指示に対応し或は前記受光画像判定プログラムからの判断結果に対応して測定を実行する為のシーケンスプログラム、更に、前記光電検出器21からの受光信号を基に眼光学特性の演算、シミュレーション画像の演算を行う演算プログラム等が格納されている。又、前記制御部28には操作パネル、或はキーボード等の操作部30から検者による指示、命令が入力される様になっている。   The storage unit 27 corresponds to a received light image determination program for determining the state of the received light image based on the signal from the photoelectric detector 21, an instruction from the examiner, or a determination result from the received light image determination program. In addition, a sequence program for performing measurement and a calculation program for calculating eye optical characteristics and a simulation image based on the received light signal from the photoelectric detector 21 are stored. Further, the controller 28 receives instructions and commands from an operator from an operation panel 30 or an operation unit 30 such as a keyboard.

以下、上記光学系の作用について説明する。   Hereinafter, the operation of the optical system will be described.

前記被検眼1に前記固視標15を注視させた状態で、前記投影光学系2により投影光束を投影する。尚、前記固視標15に関しては可視光が用いられ、前記投影光束については赤外光が用いられる。   A projection light beam is projected by the projection optical system 2 in a state where the fixation target 15 is focused on the eye 1 to be examined. Note that visible light is used for the fixation target 15, and infrared light is used for the projected light beam.

前記光源5から発せられた投影光束(赤外光)は、前記リレーレンズ6、ハーフミラー7を透過し、透過した投影光束は前記開口絞り14により光束径が決定され、前記偏光ビームスプリッタ8に至り、該偏光ビームスプリッタ8でS直線偏光分が反射され、前記リレーレンズ9を経て前記対物レンズ11により前記1/4波長板13を経て前記被検眼1の眼底に投影され、点像として第1次視標像が結像される。   The projected light beam (infrared light) emitted from the light source 5 is transmitted through the relay lens 6 and the half mirror 7, and the transmitted light beam has a light beam diameter determined by the aperture stop 14. Then, the S linearly polarized light component is reflected by the polarizing beam splitter 8, is projected onto the fundus of the subject eye 1 through the relay lens 9, the objective lens 11, the quarter-wave plate 13, and as a point image. A primary visual target image is formed.

S直線偏光が前記1/4波長板13を透過することで、右円偏光となる。前記被検眼1の眼底で投影光束が反射され、反射光束は眼底で反射されることで、左円偏光となる。更に、反射光束が前記1/4波長板13を透過することで、前記S直線偏光とは偏光方向が90°異なるP直線偏光となる。   When the S linearly polarized light is transmitted through the quarter wavelength plate 13, it becomes right circularly polarized light. The projected light beam is reflected by the fundus of the eye 1 to be examined, and the reflected light beam is reflected by the fundus, thereby becoming left circularly polarized light. Further, when the reflected light beam passes through the ¼ wavelength plate 13, it becomes P linearly polarized light having a polarization direction different from that of the S linearly polarized light by 90 °.

P直線偏光は、前記対物レンズ11、リレーレンズ9により前記偏光ビームスプリッタ8に導かれる。該偏光ビームスプリッタ8はS直線偏光を反射し、P直線偏光を透過するので、前記反射光束は該偏光ビームスプリッタ8を透過し、前記受光系開口絞り22により受光光束径が決定される。該受光系開口絞り22を通過した反射光束は前記合焦レンズ19、結像レンズ20により前記光電検出器21上に第2次視標像として結像される。   P linearly polarized light is guided to the polarization beam splitter 8 by the objective lens 11 and the relay lens 9. Since the polarizing beam splitter 8 reflects S linearly polarized light and transmits P linearly polarized light, the reflected light beam passes through the polarizing beam splitter 8, and the received light beam diameter is determined by the light receiving system aperture stop 22. The reflected light beam that has passed through the light receiving system aperture stop 22 is imaged as a secondary target image on the photoelectric detector 21 by the focusing lens 19 and the imaging lens 20.

該光電検出器21が受光した第2次視標像の光量強度分布は前記被検眼1の眼光学特性を反映しており、前記光電検出器21の受光状態を検出することで、眼光学特性を測定することができる。   The light intensity distribution of the secondary target image received by the photoelectric detector 21 reflects the ocular optical characteristics of the eye 1 to be examined. By detecting the light receiving state of the photoelectric detector 21, the ocular optical characteristics are detected. Can be measured.

次に、図3、図4を参照して眼光学特性を測定する為の作動について説明する。   Next, the operation for measuring the eye optical characteristics will be described with reference to FIGS.

検者により前記操作部30から測定開始の指令が発せられると、シーケンスプログラム等所要のプログラムが展開され、測定が開始される。   When a measurement start command is issued from the operation unit 30 by the examiner, a required program such as a sequence program is developed and measurement is started.

STEP:01 先ず、ラフ測定が行われる。前記光源部4、前記合焦レンズ19が移動され、眼光学特性測定装置が測定可能な全範囲を所定ディオプタピッチΔDで、前記光電検出器21に投影された画像を取得し、測定する。例えば、全測定範囲が±20ディオプタ(以下、Dとする)で、ディオプタピッチΔDが1D単位であるとすると、41画像が取得される。   (Step 01) First, rough measurement is performed. The light source unit 4 and the focusing lens 19 are moved to acquire and measure an image projected on the photoelectric detector 21 at a predetermined diopter pitch ΔD over the entire range that can be measured by the eye optical characteristic measuring apparatus. For example, if the entire measurement range is ± 20 diopters (hereinafter referred to as D) and the diopter pitch ΔD is 1D, 41 images are acquired.

STEP:02 各画像は、画像取得時のディオプタ値と対応させて前記記憶部27に記憶され、更に各画像毎に形状判定がなされ、画像の形状とディオプタ値とが関連付けられる。被検眼に乱視がない場合は、前記光電検出器21に受光される像はぼやけた大きな円形から小さくなると共に輝度が増大し、最小円を経過すると円は増大すると共に輝度が減少する。   (Step 02) Each image is stored in the storage unit 27 in association with the diopter value at the time of image acquisition, and further, shape determination is performed for each image, and the shape of the image and the diopter value are associated with each other. When there is no astigmatism in the eye to be examined, the image received by the photoelectric detector 21 decreases from a blurred large circle and increases in luminance. When the minimum circle elapses, the circle increases and the luminance decreases.

又、被検眼が乱視を含む場合、前記光電検出器21に受光される像は、ぼやけた大きな円形から小さくなり輝度が増大すると共に形状は楕円となる。図5に示される様に、扁平な楕円を経て最小円(最小錯乱円)となり、最小錯乱円を経過すると前記楕円とは方向の異なる傾斜を有する楕円形状となり、更に円形状となり、円形状が大きくなると共に輝度が減少する。図5は最小散乱円前後のディオプタでの画像を示している。   Further, when the eye to be examined includes astigmatism, the image received by the photoelectric detector 21 becomes smaller from a blurred large circle, the luminance increases, and the shape becomes an ellipse. As shown in FIG. 5, a minimum circle (minimum circle of confusion) passes through a flat ellipse, and after passing through the circle of minimum circle of confusion, an ellipse having an inclination different from that of the ellipse is formed, and further, a circle is formed. As it increases, the brightness decreases. FIG. 5 shows images with diopters around the minimum scattering circle.

以下は、被検眼が乱視を含む場合について説明する。   Hereinafter, a case where the eye to be examined includes astigmatism will be described.

取得した各画像に対して、前記受光画像判定プログラムにより形状判断が行われる。形状の判断一例として、例えば図6により説明する。   For each acquired image, shape determination is performed by the received light image determination program. An example of the shape determination will be described with reference to FIG.

前記光電検出器21の受光面上にX−Y座標軸を設定し、該X−Y座標軸上に形成される画像31についてXmaxとXmin及びYmaxとYminを検出して形状を判断する。例えば、(Xmax−Xmin)=ΔX、及び(Ymax−Ymin)=ΔYを求め、ΔY/ΔX(=K)の値を形状値とする。K=1で、ΔX又はΔYが最小値となる画像が最小錯乱円であると仮定される。該最小錯乱円は、ラフ測定で最も焦点が合った位置と認定される。最小錯乱円が得られた画像(ベストフォーカス画像)に対するディオプタ値D0 が、データとして取得され、前記制御部28に記録される。   An XY coordinate axis is set on the light receiving surface of the photoelectric detector 21, and the shape of the image 31 formed on the XY coordinate axis is determined by detecting Xmax and Xmin and Ymax and Ymin. For example, (Xmax−Xmin) = ΔX and (Ymax−Ymin) = ΔY are obtained, and the value of ΔY / ΔX (= K) is used as the shape value. It is assumed that an image with K = 1 and ΔX or ΔY having a minimum value is a minimum circle of confusion. The minimum circle of confusion is identified as the most focused position in the rough measurement. The diopter value D0 for the image (best focus image) from which the minimum circle of confusion is obtained is acquired as data and recorded in the control unit 28.

STEP:03 最小錯乱円が得られた画像の前後で前焦線、後焦線が求められる。前焦線、後焦線の判断は、各画像上より求められるXmaxとXmin及びYmaxとYminに基づき楕円が最も扁平となった状態を前焦線、後焦線とされる。前焦線、後焦線が得られた画像に対するディオプタ値Df ,Db が、データとして取得され、前記制御部28に記録される。   (Step 03) The front focal line and the rear focal line are obtained before and after the image where the minimum circle of confusion is obtained. For the determination of the front focal line and the rear focal line, the state where the ellipse is flattened based on Xmax and Xmin and Ymax and Ymin obtained from each image is defined as the front focal line and the rear focal line. Diopter values Df and Db for the image where the front focal line and the rear focal line are obtained are acquired as data and recorded in the control unit 28.

STEP:04 前記ディオプタ値D0 ,Df ,Db を基に本測定が行われる。即ち、前記ディオプタ値D0 が目標値として設定され、該ディオプタ値D0 を中心として前記ディオプタ値Df ,Db を含む様に、本測定範囲Wが設定される。   (Step 04) This measurement is performed based on the diopter values D0, Df, Db. That is, the diopter value D0 is set as a target value, and the main measurement range W is set so as to include the diopter values Df and Db around the diopter value D0.

該本測定範囲Wは、予め初期設定で設定し、更に該本測定範囲Wで取得する画像の枚数を、例えば11枚と設定しておけば、本測定範囲Wでの本測定ディオプタピッチΔDは、W/10となる。例えば、図4に於いて、本測定の範囲を±1Dとすれば、本測定ディオプタピッチΔD=0.2Dとなる。   The main measurement range W is set in advance as an initial setting, and if the number of images acquired in the main measurement range W is set to 11, for example, the main measurement diopter pitch ΔD in the main measurement range W is , W / 10. For example, in FIG. 4, if the range of the main measurement is ± 1D, the main measurement diopter pitch ΔD = 0.2D.

尚、初期設定で設定される本測定範囲Wは、検者により前記操作部30を介して設定され、設定される値は過去の乱視のデータ等を基に選択、或は決定される。   The main measurement range W set in the initial setting is set by the examiner via the operation unit 30, and the set value is selected or determined based on past astigmatism data or the like.

又、本測定範囲Wは、前記ディオプタ値D0 、Df ,Db を基に、該ディオプタ値Df ,Db を含む様に前記シーケンスプログラムが演算により求め、設定する様にしてもよい。本測定範囲Wでの取得画像の枚数を初期設定で設定しておけば、該本測定範囲Wでの本測定ディオプタピッチΔDは前記本測定範囲Wと、画像枚数に基づき演算により求められる。更に、初期設定で本測定ディオプタピッチΔDを設定しておいてもよい。この場合、前記本測定範囲Wは前記ディオプタ値Df ,Db を含み、且つ本測定ディオプタピッチΔDの倍数となっており、取得画像枚数は演算により求められる。   The measurement range W may be determined and set by the sequence program so as to include the diopter values Df and Db based on the diopter values D0, Df and Db. If the number of acquired images in the main measurement range W is set as an initial setting, the main measurement diopter pitch ΔD in the main measurement range W can be obtained by calculation based on the main measurement range W and the number of images. Further, the actual measurement diopter pitch ΔD may be set as an initial setting. In this case, the main measurement range W includes the diopter values Df and Db and is a multiple of the main measurement diopter pitch ΔD, and the number of acquired images is obtained by calculation.

尚、被検眼の乱視についての測定が必要ない場合は、本測定範囲Wは最小錯乱円近傍について設定すればよく、前焦線、後焦線の前記ディオプタ値Df ,Db を含む必要はない。   If measurement of astigmatism of the eye to be examined is not required, the measurement range W may be set near the minimum circle of confusion and does not need to include the diopter values Df and Db of the front focal line and the rear focal line.

STEP:05 本測定での本測定範囲Wが設定されると、前記目標値(ディオプタ値D0 )を中心として本測定範囲Wを本測定ディオプタピッチΔDで、前記光電検出器21に投影された画像を取得し、測定する。   (Step 05) When the main measurement range W in the main measurement is set, an image projected on the photoelectric detector 21 with the main measurement range W at the main measurement diopter pitch ΔD with the target value (diopter value D0) as the center. Get and measure.

ここで、本測定ディオプタピッチΔDは、測定前に初期設定で予め固定値、例えば0.03D等に設定しておいてもよく、或は初期設定で本測定範囲Wで取得する画像枚数を設定し、本測定範囲Wに応じて本測定ディオプタピッチΔDの数値が増減する様にしておいてもよい。   Here, the actual measurement diopter pitch ΔD may be set to a fixed value, for example, 0.03D in advance before measurement, or the number of images to be acquired in the actual measurement range W is set by default. The numerical value of the main measurement diopter pitch ΔD may be increased or decreased according to the main measurement range W.

本測定で取得した各画像について、STEP:02で実施したと同様、前記受光画像判定プログラムにより形状判断が行われ、本測定範囲Wでの最小錯乱円の画像(ベストフォーカス画像)が求められる。   Each image acquired in the main measurement is subjected to shape determination by the received light image determination program as in STEP: 02, and an image of the minimum circle of confusion (best focus image) in the main measurement range W is obtained.

STEP:06,07 選択された画像について、MTF等眼光学特性が演算される。   STEP: 06,07 The MTF iso-optical characteristics are calculated for the selected image.

STEP:06 視標ギャップ方向のプロフィールが演算される。   STEP: 06 The target gap direction profile is calculated.

STEP:07 更に、Depression値、Contrast値が演算される。演算されたDepression値、Contrast値は、前記表示部29に表示される。   (Step 07) Further, a Depression value and a Contrast value are calculated. The calculated Depression value and Contrast value are displayed on the display unit 29.

ここで、STEP:06、STEP:07、STEP:08、STEP:09に於けるMTF等の眼光学特性、視標ギャップ方向のプロフィール、Depression値、Contrast値の演算については、本出願人が既に出願した、特願2000−364834(特開2002−209852号公報)(特許文献2)に於いて説明されている。   Here, for the calculation of eye optical characteristics such as MTF, target gap direction profile, Depression value, and Contrast value in STEP: 06, STEP: 07, STEP: 08, and 09: This is described in Japanese Patent Application No. 2000-364834 (Japanese Patent Laid-Open No. 2002-209852) (Patent Document 2) filed.

又、図7に於いて、STEP:02、STEP:05に於ける、ベストフォーカス位置の画像が選択される形状判断について、前記受光画像判定プログラムの作用について説明する。   In FIG. 7, the operation of the received light image determination program will be described with respect to the shape determination in which the image at the best focus position is selected in STEP: 02 and STEP: 05.

STEP:201,202 取得した複数の画像から各画像に於ける最高輝度値を算出し、各最高輝度値が第1スライスレベル以上である画像が選択される。選択された画像は、例えば図5(A)〜図5(J)に示される。図中では、図5(F)が最小錯乱円の画像として示されている。   (Steps 201 and 202) The highest luminance value in each image is calculated from the plurality of acquired images, and an image having each highest luminance value equal to or higher than the first slice level is selected. The selected image is shown in FIGS. 5A to 5J, for example. In the figure, FIG. 5 (F) is shown as an image of the minimum circle of confusion.

STEP:203 STEP:202で選択された画像の中から最高輝度値が最も高い画像が選択される。   STEP: 203 An image having the highest maximum luminance value is selected from the images selected in STEP: 202.

STEP:204,205 STEP:203で選択された画像が1枚かどうかが判断され、1枚である場合は、該画像について第1スライスレベル以上の輝度値を示している画素数が求められる。   STEP: 204, 205 It is determined whether or not there is one image selected in STEP: 203. If there is one image, the number of pixels indicating a luminance value equal to or higher than the first slice level is obtained for the image.

STEP:206,207 STEP:205で得られた画素が形成する形状について、例えば、直交する2方向の大きさで形状の判断が行われる。例えば、前記光電検出器21の受光面の座標上で水平、垂直方向で略同等な大きさになっているかが判断され、略同等な大きさと判断された場合は、STEP:203で選択された1枚の画像が演算対象画像(測定画像)として選択される。例えば、図5(F)が選択される。   STEP: 206, 207 For the shape formed by the pixel obtained in STEP: 205, the shape is determined based on the size in two orthogonal directions, for example. For example, it is determined whether or not the size is approximately equal in the horizontal and vertical directions on the coordinates of the light receiving surface of the photoelectric detector 21. If it is determined that the size is approximately equal, the selection is made at STEP 203. One image is selected as a calculation target image (measurement image). For example, FIG. 5 (F) is selected.

STEP:208 次に、STEP:206に於いて、画素の形成する形状が、水平、垂直方向で略同等な大きさとなっていない場合、STEP:205で選択された画像の前後の画像について、それぞれ第1スライスレベル以上の画素数が求められる。   STEP: 208 Next, in STEP: 206, when the shapes formed by the pixels are not substantially equal in the horizontal and vertical directions, the images before and after the image selected in STEP: 205 are respectively The number of pixels equal to or higher than the first slice level is obtained.

STEP:209 STEP:208で得られた画素が形成する形状の判断が行われる。受光面の座標上で水平、垂直方向の大きさが求められ、水平、垂直方向の大きさから形状が判断される。例えば、形状を判断するものとして、水平、垂直方向の大きさの比が求められる。   STEP: 209 The shape formed by the pixel obtained in STEP: 208 is determined. The horizontal and vertical sizes are obtained on the coordinates of the light receiving surface, and the shape is determined from the horizontal and vertical sizes. For example, the ratio of the sizes in the horizontal and vertical directions is determined as the shape determination.

STEP:210 選択された各画像それぞれについて、水平、垂直方向の大きさが最も近いもの、例えば求められた比が最も1に近いものが演算対象画像として決定される。   (Step 210) For each selected image, the image having the closest size in the horizontal and vertical directions, for example, the image having the obtained ratio closest to 1 is determined as the calculation target image.

更に、STEP:203で選択された画像が複数枚ある場合は、STEP:211の以降の作用により、演算対象画像が決定される。   Further, when there are a plurality of images selected in STEP: 203, the calculation target image is determined by the subsequent operation of STEP: 211.

STEP:211 選択された複数の画像それぞれについて、第1スライスレベル以上の画素数が求められる。   STEP: 211 The number of pixels equal to or higher than the first slice level is obtained for each of the selected plurality of images.

STEP:212 画素数が一番少ない画像が選択される。   STEP: 212 The image having the smallest number of pixels is selected.

STEP:213,214 選択された画像で、第1スライスレベル以上の画素が形成する形状について、座標上で水平、垂直方向で略同等な大きさになっているかが判断され、略同等な大きさと判断された場合は、STEP:212で選択された1枚の画像が演算対象画像として決定される。   (Steps: 213, 214) In the selected image, it is determined whether the shapes formed by the pixels at the first slice level or higher have substantially the same size in the horizontal and vertical directions on the coordinates. If it is determined, one image selected in STEP: 212 is determined as a calculation target image.

STEP:215,216 STEP:212で選択された画像に関し、第1スライスレベル以上の画素が形成する形状が、水平、垂直方向で略同等な大きさでない場合、STEP:212で得られた前後の画像について第1スライスレベル以上の画素数が求められ、更に画素が形成する形状について、座標上で水平、垂直方向の大きさが求められ、水平、垂直方向の大きさから形状が判断される。   STEP: 215, 216 For the image selected in STEP: 212, if the shape formed by the pixels at the first slice level or higher is not substantially the same size in the horizontal and vertical directions, the image before and after that obtained in STEP: 212 The number of pixels equal to or higher than the first slice level is obtained for the image, and the horizontal and vertical sizes are determined on the coordinates for the shape formed by the pixels, and the shape is determined from the horizontal and vertical sizes.

STEP:217 選択された各画像それぞれについて、水平、垂直方向の大きさが最も近いものが演算対象画像として決定される。   (Step 217) For each of the selected images, the closest image in the horizontal and vertical directions is determined as the calculation target image.

上述した、画像の判断により、フォーカス状態が最もよく、更に最も最小錯乱円に近い画像が演算対象画像として選択される。従って、演算対象画像の選択に検者の個人差による影響が排除される。   Based on the above-described image determination, an image having the best focus state and closest to the minimum circle of confusion is selected as the calculation target image. Therefore, the influence of the individual difference of the examiner on selection of the calculation target image is eliminated.

選択された画像は、前記表示部29に表示され、検者により確認され、STEP:06〜STEP:09に於いてPSF等眼光学特性が演算され、或は選択されると直ちに演算が実行される。   The selected image is displayed on the display unit 29 and confirmed by the examiner, and the optical characteristics of the eye such as PSF are calculated in STEP: 06 to STEP: 09, or the calculation is executed immediately when selected. The

尚、STEP:206,209,213,216等の座標上での水平、垂直方向の大きさの判断は、様々な方法で判断可能である。上述の選択された画像中の第1スライスレベル以上の画素が形成する形状について水平、垂直方向の大きさを比較する方法のみではなく、例えば画素が形成する画像の重心位置を求め、該重心位置を中心として形状の長径及び短径を比較する方法(画素による形状を楕円と近似してもよいし、しなくてもよい)を用いてもよい。   Note that the horizontal and vertical sizes on the coordinates of STEP: 206, 209, 213, 216, etc. can be determined by various methods. In addition to the method of comparing the horizontal and vertical sizes of the shape formed by the pixels at the first slice level or higher in the selected image, for example, the centroid position of the image formed by the pixels is obtained and the centroid position is determined. A method of comparing the major axis and the minor axis of the shape centering on the pixel (the shape of the pixel may or may not be approximated to an ellipse) may be used.

次に、図8に於いて、STEP:03に於ける、画像の形状判断、前後焦線の画像の選択についての、前記受光画像判定プログラムの作用について説明する。   Next, referring to FIG. 8, the operation of the received light image determination program for determining the shape of the image and selecting the image of the front and rear focal lines in STEP: 03 will be described.

STEP:301 本測定目標値の画像より手前側のディオプタについて画像が全て選択される。   STEP: 301 All images are selected for the diopter on the near side from the image of the main measurement target value.

STEP:302〜STEP:304 各画像について、第1スライスレベルに於けるXmaxとXmin及びYmaxとYminをそれぞれ求める(図6参照)。   STEP: 302 to STEP: 304 For each image, Xmax and Xmin and Ymax and Ymin at the first slice level are obtained (see FIG. 6).

STEP:305、STEP:306 座標(Xmax,Ymax)と座標(Xmin,Ymin)を結ぶ線分の中点に法線を立て、各画像に於いて法線上の輝度値が第1スライスレベル以下となる点P,Sを求める。   STEP: 305, STEP: 306 A normal is set at the midpoint of the line segment connecting the coordinates (Xmax, Ymax) and the coordinates (Xmin, Ymin), and the luminance value on the normal in each image is equal to or lower than the first slice level. Find the points P and S.

STEP:307 線分PSが最短になる画像を選択し、該画像を前焦線画像とする。   (Step 307) An image with the shortest line segment PS is selected, and this image is set as a front focal line image.

STEP:308 本測定目標値の画像より後側のディオプタについて画像が全て選択される。   STEP: 308 All the images are selected for the diopter on the rear side of the image of the main measurement target value.

STEP:309 STEP:302〜STEP:306と同様の処理がなされる。   STEP: 309 The same processing as STEP: 302 to STEP: 306 is performed.

STEP:310 線分PSが最短になる画像を選択し、該画像を後焦線画像とする。   (Step 310) An image with the shortest line segment PS is selected, and this image is set as a rear focal line image.

上記した様に、最小錯乱円が検者の個人差を含まず選択でき、該最小錯乱円から精度の高い眼光学特性が測定できる。   As described above, the minimum circle of confusion can be selected without including the individual differences of the examiners, and high-precision eye optical characteristics can be measured from the minimum circle of confusion.

更に、前述した様に画像処理から、正確な最小錯乱円のディオプタ、前焦線のディオプタ、後焦線のディオプタが求められると共に前焦線、後焦線の画像から長軸の傾斜角も求めることができる。従って、検者の個人差に影響されない、被検眼の眼屈折力の測定、乱視測定が可能である。   Further, as described above, the accurate minimum diopter circle diopter, front focal line diopter, and rear focal line diopter are obtained from the image processing, and the major axis inclination angle is also obtained from the front focal line and rear focal line images. be able to. Therefore, it is possible to measure the eye refractive power and the astigmatism measurement of the eye to be examined without being influenced by individual differences among examiners.

即ち、被検眼の眼屈折力は、正確な最小錯乱円でのディオプタ値として測定される。   That is, the eye refractive power of the eye to be examined is measured as a diopter value in an accurate minimum circle of confusion.

次に、乱視測定としては前焦線の屈折度と、後焦線の屈折度との差が乱視度Cとして測定され、又、前焦線の乱視軸は画像中の傾きを示す直線であり、即ち(Xmax,Ymax)、(Xmin,Ymin)の2点を結ぶ直線であり、又前焦線での乱視軸角Ax、後焦線での乱視軸角Ayとは、それぞれ前焦線、後焦線の画像からtan-1 (ΔY/ΔX)を求めることでそれぞれ得られる。而して、撮像画像から、屈折度S、乱視度C、乱視軸Aが演算される。 Next, astigmatism measurement, the difference between the refractive index of the front focal line and the refractive index of the rear focal line is measured as the astigmatic degree C, and the astigmatic axis of the front focal line is a straight line indicating the inclination in the image. That is, the straight line connecting the two points (Xmax, Ymax) and (Xmin, Ymin). Each is obtained by obtaining tan −1 (ΔY / ΔX) from the image of the rear focal line. Thus, the refractive index S, astigmatism C, and astigmatism axis A are calculated from the captured image.

上記被検眼について、屈折度S、乱視度C、乱視軸Aを測定する場合、被検眼に投影する視標像の光束は点状であるので、反射光束が角膜の形状、浮腫、水晶体の濁り等の影響を殆ど受けることがなく、被検眼の状態に拘らず、眼屈折力の測定、乱視測定が可能である。   When the refractive index S, the astigmatism C, and the astigmatism axis A are measured for the eye to be examined, since the luminous flux of the target image projected onto the eye to be examined is point-like, the reflected luminous flux is corneal shape, edema, and turbidity of the crystalline lens. The eye refractive power and the astigmatism can be measured regardless of the condition of the eye to be examined.

次に、第2の実施の形態について図3、図4を参照して説明する。   Next, a second embodiment will be described with reference to FIGS.

上記STEP:04、STEP:05で本測定範囲Wを設定し、本測定を実行したが、被検眼によっては充分な最小錯乱円が求められない場合がある。この場合、図3に示される様に、更に細密な測定(細密測定)がSTEP:051、STEP:052に於いて実行される。尚、細密測定に移行する条件としては、最小錯乱円と判断できる画像に対して隣接する画像との差異が、所定の条件(例えば輝度の差、直径の差等)を満たしていない場合である。   Although the main measurement range W is set in the above STEP: 04 and STEP: 05 and the main measurement is executed, a sufficient minimum circle of confusion may not be obtained depending on the eye to be examined. In this case, as shown in FIG. 3, finer measurement (fine measurement) is performed at STEP: 051 and STEP: 052. The condition for shifting to fine measurement is when the difference between the image that can be determined to be the minimum circle of confusion and the adjacent image does not satisfy a predetermined condition (for example, a difference in brightness, a difference in diameter, or the like). .

STEP:05で得られたベストフォーカス画像のディオプタを目標値として、細密測定範囲が設定される。この場合の細密測定範囲も、初期設定で範囲を予め設定しておいてもよく、或は本測定ディオプタピッチΔDの値に応じ所定倍数に設定する等、演算で求める様にしてもよい。例えば、図4に示される様に、細密測定範囲を±0.2Dとし、細密ディオプタピッチΔDを0.04Dとして11枚の画像を取得する。取得した11枚の画像に対して、前記受光画像判定プログラムが実行され、図7に示される作用によって細密測定範囲での最小錯乱円、即ちベストフォーカス画像が選択される。選択されたベストフォーカス画像に対して、STEP:06〜STEP:09が実行され、複数方向の経線の光強度分布が求められ、該光強度分布に基づき被検眼の眼光学特性が演算される。   The fine measurement range is set using the diopter of the best focus image obtained in STEP 05 as the target value. The fine measurement range in this case may be determined in advance by initial setting, or may be obtained by calculation such as setting a predetermined multiple according to the value of the actual measurement diopter pitch ΔD. For example, as shown in FIG. 4, eleven images are acquired with a fine measurement range of ± 0.2D and a fine diopter pitch ΔD of 0.04D. The received light image determination program is executed on the 11 acquired images, and the minimum circle of confusion in the fine measurement range, that is, the best focus image is selected by the action shown in FIG. STEP: 06 to STEP: 09 are executed for the selected best focus image, the light intensity distribution of meridians in a plurality of directions is obtained, and the eye optical characteristics of the eye to be examined are calculated based on the light intensity distribution.

上記実施の形態では、ラフ測定から本測定、更に細密測定迄プログラムによって検者の作業が介在することなく自動で行われたが、第3の実施の形態として、ラフ測定から本測定、本測定から細密測定に移行する過程で、検者が測定状態の確認、或は測定条件の設定、或は変更を行える様にしてもよい。   In the above embodiment, the rough measurement, the main measurement, and the fine measurement are automatically performed by the program without any intervention by the examiner. However, as the third embodiment, the rough measurement, the main measurement, and the main measurement are performed. In the process of shifting from fine measurement to precise measurement, the examiner may be able to confirm the measurement state, or set or change the measurement conditions.

例えば、測定を開始する前の初期設定として、ラフ測定が終了した時点で、プログラムが待機状態となり、検者が指示することによってプログラムが続行し、本測定に移行する様に設定する。   For example, as an initial setting before starting the measurement, when the rough measurement is completed, the program is set in a standby state, and the program is continued by instructing by the examiner, so that the main measurement is started.

待機状態では、ラフ測定により選択された本測定範囲W、本測定ディオプタピッチΔD、取得した画像等が前記表示部29で確認できる様になっており、又検者は前記操作部30を介して本測定範囲W、或は本測定ディオプタピッチΔD等の測定条件が変更可能となっている。   In the standby state, the main measurement range W selected by the rough measurement, the main measurement diopter pitch ΔD, the acquired image, and the like can be confirmed on the display unit 29. Measurement conditions such as the main measurement range W or the main measurement diopter pitch ΔD can be changed.

従って、検者は、ラフ測定の結果を確認してそのまま測定を続行するか、或は本測定範囲W、或は本測定ディオプタピッチΔD等の測定条件を変更して実行するかの選択が可能である。検者の判断が加わることで、無用に測定範囲を広くしたり、或は無用に本測定ディオプタピッチΔDを細かく測定する等の無駄が省け、或は必要部分のみを精度よく測定する等の測定の効率化が図れる。   Therefore, the examiner can select whether to check the result of the rough measurement and continue the measurement, or to change the measurement condition such as the main measurement range W or the main measurement diopter pitch ΔD. It is. By adding the judgment of the examiner, it is possible to avoid unnecessary waste such as unnecessarily widening the measurement range, or finely measuring the measurement diopter pitch ΔD unnecessarily, or measuring only the necessary part with high accuracy. Efficiency.

上述した様に、本発明では演算対象画像を取得する測定範囲が自動的に設定され、眼光学特性の演算の対象とする光強度分布画像が同一条件で選択され、選択が検者の個人差により左右されないので、極めて短時間に測定が実施され、測定時間の短縮が図れ、被検者の負担が軽減する。   As described above, in the present invention, the measurement range for acquiring the calculation target image is automatically set, the light intensity distribution image as the calculation target of the eye optical characteristics is selected under the same conditions, and the selection is an individual difference of the examiner. Therefore, the measurement is performed in a very short time, the measurement time can be shortened, and the burden on the subject is reduced.

本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention. 本実施の形態に使用される開口絞りの一例を示す図である。It is a figure which shows an example of the aperture stop used for this Embodiment. 本発明の実施の形態に於ける眼光学特性を測定する為の作動を示すフローチャートである。It is a flowchart which shows the operation | movement for measuring the eye optical characteristic in embodiment of this invention. 本発明の実施の形態に於ける測定範囲の設定についての説明図である。It is explanatory drawing about the setting of the measurement range in embodiment of this invention. (A)(B)(C)(D)(E)(F)(G)(H)(I)(J)は、本発明の実施の形態に於ける取得画像を示す説明図である。(A), (B), (C), (D), (E), (F), (G), (H), (I), and (J) are explanatory diagrams showing acquired images in the embodiment of the present invention. 取得画像についての形状判断の説明図である。It is explanatory drawing of the shape judgment about an acquired image. 眼光学特性測定に於いて、演算対象画像を選択する作動を示すフローチャートである。It is a flowchart which shows the operation | movement which selects the calculation target image in ocular optical characteristic measurement. 取得画像から形状判断で前焦線、後焦線の画像を判断するフローチャートである。It is a flowchart which judges the image of a front focal line and a back focal line by shape judgment from an acquired image.

符号の説明Explanation of symbols

1 被検眼
2 投影光学系
3 受光光学系
4 光源部
5 光源
14 投影系開口絞り
15 固視標
17 固視標系
19 合焦レンズ
21 光電検出器
22 受光系開口絞り
26 信号処理部
27 記憶部
28 制御部
29 表示部
30 操作部
DESCRIPTION OF SYMBOLS 1 Eye to be examined 2 Projection optical system 3 Light reception optical system 4 Light source part 5 Light source 14 Projection system aperture stop 15 Fixation target 17 Fixation target system 19 Focusing lens 21 Photoelectric detector 22 Light reception system aperture stop 26 Signal processing part 27 Storage part 28 Control unit 29 Display unit 30 Operation unit

Claims (9)

被検眼眼底に視標像を投影する為の視標投影光学系と、被検眼眼底から反射された前記視標像投影系からの視標像を受光する受光手段と、該受光手段が受光した視標像をディオプタと対応させて複数取得可能であり、取得した複数の画像の形状を判断し、形状とディオプタとの関連付けを行う様にした制御部とを具備したことを特徴とする眼光学特性測定装置。   A target projection optical system for projecting a target image on the fundus of the subject's eye, a light receiving unit for receiving the target image from the target image projection system reflected from the fundus of the subject's eye, and the light receiving unit An ophthalmic optical system comprising a control unit that can acquire a plurality of target images in association with diopters, determines a shape of the plurality of acquired images, and associates the shape with the diopter Characteristic measuring device. 前記制御部は、取得した複数の画像の形状に基づき、測定範囲を設定する様にした請求項1の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 1, wherein the control unit sets a measurement range based on a plurality of acquired image shapes. 前記制御部は、取得した複数の画像の内、画像形状の判断から最小錯乱円を認定して選択し、測定範囲の基準として最小錯乱円を設定する様にした請求項1の眼光学特性測定装置。   2. The ophthalmic optical characteristic measurement according to claim 1, wherein the control unit recognizes and selects a minimum circle of confusion from a plurality of acquired images based on determination of an image shape, and sets the minimum circle of confusion as a measurement range reference. apparatus. 前記制御部により前記最小錯乱円の画像を中心として測定範囲が設定される請求項3の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 3, wherein a measurement range is set by the control unit centering on an image of the minimum circle of confusion. 前記制御部は、取得した複数の画像の形状判断から、最小錯乱円、前焦線、後焦線と認定できる画像を選択可能である請求項1の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 1, wherein the control unit is capable of selecting an image that can be recognized as a minimum circle of confusion, a front focal line, and a rear focal line from the obtained shape determinations of the plurality of images. 設定された測定範囲で、画像が所定ディオプタピッチで取得され、取得された画像から形状判断により最小錯乱円の画像が選択される請求項2の眼光学特性測定装置。   3. The ophthalmic optical characteristic measuring apparatus according to claim 2, wherein an image is acquired at a predetermined diopter pitch within a set measurement range, and an image of a minimum circle of confusion is selected from the acquired image by shape determination. 前記制御部は、選択された最小錯乱円画像の複数の経線方向の光強度分布を求め、該光強度分布に基づき被検眼の眼光学特性を演算する請求項6の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 6, wherein the control unit obtains a light intensity distribution in a plurality of meridian directions of the selected minimum confusion circle image, and calculates an eye optical characteristic of the eye to be examined based on the light intensity distribution. 前記制御部は、設定された測定範囲に応じてディオプタピッチを設定可能とした請求項6の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 6, wherein the control unit is capable of setting a diopter pitch according to a set measurement range. 測定条件を設定可能な操作部を具備し、該操作部を介し前記最小錯乱円の画像を中心として測定範囲を設定可能とした請求項3又は請求項6の眼光学特性測定装置。   The ophthalmic optical characteristic measuring apparatus according to claim 3 or 6, further comprising an operation unit capable of setting measurement conditions, wherein the measurement range can be set around the image of the minimum circle of confusion via the operation unit.
JP2005140970A 2005-05-13 2005-05-13 Ophthalmic optical characteristic measuring device Active JP4731989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140970A JP4731989B2 (en) 2005-05-13 2005-05-13 Ophthalmic optical characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140970A JP4731989B2 (en) 2005-05-13 2005-05-13 Ophthalmic optical characteristic measuring device

Publications (2)

Publication Number Publication Date
JP2006314591A true JP2006314591A (en) 2006-11-24
JP4731989B2 JP4731989B2 (en) 2011-07-27

Family

ID=37535790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140970A Active JP4731989B2 (en) 2005-05-13 2005-05-13 Ophthalmic optical characteristic measuring device

Country Status (1)

Country Link
JP (1) JP4731989B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye
JP2002034919A (en) * 2000-07-28 2002-02-05 Topcon Corp Eye optical characteristic measuring apparatus
JP2002112965A (en) * 2000-10-10 2002-04-16 Topcon Corp Eye optical characteristic measuring apparatus
JP2002209852A (en) * 2000-11-16 2002-07-30 Topcon Corp Ocular optical characteristics measuring instrument
JP2003070741A (en) * 2001-09-05 2003-03-11 Topcon Corp Measurement unit for optical characteristics of eye

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye
JP2002034919A (en) * 2000-07-28 2002-02-05 Topcon Corp Eye optical characteristic measuring apparatus
JP2002112965A (en) * 2000-10-10 2002-04-16 Topcon Corp Eye optical characteristic measuring apparatus
JP2002209852A (en) * 2000-11-16 2002-07-30 Topcon Corp Ocular optical characteristics measuring instrument
JP2003070741A (en) * 2001-09-05 2003-03-11 Topcon Corp Measurement unit for optical characteristics of eye

Also Published As

Publication number Publication date
JP4731989B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4684700B2 (en) Ophthalmic optical characteristic measuring device
US6623117B2 (en) Eye&#39;s optical characteristic measuring system
JP2007089715A (en) Eye refraction measuring apparatus
JP6143447B2 (en) Ophthalmic apparatus, eye measurement method, and program
KR101637944B1 (en) Ophthalmologic apparatus and alignment method
JP4630126B2 (en) Ophthalmic optical characteristic measuring device
JP2013128647A (en) Ophthalmologic apparatus and ophthalmologic control method, and program
KR101647287B1 (en) Ophthalmologic apparatus and ophthalmologic method
JP2013128648A (en) Ophthalmologic apparatus, and ophthalmologic control method, and program
JP2009240625A (en) Fundus camera
JP2006280614A (en) Refraction measuring apparatus
JP2014150857A (en) Ophthalmologic apparatus
JP2023171595A (en) Ophthalmologic apparatus
JP6060525B2 (en) Fundus examination device
JPH0554771B2 (en)
JPH08224213A (en) Ophthalmological device
JP4731989B2 (en) Ophthalmic optical characteristic measuring device
US6789899B2 (en) Eye&#39;s optical characteristic measuring system
JP4598570B2 (en) Ophthalmic optical characteristic measuring device
JP2009207572A (en) Fundus camera
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP7459491B2 (en) Ophthalmology measuring device
JP2014226369A (en) Ophthalmologic apparatus, and method and program for controlling the same
WO2023145638A1 (en) Ophthalmic device and ophthalmic program
JP7035630B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250