JP2003068467A - Light-emitting element and its manufacturing method - Google Patents

Light-emitting element and its manufacturing method

Info

Publication number
JP2003068467A
JP2003068467A JP2002173528A JP2002173528A JP2003068467A JP 2003068467 A JP2003068467 A JP 2003068467A JP 2002173528 A JP2002173528 A JP 2002173528A JP 2002173528 A JP2002173528 A JP 2002173528A JP 2003068467 A JP2003068467 A JP 2003068467A
Authority
JP
Japan
Prior art keywords
light emitting
coordination compound
metal coordination
compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173528A
Other languages
Japanese (ja)
Other versions
JP4208492B2 (en
Inventor
Hironobu Iwawaki
洋伸 岩脇
Akira Tsuboyama
明 坪山
Shinjiro Okada
伸二郎 岡田
Takao Takiguchi
隆雄 滝口
Satoshi Igawa
悟史 井川
Atsushi Kamatani
淳 鎌谷
Takashi Moriyama
孝志 森山
Kiyoshi Miura
聖志 三浦
Manabu Kogori
学 古郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002173528A priority Critical patent/JP4208492B2/en
Publication of JP2003068467A publication Critical patent/JP2003068467A/en
Application granted granted Critical
Publication of JP4208492B2 publication Critical patent/JP4208492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element which emits light in high efficiency, which is superior in durability, and which keeps high luminance for a long period. SOLUTION: In the light-emitting element having at least one layer of an organic compound layer between a pair of electrodes, at least one layer of the organic compound layer has at least one kind of metal coordinating compound, and the content of the decomposition product or the raw material of the metal coordinating compound contained in the organic compound layer to have the metal coordinating compound is 0.5 wt.% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物を用い
た発光素子に関するものであり、さらに詳しくは素子内
の金属配位化合物に由来する不純物を低減することによ
って安定した効率の高い有機エレクトロルミネッセンス
素子(有機EL素子)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using an organic compound, and more specifically to a stable and highly efficient organic electroluminescence device by reducing impurities derived from a metal coordination compound in the device. The present invention relates to an element (organic EL element).

【0002】[0002]

【従来の技術】有機EL素子は、高速応答性や高効率の
発光素子として、応用研究が精力的に行われている。そ
の基本的な構成を図1(a)・(b)に示した[例えば
Macromol.Symp.125,1〜48(19
97)参照]。
2. Description of the Related Art Organic EL devices have been vigorously studied for application as light-emitting devices with high-speed response and high efficiency. The basic structure thereof is shown in FIGS. 1 (a) and 1 (b) [eg Macromol. Symp. 125, 1-48 (19
97)].

【0003】図1に示したように、一般に有機EL素子
は透明基板15上に透明電極14と金属電極11の間に
複数層の有機膜層から構成される。
As shown in FIG. 1, an organic EL element is generally composed of a plurality of organic film layers on a transparent substrate 15 between a transparent electrode 14 and a metal electrode 11.

【0004】図1(a)では、有機層が発光層12とホ
ール輸送層13からなる。透明電極14としては、仕事
関数が大きなITOなどが用いられ、透明電極14から
ホール輸送層13への良好なホール注入特性を持たせて
いる。金属電極11としては、アルミニウム、マグネシ
ウムあるいはそれらを用いた合金などの仕事関数の小さ
な金属材料を用い有機層への良好な電子注入性を持たせ
る。これら電極には、50〜200nmの膜厚が用いら
れる。
In FIG. 1A, the organic layer comprises a light emitting layer 12 and a hole transport layer 13. ITO or the like having a large work function is used as the transparent electrode 14, and has good hole injection characteristics from the transparent electrode 14 to the hole transport layer 13. As the metal electrode 11, a metal material having a small work function, such as aluminum, magnesium, or an alloy using them, is used to have good electron injecting property to the organic layer. A film thickness of 50 to 200 nm is used for these electrodes.

【0005】発光層12には、電子輸送性と発光特性を
有するアルミキノリノール錯体など(代表例は、化1に
示すAlq3)が用いられる。また、ホール輸送層13
には、例えばビフェニルジアミン誘導体(代表例は、化
1に示すα−NPD)など電子供与性を有する材料が用
いられる。
For the light emitting layer 12, an aluminum quinolinol complex having an electron transporting property and a light emitting property (a typical example is Alq3 shown in Chemical formula 1) is used. In addition, the hole transport layer 13
For example, a material having an electron donating property such as a biphenyldiamine derivative (a typical example is α-NPD shown in Chemical formula 1) is used.

【0006】以上の構成をした素子は整流性を示し、金
属電極11を陰極に透明電極14を陽極になるように電
界を印加すると、金属電極11から電子が発光層12に
注入され、透明電極15からはホールが注入される。
The element having the above-described structure exhibits rectifying properties, and when an electric field is applied so that the metal electrode 11 serves as a cathode and the transparent electrode 14 serves as an anode, electrons are injected from the metal electrode 11 into the light emitting layer 12, and the transparent electrode Holes are injected from 15.

【0007】注入されたホールと電子は発光層12内で
再結合により励起子が生じ発光する。この時ホール輸送
層13は電子のブロッキング層の役割を果たし、発光層
12/ホール輸送層13界面の再結合効率が上がり、発
光効率が上がる。
The injected holes and electrons recombine in the light emitting layer 12 to generate excitons and emit light. At this time, the hole transport layer 13 plays a role of an electron blocking layer, the recombination efficiency of the interface of the light emitting layer 12 / the hole transport layer 13 is increased, and the light emitting efficiency is increased.

【0008】さらに、図1(b)では、図1(a)の金
属電極11と発光層12の間に、電子輸送層16が設け
られている。発光と電子・ホール輸送を分離して、より
効果的なキャリアブロッキング構成にすることで、効率
的な発光を行うことができる。電子輸送層16として
は、例えば、オキサジアゾール誘導体などを用いること
ができる。
Further, in FIG. 1B, an electron transport layer 16 is provided between the metal electrode 11 and the light emitting layer 12 of FIG. 1A. Efficient light emission can be achieved by separating light emission from electron / hole transport to form a more effective carrier blocking structure. As the electron transport layer 16, for example, an oxadiazole derivative or the like can be used.

【0009】これまで、一般に有機EL素子に用いられ
ている発光は、発光中心の分子の一重項励起子から基底
状態になるときの蛍光が取り出されている。一方、一重
項励起子を経由した蛍光発光を利用するのでなく、三重
項励起子を経由した燐光発光を利用する素子の検討がな
されている。発表されている代表的な文献は、文献1:
Improved energy transfer
in electrophosphorescent
device(D.F.O’Brienら、Appli
ed Physics Letters Vol 7
4,No3 p422(1999))、文献2:Ver
y high−efficiency green o
rganic light−emitting dev
icesbasd on electrophosph
orescence(M.A.Baldoら、Appl
ied Physics Letters Vol 7
5,No1 p4(1999))である。
Up to now, in the light emission generally used in the organic EL device, the fluorescence at the time of reaching the ground state is extracted from the singlet excitons of the molecule at the emission center. On the other hand, studies have been made on devices that utilize phosphorescence emission via triplet excitons instead of fluorescence emission via singlet excitons. The representative published document is Document 1:
Improved energy transfer
in electrophosphorecent
device (DFO'Brien et al., Appli
ed Physics Letters Vol 7
4, No3 p422 (1999)), Reference 2: Ver
y high-efficiency green o
organic light-emitting dev
icesbasd on electrophosph
orence (MA Baldo et al., Appl.
ied Physics Letters Vol 7
5, No1 p4 (1999)).

【0010】これらの文献では、図1(c)に示す有機
層の4層構成が主に用いられている。それは、陽極側か
らホール輸送層13、発光層12、励起子拡散防止層1
7、電子輸送層16からなる。用いられている材料は、
化1に示すキャリア輸送材料と燐光発光性材料である。
各材料の略称は以下の通りである。 Alq3:アルミ−キノリノール錯体 α−NPD:N4,N4’−Di−naphthale
n−1−yl−N4,N4’−diphenyl−bi
phenyl−4,4’−diamine CBP:4,4’−N,N’−dicarbazole
−biphenyl BCP:2,9−dimethyl−4,7−diph
enyl−1,10−phenanthroline PtOEP:白金−オクタエチルポルフィリン錯体 Ir(ppy)3:イリジウム−フェニルピリミジン錯
In these documents, the four-layer structure of the organic layer shown in FIG. 1 (c) is mainly used. It is a hole transport layer 13, a light emitting layer 12, an exciton diffusion prevention layer 1 from the anode side.
7 and the electron transport layer 16. The materials used are
The carrier transport material and the phosphorescent material shown in Chemical formula 1.
Abbreviations of each material are as follows. Alq3: Aluminum-quinolinol complex α-NPD: N4, N4′-Di-naphthalle
n-1-yl-N4, N4′-diphenyl-bi
phenyl-4,4'-diamine CBP: 4,4'-N, N'-dicarbazole
-Biphenyl BCP: 2,9-dimethyl-4,7-diph
enyl-1,10-phenanthroline PtOEP: platinum-octaethylporphyrin complex Ir (ppy) 3 : iridium-phenylpyrimidine complex

【0011】[0011]

【化1】 [Chemical 1]

【0012】[0012]

【発明が解決しようとする課題】上記、燐光発光を用い
た有機EL素子では、特に通電状態の発光劣化が問題と
なる。燐光発光素子の発光劣化の原因は明らかではない
が、一般に3重項寿命が1重項寿命より、3桁以上長い
ために、分子がエネルギーの高い状態に長く置かれるた
め、周辺物質との反応、励起多量体の形成、分子微細構
造の変化、周辺物質の構造変化などが起こるのではない
かと考えられている。
In the above-mentioned organic EL device using phosphorescence emission, the deterioration of light emission particularly in the energized state becomes a problem. Although the cause of the emission deterioration of the phosphorescent device is not clear, in general, the triplet lifetime is longer than the singlet lifetime by three digits or more, and thus the molecule is left in a high energy state for a long time, so that it reacts with a surrounding substance. It is thought that the formation of excited multimers, changes in the molecular fine structure, and changes in the structure of surrounding substances may occur.

【0013】いずれにしても、燐光発光素子は高発光効
率が期待されるが、一方で通電劣化が問題となる。
In any case, the phosphorescent device is expected to have a high luminous efficiency, but on the other hand, the deterioration of energization becomes a problem.

【0014】そこで、本発明は、高効率発光で、耐久性
に優れ、長い期間高輝度を保つ発光素子及び表示装置を
提供することを目的とする。
Therefore, an object of the present invention is to provide a light emitting device and a display device which emit light with high efficiency, have excellent durability, and maintain high brightness for a long period of time.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討した結果、特に金属錯体化合物に
着目して、金属錯体化合物からの分解生成物が、強く初
期の特性や耐久性能に影響を与えていることを見出し、
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have paid particular attention to metal complex compounds and found that decomposition products from the metal complex compounds have strong initial characteristics and Finding that it affects durability performance,
The present invention has been completed.

【0016】即ち、本発明の発光素子は、一対の電極間
に少なくとも一層の有機化合物層を有する発光素子にお
いて、該有機化合物層の少なくとも一層が金属配位化合
物を少なくとも一種有し、該金属配位化合物を有する有
機化合物層に含まれる前記金属配位化合物の分解生成物
または原料物の含有量が0.5重量%以下、好ましくは
0.1重量%以下であることを特徴とする。
That is, the light emitting device of the present invention is a light emitting device having at least one organic compound layer between a pair of electrodes, and at least one of the organic compound layers has at least one metal coordination compound, and the metal coordination compound is at least one metal coordination compound. The content of the decomposition product or raw material of the metal coordination compound contained in the organic compound layer having the coordination compound is 0.5% by weight or less, preferably 0.1% by weight or less.

【0017】本発明の発光素子においては、前記金属配
位化合物の分解生成物または原料物が、該金属配位化合
物の合成の際に用いる配位子となる合成原料であること
が好ましい。
In the light-emitting device of the present invention, the decomposition product or raw material of the metal coordination compound is preferably a synthetic raw material which serves as a ligand used in the synthesis of the metal coordination compound.

【0018】また、前記金属配位化合物が発光材料であ
ることが好ましい。
The metal coordination compound is preferably a light emitting material.

【0019】また、前記金属配位化合物がイリジウム配
位化合物であることが好ましく、その配位子が有機フッ
素化物であることがより好ましい。
The metal coordination compound is preferably an iridium coordination compound, and the ligand thereof is more preferably an organic fluorinated compound.

【0020】また、前記金属配位化合物が燐光発光性発
光材料であることが好ましい。
The metal coordination compound is preferably a phosphorescent light emitting material.

【0021】更に、上記発光素子の製造方法は、金属配
位化合物の分解生成物または原料物の含有量が0.5重
量%以下になるような蒸着条件で金属配位化合物を有す
る有機化合物層を形成する工程を有することを特徴とす
る。
Further, in the above method for producing a light emitting device, the organic compound layer having a metal coordination compound under the vapor deposition conditions such that the content of the decomposition product or the raw material of the metal coordination compound is 0.5% by weight or less. Is formed.

【0022】[0022]

【発明の実施の形態】EL素子の発光効率を高めるため
には、発光中心材料そのものの発光量子収率が大きいこ
とは言うまでもない。しかしながら、ホスト−ホスト
間、あるいはホスト−ゲスト間のエネルギー移動が如何
に効率的にできるかも大きな問題となる。また、通電に
よる発光劣化は今のところ原因は明らかではないが、少
なくとも発光中心材料そのもの、または、その周辺分子
による発光材料の環境変化に関連したもの、あるいは、
キャリア輸送層の材料などの劣化によるものと想定され
る。
It is needless to say that the emission quantum yield of the emission center material itself is large in order to increase the emission efficiency of the EL device. However, how efficiently the energy transfer between the host and the host or between the host and the guest can be a big problem. The cause of luminescence deterioration due to energization is not clear at present, but at least the luminescence center material itself, or one related to the environmental change of the luminescence material due to its peripheral molecules, or
It is assumed that this is due to deterioration of the material of the carrier transport layer.

【0023】本発明の発光素子は、一対の電極間に少な
くとも一層の有機化合物層を有する発光素子である。発
光素子の層構成としては特に限定されず、図1に示す様
な構成が挙げられる。
The light emitting device of the present invention is a light emitting device having at least one organic compound layer between a pair of electrodes. The layer structure of the light emitting element is not particularly limited and may be the structure as shown in FIG.

【0024】また、本発明の発光素子は、有機化合物層
の少なくとも一層が金属配位化合物を少なくとも一種有
し、金属配位化合物を有する有機化合物層に含まれる金
属配位化合物の分解生成物または原料物の含有量が0.
5重量%以下、好ましくは0.1重量%以下である。金
属配位化合物の分解生成物または原料物の含有量が0.
5重量%以下であれば、耐久性に優れ、燐光発光を用い
た発光素子の場合には、初期特性にも優れる。
In the light emitting device of the present invention, at least one of the organic compound layers has at least one metal coordination compound, and a decomposition product of the metal coordination compound contained in the organic compound layer containing the metal coordination compound or The raw material content is 0.
It is 5% by weight or less, preferably 0.1% by weight or less. The content of decomposition products or raw materials of metal coordination compounds is 0.
When the content is 5% by weight or less, the durability is excellent, and in the case of a light emitting device using phosphorescence emission, the initial characteristics are also excellent.

【0025】本発明による燐光の判定方法は、酸素失括
するかどうかで判定した。化合物をクロロホルムに溶解
し、酸素置換した溶液と窒素置換した溶液に光照射し
て、フォトルミネッセンスを比較すると、酸素置換した
溶液は化合物に由来する発光がほとんど見られないのに
対し、窒素置換した溶液はフォトルミネッセンスが確認
できることで区別できる。以下、本発明の化合物につい
ては、特別の断りがない時は全てこの方法で燐光である
ことを確認している。
The phosphorescence determination method according to the present invention was determined by whether or not oxygen was lost. When the compound was dissolved in chloroform and the solution substituted with oxygen and the solution substituted with nitrogen were irradiated with light and the photoluminescence was compared, the solution substituted with oxygen showed almost no luminescence derived from the compound, whereas the solution substituted with nitrogen was replaced with nitrogen. The solutions can be distinguished by confirming photoluminescence. Hereinafter, it was confirmed that the compounds of the present invention were phosphorescent by this method unless otherwise specified.

【0026】ここで、金属配位化合物の分解生成物また
は原料物とは、例えば金属配位化合物の合成の際に用い
る配位子となる合成原料等であり、精製が不十分で最初
から未反応物質として金属配位化合物中に混入している
もの、蒸着時の加熱による熱分解で発生するもののいず
れをも含む。
Here, the decomposition product or raw material of the metal coordination compound is, for example, a synthetic raw material which serves as a ligand used in the synthesis of the metal coordination compound, and is insufficiently purified from the beginning. It includes both a substance mixed in the metal coordination compound as a reactant and a substance generated by thermal decomposition by heating during vapor deposition.

【0027】本発明における金属配位化合物は、発光材
料であることが好ましく、燐光発光性発光材料であるこ
とがより好ましく、また、イリジウム配位化合物である
ことが好ましく、その配位子が有機フッ素化物であるこ
とがより好ましい。
The metal coordination compound in the present invention is preferably a light emitting material, more preferably a phosphorescent light emitting material, and preferably an iridium coordination compound, the ligand of which is an organic compound. More preferably, it is a fluorinated product.

【0028】金属配位化合物及びその分解生成物または
原料物は、特に限定されないが、例えば、以下に示すよ
うなものが挙げられる。 Ir錯体A:イリジウム−ベンゾチエニル−4−トリフ
ルオロメチル−ピリジン−錯体 Ir錯体B:イリジウム−チエニル−4−チエニル−ピ
リジン−錯体
The metal coordination compound and its decomposition product or raw material are not particularly limited, and examples thereof include the following. Ir complex A: Iridium-benzothienyl-4-trifluoromethyl-pyridine-complex Ir complex B: Iridium-thienyl-4-thienyl-pyridine-complex

【0029】[0029]

【化2】 [Chemical 2]

【0030】[0030]

【化3】 [Chemical 3]

【0031】[0031]

【化4】 [Chemical 4]

【0032】燐光発光とは、励起三重項状態からの発光
であり、その発光効率を上げるには、励起三重項状態か
ら基底状態への発光遷移確率を大きくすることが重要で
ある。
Phosphorescence is the light emission from the excited triplet state, and in order to increase the light emission efficiency, it is important to increase the emission transition probability from the excited triplet state to the ground state.

【0033】この発光遷移確率を上げるには、本発明に
使用する上記発光材料のように、イリジウムや白金など
原子量の大きな元素を用いる所謂重元素効果を利用する
のが一般的である。さらに発光波長を可視光領域に持っ
てゆくには、配位子に芳香族化合物など比較的大きな分
子量を持ち、かつ共役構造を持つ化合物を使うのが有効
である。そのために金属・配位子ともに重い原子団を用
いることになり、特にイリジウムを中心金属とする金属
配位化合物などのように、発光材料の分子量が大きくな
ってしまう。
In order to increase the luminescence transition probability, it is general to utilize the so-called heavy element effect using an element having a large atomic weight such as iridium and platinum as in the above-mentioned light emitting material used in the present invention. Further, in order to bring the emission wavelength to the visible light region, it is effective to use a compound such as an aromatic compound having a relatively large molecular weight and a conjugated structure as a ligand. Therefore, a heavy atomic group is used for both the metal and the ligand, and the molecular weight of the light emitting material becomes large, especially in the case of a metal coordination compound having iridium as a central metal.

【0034】一方、分子量が大きくなると真空蒸着時の
昇華温度も高くなる傾向にある。本発明者の測定による
と、Ir(piq)3では分子量が805であり昇華温
度は267℃である。一方Alq3では分子量459
で、昇華温度は202℃であった。
On the other hand, as the molecular weight increases, the sublimation temperature during vacuum deposition tends to increase. According to the measurement by the present inventors, Ir (piq) 3 has a molecular weight of 805 and a sublimation temperature of 267 ° C. On the other hand, with Alq3, the molecular weight is 459.
The sublimation temperature was 202 ° C.

【0035】よって、燐光発光性の金属配位化合物は、
昇華温度が高くなり蒸着時の温度が高くなるために、真
空蒸着時の熱分解が問題となる。特に赤色発光材料を得
るために、芳香族化合物の配位子にさらに置換基を導入
してπ電子の共役長を伸ばすため、さらに分子量は増大
する傾向にある。よって赤色発光材料に関しては、蒸着
時の熱分解がより起こりやすくなり、発光寿命などの素
子特性を悪くする原因となっている。これは例えば、レ
ニウム、白金、ユウロピウム、銅、等の他の金属配位化
合物を用いた燐光発光材料のすべてに共通した問題であ
る。
Therefore, the phosphorescent metal coordination compound is
Since the sublimation temperature increases and the temperature during vapor deposition increases, thermal decomposition during vacuum vapor deposition becomes a problem. In particular, in order to obtain a red light emitting material, a substituent is further introduced into the ligand of the aromatic compound to extend the π-electron conjugation length, so that the molecular weight tends to further increase. Therefore, with respect to the red light emitting material, thermal decomposition during vapor deposition is more likely to occur, which causes deterioration of device characteristics such as light emission life. This is a problem common to all phosphorescent materials using other metal coordination compounds such as rhenium, platinum, europium, and copper.

【0036】以上説明したように、使用する材料の昇華
温度が低ければ蒸着温度も低くなり、蒸着時の不純物量
が低下し素子に通電し発光させる際の素子寿命を長くで
きる。また、本発明に使用している発光材料を蒸着する
際、長時間熱を加え続けると分解量が増加することを確
認している。従って、蒸着温度を下げることは、大量生
産する際の生産安定性という面でも重要になってくる。
As described above, if the sublimation temperature of the material used is low, the vapor deposition temperature is also low, the amount of impurities at the time of vapor deposition is reduced, and the device life when the device is energized to emit light can be extended. Further, it has been confirmed that the amount of decomposition increases when heat is continuously applied for a long time during vapor deposition of the light emitting material used in the present invention. Therefore, lowering the vapor deposition temperature is also important in terms of production stability in mass production.

【0037】本発明では、0.1nm/秒と0.5nm
/秒の速度で蒸着した場合において、被蒸着物とボート
内残渣について、分解物の測定を行った。その結果、加
熱条件の緩やかな0.1nm/秒の方が分解物の割合が
少なく、素子寿命が長くなることも見出した。
In the present invention, 0.1 nm / sec and 0.5 nm
When vapor deposition was performed at a rate of / sec, decomposition products were measured for the vapor deposition target and the residue in the boat. As a result, it was also found that the rate of decomposition products was smaller and the device life was longer when the heating condition was milder at 0.1 nm / sec.

【0038】最近、イリジウムを中心金属とする金属配
位化合物で、アセチルアセトナト配位子を持ち発光効率
の良いものが発表された(High−efficien
cyred electrophosphoresce
nce devices(Chihaya Adach
iら、Appl.Phys.Lett.,Vol.7
8,No.11,12 March 2001))。
Recently, a metal coordination compound having iridium as a central metal, which has an acetylacetonato ligand and has a high luminous efficiency, was announced (High-efficiency).
cylinder electrophosphoresce
nce devices (Chihaya Adach
i et al., Appl. Phys. Lett. , Vol. 7
8, No. 11, 12 March 2001)).

【0039】しかし、アセチルアセトナト配位子を持つ
金属錯体の安定性は、フェニルイソキノリンが2配位、
アセチルアセトナトを1配位した金属配位化合物と、フ
ェニルイソキノリンが三つ配位した3配位体で比較する
と、3配位体を用いた素子の方が、素子の発光寿命が長
いことを見出した。上記2つの金属配位化合物を同一条
件下で蒸着した場合、蒸着時のボート内残渣、基板蒸着
物の両方ともに、3配位体の方が分解物割合が少ないこ
とが判った。このことは、アセチルアセトナト配位子を
持つ2配位体は3配位体に比べて蒸着時の熱分解が多い
ことを示している。
However, the stability of the metal complex having an acetylacetonato ligand is such that phenylisoquinoline is two-coordinated,
Comparing a metal coordination compound in which acetylacetonato is coordinated with a tricoordination compound in which phenylisoquinoline is tricoordinated, it can be seen that the device using the tricoordination compound has a longer emission life of the device. I found it. When the above two metal coordination compounds were vapor-deposited under the same conditions, it was found that the content of decomposed products was smaller in the tri-coordinated body for both the residue in the boat during vapor deposition and the vapor-deposited substrate. This indicates that the 2-coordinate having the acetylacetonato ligand has more thermal decomposition during vapor deposition than the 3-coordination.

【0040】以上述べたように、昇華させる金属配位化
合物の熱分解を低減させることが重要になってくる。そ
こで本発明ではさらに、配位子にフッ素を導入しこの昇
華温度を低下させ昇華時の熱分解を低減させることを試
みた。
As described above, it is important to reduce the thermal decomposition of the metal coordination compound to be sublimated. Therefore, the present invention further attempts to reduce the thermal decomposition during sublimation by introducing fluorine into the ligand to lower the sublimation temperature.

【0041】[0041]

【実施例】以下、実施例を示しながら本発明を説明す
る。
EXAMPLES The present invention will be described below with reference to examples.

【0042】尚、発光素子の寿命(耐久特性)の測定
は、初期発光強度を1000cd/m 2に合わせて、発
光輝度の減少を測定し、500cd/m2になるまでの
時間を測定した。
It should be noted that the life (endurance characteristics) of the light emitting element is measured.
Has an initial emission intensity of 1000 cd / m 2According to
Measure the decrease of light brightness, 500 cd / m2Until
The time was measured.

【0043】<実施例1〜4、比較例1〜2>以下に示
す層構成の素子を作製した。 ガラス基板/ITO(70nm)/αNPD(50n
m)/Alq3(50nm)/AlLi(Li1.8重
量%、3nm)/Al(100nm)
<Examples 1 to 4 and Comparative Examples 1 and 2> Elements having the layer structures shown below were prepared. Glass substrate / ITO (70nm) / αNPD (50n
m) / Alq3 (50 nm) / AlLi (Li 1.8% by weight, 3 nm) / Al (100 nm)

【0044】有機化合物層からAl電極は、真空蒸着法
(真空度10-4Pa以下)で形成した。
An Al electrode was formed from the organic compound layer by a vacuum deposition method (vacuum degree of 10 -4 Pa or less).

【0045】金属配位化合物であるAlq3に関して、
純度が99.9%以上であることを確認し、Alq3の
分解性生物である配位子にプロトンが付加された、8−
キノリノールが不純物として存在しないことも確認し
た。更に、蒸着されたAlq3層を検査したが、これに
も8−キノリノールが存在しないことを確認した。
Regarding Alq3 which is a metal coordination compound,
It was confirmed that the purity was 99.9% or higher, and a proton was added to the ligand which is a degradable product of Alq3.
It was also confirmed that quinolinol was not present as an impurity. In addition, the deposited Alq3 layer was inspected and found to be also free of 8-quinolinol.

【0046】Alq3層形成時に、8−キノリノールを
表1に示す割合で共蒸着した。
At the time of forming the Alq3 layer, 8-quinolinol was co-evaporated at the ratio shown in Table 1.

【0047】これらの素子に電圧を印加するとAlq3
からの発光が確認された。また、10mA/cm2の直
流電流を、ITOを陽極として、乾燥窒素中で印加し
て、耐久特性を評価した。結果を表1に示す。
When a voltage is applied to these elements, Alq3
The emission from was confirmed. A direct current of 10 mA / cm 2 was applied in dry nitrogen using ITO as an anode to evaluate durability characteristics. The results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】表1に示す様に、8キノリノールの含有量
が0.5重量%以下で耐久性が特に良好になり、0.1
重量%でさらに良くなっており、8キノリノールの含有
量が耐久性能に強く影響していることがわかった。特
に、8キノリノールはAlq3金属配位化合物の配位子
と水素原子以外は同じ形状をしており、金属配位化合物
と会合しやすく電流特性や発光特性を阻害すると考えら
れる。それら阻害因子である金属配位化合物の配位子に
由来する化合物を取り除くことが重要である。
As shown in Table 1, when the content of 8 quinolinol is 0.5% by weight or less, the durability becomes particularly good, and 0.1
It became even better at wt%, and it was found that the content of 8 quinolinol had a strong influence on the durability performance. In particular, 8 quinolinol has the same shape as the ligand of the Alq3 metal coordination compound except for the hydrogen atom, and is likely to easily associate with the metal coordination compound to impair the current characteristics and light emission characteristics. It is important to remove the compounds derived from the ligands of the metal coordinating compounds that are those inhibitors.

【0050】本実施例では、故意に8キノリノールを混
入させたが、現実にAlq3蒸着時に8キノリノールが
混入されるのは、精製が不十分で蒸着前から材料中に8
キノリノールが未反応物質として残っている場合と、蒸
着時に加熱され、その熱で分解される場合が考えられ
る。
In the present embodiment, 8 quinolinol was intentionally mixed, but in reality, 8 quinolinol is mixed during Alq3 vapor deposition because the purification is insufficient and 8 quinolinol is present in the material before vapor deposition.
It is possible that quinolinol remains as an unreacted substance, or that it is heated during vapor deposition and decomposed by the heat.

【0051】いずれにせよ、耐久性能は金属配位化合物
の分解生成物の含有量が、0.5%重量以下、好ましく
は0.1重量%以下が良い。
In any case, the durability is such that the content of the decomposition product of the metal coordination compound is 0.5% by weight or less, preferably 0.1% by weight or less.

【0052】<実施例5〜8、比較例3〜4>以下に示
す層構成の燐光発光素子を作製した。 ガラス基板/ITO(70nm)/αNPD(50n
m)/CBP:Ir(ppy)3(7%)/BCP(2
0nm)/Alq3(50nm)/AlLi(Li1.
8重量%、3nm)/Al(100nm)
<Examples 5 to 8 and Comparative Examples 3 to 4> Phosphorescent devices having the following layer structures were prepared. Glass substrate / ITO (70nm) / αNPD (50n
m) / CBP: Ir (ppy) 3 (7%) / BCP (2
0 nm) / Alq3 (50 nm) / AlLi (Li1.
8% by weight, 3 nm) / Al (100 nm)

【0053】本実施例に用いられるIr(ppy)
3は、Ir(acac)3(トリス−アセチルアセトナト
−イリジウム錯体)を用いて、以下の合成経路で合成し
た。 Ir(acac)3+フェニルピリジン→Ir(pp
y)3
Ir (ppy) used in this embodiment
3 was synthesized using Ir (acac) 3 (tris-acetylacetonato-iridium complex) by the following synthetic route. Ir (acac) 3 + phenylpyridine → Ir (pp
y) 3

【0054】前実施例の様に、金属配位化合物であるI
r(ppy)3とAlq3を99.9%以上の純度に精
製した。また、前実施例と同様にして、CBP:Ir
(ppy)3層形成時に、フェニルピリジンを表2に示
す割合で混入させた。
As in the previous example, the metal coordination compound I
r (ppy) 3 and Alq3 were purified to a purity of 99.9% or higher. Also, as in the previous embodiment, CBP: Ir
(Ppy) Phenyl pyridine was mixed in the ratio shown in Table 2 at the time of forming three layers.

【0055】こららの素子に電圧を印加するとIr(p
py)3からの発光が確認された。また、前実施例と同
様に、耐久特性を評価した。結果を表2に示す。
When a voltage is applied to these elements, Ir (p
Light emission from py) 3 was confirmed. In addition, durability characteristics were evaluated in the same manner as in the previous example. The results are shown in Table 2.

【0056】[0056]

【表2】 [Table 2]

【0057】表2に示す様に、実施例1〜4と同様、耐
久性能を向上させるためには、金属配位化合物であるI
r(ppy)3からの分解生成物であるフェニルピリジ
ンの含有量が、0.5重量%以下,好ましくは0.1重
量%以下が良い。
As shown in Table 2, as in Examples 1 to 4, in order to improve the durability, the metal coordination compound I was used.
The content of phenylpyridine, which is a decomposition product from r (ppy) 3 , is 0.5% by weight or less, preferably 0.1% by weight or less.

【0058】また、この燐光発光素子では、初期特性が
分解生成物が0.5重量%以下で著しく改善される。す
なわちフェニルピリジン含有量が0.5重量%と1.0
重量%を比較すると同じ電圧をかけた場合に、発光輝度
が2倍以上になる。この不純物の濃度が低い場合の初期
特性が改善する現象は、実施例1〜4の蛍光発光素子に
はない現象であり、燐光発光素子特有の現象である。
Further, in this phosphorescent device, the initial characteristics are remarkably improved when the decomposition product is 0.5% by weight or less. That is, the phenylpyridine content is 0.5% by weight and 1.0
When the weight% is compared, when the same voltage is applied, the emission brightness is more than doubled. The phenomenon that the initial characteristics are improved when the concentration of the impurities is low is a phenomenon which is not present in the fluorescent light emitting devices of Examples 1 to 4, and is a phenomenon peculiar to the phosphorescent light emitting device.

【0059】本実施例により、燐光発光素子にも、本発
明が有用であることが確認された。さらに、蛍光素子に
はない初期特性も改善されることが明らかになった。
From this example, it was confirmed that the present invention is also useful for a phosphorescent device. Furthermore, it has been revealed that the initial characteristics that the fluorescent element does not have are improved.

【0060】<実施例9〜12、比較例5〜6>発光材
料として化2に示すIr錯体B(純度99.9%以上)
を用い、チエニル−4−チエニル−ピリジンを表3に示
す割合で混入させた以外は実施例5〜8と同様にして素
子を作製し、耐久特性を評価した。結果を表3に示す。
<Examples 9 to 12 and Comparative Examples 5 to 6> Ir complex B shown in Chemical formula 2 as a light emitting material (purity 99.9% or more)
Was used in the same manner as in Examples 5 to 8 except that thienyl-4-thienyl-pyridine was mixed in the proportion shown in Table 3, and durability characteristics were evaluated. The results are shown in Table 3.

【0061】[0061]

【表3】 [Table 3]

【0062】<実施例13〜15,比較例7>実施例5
〜8と同様の材料を用いて、同様の層構成の燐光発光素
子を作製した。但し、発光材料であるIr(ppy)3
は、カラム精製したもの、再結晶にて生成した物、昇華
生成した物の3種を用い、精製度の差により蒸着前の純
度に差を持たせた。
<Examples 13 to 15 and Comparative Example 7> Example 5
A phosphorescent device having the same layer structure was prepared using the same materials as those used in Examples 1 to 8. However, Ir (ppy) 3 which is a light emitting material
The column-purified product, the product produced by recrystallization, and the sublimation product were used, and the purity before vapor deposition was varied due to the difference in the degree of purification.

【0063】予備実験として、ガラス基板にホスト材料
とともにIr(ppy)3を真空蒸着した物を成分分析
すると、1%(比較例7)、0.5%(実施例15)、
0.2%(実施例14)、0.07%(実施例13)で
あった。これら不純物は、フェニルピリジンが主成分で
あった。
As a preliminary experiment, component analysis was carried out on a glass substrate on which Ir (ppy) 3 was vacuum-deposited together with a host material. 1% (Comparative Example 7), 0.5% (Example 15),
It was 0.2% (Example 14) and 0.07% (Example 13). The main component of these impurities was phenylpyridine.

【0064】これらの素子を用いて、これまでの実施例
同様、耐久特性を評価した。結果を表4に示す。
Using these elements, the durability characteristics were evaluated as in the previous examples. The results are shown in Table 4.

【0065】[0065]

【表4】 [Table 4]

【0066】表4に示す様に、これまでの実施例と同
様、本実施例においても、不純物(フェニルピリジン)
含有量が0.5重量%以下、より好ましくは0.1重量
%以下で、耐久性能が著しく向上することが明らかにな
った。
As shown in Table 4, the impurities (phenylpyridine) are also present in this example as in the previous examples.
It was revealed that the durability performance is remarkably improved when the content is 0.5% by weight or less, more preferably 0.1% by weight or less.

【0067】<実施例16,比較例8>実施例5〜8と
同様の材料を用いて、同様の層構成の燐光発光素子を作
製した。本実施例では、発光層の真空蒸着時の速度を
0.1nm/秒(実施例16)と0.7nm/秒(比較
例7)とした。
<Example 16 and Comparative Example 8> Using the same materials as in Examples 5 to 8, phosphorescent light emitting devices having the same layer structure were produced. In this example, the speed of vacuum deposition of the light emitting layer was set to 0.1 nm / sec (Example 16) and 0.7 nm / sec (Comparative example 7).

【0068】予備実験として、ガラス基板上に発光層を
蒸着した物を分析したところ、不純物含有量が0.1n
m/秒(実施例16)では0.2重量%、0.7nm/
秒(比較例7)では0.7重量%であった。不純物の主
成分は、フェニルピリジンであった。
As a preliminary experiment, a substance obtained by depositing a light emitting layer on a glass substrate was analyzed and found that the impurity content was 0.1 n.
m / sec (Example 16) 0.2% by weight, 0.7 nm /
Seconds (Comparative Example 7) was 0.7% by weight. The main component of impurities was phenylpyridine.

【0069】これらの素子を用いて、これまでの実施例
同様、耐久特性を評価した。結果を表5に示す。
Using these elements, the durability characteristics were evaluated as in the previous examples. The results are shown in Table 5.

【0070】[0070]

【表5】 [Table 5]

【0071】表5に示す様に、蒸着速度による不純物
(フェニルピリジン)濃度の差で、耐久性能が異なる。
この理由は、真空蒸着の速度により、金属から外れた配
位子が主たる成分の不純物が、同時に蒸着される程度に
差が生じ、耐久性能を低下させたためである。
As shown in Table 5, durability varies depending on the concentration of impurities (phenylpyridine) depending on the vapor deposition rate.
The reason for this is that, due to the speed of vacuum vapor deposition, the impurities that are the main components of the ligands that have been separated from the metal differ in the extent to which they are vapor deposited at the same time, which deteriorates the durability performance.

【0072】<実施例17,比較例9>発光材料として
Ir(piq)3を用い、発光層の真空蒸着速度を0.
1nm/秒(実施例17)、0.5nm/秒(比較例
9)とした以外は実施例5〜8と同様にして素子を作製
した。
<Example 17, Comparative Example 9> Ir (piq) 3 was used as the light emitting material, and the vacuum deposition rate of the light emitting layer was set to 0.
Devices were produced in the same manner as in Examples 5 to 8 except that the thickness was set to 1 nm / sec (Example 17) and 0.5 nm / sec (Comparative Example 9).

【0073】別途ガラス基板上に発光層として蒸着した
膜を分析したところ、不純物含有量が実施例17では
0.3重量%、比較例9では3.0重量%であり、不純
物の主成分は、1−フェニルイソキノリンであった。
尚、分析方法は成膜した膜をクロロフォルムで洗い流
し、洗液をメタノールを溶離液として高圧液体クロマト
グラフィー(日本分光製 紫外線検出器UV−970を
使用)にかけた。不純物の含有量(重量%)は検出器の
出力する成分ピークの面積を単純に比較して求めた。
When a film separately deposited as a light emitting layer on a glass substrate was analyzed, the impurity content was 0.3% by weight in Example 17 and 3.0% by weight in Comparative Example 9, and the main component of impurities was , 1-phenylisoquinoline.
In the analysis method, the formed film was washed off with chloroform, and the washing was subjected to high pressure liquid chromatography (using an ultraviolet detector UV-970 manufactured by JASCO Corporation) with methanol as an eluent. The content (% by weight) of impurities was determined by simply comparing the areas of the component peaks output by the detector.

【0074】これらの素子を用いて、これまでの実施例
同様、耐久特性を評価した。結果を表6に示す。
Using these elements, the durability characteristics were evaluated as in the previous examples. The results are shown in Table 6.

【0075】[0075]

【表6】 [Table 6]

【0076】表6に示す様に、蒸着速度による不純物濃
度の差で、耐久性能が異なる。この理由は、実施例16
と同様に真空蒸着の速度により、金属から外れた配位子
が主たる成分の不純物が、同時に蒸着される程度に差が
生じ、耐久性能を低下させたためである。
As shown in Table 6, the durability is different due to the difference in impurity concentration depending on the vapor deposition rate. The reason for this is that in Example 16
Similar to the above, the reason is that, depending on the speed of the vacuum vapor deposition, there is a difference in the degree to which the impurities, which are the main components of the ligand removed from the metal, are vaporized at the same time, which deteriorates the durability performance.

【0077】<実施例18,比較例10>発光材料とし
てIr(4mpiq)3(実施例18)、Ir(4mp
iq)2acac(比較例10)を用いた以外は実施例
5〜8と同様にして素子を作製し、耐久特性を評価し
た。結果を表7に示す。
<Example 18, Comparative Example 10> Ir (4mpiq) 3 (Example 18) and Ir (4mp) were used as light emitting materials.
iq) 2acac (Comparative Example 10) was used, and elements were prepared in the same manner as in Examples 5 to 8, and durability characteristics were evaluated. The results are shown in Table 7.

【0078】尚、不純物の含有量は実施例17と同様に
して測定した。不純物の主成分は、実施例18では1−
(4−メチルフェニル)イソキノリン、比較例10では
1−(4−メチルフェニル)イソキノリンとアセチルア
セトンであった。
The content of impurities was measured in the same manner as in Example 17. The main component of impurities is 1-in Example 18.
(4-methylphenyl) isoquinoline, and in Comparative Example 10 1- (4-methylphenyl) isoquinoline and acetylacetone.

【0079】[0079]

【表7】 [Table 7]

【0080】表7に示す様に成膜した膜中に存在する不
純物含有量の結果から、アセチルアセトナト配位子があ
るacac体と3配位体では、蒸着時の熱安定性に違い
があり、3配位体の方が同一蒸着条件では蒸着時の熱分
解を少なくすることができる。それに応じて素子の発光
輝度の半減時間は、実施例18の方が圧倒的に長い。
As shown in Table 7, from the results of the content of impurities existing in the formed film, there is a difference in thermal stability during vapor deposition between the acac body having an acetylacetonato ligand and the tricoordinate body. Yes, the three-coordinated body can reduce thermal decomposition during vapor deposition under the same vapor deposition conditions. Accordingly, the half-life time of the emission luminance of the device is overwhelmingly longer in Example 18.

【0081】<実施例19,比較例11>発光材料とし
てIr(4CF3piq)3(実施例19)とIr(4
mpiq)3(比較例11)を用いた以外は実施例5〜
8と同様にして素子を作製し、耐久特性を評価した。結
果を表8に示す。
<Example 19, Comparative Example 11> Ir (4CF3piq) 3 (Example 19) and Ir (4
mpiq) 3 (Comparative Example 11) except that Examples 5 to 5 were used.
A device was prepared in the same manner as in No. 8, and durability characteristics were evaluated. The results are shown in Table 8.

【0082】尚、不純物の含有量は実施例17と同様に
して測定した。不純物の主成分は、実施例19では1−
(4−トリフルオロメチルフェニル)イソキノリン、比
較例11では1−(4−メチルフェニル)イソキノリン
であった。
The content of impurities was measured in the same manner as in Example 17. The main component of impurities is 1-in Example 19.
(4-trifluoromethylphenyl) isoquinoline, and in Comparative Example 11 it was 1- (4-methylphenyl) isoquinoline.

【0083】[0083]

【表8】 [Table 8]

【0084】表8に示す様にフッ素化したIr(4CF
3piq)3とフッ素化していないIr(4mpiq)
3で比較すると、蒸着時の昇華性に違いがあり、フッ素
化化合物の方が不純物含有量も少なく、発光輝度の半減
時間も長くなる。
As shown in Table 8, fluorinated Ir (4CF
3piq) 3 and Ir not fluorinated (4mpiq)
Comparing with No. 3, there is a difference in sublimation property during vapor deposition, and the fluorinated compound has a smaller impurity content and a longer half-life time of emission luminance.

【0085】この結果、フッ素置換化合物の方が蒸着後
の基板蒸着物中の分解物の量も低下することを見出し
た。この原因として、フッ素化化合物では分子間相互作
用が低減され、昇華温度が低下したことにより、蒸着温
度が低下することが主要な要因であると考えている。
As a result, it was found that the fluorine-substituted compound also lowers the amount of decomposed substances in the vapor deposit on the substrate after vapor deposition. It is considered that the main reason for this is that the intermolecular interaction is reduced in the fluorinated compound and the sublimation temperature is lowered, so that the vapor deposition temperature is lowered.

【0086】さらに、素子の発光寿命もフッ素を導入し
たものの方が、長くなることがわかった。
Further, it was found that the light emission life of the device was longer when fluorine was introduced.

【0087】[0087]

【発明の効果】以上説明のように、本発明によれば、高
効率発光で、耐久性に優れ、長い期間高輝度を保つ発光
素子及び表示装置を得ることができる。更に、燐光発光
素子の場合には、初期特性も改善される。
As described above, according to the present invention, it is possible to obtain a light emitting element and a display device which emit light with high efficiency, have excellent durability, and maintain high brightness for a long period. Furthermore, in the case of a phosphorescent device, the initial characteristics are also improved.

【0088】本発明の高効率・高耐久性の発光素子は、
省エネルギーや高輝度が必要な製品に応用が可能であ
る。応用例としては表示装置・照明装置やプリンターの
光源、液晶表示装置のバックライトなどが考えられる。
表示装置としては、省エネルギーや高視認性・軽量なフ
ラットパネルディスプレイが可能となる。照明装置やバ
ックライトに関しては、本発明による省エネルギー効果
が期待できる。
The highly efficient and highly durable light emitting device of the present invention is
It can be applied to products that require energy saving and high brightness. Application examples include a display device / illumination device, a light source for a printer, and a backlight for a liquid crystal display device.
As a display device, energy saving, high visibility and lightweight flat panel display can be realized. Regarding the lighting device and the backlight, the energy saving effect of the present invention can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光素子の一例を示す図である。FIG. 1 is a diagram showing an example of a light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

11 金属電極 12 発光層 13 ホール輸送層 14 透明電極 15 透明基板 16 電子輸送層 17 励起子拡散防止層 11 metal electrodes 12 Light-emitting layer 13 Hall transport layer 14 Transparent electrode 15 Transparent substrate 16 Electron transport layer 17 Exciton diffusion prevention layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 伸二郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 滝口 隆雄 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 井川 悟史 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 鎌谷 淳 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 森山 孝志 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 三浦 聖志 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 古郡 学 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 3K007 AB02 AB03 AB11 DB03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinjiro Okada             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Takao Takiguchi             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Satoshi Ikawa             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Jun Kamagai             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Takashi Moriyama             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Seiji Miura             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation (72) Inventor Manabu Furugun             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation F-term (reference) 3K007 AB02 AB03 AB11 DB03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極間に少なくとも一層の有機化
合物層を有する発光素子において、該有機化合物層の少
なくとも一層が金属配位化合物を少なくとも一種有し、
該金属配位化合物を有する有機化合物層に含まれる前記
金属配位化合物の分解生成物または原料物の含有量が
0.5重量%以下であることを特徴とする発光素子。
1. A light emitting device having at least one organic compound layer between a pair of electrodes, wherein at least one organic compound layer has at least one metal coordination compound,
A light emitting device characterized in that a content of a decomposition product or a raw material of the metal coordination compound contained in the organic compound layer having the metal coordination compound is 0.5% by weight or less.
【請求項2】 前記金属配位化合物の分解生成物または
原料物の含有量が0.1重量%以下であることを特徴と
する請求項1に記載の発光素子。
2. The light emitting device according to claim 1, wherein the content of the decomposition product or the raw material of the metal coordination compound is 0.1% by weight or less.
【請求項3】 前記金属配位化合物の分解生成物または
原料物が、該金属配位化合物の合成の際に用いる配位子
となる合成原料であることを特徴とする請求項1または
2に記載の発光素子。
3. The method according to claim 1, wherein the decomposition product or raw material of the metal coordination compound is a synthetic raw material which serves as a ligand used in the synthesis of the metal coordination compound. The light emitting device described.
【請求項4】 前記金属配位化合物が発光材料であるこ
とを特徴とする請求項1〜3のいずれかに記載の発光素
子。
4. The light emitting device according to claim 1, wherein the metal coordination compound is a light emitting material.
【請求項5】 前記金属配位化合物がイリジウム配位化
合物であることを特徴とする請求項1〜4のいずれかに
記載の発光素子。
5. The light emitting device according to claim 1, wherein the metal coordination compound is an iridium coordination compound.
【請求項6】 前記イリジウム配位化合物の配位子が有
機フッ素化物であることを特徴とする請求項5に記載の
発光素子。
6. The light emitting device according to claim 5, wherein the ligand of the iridium coordination compound is an organic fluorinated compound.
【請求項7】 前記金属配位化合物が燐光発光性発光材
料であることを特徴とする請求項1〜6のいずれかに記
載の発光素子。
7. The light emitting device according to claim 1, wherein the metal coordination compound is a phosphorescent light emitting material.
【請求項8】 金属配位化合物の分解生成物または原料
物の含有量が0.5重量%以下になるような蒸着条件で
金属配位化合物を有する有機化合物層を形成する工程を
有することを特徴とする請求項1〜7のいずれかに記載
の発光素子の製造方法。
8. A step of forming an organic compound layer having a metal coordination compound under vapor deposition conditions such that the content of the decomposition product or raw material of the metal coordination compound is 0.5% by weight or less. The method for manufacturing a light emitting device according to claim 1, wherein the method is for manufacturing a light emitting device.
JP2002173528A 2001-06-15 2002-06-14 Light emitting element Expired - Fee Related JP4208492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173528A JP4208492B2 (en) 2001-06-15 2002-06-14 Light emitting element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001181158 2001-06-15
JP2001-181158 2001-06-15
JP2002173528A JP4208492B2 (en) 2001-06-15 2002-06-14 Light emitting element

Publications (2)

Publication Number Publication Date
JP2003068467A true JP2003068467A (en) 2003-03-07
JP4208492B2 JP4208492B2 (en) 2009-01-14

Family

ID=26616958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173528A Expired - Fee Related JP4208492B2 (en) 2001-06-15 2002-06-14 Light emitting element

Country Status (1)

Country Link
JP (1) JP4208492B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165605A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Organic electroluminescence element, and method of manufacturing same
JP2007270155A (en) * 2001-11-07 2007-10-18 E I Du Pont De Nemours & Co Electroluminescent iridium compound having red-orange or red emission and device made with such compound
JP2009032827A (en) * 2007-07-25 2009-02-12 Hitachi Displays Ltd Luminous element
JP4474492B1 (en) * 2009-08-31 2010-06-02 富士フイルム株式会社 Material for organic electroluminescence device and organic electroluminescence device
JP2010184876A (en) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp Organometallic complex, composition for organic electroluminescent device and organic electroluminescent device
JP2010209317A (en) * 2009-02-10 2010-09-24 Mitsubishi Chemicals Corp Metal complex, composition for organic electroluminescent element, and organic electroluminescent element
WO2017094566A1 (en) * 2015-11-30 2017-06-08 株式会社住化分析センター Method for managing manufacturing apparatus for manufacturing organic electronic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270155A (en) * 2001-11-07 2007-10-18 E I Du Pont De Nemours & Co Electroluminescent iridium compound having red-orange or red emission and device made with such compound
JP2007165605A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Organic electroluminescence element, and method of manufacturing same
JP2009032827A (en) * 2007-07-25 2009-02-12 Hitachi Displays Ltd Luminous element
JP2010209317A (en) * 2009-02-10 2010-09-24 Mitsubishi Chemicals Corp Metal complex, composition for organic electroluminescent element, and organic electroluminescent element
JP2010184876A (en) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp Organometallic complex, composition for organic electroluminescent device and organic electroluminescent device
WO2011024733A1 (en) * 2009-08-31 2011-03-03 Fujifilm Corporation Material for organic electroluminescence device and organic electroluminescence device
JP4474492B1 (en) * 2009-08-31 2010-06-02 富士フイルム株式会社 Material for organic electroluminescence device and organic electroluminescence device
JP2011052088A (en) * 2009-08-31 2011-03-17 Fujifilm Corp Material for organic electroluminescence element, and organic electroluminescence element
US8415032B2 (en) 2009-08-31 2013-04-09 Udc Ireland Limited Material for organic electroluminescence device and organic electroluminescence device
TWI560188B (en) * 2009-08-31 2016-12-01 Udc Ireland Ltd Material for organic electroluminescence device and organic electroluminescence device
WO2017094566A1 (en) * 2015-11-30 2017-06-08 株式会社住化分析センター Method for managing manufacturing apparatus for manufacturing organic electronic device
KR20180085020A (en) * 2015-11-30 2018-07-25 가부시키가이샤 스미카 분세키 센터 Method for managing a manufacturing apparatus for manufacturing an organic electronic device
JPWO2017094566A1 (en) * 2015-11-30 2018-09-13 株式会社住化分析センター Management method of manufacturing apparatus for manufacturing organic electronics device
TWI759274B (en) * 2015-11-30 2022-04-01 日商住化分析中心股份有限公司 Method of controlling apparatus for manufacturing organic electronic device
KR102575102B1 (en) * 2015-11-30 2023-09-05 가부시키가이샤 스미카 분세키 센터 Management method of manufacturing equipment for manufacturing organic electronic elements

Also Published As

Publication number Publication date
JP4208492B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
EP1472908B1 (en) White light emitting oleds from combined monomer and aggregate emission
JP4198654B2 (en) Iridium compound and organic electroluminescence device employing the same
JP4154140B2 (en) Metal coordination compounds
KR101318125B1 (en) Organometallic complex, and light-emitting element, light-emitting device and electronic device using the organometallic complex
EP1239526B1 (en) Metal coordination compound, luminescence device and display apparatus
EP1711579B1 (en) Improved electroluminescent stability
EP1244155B1 (en) Metal coordination compound, luminescence device and display apparatus
EP2378582B1 (en) Stable and efficient electroluminescent materials
JP4154145B2 (en) Metal coordination compound, light emitting device and display device
US20040121184A1 (en) Organic light emitting materials and devices
US20030124381A1 (en) White light emitting OLEDs from combined monomer and aggregate emission
JP2003081988A (en) Light emitting element, display and metal coordination compound for the light emitting element
JP4035372B2 (en) Light emitting element
JP2001313178A (en) Organic electroluminescent element
KR20050037479A (en) Phosphorescent compounds and devices comprising the same
WO2001093642A1 (en) Phosphorescent organic light emitting devices
JP2002540572A (en) Cyclometallated metal complexes as phosphorescent dopants in organic LEDs
JP2006513278A6 (en) Organic light emitting materials and devices
JP2003073388A (en) Metal coordination compound and organic luminescent element
KR20070111914A (en) Luminescent heteronuclear copper(i)-iridium(iii) complex and organic electroluminescence device using the same
US20060008671A1 (en) Electroluminescent efficiency
US20080091021A1 (en) Diarylaminofluorene-based organometallic phosphors and organic light-emitting devices made with such compounds
JP2003192691A (en) Organic iridium complex and organic electroluminescent element
JP2003068466A (en) Light-emitting element and manufacturing method of light-emitting element
Hu et al. Red electroluminescence from an organic europium complex with a triphenylphosphine oxide ligand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees