JP2003069075A - Gallium nitride compound semiconductor device - Google Patents

Gallium nitride compound semiconductor device

Info

Publication number
JP2003069075A
JP2003069075A JP2001257306A JP2001257306A JP2003069075A JP 2003069075 A JP2003069075 A JP 2003069075A JP 2001257306 A JP2001257306 A JP 2001257306A JP 2001257306 A JP2001257306 A JP 2001257306A JP 2003069075 A JP2003069075 A JP 2003069075A
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
based compound
nitride compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001257306A
Other languages
Japanese (ja)
Other versions
JP4244542B2 (en
Inventor
Yasuhiro Kawada
康博 川田
Shinichi Nagahama
慎一 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001257306A priority Critical patent/JP4244542B2/en
Publication of JP2003069075A publication Critical patent/JP2003069075A/en
Application granted granted Critical
Publication of JP4244542B2 publication Critical patent/JP4244542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gallium nitride compound semiconductor light emitting device which is improved in external quantum efficiency by restraining optical interference caused by multiple reflection of light occurring inside a gallium nitride compound semiconductor. SOLUTION: A gallium nitride compound semiconductor is grown on a sapphire substrate, the sapphire substrate is removed by polishing or separating, and the rear of the gallium nitride compound semiconductor is turned to a non-mirror surface by etching for the formation of a gallium nitride compound semiconductor light emitting device. The sapphire substrate is removed, by which optical interference generated at the interface due to a refractive index difference between sapphire and gallium nitride can be eliminated. Furthermore, the surface of the gallium nitride compound semiconductor is turned to a non- mirror surface, by which the light is irregularly reflected at the surface, and therefore this light emitting device can be improved in output with a synergistic effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサファイア基板上に一般
式InXAlYGa1-X-YN(0≦X<1、0≦Y<1)で
表される窒化ガリウム系化合物半導体が積層されてなる
窒化ガリウム系化合物半導体素子からサファイア基板を
除去した窒化ガリウム系化合物半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride compound semiconductor in which a gallium nitride-based compound semiconductor represented by the general formula InXAlYGa1-X-YN (0≤X <1, 0≤Y <1) is laminated on a sapphire substrate. The present invention relates to a gallium nitride-based compound semiconductor device obtained by removing a sapphire substrate from a compound-based semiconductor device.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化し、その発光色は紫外から赤色にまで及ぶため、発光
ダイオード、レーザダイオード等、発光素子の材料とし
て有望視されている。その窒化ガリウム系化合物半導体
よりなる発光素子は、一般にMOCVD、MBE、HV
PE法等の気相成長法を用いてサファイア基板上にn型
及びp型、あるいはi型に成長して積層し、電極を形成
すべき層から電極を取り出した後、チップ状としてリー
ドフレームに固定し、最後にエポキシ等の樹脂で封止す
ることによって得られる。
2. Description of the Related Art GaN, GaAlN, InGaN, In
A gallium nitride-based compound semiconductor such as AlGaN has a direct transition, its band gap changes from 1.95 eV to 6 eV, and its emission color ranges from ultraviolet to red. Therefore, a material for a light emitting element such as a light emitting diode or a laser diode. Is seen as promising. The light emitting device made of the gallium nitride compound semiconductor is generally MOCVD, MBE, HV.
After growing into n-type and p-type or i-type on a sapphire substrate using a vapor phase growth method such as PE method and stacking them, the electrode is taken out from the layer where the electrode is to be formed, and then formed into a chip-like lead frame. It is obtained by fixing and finally sealing with a resin such as epoxy.

【0003】しかしながら、その窒化ガリウム系化合物
半導体素子は、前記のようにサファイア基板の上に、窒
化ガリウム系化合物半導体という全く異なる材料を積層
するいわゆるヘテロエピタキシャル構造であるため、他
のGaAs、GaP等、同一材料の上に積層される発光
素子に比して、基板とエピタキシャル膜との屈折率の違
いにより外部量子効率が悪くなるいう欠点を有してい
る。具体的にはサファイア基板と窒化ガリウム系化合物
半導体との屈折率の違い、および窒化ガリウム系化合物
半導体素子とそれを封止する樹脂との屈折率の違いによ
り、窒化ガリウム系化合物半導体の発光がそれらの界面
で多重反射されて干渉し、反射光は窒化ガリウム系化合
物半導体内部で吸収されてしまい、発光を効率よく外部
に取り出せないという問題がある。特に、屈折率の違い
はフリップチップボンディングの場合に致命的でフリッ
プチップボンディングにすると発光面積が増加するにも
かかわらず、サファイア付だと発光効率が上がらない。
この問題はサファイア上に窒化ガリウム系化合物半導体
を厚く積層し、その後素子構造を積層し、サファイアを
研磨・除去することで向上した。サファイアの研磨・除
去は素子構造を積層する前でも良い。
However, since the gallium nitride-based compound semiconductor element has a so-called heteroepitaxial structure in which a completely different material called a gallium nitride-based compound semiconductor is laminated on the sapphire substrate as described above, other GaAs, GaP, etc. The external quantum efficiency is deteriorated due to the difference in refractive index between the substrate and the epitaxial film, as compared with a light emitting device laminated on the same material. Specifically, due to the difference in the refractive index between the sapphire substrate and the gallium nitride-based compound semiconductor, and the difference in the refractive index between the gallium nitride-based compound semiconductor element and the resin that seals it, the gallium nitride-based compound semiconductor emits However, there is a problem that the reflected light is interfered by being multiply reflected at the interface, and the reflected light is absorbed inside the gallium nitride-based compound semiconductor, so that the emitted light cannot be efficiently extracted to the outside. In particular, the difference in refractive index is fatal in the case of flip-chip bonding, and although the light-emitting area is increased by flip-chip bonding, the emission efficiency cannot be improved with sapphire.
This problem has been improved by thickly stacking a gallium nitride-based compound semiconductor on sapphire, then stacking a device structure, and polishing / removing sapphire. Polishing / removal of sapphire may be performed before stacking element structures.

【0004】[0004]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体基板と窒化ガリウム系化合物半導体素子、および
封止樹脂との多重反射を抑制し、干渉をより少なくする
ことができれば、外部量子効率を向上させて、発光効率
を向上させることができる。従って、本発明はこのよう
な事情を鑑み成されたものであり、その目的とするとこ
ろは、窒化ガリウム系化合物半導体内部の光の多重反射
により起こる干渉を抑えることにより、窒化ガリウム系
化合物半導体素子の外部量子効率を向上させることにあ
る。
If the multiple reflections of the gallium nitride-based compound semiconductor substrate, the gallium nitride-based compound semiconductor element, and the sealing resin can be suppressed and the interference can be further reduced, the external quantum efficiency can be improved. As a result, the luminous efficiency can be improved. Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to suppress the interference caused by multiple reflection of light inside the gallium nitride-based compound semiconductor, thereby making the gallium nitride-based compound semiconductor device Is to improve the external quantum efficiency of.

【0005】[0005]

【課題を解決するための手段】我々は窒化ガリウム系化
合物半導体内部の多重反射を抑制し、外部量子効率を上
げるため数々の実験を行ったところ、内部で反射する光
を最上層の窒化ガリウム系化合物半導体の表面で乱反射
させることにより、上記問題が解決できることを新たに
見いだした。よって、窒化ガリウム系化合物半導体基板
上に窒化ガリウム系化合物半導体が積層されてなる発光
素子において、前記窒化ガリウム系化合物半導体基板の
素子を積層する面に対向する面が凹凸を有することを特
徴とする。これにより光取り出し面方向に放射された光
の取り出し面における全反射が抑制され、光の取り出し
効率がよくなる。また、本発明にかかる窒化ガリウム系
化合物半導体素子は、前記凹凸がドライエッチング、及
び/又は、ウェットエッチングにより形成されている。
サファイア基板を研磨・除去してからエッチングするの
であるが、サファイア基板と窒化ガリウム系化合物半導
体との界面は応力・歪・転位等が存在し、他の面よりも
エッチングレートが早い。特に転位密度が高く、結晶性
が悪い部分はエッチングのレートが早いため、窒化ガリ
ウム系化合物半導体基板の表面に凹凸が形成される。ま
た、本発明にかかる窒化ガリウム系化合物半導体発光素
子は、前記凹凸が{11−20}面又は{11−20}
面と(0001)面がステップ状に表れているピットで
ある。この形状は、ドライエッチングでも作製可能であ
るが、ウエットエッチングの方が作製しやすい。ドライ
エッチングの場合、RIE等条件にもよるであろうが、
エッチング力が強すぎ、安定面・準安定面関係なく、エ
ッチングしてしまう場合が多い。一方、ウエットエッチ
ングはエッチング力が弱いため、安定面・準安定面に沿
ってエッチングされる。もっと言うと、安定面はエッチ
ングされにくく、準安定面は安定面に比べてエッチング
されやすいため、準安定面が現れる。エッチング溶液で
窒化ガリウム系化合物半導体素子を処理すると、サファ
イア基板を研磨・除去した面のみが著しくエッチングさ
れる。これはサファイア基板上に窒化ガリウム系化合物
半導体は積層する際、格子定数の不整合により安定面で
ある(0001)面と準安定面である{11−20}面
とが同時に成長し、ある程度の膜厚まで成長すると、
(0001)面のみ成長すると考察できる。これらから
勘案するとサファイア基板上への窒化ガリウム系化合物
半導体の成長条件とエッチングの条件の組み合わせによ
っては凹凸の形状はいろいろでき、最適値を選択するこ
とができる。{11−20}面のみが連続的に現れるよ
うにエッチングすることもできるし、{11−20}面
がまばらに存在するようにもでき、もちろんサイズも好
適値が選べる。{11−20}面と(0001)面がス
テップ状に表れているピットであってもよい。このよう
に、単に表面を荒らし、粗面にし、凹凸をつけるのでは
なく、特定の面を出すことにより、指向性・視野角等様
々な特性が向上する。また、本発明にかかる窒化ガリウ
ム系化合物半導体素子の前記窒化ガリウム系化合物半導
体基板はn型不純物、及び/又は、p型不純物がドープ
されている。このようにドーピングすることにより、基
板に導電性を持たせることができ、裏面に電極を形成す
るなどデバイスの構造にバリエーションが増える。
[Means for Solving the Problems] We have conducted a number of experiments to suppress multiple reflections inside the gallium nitride-based compound semiconductor and to increase the external quantum efficiency. It was newly found that the above problems can be solved by causing diffuse reflection on the surface of the compound semiconductor. Therefore, in a light emitting device in which a gallium nitride compound semiconductor substrate is laminated on a gallium nitride compound semiconductor substrate, the surface of the gallium nitride compound semiconductor substrate facing the element laminating surface has irregularities. . As a result, total reflection of the light emitted in the light extraction surface direction on the extraction surface is suppressed, and the light extraction efficiency is improved. Further, in the gallium nitride-based compound semiconductor element according to the present invention, the irregularities are formed by dry etching and / or wet etching.
Although the sapphire substrate is polished and removed before etching, the interface between the sapphire substrate and the gallium nitride-based compound semiconductor has stress, strain, dislocation, etc., and the etching rate is faster than other surfaces. In particular, a portion having a high dislocation density and poor crystallinity has a high etching rate, so that unevenness is formed on the surface of the gallium nitride-based compound semiconductor substrate. Further, in the gallium nitride-based compound semiconductor light emitting device according to the present invention, the irregularities have {11-20} planes or {11-20}
The plane and the (0001) plane are stepped pits. This shape can be produced by dry etching, but wet etching is easier to produce. In the case of dry etching, it may depend on conditions such as RIE,
In many cases, the etching power is too strong, and etching is performed regardless of whether the surface is stable or metastable. On the other hand, since wet etching has a weak etching force, it is etched along the stable surface and the metastable surface. More specifically, the stable surface is less likely to be etched, and the metastable surface is more easily etched than the stable surface, so that the metastable surface appears. When a gallium nitride-based compound semiconductor device is treated with an etching solution, only the surface of the sapphire substrate that has been polished / removed is significantly etched. This is because when a gallium nitride-based compound semiconductor is stacked on a sapphire substrate, the (0001) plane, which is a stable surface, and the {11-20} plane, which is a metastable surface, grow at the same time due to the mismatch of the lattice constants. When it grows to the film thickness,
It can be considered that only the (0001) plane grows. Taking these into consideration, the shape of the unevenness can be varied depending on the combination of the growth condition of the gallium nitride compound semiconductor on the sapphire substrate and the etching condition, and the optimum value can be selected. The etching can be performed so that only the {11-20} planes appear continuously, or the {11-20} planes can be sparsely present, and of course, a suitable size can be selected. It may be a pit in which the {11-20} plane and the (0001) plane appear in steps. As described above, various characteristics such as the directivity and the viewing angle are improved by forming a specific surface rather than simply roughening the surface to make it rough and making it uneven. Further, the gallium nitride compound semiconductor substrate of the gallium nitride compound semiconductor device according to the present invention is doped with n-type impurities and / or p-type impurities. By doping in this way, the substrate can be made to have conductivity, and variations in the device structure such as forming electrodes on the back surface increase.

【0006】また、本発明にかかる窒化ガリウム系化合
物半導体発光素子における前記n型不純物が、Si,G
e,Sn,Sの少なくとも1を含む。周期律表における
IV族、VI族元素を添加することによって窒化ガリウム系
化合物半導体がn型化するためである。また、本発明に
かかる窒化ガリウム系化合物半導体発光素子における前
記p型不純物が、Mg,Zn,Ca,Beの少なくとも
1を含む。周期律表におけるIIA族、IIB族元素を添加
することによって窒化ガリウム系化合物半導体がp型化
するためである。
Further, in the gallium nitride-based compound semiconductor light emitting device according to the present invention, the n-type impurities are Si, G
At least one of e, Sn, and S is included. In the periodic table
This is because the gallium nitride-based compound semiconductor becomes n-type by adding the group IV and group VI elements. The p-type impurity in the gallium nitride-based compound semiconductor light emitting device according to the present invention contains at least one of Mg, Zn, Ca, and Be. This is because the gallium nitride-based compound semiconductor becomes p-type by adding the IIA group and IIB group elements in the periodic table.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0008】本発明における窒化ガリウム系化合物半導
体の成長方法としては、基板1上に第1の窒化ガリウム
系化合物半導体から成る核、又は層を成長させ、その上
にハイドライド気相エピタキシャル成長法により第2の
窒化ガリウム系化合物半導体と、第3の窒化ガリウム系
化合物半導体とを成長させるものである。
As a method for growing a gallium nitride-based compound semiconductor in the present invention, a nucleus or a layer made of a first gallium nitride-based compound semiconductor is grown on a substrate 1, and a second step is performed thereon by a hydride vapor phase epitaxial growth method. And a third gallium nitride based compound semiconductor are grown.

【0009】本発明では、基板にC面、R面、及びA面
のいずれかを主面とするサファイアやSiC(6H、4
H、3C)、スピネル、ZnS、ZnO、GaAs、S
i、又は窒化ガリウム系化合物半導体等を基板とする。
According to the present invention, sapphire or SiC (6H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, 4H, etc.
H, 3C), spinel, ZnS, ZnO, GaAs, S
i or a gallium nitride-based compound semiconductor or the like is used as the substrate.

【0010】これらの基板は表面が平坦なものを使用す
るが、窒化ガリウム系化合物半導体から成る核、又は層
を成長させることができれば、例えばエッチング等によ
り細かい荒れを有するものや、基板に凹凸、斜面、階段
形状を有するものであってもよい。
These substrates have flat surfaces, but if nuclei or layers made of gallium nitride compound semiconductor can be grown, for example, those having fine roughness due to etching or the like, unevenness on the substrate, It may have a slope or step shape.

【0011】次にバッファー層(図示されていない。)
を基板1上に成長させることにより、基板1との格子定
数不整合を緩和させることができる。例えば、窒化ガリ
ウムとサファイアとの格子不整合は約16%と非常に大
きいため、表面モフォロジーの良好な結晶性を有する基
板を得るのは困難であった。バッファー層にはこの格子
定数の違いを緩和させる効果があり、具体例としては、
AlN、GaN、AlGaN、InGaN、及びInA
lGaNが挙げられる。キャリアガスに水素、原料ガス
にはトリメチルガリウム、トリメチルアルミニウム、ト
リメチルインジウム等を用い、300℃以上900℃以
下の温度、10オングストローム以上0.5μm以下の
膜厚で成長させる。尚、このバッファー層は基板の種類
等により省略することもできる。
Next, a buffer layer (not shown)
Is grown on the substrate 1, the lattice constant mismatch with the substrate 1 can be relaxed. For example, since the lattice mismatch between gallium nitride and sapphire is as large as about 16%, it is difficult to obtain a substrate having good surface morphology and crystallinity. The buffer layer has the effect of alleviating this difference in lattice constant, and as a specific example,
AlN, GaN, AlGaN, InGaN, and InA
1 GaN may be mentioned. Hydrogen is used as a carrier gas and trimethylgallium, trimethylaluminum, trimethylindium, or the like is used as a source gas, and the film is grown at a temperature of 300 ° C. or higher and 900 ° C. or lower and a film thickness of 10 angstrom or more and 0.5 μm or less. The buffer layer may be omitted depending on the type of substrate.

【0012】次に、第1の窒化ガリウム系化合物半導体
から成る核、又は層を成長させる。成長方法としては、
特に限定されないが、結晶の核密度の均一性や配向特
性、及び大きさ、層の厚みの制御にはMOCVD法を用
いるのが好ましい。
Next, a nucleus or layer made of the first gallium nitride-based compound semiconductor is grown. As a growth method,
Although not particularly limited, it is preferable to use the MOCVD method for controlling the uniformity of the nucleus density of crystals, the orientation characteristics, the size, and the layer thickness.

【0013】第1の窒化ガリウム系化合物半導体として
は核、又は薄膜から成る層など特に限定されないが、第
1の窒化ガリウム系化合物半導体は第2の窒化ガリウム
系化合物半導体を成長させるためにC軸配向特性の優れ
たものが好ましい。
The first gallium nitride-based compound semiconductor is not particularly limited to a nucleus or a layer formed of a thin film, but the first gallium nitride-based compound semiconductor is a C-axis for growing the second gallium nitride-based compound semiconductor. Those having excellent alignment characteristics are preferable.

【0014】第1の窒化ガリウム系化合物半導体の成長
条件としては、キャリアガス、及び原料ガスはバッファ
ー層と同様でもよく、キャリアガスには水素、原料ガス
にはトリメチルガリウム等を用い、成長温度は900℃
〜1100℃でありバッファー層より高温で成長させ、
核として成長させるものは途中で成長を止め核とし、層
とするものは更に成長を続けることでミラーを形成させ
る。
As the growth conditions for the first gallium nitride compound semiconductor, the carrier gas and the source gas may be the same as those for the buffer layer, hydrogen is used as the carrier gas, trimethylgallium is used as the source gas, and the growth temperature is 900 ° C
~ 1100 ℃ and grown at a higher temperature than the buffer layer,
Those that grow as nuclei stop growing midway and become nuclei, and those that grow as layers form mirrors by continuing further growth.

【0015】第1の窒化ガリウム系化合物半導体は鏡面
を有する層として成長させた場合の膜厚としては、50
0オングストローム〜50μmであり、結晶欠陥を減ら
す効果を有する。
The first gallium nitride-based compound semiconductor has a film thickness of 50 when grown as a layer having a mirror surface.
It is 0 angstrom to 50 μm, and has an effect of reducing crystal defects.

【0016】次に、第1の窒化ガリウム系化合物半導体
上に、ハイドライド気相エピタキシャル成長(HVP
E)法により第2の窒化ガリウム系化合物半導体と、第
3の窒化ガリウム系化合物半導体とを成長させることに
より窒化ガリウム系化合物半導体基板とする。ハライド
気相エピタキシャル成長法は、短時間で厚膜を成長させ
ることができるため、窒化ガリウム系化合物半導体の厚
膜成長や、異種基板を剥離した窒化ガリウム系化合物半
導体の単体基板の形成に有効である。
Next, hydride vapor phase epitaxial growth (HVP) is performed on the first gallium nitride compound semiconductor.
The gallium nitride compound semiconductor substrate is obtained by growing the second gallium nitride compound semiconductor and the third gallium nitride compound semiconductor by the method E). The halide vapor phase epitaxial growth method is effective for thick film growth of gallium nitride-based compound semiconductors and formation of a single substrate of gallium nitride-based compound semiconductors from which different kinds of substrates have been peeled off, because thick films can be grown in a short time. .

【0017】以下にHVPE装置を用いた成長工程、及
び成長条件を示す。
The growth process and growth conditions using the HVPE apparatus are shown below.

【0018】HVPE装置内に、Gaメタルを入れた石
英ボートを設置し、さらに石英ボートから離れた位置に
基板を設置する。次にGaメタルと反応させるハロゲン
ガスの供給管と、ハロゲンガス供給管とは別に、N源供
給管を設ける。
A quartz boat containing Ga metal is placed in the HVPE apparatus, and a substrate is placed at a position apart from the quartz boat. Next, an N source supply pipe is provided separately from the halogen gas supply pipe for reacting with the Ga metal and the halogen gas supply pipe.

【0019】ハロゲンガスとしてはHCl等があり、キ
ャリアガスと共にハロゲンガス管より導入される。この
ハロゲンガスとGa等の金属が反応することにより3族
元素のハロゲン化物を生成させ、さらに、N源供給管よ
り流したアンモニアガスと反応することにより窒化ガリ
ウム系化合物半導体を基板上に成長させる。
As the halogen gas, there is HCl or the like, which is introduced together with the carrier gas through the halogen gas pipe. The halogen gas reacts with a metal such as Ga to generate a halide of a Group 3 element, and further reacts with the ammonia gas flown from the N source supply pipe to grow a gallium nitride-based compound semiconductor on the substrate. .

【0020】第2の窒化ガリウム系化合物半導体の成長
条件としては、成長速度が0.5mm/hour以上で
あり、より好ましくは1〜10mm/hourである。
As a growth condition of the second gallium nitride compound semiconductor, the growth rate is 0.5 mm / hour or more, and more preferably 1 to 10 mm / hour.

【0021】また、第2の窒化ガリウム系化合物半導体
の膜厚としては特に限定されないが、好ましくは300
μm以上であり、常圧又は微減圧で成長させる。300
μm以上無ければ、サファイア基板等を研磨・除去する
ことが難しいからである。
The thickness of the second gallium nitride-based compound semiconductor is not particularly limited, but is preferably 300.
It is at least μm and is grown under normal pressure or slightly reduced pressure. 300
This is because it is difficult to polish / remove the sapphire substrate or the like unless it is more than μm.

【0022】第2の窒化ガリウム系化合物半導体として
は、アンドープのGaN、n型不純物としてSi、G
e、Sn及びS等の少なくとも1種類をドープしたGa
N、又はp型不純物をドープしたGaN等を用いること
ができる。次に第2の窒化ガリウム系化合物半導体を成
長後、この上に第3の窒化ガリウム系化合物半導体を以
下の条件で成長させる。
The second gallium nitride-based compound semiconductor is undoped GaN, and n-type impurities are Si and G.
Ga doped with at least one kind of e, Sn and S
GaN or the like doped with N or p-type impurities can be used. Next, after growing the second gallium nitride-based compound semiconductor, a third gallium nitride-based compound semiconductor is grown thereon under the following conditions.

【0023】第3の窒化ガリウム系化合物半導体は第2
の窒化ガリウム系化合物半導体と同温、又はそれ以上の
温度で成長させるのが好ましく、1000℃以上とす
る。ただし、第3の窒化ガリウム系化合物半導体と第3
の窒化ガリウム系化合物半導体との温度差が大きければ
基板に反りが発生するため温度差が少ない方が好まし
い。また、第3の窒化ガリウム系化合物半導体4の膜厚
としては、最上面が鏡面になれば特に限定されず30μ
m以上であればよい。そのため、第3の窒化ガリウム系
化合物半導体は膜厚を30μm程度の成長が可能な気相
成長法であればMOCVD法やMBE法等でも行うこと
ができる。
The third gallium nitride-based compound semiconductor is the second
It is preferable to grow at the same temperature as or higher than that of the gallium nitride-based compound semiconductor, and the temperature is 1000 ° C. or higher. However, the third gallium nitride-based compound semiconductor and the third
If the temperature difference from the gallium nitride-based compound semiconductor is large, the substrate warps, so the smaller temperature difference is preferable. The film thickness of the third gallium nitride-based compound semiconductor 4 is not particularly limited as long as the uppermost surface is a mirror surface, and is 30 μm.
It may be m or more. Therefore, the third gallium nitride-based compound semiconductor can be formed by the MOCVD method, the MBE method, or the like as long as it is a vapor growth method capable of growing the film thickness to about 30 μm.

【0024】第3の窒化ガリウム系化合物半導体として
は、例えば、アンドープGaNや、Si等のn型不純
物、又は、Mg等のp型不純物をドープしたGaNを用
いることができる。
As the third gallium nitride-based compound semiconductor, for example, undoped GaN, n-type impurities such as Si, or GaN doped with p-type impurities such as Mg can be used.

【0025】第2の窒化ガリウム系化合物半導体、及び
第3の窒化ガリウム系化合物半導体の組成式としては、
特に限定されず、一般式InAlGa1−x−y
(0≦x、0≦y、x+y<1)によって表すことがで
きる。
The composition formulas of the second gallium nitride compound semiconductor and the third gallium nitride compound semiconductor are as follows:
Is not particularly limited, the general formula In x Al y Ga 1-x -y N
It can be represented by (0 ≦ x, 0 ≦ y, x + y <1).

【0026】但し、これらは互いに異なる組成であって
もよく、アンドープ、n型不純物ドープ、及び/又はp
型不純物をドープさせた窒化ガリウム系化合物半導体で
もよい。また、n型不純物をしては、Si、Ge、及び
S等であり、p型不純物としてはMg、Be、Cr、M
n、Ca、Zn等が挙げられる。
However, these may have different compositions, and may be undoped, n-type impurity doped, and / or p-type.
It may be a gallium nitride-based compound semiconductor doped with a type impurity. The n-type impurities are Si, Ge, S, etc., and the p-type impurities are Mg, Be, Cr, M.
n, Ca, Zn etc. are mentioned.

【0027】上記の成長方法により得られた窒化ガリウ
ム系化合物基板は、最上面が平坦であり、且つ鏡面とな
る低欠陥部分を広範囲で有する窒化ガリウム系化合物半
導体基板と成る。
The gallium nitride-based compound substrate obtained by the above growth method is a gallium nitride-based compound semiconductor substrate having a flat top surface and a wide range of low-defect portions which are mirror surfaces.

【0028】なお、本発明による素子は窒化ガリウム系
化合物半導体を用いたものであれば発光素子でも電子デ
バイスでもよい。
The device according to the present invention may be a light emitting device or an electronic device as long as it uses a gallium nitride compound semiconductor.

【0029】本発明は上記の成長方法により得られた窒
化ガリウム系化合物基板をサファイア基板から研磨・除
去した後にエッチングするのであるが、順序は発光素
子をエピタキシャル成長させた後、サファイア基板を除
去し、エッチングしても良いし、サファイア基板を除
去して、発光素子をエピタキシャル成長させた後、エッ
チングしても良いし、サファイア基板を除去して、エ
ッチングした後に、発光素子をエピタキシャル成長して
もいい。
In the present invention, the gallium nitride-based compound substrate obtained by the above growth method is polished and removed from the sapphire substrate and then etched. The order is to epitaxially grow the light emitting device and then remove the sapphire substrate. Etching may be performed, the sapphire substrate may be removed, and the light emitting device may be epitaxially grown and then etched. Alternatively, the sapphire substrate may be removed and etched, and then the light emitting device may be epitaxially grown.

【0030】これらの図に示すように窒化ガリウム系化
合物半導体の裏面を非鏡面、即ち微細な凹凸が形成され
た状態とするには、成長後窒化ガリウム系化合物半導体
基板を化学的または物理的方法によって非鏡面とする方
法とがある。方法は、鏡面を有する裏面の窒化ガリウム
系化合物半導体表面をエッチングするか、または研磨す
ることにより、微細な凹凸を設けて非鏡面とする方法で
ある。エッチングには例えばリン酸+硫酸の混酸を用い
るウエットエッチングと、RIE(反応性イオンエッチ
ング)等の装置を用いるドライエッチングとの二種類の
方法があるがいずれの方法でもよい。研磨は適当な研磨
剤を選択することにより、モース硬度がほぼ9と非常に
硬い窒化ガリウム系化合物半導体でも研磨してその表面
を非鏡面とすることができる。
As shown in these figures, in order to make the back surface of the gallium nitride-based compound semiconductor non-mirror surface, that is, a state where fine irregularities are formed, the gallium nitride-based compound semiconductor substrate is grown or grown by a chemical or physical method. There is a method to make it a non-mirror surface. The method is a method in which the surface of the gallium nitride-based compound semiconductor on the back surface having a mirror surface is etched or polished to form fine irregularities to make it a non-mirror surface. There are two types of etching, for example, wet etching using a mixed acid of phosphoric acid and sulfuric acid and dry etching using an apparatus such as RIE (reactive ion etching), but either method may be used. By selecting an appropriate polishing agent, even a very hard gallium nitride compound semiconductor having a Mohs hardness of about 9 can be polished to make its surface non-mirror surface.

【0031】本発明の効果を得るにはウエットエッチン
グが最も適しており、次がドライエッチング、最後に研
磨の順である。どの方法を用いるにしても、前述したよ
うにサファイア基板を研磨・除去してからエッチングす
るのであるが、サファイア基板と窒化ガリウム系化合物
半導体との界面は応力・歪・転位等が存在し、他の面よ
りもエッチングレートが早い。特に転位密度が高く、結
晶性が悪い部分はエッチングのレートが早いため、窒化
ガリウム系化合物半導体基板の表面に凹凸が形成され
る。また、本発明にかかる窒化ガリウム系化合物半導体
発光素子は、前記凹凸が{11−20}面又は{11−
20}面と(0001)面がステップ状に表れているピ
ットである。この形状は、ドライエッチングや研磨でも
作製可能であるが、ウエットエッチングの方が作製しや
すい。ドライエッチングの場合、RIE等条件にもよる
であろうが、エッチング力が強すぎ、安定面・準安定面
関係なく、エッチングしてしまう場合が多い。また、研
磨は研磨剤の粒子や硬度等の選択を誤れば、単に窒化ガ
リウム系化合物半導体基板の裏面を粗面にするに終わっ
てしまい、{11−20}面、又は{11−20}面と
(0001)面がステップ状に表れない。単なる粗面で
も効果はあるが上記の特定面からなるピットを形成する
とさらに効果が大きい。一方、ウエットエッチングはエ
ッチング力が弱いため、安定面・準安定面に沿ってエッ
チングされる。もっと言うと、安定面はエッチングされ
にくく、準安定面は安定面に比べてエッチングされやす
いため、準安定面が現れる。エッチング溶液で窒化ガリ
ウム系化合物半導体素子を処理すると、サファイア基板
を研磨・除去した面のみが著しくエッチングされる。こ
れはサファイア基板上に窒化ガリウム系化合物半導体は
積層する際、格子定数の不整合により安定面である(0
001)面と準安定面である{11−20}面とが同時
に成長し、ある程度の膜厚まで成長すると、(000
1)面のみ成長すると考察できる。これらから勘案する
とサファイア基板上への窒化ガリウム系化合物半導体の
成長条件とエッチングの条件の組み合わせによっては凹
凸の形状はいろいろでき、最適値を選択することができ
る。{11−20}面のみが連続的に現れるようにエッ
チングすることもできるし、{11−20}面がまばら
に存在するようにもでき、もちろんサイズも好適値が選
べる。{11−20}面と(0001)面がステップ状
に表れているピットであってもよい。このように、単に
表面を荒らし、粗面にし、凹凸をつけるのではなく、特
定の面を出すことにより、指向性・視野角等様々な特性
が向上する。
Wet etching is most suitable for obtaining the effects of the present invention, followed by dry etching and finally polishing. Whichever method is used, as described above, the sapphire substrate is polished and removed, and then etched, but stress, strain, dislocations, etc. exist at the interface between the sapphire substrate and the gallium nitride-based compound semiconductor. The etching rate is faster than the surface. In particular, a portion having a high dislocation density and poor crystallinity has a high etching rate, so that unevenness is formed on the surface of the gallium nitride-based compound semiconductor substrate. In addition, in the gallium nitride-based compound semiconductor light emitting device according to the present invention, the irregularities have {11-20} planes or {11-
The 20} plane and the (0001) plane are stepped pits. This shape can be produced by dry etching or polishing, but wet etching is easier. In the case of dry etching, although it depends on conditions such as RIE, the etching force is too strong, and etching is often performed regardless of whether the surface is stable or metastable. In addition, when the particles of the polishing agent, the hardness, etc. are mistakenly selected for polishing, the back surface of the gallium nitride-based compound semiconductor substrate is simply roughened, and the {11-20} plane or the {11-20} plane is obtained. And the (0001) plane does not appear in steps. The effect is obtained even with a simple rough surface, but the effect is further enhanced by forming the pits having the specific surface. On the other hand, since wet etching has a weak etching force, it is etched along the stable surface and the metastable surface. More specifically, the stable surface is less likely to be etched, and the metastable surface is more easily etched than the stable surface, so that the metastable surface appears. When a gallium nitride-based compound semiconductor device is treated with an etching solution, only the surface of the sapphire substrate that has been polished / removed is significantly etched. This is a stable surface due to the mismatch of lattice constants when the gallium nitride compound semiconductor is stacked on the sapphire substrate (0
When the (001) plane and the {11-20} plane, which is a metastable plane, grow at the same time and grow to a certain thickness, (000
1) It can be considered that only the faces grow. Taking these into consideration, the shape of the unevenness can be varied depending on the combination of the growth condition of the gallium nitride compound semiconductor on the sapphire substrate and the etching condition, and the optimum value can be selected. The etching can be performed so that only the {11-20} planes appear continuously, or the {11-20} planes can be sparsely present, and of course, a suitable size can be selected. It may be a pit in which the {11-20} plane and the (0001) plane appear in steps. As described above, various characteristics such as the directivity and the viewing angle are improved by forming a specific surface rather than simply roughening the surface to make it rough and making it uneven.

【0032】[0032]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 [実施例1]図1に示すように、基板1としてC面を主
面、オリフラ面をA面とするサファイア基板を用い、M
OCVD装置にセットし、温度1050℃で10分間の
サーマルクリーニングを行い水分や表面の付着物を除去
した。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] As shown in FIG. 1, a sapphire substrate having a C surface as a main surface and an orientation flat surface as an A surface is used as a substrate 1, and M
It was set in an OCVD device and subjected to thermal cleaning at a temperature of 1050 ° C. for 10 minutes to remove water and adhered substances on the surface.

【0033】次に、温度を510℃にして、キャリアガ
スに水素、原料ガスにアンモニアとトリメチルガリウム
を用い、GaNより成るバッファー層を200オングス
トロームの膜厚で成長させた。
Next, at a temperature of 510 ° C., hydrogen was used as a carrier gas, ammonia and trimethylgallium were used as source gases, and a buffer layer made of GaN was grown to a thickness of 200 Å.

【0034】その後、第1の窒化ガリウム系化合物半導
体としてGaNから成り平坦性を有する層を成長温度1
050℃で膜厚20μmで形成した。本実施例では、成
長時のキャリアガスとして水素を20.5L/分、原料
ガスとしてアンモニアを5L/分、トリメチルガリウム
を25cc/分間、流した。
Then, a layer having flatness made of GaN as a first gallium nitride compound semiconductor is grown at a growth temperature of 1
It was formed with a film thickness of 20 μm at 050 ° C. In this example, 20.5 L / min of hydrogen was supplied as a carrier gas during growth, 5 L / min of ammonia was supplied as a source gas, and 25 cc / min of trimethylgallium was supplied as a source gas.

【0035】第1の窒化ガリウム系化合物半導体を成長
後、ハイドライド気相エピタキシャル成長装置にセット
し、Gaメタルを石英ボートに用意し、ハロゲンガスに
HClガスを用いることによりGaClを生成し、次
に、Nガスであるアンモニアガスと反応させ、アンドー
プGaNよりなる第2の窒化ガリウム系化合物半導体3
を成長させた。
After growing the first gallium nitride-based compound semiconductor, it was set in a hydride vapor phase epitaxial growth apparatus, Ga metal was prepared in a quartz boat, and HCl gas was used as halogen gas to generate GaCl 3 , and then GaCl 3 was produced. , A second gallium nitride-based compound semiconductor 3 made of undoped GaN by reacting with ammonia gas that is N gas
Has grown up.

【0036】第2の窒化ガリウム系化合物半導体の成長
温度としては1000℃であり、成長速度を1mm/h
ourとして、膜厚300μmで成長させた。この平面
写真を図3に示した。次に、第2の窒化ガリウム系化合
物半導体上に、第3の窒化ガリウム系化合物半導体をハ
イドライド気相エピタキシャル成長法装置において成長
させた。
The growth temperature of the second gallium nitride compound semiconductor is 1000 ° C., and the growth rate is 1 mm / h.
The growth was performed with a film thickness of 300 μm. This plane photograph is shown in FIG. Next, a third gallium nitride compound semiconductor was grown on the second gallium nitride compound semiconductor in a hydride vapor phase epitaxial growth method apparatus.

【0037】この時の成長条件としては、成長温度を第
2の窒化ガリウム系化合物半導体3と同温とし、第3の
窒化ガリウム系化合物半導体4の成長速度を50μm/
hourで膜厚は50μmで成長させた。平坦性を有し
鏡面である平面写真を図4に示した。
The growth conditions at this time are that the growth temperature is the same as that of the second gallium nitride-based compound semiconductor 3 and the growth rate of the third gallium nitride-based compound semiconductor 4 is 50 μm /
Hour was grown to a film thickness of 50 μm. FIG. 4 shows a plane photograph which is flat and has a mirror surface.

【0038】以上により得られた第3の窒化ガリウム系
化合物半導体4の表面は平坦かつ鏡面となり、図5に示
すようにCL観察によると貫通転位密度は約1×10
cm −2であり、低欠陥である窒化ガリウム系化合物半
導体基板を提供することができる。上記方法によって得
られた窒化ガリウム系化合物半導体基板1をMOVPE
の反応容器内にセットし、水素を流しながら、基板の温
度を1050℃まで上昇させ、基板のクリーニングを行
う。 (バッファ層2)続いて、温度を510℃まで下げ、キ
ャリアガスに水素、原料ガスにアンモニアとTMG(ト
リメチルガリウム)とを用い、基板1上にGaNよりな
るバッファ層2を約100オングストロームの膜厚で成
長させる。 (アンドープGaN層3)バッファ層2成長後、TMG
のみ止めて、温度を1050℃まで上昇させる。105
0℃になったら、同じく原料ガスにTMG、アンモニア
ガスを用い、アンドープGaN層3を1.5μmの膜厚
で成長させる。 (n型コンタクト層4)続いて1050℃で、同じく原
料ガスにTMG、アンモニアガス、不純物ガスにシラン
ガスを用い、Siを4.5×1018/cm3ドープしたG
aNよりなるn型コンタクト層4を2.265μmの膜
厚で成長させる。 (n型第1多層膜層5)次にシランガスのみを止め、1
050℃で、TMG、アンモニアガスを用い、アンドー
プGaNからなる下層5aを2000オングストローム
の膜厚で成長させ、続いて同温度にてシランガスを追加
しSiを4.5×1018/cm3ドープしたGaNからな
る中間層5bを300オングストロームの膜厚で成長さ
せ、更に続いてシランガスのみを止め、同温度にてアン
ドープGaNからなる上層5cを50オングストローム
の膜厚で成長させ、3層からなる総膜厚2350オング
ストロームの第1多層膜層5を成長させる。 (n型第2多層膜層6)次に、同様の温度で、アンドー
プGaNよりなる第4の窒化物半導体層を40オングス
トローム成長させ、次に温度を800℃にして、TM
G、TMI、アンモニアを用い、アンドープIn0.13
0.87Nよりなる第3の窒化物半導体層を20オングス
トローム成長させる。そしてこれらの操作を繰り返し、
第4+第3の順で交互に10層づつ積層させ、最後にG
aNよりなる第4の窒化物半導体層を40オングストロ
ーム成長さた超格子構造の多層膜よりなるn型第2多層
膜層6を640オングストロームの膜厚で成長させる。 (活性層7)次に、アンドープGaNよりなる障壁層を
200オングストロームの膜厚で成長させ、続いて温度
を800℃にして、TMG、TMI、アンモニアを用い
アンドープIn0.4Ga0.6Nよりなる井戸層を30オン
グストロームの膜厚で成長させる。そして障壁+井戸+
障壁+井戸・・・・+障壁の順で障壁層を5層、井戸層
を4層、交互に積層して、総膜厚1120オングストロ
ームの多重量子井戸構造よりなる活性層7を成長させ
る。 (中濃度ドープの多層膜p型クラッド層8)次に、温度
1050℃でTMG、TMA、アンモニア、Cp2Mg
(シクロペンタジエニルマグネシウム)を用い、Mgを
5×1019/cm3ドープしたp型Al0.2Ga0.8Nより
なる第1の窒化物半導体層を40オングストロームの膜
厚で成長させ、続いて温度を800℃にして、TMG、
TMI、アンモニア、Cp2Mgを用いMgを5×10
19/cm3ドープしたIn0.03Ga0.97Nよりなる第2の
窒化物半導体層を25オングストロームの膜厚で成長さ
せる。そしてこれらの操作を繰り返し、第1+第2の順
で交互に5層ずつ積層し、最後に第1の窒化物半導体層
を40オングストロームの膜厚で成長させた超格子構造
の多層膜よりなるp側多層膜クラッド層8を365オン
グストロームの膜厚で成長させる。 (低濃度ドープのp型低濃度ドープ層9)続いて、10
50℃で、TMG、アンモニアを用い、アンドープのG
aNよりなるp型低濃度ドープ層9を2000オングス
トロームの膜厚で成長させる。この低濃度ドープ層9
は、成長時はアンドープとして成長させるが、中濃度ド
ープの多層膜p型クラッド層8にドープされているMg
が、低濃度ドープ層9を成長する間に拡散し、さらに下
記の高濃度ドープのp型コンタクト層10を成長させる
際にMgが拡散し、低濃度ドープ層9はp型を示す。
Third gallium nitride-based material obtained as described above
The surface of the compound semiconductor 4 is flat and mirror-finished, as shown in FIG.
According to CL observation, the threading dislocation density is about 1 × 10.6
cm -2And a low-defect gallium nitride compound semi-
A conductor substrate can be provided. Obtained by the above method
The obtained gallium nitride compound semiconductor substrate 1 by MOVPE
Set it in the reaction vessel of and heat the substrate while flowing hydrogen.
Temperature to 1050 ° C to clean the substrate.
U (Buffer layer 2) Then, the temperature is lowered to 510 ° C.
Hydrogen as carrier gas and ammonia and TMG (source gas as source gas)
Limemethylgallium) and GaN on the substrate 1
Buffer layer 2 with a film thickness of about 100 Å.
Make it longer. (Undoped GaN layer 3) After growth of the buffer layer 2, TMG
Stop and raise the temperature to 1050 ° C. 105
When the temperature reaches 0 ° C, TMG and ammonia are also used as source gas.
Gas is used to form the undoped GaN layer 3 with a thickness of 1.5 μm.
Grow with. (N-type contact layer 4) Then, at 1050 ° C.,
TMG as a source gas, ammonia gas, and silane as an impurity gas
4.5 × 10 Si using gas18/cm3Doped G
The n-type contact layer 4 made of aN has a film thickness of 2.265 μm.
Grow thick. (N-type first multilayer film layer 5) Next, stop the silane gas only, and 1
At 050 ° C, using TMG and ammonia gas,
The lower layer 5a made of GaN has a thickness of 2000 angstroms.
Of the same thickness, and then added silane gas at the same temperature.
Si Si 4.5 × 1018/cm3From doped GaN
The intermediate layer 5b having a thickness of 300 angstroms.
Then, stop the silane gas only, and keep it at the same temperature.
50 angstroms of upper layer 5c made of doped GaN
With a total thickness of 2350 Å
Growing the first multilayer 5 of strom. (N-type second multilayer film layer 6) Next, at the same temperature,
40 angstroms of fourth nitride semiconductor layer of GaN
Trom growth, then temperature to 800 ° C., TM
Undoped In using G, TMI, and ammonia0.13G
a0.8720 angstroms of third nitride semiconductor layer made of N
Grow troms. And repeat these operations,
10 layers are alternately stacked in the order of 4th + 3rd, and finally G
The fourth nitride semiconductor layer made of aN has a thickness of 40 angstroms.
N-type second multilayer consisting of layer-grown superlattice structure multilayer film
The film layer 6 is grown to a film thickness of 640 Å. (Active layer 7) Next, a barrier layer made of undoped GaN is formed.
Grow to a thickness of 200 Å, then
To 800 ° C and use TMG, TMI, and ammonia
Undoped In0.4Ga0.630 layers of N well layer
Grow with a thickness of Gstrom. And barrier + well +
Barrier + well ... 5 barrier layers in the order of + barrier, well layer
4 layers are alternately laminated to give a total film thickness of 1120 angstroms.
Grow an active layer 7 of a quantum well structure
It (Medium-concentration-doped multilayer p-type cladding layer 8) Next, temperature
TMG, TMA, ammonia, Cp2Mg at 1050 ℃
(Cyclopentadienyl magnesium)
5 x 1019/cm3Doped p-type Al0.2Ga0.8From N
A first nitride semiconductor layer having a thickness of 40 Å
Thick, followed by a temperature of 800 ° C., TMG,
5x10 Mg using TMI, ammonia and Cp2Mg
19/cm3Doped In0.03Ga0.97The second consisting of N
Nitride semiconductor layer grown to a thickness of 25 Å
Let Then, these operations are repeated until the first and second order.
By alternately stacking 5 layers each, and finally, the first nitride semiconductor layer
Structure grown with a thickness of 40 Å
The p-side multilayer clad layer 8 consisting of
Grow with a thickness of Gstrom. (Lightly-doped p-type lightly-doped layer 9) Subsequently, 10
Undoped G using TMG and ammonia at 50 ° C
2,000 angstroms of p-type lightly doped layer 9 made of aN
Grow at troth thickness. This lightly doped layer 9
Grows undoped during growth, but
Doped in the p-type clad layer 8
Diffuses during the growth of the lightly doped layer 9, and
The heavily doped p-type contact layer 10 is grown.
At this time, Mg diffuses and the low-concentration doped layer 9 exhibits p-type.

【0039】この低濃度ドープ層9のMg濃度は、最も
濃度が低い部分では、2×1018/cm3となる。また
低濃度ドープ層9のMg濃度の変化は、図2に示すよう
に、p型クラッド層8に接している部分ではp型クラッ
ド層のMg濃度とほぼ同様の値を示すが、p型クラッド
層8から離れるに従い徐々に減少し、p型コンタクト層
10と接近している付近(p型コンタクト層10を成長
させる直前)でのMg濃度がほぼ最低値を示す。
The Mg concentration of the low concentration doped layer 9 is 2 × 10 18 / cm 3 in the lowest concentration portion. Further, as shown in FIG. 2, the change in the Mg concentration of the low-concentration doped layer 9 is almost the same as the Mg concentration of the p-type cladding layer in the portion in contact with the p-type cladding layer 8, but The Mg concentration gradually decreases with increasing distance from the layer 8, and the Mg concentration in the vicinity of the p-type contact layer 10 (immediately before the growth of the p-type contact layer 10) shows a substantially minimum value.

【0040】(高濃度ドープのp型コンタクト層10)
続いて、1050℃で、TMG、アンモニア、Cp2M
gを用い、Mgを1×1020/cm3ドープしたGaNよ
りなるp型コンタクト層10を1200オングストロー
ムの膜厚で成長させる。
(Highly-doped p-type contact layer 10)
Then, at 1050 ° C, TMG, ammonia, Cp2M
Using g, a p-type contact layer 10 made of GaN doped with 1 × 10 20 / cm 3 of Mg is grown to a film thickness of 1200 Å.

【0041】反応終了後、温度を室温まで下げ、さらに
窒素雰囲気中、ウェーハを反応容器内において、700
℃でアニーリングを行い、p型層をさらに低抵抗化す
る。
After completion of the reaction, the temperature was lowered to room temperature, and the wafer was further heated in a nitrogen atmosphere in a reaction vessel at 700 ° C.
Annealing is performed at 0 ° C. to further reduce the resistance of the p-type layer.

【0042】アニーリング後、ウェーハを反応容器から
取り出し、サファイア基板を研磨・除去し、窒化ガリウ
ム系化合物半導体基板の裏面側をエッチングする。 (窒化ガリウム系化合物半導体基板のエッチング処理)
リン酸+硫酸の混酸を使用する。リン酸:硫酸=(1.
7:5.9)のモル比で混合する。リン酸は8.5mo
l/l、硫酸は9.8mol/lの濃度のものを使用
し、15分間エッチング処理すると{11−20}面と
(0001)面がステップ状に現れる10μm幅のピッ
トができる。
After the annealing, the wafer is taken out of the reaction vessel, the sapphire substrate is polished and removed, and the back surface side of the gallium nitride compound semiconductor substrate is etched. (Etching treatment of gallium nitride compound semiconductor substrate)
A mixed acid of phosphoric acid and sulfuric acid is used. Phosphoric acid: sulfuric acid = (1.
Mix at a molar ratio of 7: 5.9). Phosphoric acid is 8.5mo
1 / l and sulfuric acid having a concentration of 9.8 mol / l are used, and when the etching treatment is performed for 15 minutes, {11-20} planes and (0001) planes form stepwise pits having a width of 10 μm.

【0043】エッチング後、最上層にあるp型コンタク
ト層10のほぼ全面に膜厚200オングストロームのN
iとAuを含む透光性のp電極11と、そのp電極10
の上にボンディング用のAuよりなるpパッド電極12
を0.5μmの膜厚で形成する。一方、エッチングによ
り露出させたn型コンタクト層4の表面にはWとAlを
含むn電極12を形成してLED素子とした。
After etching, the N-type film having a film thickness of 200 angstrom is formed on almost the entire surface of the p-type contact layer 10 as the uppermost layer.
Translucent p-electrode 11 containing i and Au, and its p-electrode 10
P pad electrode 12 made of Au for bonding
Is formed with a film thickness of 0.5 μm. On the other hand, the n-type electrode 12 containing W and Al was formed on the surface of the n-type contact layer 4 exposed by etching to obtain an LED element.

【0044】このLED素子は順方向電流20mAにお
いて、520nmの純緑色発光を示した。
This LED element emitted pure green light of 520 nm at a forward current of 20 mA.

【0045】[実施例2]実施例1において、窒化ガリ
ウム系化合物半導体基板のエッチング処理をドライエッ
チングで行った以外は同様に作製した。特性もほぼ同程
度であった。 [実施例3]実施例1において、窒化ガリウム系化合物
半導体基板のエッチング処理を研磨で行った以外は同様
に作製した。研磨に使用する定盤に錫、錫鉛、樹脂錫、
樹脂銅等を使用し、研磨剤にダイヤを使用した。特性と
しては実施例1とほぼ同程度であった。
[Example 2] The same procedure as in Example 1 was carried out except that the gallium nitride compound semiconductor substrate was dry-etched. The characteristics were almost the same. [Example 3] The same procedure as in Example 1 was carried out except that the gallium nitride compound semiconductor substrate was etched by polishing. For the surface plate used for polishing, tin, tin-lead, resin tin,
Resin copper or the like was used, and diamond was used as an abrasive. The characteristics were almost the same as in Example 1.

【0046】[0046]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体素子はその裏面を特定形状としてい
ることにより、窒化ガリウム系化合物半導体層内の多重
反射による光の干渉を抑えることができる。従って、窒
化ガリウム系化合物半導体の発光を有効に外部に取り出
すことができ、発光素子の外部量子効率が向上する。ま
た、発光スペクトルに、目的とする発光ピーク以外の干
渉によるピークが出現してこないため、窒化ガリウム系
化合物半導体を用いて青色発光ダイオードを作製した場
合にその色純度を向上させることができる。
As described above, the gallium nitride-based compound semiconductor device of the present invention has a back surface having a specific shape, so that light interference due to multiple reflection in the gallium nitride-based compound semiconductor layer can be suppressed. . Therefore, the light emission of the gallium nitride-based compound semiconductor can be effectively extracted to the outside, and the external quantum efficiency of the light emitting device is improved. Further, since peaks due to interference other than the intended emission peak do not appear in the emission spectrum, the color purity can be improved when a blue light emitting diode is manufactured using a gallium nitride-based compound semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体の模式断面図である。
FIG. 1 is a schematic cross-sectional view of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図2】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体の部分斜視図である。
FIG. 2 is a partial perspective view of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図3】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体の模式断面図である。
FIG. 3 is a schematic cross-sectional view of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図4】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体の部分斜視図である。
FIG. 4 is a partial perspective view of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図5】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体のピット部分の拡大写真である。
FIG. 5 is an enlarged photograph of a pit portion of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図6】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体のピット部分の拡大写真である。
FIG. 6 is an enlarged photograph of a pit portion of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【図7】本発明の一実施の形態を示す窒化ガリウム系化
合物半導体のピット部分の拡大写真である。
FIG. 7 is an enlarged photograph of a pit portion of a gallium nitride-based compound semiconductor showing an embodiment of the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1・・・基板 2・・・エピ部 3・・・電極 4・・・電極 5・・・ピット 1 ... Substrate 2 ... Epi 3 ... Electrode 4 ... Electrode 5 ... pit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒化ガリウム系化合物半導体基板上に窒
化ガリウム系化合物半導体が積層されてなる発光素子に
おいて、前記窒化ガリウム系化合物半導体基板の素子を
積層する面に対向する面が凹凸を有することを特徴とす
る窒化ガリウム系化合物半導体素子。
1. A light emitting device comprising a gallium nitride compound semiconductor substrate on which a gallium nitride compound semiconductor is laminated, wherein a surface of the gallium nitride compound semiconductor substrate facing the element laminating surface has irregularities. A characteristic gallium nitride compound semiconductor device.
【請求項2】 前記凹凸がドライエッチング、及び/又
は、ウェットエッチングにより形成されている請求項1
に記載の窒化ガリウム系化合物半導体素子。
2. The unevenness is formed by dry etching and / or wet etching.
2. A gallium nitride-based compound semiconductor device described in.
【請求項3】 前記凹凸が{11−20}面又は{11
−20}面と(0001)面がステップ状に表れている
ピットである請求項1又は2に記載の窒化ガリウム系化
合物半導体素子。
3. The unevenness has a {11-20} plane or a {11-20} plane.
The gallium nitride-based compound semiconductor device according to claim 1 or 2, which is a pit in which the −20} plane and the (0001) plane appear in steps.
【請求項4】 前記窒化ガリウム系化合物半導体基板は
n型不純物、及び/又は、p型不純物がドープされてい
る請求項1乃至3に記載の窒化ガリウム系化合物半導体
素子。
4. The gallium nitride compound semiconductor device according to claim 1, wherein the gallium nitride compound semiconductor substrate is doped with n-type impurities and / or p-type impurities.
【請求項5】 前記n型不純物が、Si,Ge,Sn,
Sの少なくとも1を含む請求項4に記載の窒化ガリウム
系化合物半導体素子。
5. The n-type impurity is Si, Ge, Sn,
The gallium nitride-based compound semiconductor device according to claim 4, containing at least one of S.
【請求項6】 前記p型不純物が、Mg,Zn,Ca,
Beの少なくとも1を含む請求項4に記載の窒化ガリウ
ム系化合物半導体素子。
6. The p-type impurity is Mg, Zn, Ca,
The gallium nitride-based compound semiconductor device according to claim 4, containing at least one of Be.
JP2001257306A 2001-08-28 2001-08-28 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same Expired - Fee Related JP4244542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257306A JP4244542B2 (en) 2001-08-28 2001-08-28 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257306A JP4244542B2 (en) 2001-08-28 2001-08-28 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003069075A true JP2003069075A (en) 2003-03-07
JP4244542B2 JP4244542B2 (en) 2009-03-25

Family

ID=19084993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257306A Expired - Fee Related JP4244542B2 (en) 2001-08-28 2001-08-28 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4244542B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
WO2005043633A1 (en) * 2003-11-04 2005-05-12 Pioneer Corporation Semiconductor light-emitting device and method for manufacturing same
JP2005244201A (en) * 2004-01-28 2005-09-08 Matsushita Electric Ind Co Ltd Semiconductor luminous element and manufacturing method of the same
JP2006339427A (en) * 2005-06-02 2006-12-14 Hitachi Cable Ltd Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
JP2006339426A (en) * 2005-06-02 2006-12-14 Hitachi Cable Ltd Light-emitting diode and its fabrication method
JP2007036240A (en) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
JP2007067209A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting element and method of manufacturing same
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
JP2007511105A (en) * 2003-11-12 2007-04-26 クリー インコーポレイテッド Method for processing the back side of a semiconductor wafer having a light emitting device (LED) thereon, and an LED formed by the method
JP2007535152A (en) * 2004-04-29 2007-11-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor chip manufacturing method and semiconductor chip
US7453092B2 (en) 2004-08-31 2008-11-18 Toyoda Gosei Co., Ltd. Light emitting device and light emitting element having predetermined optical form
US7470938B2 (en) 2004-03-30 2008-12-30 Samsung Electro-Mechanics Co., Ltd. Nitride semiconductor light emitting device
US7491974B2 (en) 2005-06-13 2009-02-17 Sumitomo Electric Industries, Ltd. Light-emitting device
WO2009084670A1 (en) 2007-12-28 2009-07-09 Nichia Corporation Semiconductor light emitting element and method for manufacturing the same
US7687817B2 (en) 2006-04-04 2010-03-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element, light emitting device using the light emitting element: and method for manufacturing the light emitting element
WO2010044422A1 (en) 2008-10-17 2010-04-22 住友電気工業株式会社 Nitride-based semiconductor light emitting element, method for manufacturing nitride-based semiconductor light emitting element, and light emitting device
JP2010147056A (en) * 2008-12-16 2010-07-01 Stanley Electric Co Ltd Epitaxial wafer for group ii-vi or iii-v group compound-based semiconductor light emitting element, and method of manufacturing same
JP2011249765A (en) * 2010-05-27 2011-12-08 Qinghua Univ Three-dimensional nanostructure array and method for manufacturing the same
JP2011258923A (en) * 2010-06-04 2011-12-22 Qinghua Univ Light-emitting diode
JP2012044217A (en) * 2007-09-28 2012-03-01 Samsung Led Co Ltd Formation method of fine pattern and manufacturing method of semiconductor light-emitting element using the same
US8445186B2 (en) 2007-10-15 2013-05-21 Fujifilm Corporation Recessed portion forming method, method for manufacturing pit-projection product, method for manufacturing light emitting element, and method for manufacturing optical element
US8501020B2 (en) 2010-05-27 2013-08-06 Tsinghua University Method for making three-dimensional nano-structure array
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
CN103337576A (en) * 2013-06-09 2013-10-02 武汉迪源光电科技有限公司 Patterned substrate, manufacturing method of patterned substrate, LED chip and manufacturing method of LED chip
JP2015122364A (en) * 2013-12-20 2015-07-02 住友電工デバイス・イノベーション株式会社 Semiconductor layer surface treatment method and semiconductor substrate
US9490393B2 (en) 2008-09-19 2016-11-08 Nichia Corporation Semiconductor light emitting device with light extraction surface
WO2017150280A1 (en) 2016-03-01 2017-09-08 スタンレー電気株式会社 Vertical-type ultraviolet light-emitting diode
CN111063776A (en) * 2013-10-28 2020-04-24 首尔伟傲世有限公司 Nitride semiconductor element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923579A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Green color light emitting diode and manufacture thereof
JPH09312417A (en) * 1996-05-21 1997-12-02 Toyoda Gosei Co Ltd And faimily-3 nitride semiconductor substrate and element manufacture of
JPH10321949A (en) * 1997-05-16 1998-12-04 Ricoh Co Ltd Semiconductor laser
JPH11251629A (en) * 1998-02-27 1999-09-17 Daido Steel Co Ltd Manufacture of semiconductor light-emitting device
JP2001102307A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd CRYSTAL GROWING METHOD FOR SINGLE-CRYSTAL GaN, AND SINGLE-CRYSTAL GaN SUBSTRATE AND MANUFACTURING METHOD THEREOF
JP2001148357A (en) * 1999-09-08 2001-05-29 Sharp Corp Iii-n-based compound semiconductor device
JP2002016312A (en) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2002368261A (en) * 2001-06-05 2002-12-20 Sharp Corp Nitride compound semiconductor light-emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923579A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Green color light emitting diode and manufacture thereof
JPH09312417A (en) * 1996-05-21 1997-12-02 Toyoda Gosei Co Ltd And faimily-3 nitride semiconductor substrate and element manufacture of
JPH10321949A (en) * 1997-05-16 1998-12-04 Ricoh Co Ltd Semiconductor laser
JPH11251629A (en) * 1998-02-27 1999-09-17 Daido Steel Co Ltd Manufacture of semiconductor light-emitting device
JP2001148357A (en) * 1999-09-08 2001-05-29 Sharp Corp Iii-n-based compound semiconductor device
JP2001102307A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd CRYSTAL GROWING METHOD FOR SINGLE-CRYSTAL GaN, AND SINGLE-CRYSTAL GaN SUBSTRATE AND MANUFACTURING METHOD THEREOF
JP2002016312A (en) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2002368261A (en) * 2001-06-05 2002-12-20 Sharp Corp Nitride compound semiconductor light-emitting device

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7687822B2 (en) 2003-08-26 2010-03-30 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7399649B2 (en) 2003-11-04 2008-07-15 Pioneer Corporation Semiconductor light-emitting device and fabrication method thereof
JP4588638B2 (en) * 2003-11-04 2010-12-01 パイオニア株式会社 Semiconductor light emitting device and manufacturing method thereof
WO2005043633A1 (en) * 2003-11-04 2005-05-12 Pioneer Corporation Semiconductor light-emitting device and method for manufacturing same
JPWO2005043633A1 (en) * 2003-11-04 2007-05-10 パイオニア株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2007511105A (en) * 2003-11-12 2007-04-26 クリー インコーポレイテッド Method for processing the back side of a semiconductor wafer having a light emitting device (LED) thereon, and an LED formed by the method
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
JP2005244201A (en) * 2004-01-28 2005-09-08 Matsushita Electric Ind Co Ltd Semiconductor luminous element and manufacturing method of the same
US7470938B2 (en) 2004-03-30 2008-12-30 Samsung Electro-Mechanics Co., Ltd. Nitride semiconductor light emitting device
US7897423B2 (en) 2004-04-29 2011-03-01 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
JP2007535152A (en) * 2004-04-29 2007-11-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor chip manufacturing method and semiconductor chip
KR101361630B1 (en) * 2004-04-29 2014-02-11 오스람 옵토 세미컨덕터스 게엠베하 Method for production a radiation-emitting semi-conductor chip
US8273593B2 (en) 2004-04-29 2012-09-25 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
JP4653804B2 (en) * 2004-04-29 2011-03-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor chip manufacturing method and semiconductor chip
US7453092B2 (en) 2004-08-31 2008-11-18 Toyoda Gosei Co., Ltd. Light emitting device and light emitting element having predetermined optical form
JP4635727B2 (en) * 2005-06-02 2011-02-23 日立電線株式会社 Method of manufacturing epitaxial wafer for nitride semiconductor light emitting diode, epitaxial wafer for nitride semiconductor light emitting diode, and nitride semiconductor light emitting diode
JP2006339427A (en) * 2005-06-02 2006-12-14 Hitachi Cable Ltd Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
JP2006339426A (en) * 2005-06-02 2006-12-14 Hitachi Cable Ltd Light-emitting diode and its fabrication method
US7491974B2 (en) 2005-06-13 2009-02-17 Sumitomo Electric Industries, Ltd. Light-emitting device
JP2007036240A (en) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
JP2007067209A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Nitride-based semiconductor light emitting element and method of manufacturing same
US7687817B2 (en) 2006-04-04 2010-03-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element, light emitting device using the light emitting element: and method for manufacturing the light emitting element
US7989836B2 (en) 2006-04-04 2011-08-02 Toyoda Gosei Co., Ltd. Light emitting element having an irregular surface, light emitting device using the light emitting element, and method for manufacturing light emitting element
JP2012044217A (en) * 2007-09-28 2012-03-01 Samsung Led Co Ltd Formation method of fine pattern and manufacturing method of semiconductor light-emitting element using the same
US8445186B2 (en) 2007-10-15 2013-05-21 Fujifilm Corporation Recessed portion forming method, method for manufacturing pit-projection product, method for manufacturing light emitting element, and method for manufacturing optical element
US9159868B2 (en) 2007-12-28 2015-10-13 Nichia Corporation Method for manufacturing semiconductor light emitting device
US8552445B2 (en) 2007-12-28 2013-10-08 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
WO2009084670A1 (en) 2007-12-28 2009-07-09 Nichia Corporation Semiconductor light emitting element and method for manufacturing the same
US8883529B2 (en) 2007-12-28 2014-11-11 Nichia Corporation Method for manufacturing semiconductor light emitting device
US10381516B2 (en) 2008-09-19 2019-08-13 Nichia Corporation Semiconductor light emitting device having a recess with irregularities
US9490393B2 (en) 2008-09-19 2016-11-08 Nichia Corporation Semiconductor light emitting device with light extraction surface
WO2010044422A1 (en) 2008-10-17 2010-04-22 住友電気工業株式会社 Nitride-based semiconductor light emitting element, method for manufacturing nitride-based semiconductor light emitting element, and light emitting device
JP2010147056A (en) * 2008-12-16 2010-07-01 Stanley Electric Co Ltd Epitaxial wafer for group ii-vi or iii-v group compound-based semiconductor light emitting element, and method of manufacturing same
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
US8501020B2 (en) 2010-05-27 2013-08-06 Tsinghua University Method for making three-dimensional nano-structure array
JP2011249765A (en) * 2010-05-27 2011-12-08 Qinghua Univ Three-dimensional nanostructure array and method for manufacturing the same
JP2011258923A (en) * 2010-06-04 2011-12-22 Qinghua Univ Light-emitting diode
US8487320B2 (en) 2010-06-04 2013-07-16 Tsinghua University Light emitting diode
CN103337576A (en) * 2013-06-09 2013-10-02 武汉迪源光电科技有限公司 Patterned substrate, manufacturing method of patterned substrate, LED chip and manufacturing method of LED chip
CN111063776A (en) * 2013-10-28 2020-04-24 首尔伟傲世有限公司 Nitride semiconductor element
CN111063776B (en) * 2013-10-28 2023-11-14 首尔伟傲世有限公司 Nitride semiconductor device
JP2015122364A (en) * 2013-12-20 2015-07-02 住友電工デバイス・イノベーション株式会社 Semiconductor layer surface treatment method and semiconductor substrate
US10109482B2 (en) 2013-12-20 2018-10-23 Sumitomo Electric Device Innovations, Inc. Method for treating surface of semiconductor layer, semiconductor substrate, method for making epitaxial substrate
WO2017150280A1 (en) 2016-03-01 2017-09-08 スタンレー電気株式会社 Vertical-type ultraviolet light-emitting diode
US10665753B2 (en) 2016-03-01 2020-05-26 Stanley Electric Co., Ltd. Vertical-type ultraviolet light-emitting diode

Also Published As

Publication number Publication date
JP4244542B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4244542B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
US8928004B2 (en) Structure for growth of nitride semiconductor layer, stacked structure, nitride-based semiconductor element, light source, and manufacturing method for same
US7312480B2 (en) Semiconductor device and method of fabricating the same
US7842527B2 (en) Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JP2001160627A5 (en)
JP2010103578A (en) Method for manufacturing group-iii nitride semiconductor layer
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JP4724901B2 (en) Manufacturing method of nitride semiconductor
JP2009283620A (en) Group iii nitride semiconductor light emitting element, method for manufacturing thereof, and lamp
JP4406999B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
JP2004006662A (en) Gallium nitride compound semiconductor device
JP5025168B2 (en) Method for producing group III nitride semiconductor multilayer structure
JP3561105B2 (en) P-type semiconductor film and semiconductor device
JP2009023853A (en) Group iii-v nitride semiconductor substrate, method for manufacturing the same, and group iii-v nitride semiconductor device
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JP2004048076A (en) Semiconductor element and its manufacturing method
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP6785455B2 (en) Light emitting diode element and manufacturing method of light emitting diode element
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP4010318B2 (en) Light emitting element
JP3946448B2 (en) Manufacturing method of nitride semiconductor substrate
JP2007067397A (en) Method of manufacturing 3-5 group compound semiconductor
JP2004200723A (en) Method for improving crystallinity of iii-v group compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Ref document number: 4244542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees