WO2017094566A1 - Method for managing manufacturing apparatus for manufacturing organic electronic device - Google Patents

Method for managing manufacturing apparatus for manufacturing organic electronic device Download PDF

Info

Publication number
WO2017094566A1
WO2017094566A1 PCT/JP2016/084639 JP2016084639W WO2017094566A1 WO 2017094566 A1 WO2017094566 A1 WO 2017094566A1 JP 2016084639 W JP2016084639 W JP 2016084639W WO 2017094566 A1 WO2017094566 A1 WO 2017094566A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
manufacturing apparatus
impurities
manufacturing
electronic device
Prior art date
Application number
PCT/JP2016/084639
Other languages
French (fr)
Japanese (ja)
Inventor
高史 末包
克也 今西
弘 藤本
智 柚木▲脇▼
誠 吉▲崎▼
Original Assignee
株式会社住化分析センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住化分析センター filed Critical 株式会社住化分析センター
Priority to KR1020187018368A priority Critical patent/KR102575102B1/en
Priority to JP2017553793A priority patent/JP6808642B2/en
Publication of WO2017094566A1 publication Critical patent/WO2017094566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a method for managing a manufacturing apparatus for manufacturing an organic electronic device.
  • Patent Document 1 describes an impurity detection method for detecting impurities derived from a vacuum pump connected to a vacuum chamber, and using an organic film as a detector for detecting the impurities.
  • Patent Document 2 discloses that when an organic EL element manufacturing apparatus having an organic film forming chamber for forming an organic layer on the surface of a substrate having a hole injection electrode formed thereon is newly assembled, or an apparatus disassembly overhaul. A method for producing an organic EL element is described in which the inside of the apparatus is cleaned with ozone gas and then the organic layer is formed.
  • Patent Document 3 discloses a method for manufacturing a light-emitting element having a layer containing a light-emitting organic compound between a pair of electrodes, in which a film formation material is heated and vaporized in a film formation chamber under reduced pressure. And a second step of forming a layer included in the layer containing the light-emitting organic compound in the film formation chamber, exhaust, and partial pressure of water in the film formation chamber in the mass spectrometer A method for manufacturing a light-emitting element is described in which the partial pressure of water is smaller than the average value of the partial pressure of water in the first step at the start of the second step. ing.
  • the technique described in Patent Document 1 mainly detects impurities derived from the lubricant of the vacuum pump.
  • the technique described in Patent Document 2 aims to avoid an adverse effect caused by organic matter in the atmosphere attached to the inside of the stocker chamber.
  • the technique described in Patent Document 3 uses moisture, oxygen, and the like as management indices. From the viewpoint of providing a method for managing a manufacturing apparatus for manufacturing a high-performance organic electronic device, these techniques may not be sufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to manage a manufacturing apparatus for manufacturing a high-performance organic electronic device regardless of the configuration of the target organic electronic device or manufacturing apparatus. Is to realize.
  • the present inventors manufactured high-performance organic electronics devices by using impurities derived from materials of organic electronics devices and materials of manufacturing equipment as management indicators.
  • the present inventors have found that a method for managing a manufacturing apparatus can be realized, and have completed the present invention.
  • the structure of the target organic electronics device or manufacturing apparatus is not limited. That is, one embodiment of the present invention has the following configuration.
  • a method for managing a manufacturing apparatus for manufacturing an organic electronic device comprising: an arrangement step of arranging a base material in the manufacturing apparatus; a material for the organic electronic device attached to the base material; And a detection step of detecting impurities derived from at least one of the materials.
  • the present invention has an effect that it is possible to provide a method for managing a manufacturing apparatus for manufacturing a high-performance organic electronic device regardless of the configuration of the target organic electronic device or manufacturing apparatus.
  • a to B representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
  • the management method is a management method of a manufacturing apparatus that manufactures an organic electronics device, and includes an arrangement step of arranging a base material in the manufacturing apparatus, a material of the organic electronic device attached to the base material, and the manufacturing method. Detecting the impurities derived from at least one of the materials of the device.
  • a contamination evaluation base material is installed in the manufacturing apparatus, taken out after a lapse of a predetermined time, and impurities adhering to the base material are analyzed.
  • the present inventors have found that the organic electronics device has higher performance as the contamination by impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus is smaller.
  • the inventors of the present invention are not limited to the evaluation of impurities derived from lubricants, organic substances in the atmosphere, moisture, oxygen, etc. in the manufacturing method management method for manufacturing high-performance organic electronic devices. Rather, the present inventors have found that the evaluation of contamination due to impurities derived from materials of organic electronic devices and manufacturing equipment is effective. Therefore, the manufacturing apparatus can be managed based on the evaluation of contamination due to impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus. In the manufacturing apparatus managed by the management method, a high-performance organic electronic device can be manufactured.
  • the type and amount of impurities serving as a management index and the type of base material can be arbitrarily determined according to the configuration of the manufacturing apparatus or organic electronics device.
  • the configuration of is not limited. Therefore, the above management method can be applied to a wide range of manufacturing apparatuses. Moreover, based on the result obtained by contamination evaluation, the state of the manufacturing apparatus can be managed on a daily basis with a simple operation.
  • management means, for example, evaluation of contamination due to impurities, and cleaning, repair, or update of the manufacturing apparatus, if necessary, based on the evaluation result. It means maintaining or improving the performance and the performance of the organic electronic device manufactured by the manufacturing apparatus. Moreover, such a management method can be used for research and development of manufacturing equipment, shipping inspection, and performance inspection during installation. For example, in the research and development of manufacturing equipment, efficient research and development can be performed by performing equipment management by the above management method.
  • the above management method it is possible to determine an appropriate cleaning timing by paying attention to the amount or the presence or absence of impurities and, for example, by determining and evaluating a reference value.
  • Cleaning in the manufacturing apparatus requires extensive work such as careful wiping with an organic solvent or repeated heating and vacuuming. Therefore, when the cleaning frequency is excessive, the manufacturing cost and the management cost increase.
  • the manufacturing apparatus is used as it is even though cleaning is necessary, a high-performance organic electronic device cannot be manufactured, resulting in poor yield.
  • the management method since the timing of cleaning can be determined without waste, the manufacturing cost and the management cost can be reduced, and a high-performance organic electronic device can be efficiently manufactured.
  • cleaning can be determined similarly about the same apparatus (for example, several manufacturing apparatuses which are the completely same operation methods). If a plurality of manufacturing apparatuses can be managed collectively, the cost advantage will be even greater.
  • the timing of overhauling the manufacturing apparatus or renewing an aging manufacturing apparatus by focusing on the amount and presence of impurities and, for example, determining a reference value and performing an evaluation. If expensive overhauls or renewals are made on a regular basis or made by sensory judgment based on the performance of the organic electronics device, extra manufacturing and management costs can be incurred. According to the above management method, the timing of overhaul or update can be determined without waste. This is a great merit from the viewpoint of manufacturing cost and management cost.
  • the production apparatus to be managed is not particularly limited as long as it is a production apparatus for producing an organic electronic device.
  • Examples of the organic electronic device include an organic EL, an organic solar battery, an organic transistor, and an organic memory.
  • the organic electronic device may be one in which a single layer organic film is formed on a substrate, or may be one in which a multilayer film is formed. According to the management method described above, impurities contained in each layer can be detected even when the organic electronic device has a multilayer film. Therefore, when the management method is applied to a manufacturing apparatus that manufactures an organic electronic device having a multilayer film, it can be evaluated which layer in the multilayer film can contain a large amount of impurities.
  • a manufacturing apparatus for manufacturing an organic electronic device by a vapor deposition process or a coating process can be used.
  • FIG. 2 is a diagram schematically showing a method for manufacturing an organic electronic device.
  • FIG. 2A shows a manufacturing method by a vapor deposition process
  • FIG. 2B shows a manufacturing method by a coating process.
  • the film forming material 4 is disposed in the film forming material holding unit 3 in the manufacturing apparatus 1 (for example, in the chamber of the manufacturing apparatus).
  • a substrate 5 is disposed on the upper part of the film forming material holding unit 3.
  • the film forming material 4 is heated by the heating mechanism 6, the film forming material 4 is vaporized and deposited on the substrate 5.
  • the arrow 9 schematically represents the vaporized film forming material 4 being deposited on the substrate 5.
  • the inside of the manufacturing apparatus 1 is made into a vacuum state by exhausting from the exhaust pipe 7 connected to the vacuum pump etc., and the film-forming material vapor-deposited on the board
  • substrate 5 is dried. Thereby, an organic electronic device in which the film 8 derived from the film forming material 4 is formed on the substrate 5 can be obtained.
  • the application process can be performed in a glove box or a clean bench.
  • a glove box, a clean bench, and the like are also included in the manufacturing apparatus.
  • the coating process a solution of the film forming material 4 is dropped onto the substrate 5 from the droplet discharge mechanism 10. Then, the film forming material applied on the substrate 5 is dried. Thereby, an organic electronic device in which the film 8 derived from the film forming material 4 is formed on the substrate 5 can be obtained.
  • the management method includes an arrangement step of arranging a base material in the manufacturing apparatus. Therefore, impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus can be attached to the substrate. Therefore, in the detection process to be described later, the type and / or amount of impurities that can adhere to the substrate at any stage of the manufacturing process of the organic electronics device can be evaluated.
  • the base material is a target to which the impurity is attached in order to detect the impurity.
  • the material of the base material is not particularly limited, and may be an inorganic material, an organic material, or a mixture of an organic material and an inorganic material.
  • the material of the substrate is preferably a material generally used in the field of organic electronics, for example.
  • the shape of the substrate is not particularly limited, and may include a flat surface or a curved surface.
  • the base material may be a three-dimensional solid body, may be a spherical body composed of a curved surface, or may be a solid body in which a flat surface and a curved surface are mixed.
  • the base material may be a base material that has flexibility and whose plane and curved surface can freely change.
  • the substrate may be, for example, a substrate generally used in the organic electronics field. Further, the substrate may be a single layer or a multilayer of two or more layers.
  • the base material preferably includes at least one of a substrate and an organic film. That is, the base material may be a substrate or an organic film, or an organic film formed on the substrate. Since the substrate and the organic film are in a form generally used in the field of organic electronics, they are preferable for detecting impurities that may adhere in the manufacturing process of the organic electronics device.
  • examples of the material for the substrate include silicon and glass as inorganic materials, and synthetic resin as organic materials.
  • examples of the organic substance include polyimide resin, polyester resin, liquid crystal polymer, epoxy resin, phenol resin, and fluorine resin.
  • an organic film means a film containing an organic substance, and the organic substance includes an aromatic hydrocarbon, a polycyclic aromatic hydrocarbon, a heteroaromatic hydrocarbon, or a heteropolycyclic aromatic hydrocarbon.
  • Induced compounds compounds in which rings are linked via a covalent bond, compounds containing fullerene in the skeleton, compounds containing porphyrin and phthalocyanine in the skeleton, metal complex compounds containing these structures, and those structures Examples include oligomers and polymers.
  • the film thickness of the organic film is not particularly limited, and may be 1 nm or less, 1 to 10 nm, 10 to 100 nm, 100 to 1000 nm, or 1 ⁇ m or more. May be.
  • the film thickness of the organic film as the substrate is more preferably 10 nm or less, and further preferably 1 nm or less.
  • Patent Document 1 describes that impurities cannot be detected only by a substrate, and an organic film must be used to detect impurities. This is considered that the technique described in Patent Document 1 cannot detect using a substrate because impurities derived from a lubricant are targeted for detection.
  • the material of the base material is not particularly limited.
  • the base material preferably includes a material of the organic electronics device and is made of a material different from the impurities.
  • the material include compounds derived from the above-described aromatic hydrocarbons, polycyclic aromatic hydrocarbons, heteroaromatic hydrocarbons or heteropolycyclic aromatic hydrocarbons, and rings are connected via a covalent bond.
  • the impurities which can adhere to the material of the organic electronic device actually used can be detected. Further, by using a material different from the impurity to be detected as a base material, the impurity can be easily detected.
  • the place where the base material is disposed is not particularly limited as long as it is within the manufacturing apparatus.
  • positioning location of a base material the inside of the chamber of a manufacturing apparatus is mentioned, for example.
  • a chamber means a space in which an organic electronic device is manufactured, and is also referred to as a manufacturing room.
  • the cluster type manufacturing apparatus or the inline type manufacturing apparatus has a plurality of manufacturing rooms.
  • the substrate may be disposed in at least one of the plurality of manufacturing chambers.
  • the arrangement direction of the base material is not particularly limited, and for example, the surface of the base material to which impurities are to be attached may be the same direction, the reverse direction, the horizontal direction (vertical), or the oblique direction with respect to the gravity direction.
  • the time for arranging the base material is not particularly limited. From the viewpoint of more reliably attaching impurities to the substrate, the arrangement time is preferably 5 minutes or more, more preferably 10 minutes or more, further preferably 20 minutes or more, more preferably 30 minutes or more. It is particularly preferred that Further, from the viewpoint of completing the arrangement process in a short period, the arrangement time is preferably 15 hours or less, and more preferably 10 hours or less. From the viewpoint of performing management during the operation of the manufacturing apparatus, the arrangement time is particularly preferably 8 hours or less. However, the arrangement time may be changed depending on the purpose, and may be less than 5 minutes when evaluating the amount and presence of impurities in a short time, and 15 when evaluating the amount and presence of impurities over a long period of time.
  • the placement time is 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days (1 week), 8 days, 9 days, 10 days, 2 weeks, 3 weeks, 4 weeks, There may be months, two months, or three months.
  • the placement step is preferably performed at least one stage before, during, or after the manufacture of the organic electronic device.
  • the impurities which can adhere in each stage before manufacture of an organic electronic device, during manufacture, and after manufacture can be detected in the detection process mentioned below. Therefore, it can be specified at which stage of the manufacturing process of the organic electronic device that impurities can be increased. Therefore, it is possible to obtain a judgment material for determining the timing or the like for cleaning in the manufacturing apparatus. Moreover, since the timing etc. which do not need to perform the washing
  • FIG. 1 is a diagram schematically showing an arrangement process in the management method.
  • FIG. 1 (a) shows a case where the placement step is performed before or after the manufacture of the organic electronics device
  • FIG. 1 (b) shows a case where the placement step is performed during the manufacture of the organic electronics device. Show.
  • the organic electronic device material (substrate and film forming material), the completed organic electronic device, etc.
  • the base material 2 is arrange
  • the arrow 11 schematically represents a state in which impurities adhere to the substrate 2.
  • a shutter 12 may be provided on the upper part of the film forming material holding unit 3.
  • the substrate 5 and the film forming material 4 are placed, the base material 2 is placed, and the above-described deposition is performed. A process or a coating process may be started.
  • any one of the multilayer films (for example, the first layer, the second layer, or the further layer) is formed. Impurities that can be deposited inside can also be detected.
  • the above management method when manufacturing a multilayer film or manufacturing using different materials in the same manufacturing chamber, it is possible to specify at which stage contamination may occur. In addition, it can be specified which of the layers in the multilayer film can have a particularly large amount of impurities. If it cannot be determined at which stage contamination can occur, the operating costs for improving the manufacturing equipment can be significantly increased. According to the above management method, contamination can be evaluated for each stage of the manufacturing process, so that it is easy to identify a problem when the performance of the organic electronic device deteriorates. Therefore, it leads to an improvement in yield for manufacturing high-performance organic electronics devices.
  • the arrangement step may be performed before the manufacture of the organic electronic device when the manufacturing apparatus is newly introduced.
  • the above management method when a new manufacturing apparatus is introduced, it is possible to manage the state when the manufacturing apparatus is installed by evaluating contamination due to impurities derived from the material of the manufacturing apparatus. If the initial contamination due to impurities derived from the material of the manufacturing apparatus that may occur at the time of newly introducing the manufacturing apparatus has not been sufficiently removed, it is determined whether or not additional cleaning is necessary after trial manufacture, and manufacturing costs increase. In addition, if the initial contamination is not noticed, a high-performance organic electronic device cannot be manufactured and the yield may be deteriorated. Therefore, evaluating the initial contamination derived from the material of the manufacturing apparatus leads to improvement in yield after the introduction of the manufacturing apparatus, and prevention of re-setting operations such as cleaning and adjustment. This is a great merit from the viewpoint of manufacturing cost.
  • a standby time may be provided at any stage of the manufacturing process.
  • a waiting time may be provided after the first layer is formed and before the formation of the second layer is started.
  • impurities can be sufficiently adhered during the standby time.
  • the management method includes a detection step of detecting impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus attached to the base material.
  • the impurity to be detected is an impurity derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus.
  • impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus means impurities derived from the lubricant of the vacuum pump, organic matter in the atmosphere, and impurities excluding moisture and oxygen. Means.
  • Examples of the impurities derived from the material of the organic electronics device include organic materials and inorganic materials used as the material of the organic electronics device, and derivatives of these materials.
  • Examples of the impurities derived from the material of the organic electronic device include impurities mixed in the organic material and the inorganic material.
  • organic material examples include aromatic hydrocarbons, polycyclic aromatic hydrocarbons, compounds derived from heteroaromatic hydrocarbons or heteropolycyclic aromatic hydrocarbons, compounds in which rings are linked via a covalent bond, Examples include compounds containing fullerene in the skeleton, compounds containing porphyrin and phthalocyanine in the skeleton, metal complex compounds containing these structures, oligomers and polymers containing these structures, and the like.
  • the inorganic material includes metals such as aluminum and magnesium, and metal alloys containing them.
  • Examples of the inorganic material include lithium oxide, lithium fluoride, sodium fluoride, and potassium fluoride.
  • Derivatives of the above materials include decomposition products and polymers of the above organic materials and inorganic materials.
  • the decomposition products include thermal decomposition products and hydrolysis products.
  • the derivative of the material includes a reaction product (that is, a by-product) in the reaction in which the decomposition product and the polymer are generated.
  • the derivative of the material includes an organic compound and a metal component generated from the organic material and the inorganic material.
  • organic materials, metals, non-metals, and organic materials that were not originally intended to be contained as organic electronics device materials, Halogen etc. are mentioned.
  • Impurities derived from the material of the organic electronic device include, for example, [alkali metal elements] Li, Na, K, Rb, Cs; [alkaline earth metal elements] Be, Mg, Ca, Sr, Ba; [lanthanoid elements] La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; [actinoid element] Th, U; [transition metal element] Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au; [boron group element] B, Al, Ga, In, Tl; [Carbon group element] Si, Ge, Sn, Pb; [Nictogen element] P, As, Sb, Bi; [Chalkogen element] S, Se, Te; [Halogen element] F , Cl, Br
  • Examples of the material for the production apparatus include synthetic resins, synthetic resin additives, synthetic resins and derivatives of synthetic resin additives, metal materials, ceramic materials, and glass materials.
  • Examples of the synthetic resin include polypropylene, polyethylene, polyacetal, fluorine resin (polytetrafluoroethylene, etc.), polyurethane, polyphenylene sulfide, polymethyl methacrylate resin, polyvinyl chloride, polyvinylidene chloride, ABS resin, polyamide and polyester. It is done.
  • Examples of the synthetic resin additive include a plasticizer, an antioxidant, a light stabilizer, an antistatic agent and a flame retardant added to the synthetic resin.
  • plasticizer examples include phthalate plasticizers, adipate ester plasticizers, phosphate ester plasticizers, epoxy plasticizers, trimellitic ester plasticizers, citrate ester plasticizers, and polyester plasticizers.
  • antioxidant examples include phenolic antioxidants, phosphorus antioxidants, and sulfurous antioxidants.
  • light stabilizer examples include benzotriazole light stabilizer, benzophenone light stabilizer, salicylate light stabilizer, cyanoacrylate light stabilizer, nickel light stabilizer, triazine light stabilizer, hindered amine light stabilizer. Phenolic light stabilizers, phosphoric acid light stabilizers, sulfur light stabilizers, and the like.
  • Examples of the antistatic agent include dinonylnaphthyl sulfonic acid, glycidyl methacrylate, polyether ester amide antistatic agent, ethylene oxide-epichlorohydrin antistatic agent, polyether ester antistatic agent, polystyrene sulfonic acid antistatic agent, and Examples include quaternary ammonium base-containing acrylate polymer antistatic agents.
  • Examples of the flame retardant include brominated flame retardants, phosphorus flame retardants, and inorganic flame retardants. Examples of the brominated flame retardant include tetrabromobisphenol A and decabromodiphenyl ether. Examples of the phosphorus flame retardant include aromatic phosphate esters, aromatic condensed phosphate esters, and halogenated phosphate esters. Examples of the inorganic flame retardant include antimony trioxide and magnesium hydroxide.
  • Examples of the synthetic resin and derivatives of the synthetic resin additive include the synthetic resin and a decomposition product and a polymer of the synthetic resin additive.
  • Examples of the decomposition products include thermal decomposition products and hydrolysis products.
  • the derivative includes a reaction product (that is, a by-product) in the reaction in which the decomposition product and the polymer are generated.
  • examples of the derivative include organic compounds generated from the synthetic resin and the synthetic resin additive, and inorganic substances such as inorganic salts and inorganic oxides.
  • the metal material means a component used for the metal material of the manufacturing apparatus.
  • the metal material include stainless steel, aluminum, copper, nickel, and metal alloys thereof.
  • the metal material includes plated steel and the like.
  • the ceramic material examples include alumina, zirconia, boron nitride, silicon carbide, and silicon nitride.
  • glass material examples include silicon dioxide, boron oxide, diphosphorus pentoxide, titanium oxide, bismuth carbide, lead oxide, aluminum fluoride, zinc chloride, lithium oxide, sodium oxide, potassium oxide, magnesium oxide, calcium oxide, and strontium oxide. , Lithium chloride, zirconium oxide and the like.
  • FIG. 3 is a diagram showing a specific example of impurities to be detected in the detection step.
  • the compound shown in (a) of FIG. 3 is represented by the chemical formula C 36 H 44 , CAS number 677275-33-1 and is also called TBPe (2,5,8,11-tetra-tert-butylperylene).
  • the compound shown in FIG. 3B is represented by the chemical formula C 30 H 20 N 2 , CAS No. 550378-78-4, and is also called 9,9 ′-(1,3-phenylene) bis-9H-carbazole.
  • the compound shown in (c) of FIG. 3 is represented by chemical formula C 46 H 46 N 2 , CAS No. 1174006-36-0, and di- [4- (N, N-di-p-tolyl-amino) -phenyl. ] Also called cyclohexane.
  • the compound shown in FIG. 3D is represented by the chemical formula C 13 H 10 N 2 , CAS No. 716-79-0.
  • the compound shown in (e) of FIG. 3 is represented by the chemical formula C 14 H 12 N 2 .
  • the compound shown in (f) of FIG. 3 is represented by the chemical formula C 19 H 14 N 2 , CAS No. 2622-67-5.
  • the compound shown in FIG. 3 (g) is represented by the chemical formula C 44 H 32 N 2 , CAS No. 123847-85-8, and NPD (N, N′-bis- (1-naphthyl) -N, N′- Also referred to as bis-phenyl- (1,1′-biphenyl) -4,4′-diamine).
  • the compound shown in (h) of FIG. 3 is represented by chemical formula C 54 H 35 N 3 , CAS No. 1141757-83-6, and TrisPCz (9,9′-diphenyl-6- (9-phenyl-9H-carbazole-) 3-yl) -9H, 9′H-3,3′-bicarbazole).
  • the compound shown in (i) of FIG. 3 is represented by the chemical formula C 45 H 30 N 6 .
  • the compound shown in FIG. 3 (j) is represented by the chemical formula C 39 H 27 N 3 , CAS No. 1201800-83-0, and T2T (2,4,6-tris (biphenyl-3-yl) -1,3 , 5-triazine).
  • the compound shown in (k) of FIG. 3 is represented by the chemical formula C 56 H 32 N 6 , CAS No. 1416881-52-1 and represented by 4CzIPN (2,4,5,6-tetrakis (carbazol-9-yl) -1 , 3-dicyanobenzene).
  • the compound shown in (l) of FIG. 3 is represented by the chemical formula C 54 H 36 N 4 , CAS No. 139092-78-7, and TCTA (4,4 ′, 4 ′′ -tri-9-carbazolyltriphenylamine). ).
  • the compound shown in FIG. 3 (m) is represented by the chemical formula C 22 H 42 O 4 , CAS No. 103-23-1, and is also called dioctyl adipate.
  • the compound shown in (n) of FIG. 3 is represented by the chemical formula C 24 H 38 O 4 , CAS No. 117-81-7, and is also called dioctyl phthalate.
  • impurities examples include 2-phenyl-1H-benzimidazole, phenyl- (p-tolyl) -benzimidazole, bis (2-ethylhexyl) terephthalate, 2-ethyl-1-hexanol, di-2-adipate Also included are ethylhexyl (DOA), di-2-ethylhexyl phthalate (DOP), phthalic anhydride (DOP decomposition product), and cyclic siloxane D10-12.
  • DOA ethylhexyl
  • DOP di-2-ethylhexyl phthalate
  • DOP decomposition product phthalic anhydride
  • cyclic siloxane D10-12 examples include 2-phenyl-1H-benzimidazole, phenyl- (p-tolyl) -benzimidazole, bis (2-ethylhexyl) terephthalate, 2-ethyl-1-hex
  • the portion to which the impurity to be detected adheres may be any portion on the substrate.
  • the part to which the impurities adhere may be, for example, the surface of the substrate.
  • the portion to which the impurities adhere may be the surface of the organic film, the inside of the organic film, or the entire organic film.
  • the analysis can be performed in stages in the thickness direction of the organic film.
  • the portion to which the impurities adhere may be either surface or both.
  • the substrate When measuring impurities, the substrate may be pretreated to recover the impurities. When a measurement method capable of directly measuring impurities is used, pretreatment does not have to be performed.
  • the impurities and the organic film may or may not dissolve in the solvent.
  • the impurities can be recovered together with the solvent.
  • the impurities and the organic film can be recovered by washing away.
  • impurities can be recovered with a small amount of solvent, compared to a method of immersing and dissolving the substrate in a liquid solvent, so that contamination derived from the solvent can be reduced.
  • the solvent When performing solvent contact, the solvent may be water, an acid, an alkali, an organic solvent, or a mixture thereof.
  • the solvent may be a solvent in which the organic film is dissolved, or may be a solvent in which the organic film is peeled but not dissolved.
  • the solvent is preferably a solvent that does not decompose the organic film.
  • the organic solvent examples include acetonitrile, chloroform, dichloromethane, tetrahydrofuran, hexane, toluene and methanol. Further, from the viewpoint that the component to be analyzed can be evaluated as water-soluble ions, the solvent is preferably water.
  • the acid examples include hydrofluoric acid, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, hydrogen peroxide solution, and perchloric acid.
  • the acid may be an aqueous solution or a mixture of two or more acids.
  • the acid concentration in the solution is preferably higher, for example, preferably 20% or more, more preferably 50% or more, and particularly preferably 60% or more.
  • alkali examples include ammonia, sodium hydroxide, calcium hydroxide, and tetramethylammonium hydroxide.
  • the alkali may be an aqueous solution or a mixture of two or more alkalis.
  • the alkali concentration in the solution is preferably higher, for example, preferably 20% or more, more preferably 50% or more, and particularly preferably 60% or more.
  • the vapor vaporized from the solvent may be brought into contact with the substrate.
  • the method for vaporizing the solvent include a heating method, a depressurizing method, and a ultrasonic vibration method. Moreover, these methods can also be combined suitably.
  • the solvent may be boiled, and it is not necessary to boil as long as sufficient vapor is generated to peel or dissolve the organic film. Therefore, you may heat to the boiling point of a solvent and may heat to the temperature below a boiling point.
  • the steam is saturated steam.
  • the heating temperature can be appropriately determined according to the type of the solvent, but from the viewpoint of sufficiently generating steam, the temperature is preferably close to the boiling point of the solvent, and more preferably the boiling point of the solvent.
  • the heating temperature at 1 atm is preferably 80 ° C. to 100 ° C., more preferably 90 ° C. to 100 ° C., and particularly preferably 100 ° C.
  • the heating time is preferably 5 minutes to 120 minutes, and more preferably 10 minutes to 30 minutes.
  • the solvent is a low boiling point solvent such as acetonitrile, chloroform, dichloromethane, tetrahydrofuran, hexane or methanol, it is preferably 3 minutes to 60 minutes, more preferably 5 minutes to 20 minutes.
  • the solvent is a medium boiling point solvent such as toluene, nitric acid, hydrofluoric acid, nitric acid, hydrochloric acid, hydrogen peroxide, perchloric acid, aqueous sodium hydroxide, aqueous potassium hydroxide or aqueous tetramethylammonium hydroxide It is preferably 5 minutes to 120 minutes, more preferably 10 minutes to 30 minutes.
  • the solvent is a high boiling point solvent such as sulfuric acid or phosphoric acid, it is preferably 10 minutes to 120 minutes, and more preferably 20 minutes to 60 minutes.
  • the heating time is preferable from the viewpoint of sufficiently generating steam.
  • the pressure may be reduced to a pressure at which steam is generated.
  • the organic film may be peeled off from the substrate while maintaining the shape of the film, or a part or all of the organic film may be dissolved.
  • the organic film may be peeled off when vapor penetrates into the organic film and reaches the interface between the organic film and the substrate to weaken the bond between the organic film and the substrate. Further, the surface of the organic film may be gradually dissolved.
  • the organic film is composed of a plurality of layers, the layers may be separated one by one.
  • the dissolved organic film may be collected together with the solvent.
  • the peeled organic film may be collected together with the solvent, or separated from the solvent, and specifically collected as a film-like organic substance remaining on the substrate. Therefore, the solvent may also function as a recovery liquid for the organic film.
  • the type of the solvent it is possible to recover the volatile element contained as a component to be analyzed, or to recover the component according to the form (solid, liquid or gas).
  • the element contained as a component used as analysis object can also be collect
  • the blank in operation can be reduced by selecting the kind of solvent.
  • the time for bringing the vapor into contact with the substrate may be appropriately set according to the type and vapor pressure of the solvent, the size of the substrate, and the like. From the viewpoint of sufficiently peeling or dissolving the organic film, for example, the time for contacting the vapor is preferably 30 minutes to 60 minutes, more preferably 60 minutes to 180 minutes, and 180 minutes to 480. It is particularly preferred that the minute.
  • the base material may be brought into contact with the steam, and the base material may be heated or cooled.
  • the peel strength of the organic film can be changed by changing conditions such as temperature and / or time when the steam is generated.
  • the above-mentioned pre-processing method has a possibility of being applicable to the evaluation in the depth direction (thickness direction of an organic film) of the component contained in an organic film. Therefore, only a partial region in the thickness direction of the organic film may be collected by adjusting the peel strength. Thereby, an arbitrary region in the thickness direction of the organic film can be selectively recovered. Therefore, it can analyze in steps in the thickness direction of the organic film. Therefore, for example, the content of a component present on the surface of the organic film and the content of a component present in a region close to the interface between the substrate and the organic film can be distinguished and analyzed.
  • the component existing on the surface of the organic film means a component that exists inside the organic film and that is close to the surface of the organic film and a component that is attached to the surface of the organic film.
  • the region inside the organic film and close to the surface of the organic film may be, for example, a region within 10 nm in the thickness direction from the surface of the organic film to the inside, or a region within 1 nm in the thickness direction. It may be a region within 0.1 nm in the thickness direction.
  • the direction in which steam is brought into contact with the base material is not particularly limited.
  • the base material may be disposed in the container, and steam may be generated in the container, so that the container is filled with the steam and the base material and the steam may be brought into contact with each other.
  • the vapor may be brought into contact with the substrate from a desired direction by blowing a gas containing vapor onto the substrate.
  • the vapor contact is preferably performed in a closed container.
  • recovery loss can be reduced even when the component to be analyzed has volatility.
  • the sealed container is not particularly limited as long as it can prevent the analysis target component from volatilizing into the environment outside the container. It is good also as an airtight container by using the container which has an opening part, and closing an opening part with a base material.
  • contamination from the operating environment can be prevented.
  • a solvent corresponding to the impurity to be collected or the material of the organic film is put in a container.
  • the container which puts a solvent should just be formed with the material provided with the tolerance with respect to the said solvent (it is not melt
  • a container formed of fluororesin or quartz is preferable because it does not contaminate the collected analysis sample.
  • the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride (PVDF), and polychlorotrifluoroethylene (PCTFE).
  • the base material is placed in a container containing a solvent.
  • the said base material should just be set in the position which does not contact with a liquid solvent (solvent before vaporizing).
  • steam may be generated by heating a container or carrying out pressure reduction or ultrasonic vibration in a container, and a base material and a vapor
  • the base material when the base material includes a substrate and an organic film, the base material may be disposed so that the surface on which the organic film is formed faces downward, and vapor may be contacted from below.
  • a base material may be arrange
  • down means the direction of gravity
  • up means the direction opposite to the direction of gravity.
  • the base material may be arranged so that the surface on which the organic film is formed faces in a direction perpendicular to the direction of gravity, and vapor may be contacted.
  • the organic film (or dissolved organic film) is dropped by gravity in the direction of gravity. You can also Further, in this case, if a solvent that is a generation source of vapor is disposed on the lower side, the peeled organic film (or a dissolved substance of the organic film) can be dropped and recovered in the solvent.
  • the vapor may be brought into contact with only a partial region of the substrate by adjusting the area of the substrate with which the vapor is brought into contact.
  • regions of a base material can be collect
  • the vapor contact by adjusting the contact area and the contact strength of the vapor, it is possible to recover the component derived from the entire base material, or to recover the component derived from a partial region of the base material. it can. In addition, according to the vapor contact, it is easier to selectively recover components derived from an arbitrary region of the base material than, for example, a method of oxidizing and decomposing the base material at a high temperature.
  • the method for measuring the amount and presence of impurities can be appropriately selected depending on the form of the substrate and the type of impurities to be measured.
  • Measurement methods include liquid chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS), ion chromatography (IC), inductively coupled plasma mass spectrometry (ICP-MS), X-ray Photoelectron spectroscopy (XPS), X-ray diffraction (XRD), time-of-flight secondary ion mass spectrometry (TOF-SIMS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS), hydrogen Gas chromatography using a flame ionization detector (GC-FID), Gas chromatography using a flame photometric detector (GC-FPD), Liquid chromatography using a UV detector (LC-UV), Inductive coupling Plasma emission spectroscopy (ICP-AES), capillary electrophoresis (CE), atomic absorption spectrometry ( AS) and glow discharge optical emission spectrometry (GD-OES), and the like.
  • the management method includes a determination step of determining whether or not the amount of impurities detected by the detection step is less than or equal to a preset reference amount or greater than or equal to a preset reference amount. You may go out. It can be said that the determination step is a step of determining whether or not the detected amount of impurities is greater than the reference amount or less than the reference amount. According to the determination step, it is possible to obtain a determination material for determining whether or not a process such as cleaning is necessary to remove impurities.
  • the above management method may include a cleaning process for cleaning the manufacturing apparatus.
  • the cleaning step impurities can be appropriately removed in the manufacturing apparatus.
  • the cleaning step may be performed when it is determined in the determination step that the amount of impurities is greater than or equal to a preset reference amount or greater than a reference amount. Thereby, since unnecessary cleaning is not required, an organic electronic device can be efficiently manufactured.
  • the above-described arrangement process may be performed after the cleaning process.
  • the cleaning effect is confirmed at a stage before the manufacturing apparatus is restarted. be able to. If the performance of the organic electronics device does not improve after restarting and it is judged that cleaning is inadequate even after extensive cleaning work, stop the operation of the manufacturing equipment and perform cleaning again There is a need. In this case, extra manufacturing costs and management costs can occur. According to the above management method, it is possible to prevent useless operation stop and re-cleaning. This is a great merit from the viewpoint of manufacturing cost and management cost.
  • Example 1 In each of the two vacuum deposition apparatuses, a 4-inch ⁇ silicon wafer was placed as a base material. Specifically, the base material was held by a substrate holder in a chamber of a vacuum deposition apparatus. The substrate was taken out after standing for 30 minutes and after standing for 15 hours. Impurities attached to the front side of the base material (hereinafter, the front side of the base material means the surface facing the film-forming material holding unit 3 in the base material 2 of FIG. 1A) contact the organic solvent. The recovered solution was measured by LC-MS. The results are shown in Table 1. The aromatic compounds shown in (a) to (l) of FIG. 3 are detected as impurities derived from the material of the organic electronics device, and the adipic acid ester shown in (m) of FIG. The phthalate ester shown in (n) of FIG. 3 was detected.
  • impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus can exist in the manufacturing apparatus. It is anticipated that these can affect the performance of organic electronic devices.
  • the amount and type of impurities detected increased as the standing time increased.
  • Example 2 A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum deposition apparatus, and was taken out after standing for 30 minutes and standing for 15 hours. Impurities adhering to the front side of the substrate were measured by wafer heating desorption gas chromatography mass spectrometry (WTD-GC-MS). Table 2 shows the results of quantifying the amount of impurities per 1 cm 2 of the silicon wafer using a hexadecane standard sample. Aromatic compounds (Nos. 1 to 4), which are impurities derived from organic electronics device materials, and additives (Nos. 5 to 12), which are impurities derived from materials for manufacturing equipment, were detected.
  • Aromatic compounds Nos. 1 to 4
  • additives Nos. 5 to 12
  • Example 2 it can be seen that impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus can exist in the manufacturing apparatus.
  • the amount and type of detected impurities tended to increase as the standing time increased.
  • Example 3 A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum deposition apparatus, and was taken out after standing for 15 hours. Impurities adhering to the front side of the substrate were dissolved by contacting with an acid solvent, and the dissolved solution was measured by ICP-MS. Table 3 shows the results of quantifying the amount of impurities per one silicon wafer using a standard sample of each detection element.
  • Example 4 A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum vapor deposition apparatus, and was left after standing for 15 hours, and this base material was evaluated as a sample for measuring the amount of impurities before cleaning the apparatus. Subsequently, an organic EL device was created using the same apparatus. After cleaning the inside of the apparatus, a 4-inch ⁇ silicon wafer was placed as a base material in the same manner as before cleaning, taken out after standing for 15 hours, and this base material was evaluated as a sample for measuring the amount of impurities after cleaning the apparatus. An organic EL device was created again with the same apparatus. Impurities adhering to the front side of the substrate were recovered by contacting with an organic solvent, and the recovered liquid was measured by LC-MS.
  • the total amount of impurities detected was evaluated as the degree of contamination. Note that the total amount of the impurities does not include impurities derived from the lubricant of the vacuum pump, organic substances in the atmosphere, moisture and oxygen. Moreover, the light emission lifetime LT90 (initial luminance 1000 cd / m 2 ) of the organic EL device was evaluated. Table 4 shows the relative contamination degree and the relative light emission lifetime when the pre-device cleaning is 100%.
  • Example 5 A 3-inch ⁇ Si wafer was placed as a substrate in a vacuum deposition apparatus. Using the inside of the vacuum deposition apparatus, an organic EL device having a hole injection layer, a hole transport layer, a light emitting layer, a hole block layer and an electron transport layer as a multilayer film was prepared. While maintaining the film formation time of each layer and the waiting time until the next layer is formed, waiting for 60 minutes or 40 minutes intentionally before starting the formation of the next layer before and after the formation of the light emitting layer. A device with time and a device without standby time were created and evaluated for life.
  • a device provided with a standby time it is 60 minutes or 40 minutes after the formation of the hole transport layer and before the formation of the light emitting layer and after the formation of the light emitting layer and before the formation of the hole block layer, respectively.
  • a waiting time of minutes was set up.
  • a shutter was disposed between the base material and the film forming material holding unit so that the film forming material did not adhere to the base material during the film formation of each layer.
  • the substrate thus obtained was evaluated as a sample for measuring the amount of impurities. Impurities adhering to the front side of the substrate were recovered by contacting with an organic solvent, and the recovered liquid was measured by LC-MS. The total amount of impurities detected was evaluated as the degree of contamination.
  • the total amount of the impurities does not include impurities derived from the lubricant of the vacuum pump, organic substances in the atmosphere, moisture and oxygen.
  • the organic EL device was evaluated with a light emission lifetime LT90 (initial luminance 1000 cd / m 2 ).
  • Table 5 shows the relative contamination degree and the relative light emission lifetime when the result of waiting for 60 minutes before and after the light emitting layer is 100%.
  • the present invention can be used mainly in the field of organic electronics devices.

Abstract

The present invention provides a method for managing a manufacturing apparatus that manufactures a high-performance organic electronic device, irrespective of the configuration of the organic electronic device or the manufacturing apparatus. The management method according to one embodiment of the present invention comprises a positioning step for positioning a substrate (2) inside the manufacturing apparatus (1), and a detection step for detecting impurities attached to the substrate (2), the impurities deriving from the materials of the organic electronic device and/or the manufacturing apparatus.

Description

有機エレクトロニクスデバイスを製造する製造装置の管理方法Management method of manufacturing apparatus for manufacturing organic electronics device
 本発明は、有機エレクトロニクスデバイスを製造する製造装置の管理方法に関する。 The present invention relates to a method for managing a manufacturing apparatus for manufacturing an organic electronic device.
 近年、有機薄膜を用いた多種多様な有機エレクトロニクスデバイスが開発されている。有機エレクトロニクスデバイスの分野では常に、高効率、長寿命、高耐久性または高感度といった「高性能化」が求められている。 In recent years, a wide variety of organic electronic devices using organic thin films have been developed. In the field of organic electronics devices, “high performance” such as high efficiency, long life, high durability or high sensitivity is always required.
 有機エレクトロニクスデバイスの高性能化を実現するためには、製造過程における製品への不純物混入を防止する必要があることが知られている。そのような技術として、例えば特許文献1~3に記載の技術が報告されている。 It is known that in order to achieve high performance of organic electronic devices, it is necessary to prevent impurities from being mixed into products during the manufacturing process. As such a technique, for example, techniques described in Patent Documents 1 to 3 have been reported.
 特許文献1には、真空チャンバーに接続された真空ポンプ由来の不純物を検出する不純物検出方法であって、前記不純物を検出する検出器として有機膜を用いる、不純物検出方法が記載されている。 Patent Document 1 describes an impurity detection method for detecting impurities derived from a vacuum pump connected to a vacuum chamber, and using an organic film as a detector for detecting the impurities.
 特許文献2には、正孔注入電極を表面に形成した基板の当該電極の表面に有機層を形成するための有機成膜室を備えた有機EL素子製造装置を新規組立した際または装置分解オーバーホールした際、装置の内部をオゾンガスで洗浄してから有機層を形成することを特徴とする有機EL素子の製造方法が記載されている。 Patent Document 2 discloses that when an organic EL element manufacturing apparatus having an organic film forming chamber for forming an organic layer on the surface of a substrate having a hole injection electrode formed thereon is newly assembled, or an apparatus disassembly overhaul. A method for producing an organic EL element is described in which the inside of the apparatus is cleaned with ozone gas and then the organic layer is formed.
 特許文献3には、一対の電極間に発光性の有機化合物を含む層を有する発光素子の作製方法であって、減圧下の成膜室内で、成膜材料を加熱し気化させる第1の工程と、前記成膜室内で、前記発光性の有機化合物を含む層に含まれる層を成膜する第2の工程と、を、排気、及び質量分析計での前記成膜室内の水の分圧の測定をしながら行い、前記第2の工程の開始時、前記水の分圧が、前記第1の工程における前記水の分圧の平均値より小さい値である発光素子の作製方法が記載されている。 Patent Document 3 discloses a method for manufacturing a light-emitting element having a layer containing a light-emitting organic compound between a pair of electrodes, in which a film formation material is heated and vaporized in a film formation chamber under reduced pressure. And a second step of forming a layer included in the layer containing the light-emitting organic compound in the film formation chamber, exhaust, and partial pressure of water in the film formation chamber in the mass spectrometer A method for manufacturing a light-emitting element is described in which the partial pressure of water is smaller than the average value of the partial pressure of water in the first step at the start of the second step. ing.
国際公開第2013/145640号パンフレット(2013年3月19日公開)International Publication No. 2013/145640 pamphlet (published on March 19, 2013) 日本国公開特許公報「特開2004-192857号(2004年7月8日公開)」Japanese Patent Publication “JP 2004-192857 (published July 8, 2004)” 日本国公開特許公報「特開2014-199789号(2014年10月23日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2014-199789 (published on October 23, 2014)”
 しかしながら、上述のような従来技術には改善の余地がある。 However, there is room for improvement in the conventional technology as described above.
 例えば、特許文献1に記載の技術は、主に真空ポンプの潤滑剤由来の不純物を検出対象としている。また、特許文献2に記載の技術は、ストッカー室の内部に付着していた大気中の有機物などによる悪影響を回避することを目的としている。特許文献3に記載の技術は、水分および酸素等を管理の指標としている。高性能な有機エレクトロニクスデバイスを製造する製造装置の管理方法を提供するという観点からは、これらの技術では不十分な場合があった。 For example, the technique described in Patent Document 1 mainly detects impurities derived from the lubricant of the vacuum pump. In addition, the technique described in Patent Document 2 aims to avoid an adverse effect caused by organic matter in the atmosphere attached to the inside of the stocker chamber. The technique described in Patent Document 3 uses moisture, oxygen, and the like as management indices. From the viewpoint of providing a method for managing a manufacturing apparatus for manufacturing a high-performance organic electronic device, these techniques may not be sufficient.
 また、上述のような従来技術による製造装置の管理は、製造装置の構造によって適不適が生じるため、適用範囲が限定される場合があった。 In addition, the management of the manufacturing apparatus according to the conventional technique as described above may be inappropriate due to the structure of the manufacturing apparatus.
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、対象となる有機エレクトロニクスデバイスまたは製造装置の構成にかかわらず、高性能な有機エレクトロニクスデバイスを製造する製造装置の管理方法を実現することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to manage a manufacturing apparatus for manufacturing a high-performance organic electronic device regardless of the configuration of the target organic electronic device or manufacturing apparatus. Is to realize.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物を管理の指標とすることにより、高性能な有機エレクトロニクスデバイスを製造する製造装置の管理方法を実現できることを見出し、本発明を完成させるに至った。また、本発明によれば、対象となる有機エレクトロニクスデバイスまたは製造装置の構成は限定されない。すなわち本発明の一実施形態は、以下の構成からなるものである。 As a result of intensive studies to achieve the above object, the present inventors manufactured high-performance organic electronics devices by using impurities derived from materials of organic electronics devices and materials of manufacturing equipment as management indicators. The present inventors have found that a method for managing a manufacturing apparatus can be realized, and have completed the present invention. Moreover, according to this invention, the structure of the target organic electronics device or manufacturing apparatus is not limited. That is, one embodiment of the present invention has the following configuration.
 〔1〕有機エレクトロニクスデバイスを製造する製造装置の管理方法であって、上記製造装置内に基材を配置する配置工程と、上記基材に付着した、上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物を検出する検出工程と、を含むことを特徴とする管理方法。 [1] A method for managing a manufacturing apparatus for manufacturing an organic electronic device, comprising: an arrangement step of arranging a base material in the manufacturing apparatus; a material for the organic electronic device attached to the base material; And a detection step of detecting impurities derived from at least one of the materials.
 〔2〕上記基材は、基板および有機膜の少なくとも一方を含むことを特徴とする〔1〕に記載の管理方法。 [2] The management method according to [1], wherein the base material includes at least one of a substrate and an organic film.
 〔3〕上記基材は、上記有機エレクトロニクスデバイスの材料を含み、かつ上記不純物とは異なる材料からなることを特徴とする〔1〕または〔2〕に記載の管理方法。 [3] The management method according to [1] or [2], wherein the base material includes a material of the organic electronic device and is made of a material different from the impurity.
 〔4〕上記配置工程は、有機エレクトロニクスデバイスの製造前、製造中および製造後の少なくともいずれか1つの段階で行われることを特徴とする〔1〕~〔3〕のいずれか1つに記載の管理方法。 [4] The arrangement step described in any one of [1] to [3], wherein the arrangement step is performed at least one stage before, during and after the manufacture of the organic electronic device. Management method.
 〔5〕上記有機エレクトロニクスデバイスが多層膜を有することを特徴とする〔4〕に記載の管理方法。 [5] The management method according to [4], wherein the organic electronic device has a multilayer film.
 〔6〕上記製造装置は、蒸着プロセスまたは塗布プロセスによって有機エレクトロニクスデバイスを製造する製造装置であることを特徴とする〔1〕~〔5〕のいずれか1つに記載の管理方法。 [6] The management method according to any one of [1] to [5], wherein the manufacturing apparatus is a manufacturing apparatus for manufacturing an organic electronic device by a vapor deposition process or a coating process.
 本発明は、対象となる有機エレクトロニクスデバイスまたは製造装置の構成にかかわらず、高性能な有機エレクトロニクスデバイスを製造する製造装置の管理方法を提供できるという効果を奏する。 The present invention has an effect that it is possible to provide a method for managing a manufacturing apparatus for manufacturing a high-performance organic electronic device regardless of the configuration of the target organic electronic device or manufacturing apparatus.
本管理方法における配置工程の例を模式的に示す図である。It is a figure which shows typically the example of the arrangement | positioning process in this management method. 有機エレクトロニクスデバイスの製造方法の例を模式的に示す図である。It is a figure which shows typically the example of the manufacturing method of an organic electronics device. 検出対象となる不純物の例を示す図である。It is a figure which shows the example of the impurity used as a detection target.
 本発明の実施の形態について、以下に詳細に説明する。なお、説明の便宜上、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 Embodiments of the present invention will be described in detail below. For convenience of explanation, members having the same function are denoted by the same reference numerals and description thereof is omitted. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
 〔1.管理方法〕
 まず、本発明の一実施形態に係る管理方法の概要について説明する。上記管理方法は、有機エレクトロニクスデバイスを製造する製造装置の管理方法であって、上記製造装置内に基材を配置する配置工程と、上記基材に付着した、上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物を検出する検出工程と、を含む。
[1. Management method〕
First, an overview of a management method according to an embodiment of the present invention will be described. The management method is a management method of a manufacturing apparatus that manufactures an organic electronics device, and includes an arrangement step of arranging a base material in the manufacturing apparatus, a material of the organic electronic device attached to the base material, and the manufacturing method. Detecting the impurities derived from at least one of the materials of the device.
 すなわち、上記管理方法では、製造装置内に汚染評価用の基材を設置して一定時間経過後に取り出し、当該基材に付着した不純物を分析する。本発明者らは、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物による汚染が少ないほど有機エレクトロニクスデバイスは高性能であることを見出した。つまり、本発明者らは、高性能な有機エレクトロニクスデバイスを製造するための製造装置の管理方法においては、従来技術のような潤滑剤由来の不純物、大気中の有機物、水分および酸素等の評価のみではなく、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物による汚染の評価が有効であることを見出した。よって、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物による汚染の評価に基づいて、製造装置を管理することができる。上記管理方法によって管理された製造装置においては、高性能の有機エレクトロニクスデバイスを製造することができる。 That is, in the above management method, a contamination evaluation base material is installed in the manufacturing apparatus, taken out after a lapse of a predetermined time, and impurities adhering to the base material are analyzed. The present inventors have found that the organic electronics device has higher performance as the contamination by impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus is smaller. In other words, the inventors of the present invention are not limited to the evaluation of impurities derived from lubricants, organic substances in the atmosphere, moisture, oxygen, etc. in the manufacturing method management method for manufacturing high-performance organic electronic devices. Rather, the present inventors have found that the evaluation of contamination due to impurities derived from materials of organic electronic devices and manufacturing equipment is effective. Therefore, the manufacturing apparatus can be managed based on the evaluation of contamination due to impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus. In the manufacturing apparatus managed by the management method, a high-performance organic electronic device can be manufactured.
 上記管理方法においては、製造装置または有機エレクトロニクスデバイスの構成に応じて管理指標となる不純物の種類および量、並びに基材の種類を任意に定めることができるので、対象となる製造装置および有機エレクトロニクスデバイスの構成は限定されない。よって、上記管理方法を幅広い製造装置に適用することができる。また、汚染評価によって得られた結果に基づき、簡便な作業で日常的に製造装置の状態を管理できる。 In the above management method, the type and amount of impurities serving as a management index and the type of base material can be arbitrarily determined according to the configuration of the manufacturing apparatus or organic electronics device. The configuration of is not limited. Therefore, the above management method can be applied to a wide range of manufacturing apparatuses. Moreover, based on the result obtained by contamination evaluation, the state of the manufacturing apparatus can be managed on a daily basis with a simple operation.
 なお、本明細書において、「管理」とは、例えば、不純物による汚染の評価を行い、その評価結果に基づいて必要であれば製造装置の洗浄、修理または更新等を行うことによって、製造装置の性能およびその製造装置によって製造される有機エレクトロニクスデバイスの性能を維持または改善することを意味する。また、このような管理方法を、製造装置の研究開発、出荷検査および据え付け時の性能検査に利用することができる。例えば、製造装置の研究開発において、上記管理方法による装置管理を行うことで、効率的な研究開発を行うことができる。 In this specification, “management” means, for example, evaluation of contamination due to impurities, and cleaning, repair, or update of the manufacturing apparatus, if necessary, based on the evaluation result. It means maintaining or improving the performance and the performance of the organic electronic device manufactured by the manufacturing apparatus. Moreover, such a management method can be used for research and development of manufacturing equipment, shipping inspection, and performance inspection during installation. For example, in the research and development of manufacturing equipment, efficient research and development can be performed by performing equipment management by the above management method.
 上記管理方法によれば、不純物の量または有無に着目し、例えば基準値を決めて評価を行うことにより、適切な洗浄タイミングを決定することができる。製造装置内の洗浄は、有機溶剤を用いた入念な拭き取りまたは加熱真空排気の繰り返し等の大がかりな作業を必要とする。従って、洗浄頻度が過剰な場合は、製造コストおよび管理コストの増加につながる。一方、洗浄が必要な状態であるにもかかわらず製造装置をそのまま使用すると、高性能な有機エレクトロニクスデバイスを製造することができないため、歩留まりが悪くなる。上記管理方法によれば、洗浄のタイミングを無駄なく決定することができるため、製造コストおよび管理コストを低減することができ、また、高性能な有機エレクトロニクスデバイスを効率的に製造することができる。 According to the above management method, it is possible to determine an appropriate cleaning timing by paying attention to the amount or the presence or absence of impurities and, for example, by determining and evaluating a reference value. Cleaning in the manufacturing apparatus requires extensive work such as careful wiping with an organic solvent or repeated heating and vacuuming. Therefore, when the cleaning frequency is excessive, the manufacturing cost and the management cost increase. On the other hand, if the manufacturing apparatus is used as it is even though cleaning is necessary, a high-performance organic electronic device cannot be manufactured, resulting in poor yield. According to the management method, since the timing of cleaning can be determined without waste, the manufacturing cost and the management cost can be reduced, and a high-performance organic electronic device can be efficiently manufactured.
 なお、特定の製造装置において上記管理方法による効果が確認できれば、同様の装置(例えば、全く同じ操作方法である複数の製造装置)についても、同様に洗浄のタイミングを決定することができる。複数の製造装置を一括で管理できれば、コストにおけるメリットはさらに大きくなる。 In addition, if the effect by the said management method can be confirmed in a specific manufacturing apparatus, the timing of washing | cleaning can be determined similarly about the same apparatus (for example, several manufacturing apparatuses which are the completely same operation methods). If a plurality of manufacturing apparatuses can be managed collectively, the cost advantage will be even greater.
 さらに、上記管理方法によれば、不純物の量および有無に着目し、例えば基準値を決めて評価を行うことにより、製造装置のオーバーホールまたは老朽化した製造装置の更新のタイミングを決定することができる。高額なオーバーホールまたは更新が定期的に行われる場合または有機エレクトロニクスデバイスの性能に基づいた感覚的な判断により実施される場合、余分な製造コストおよび管理コストが発生し得る。上記管理方法によれば、オーバーホールまたは更新のタイミングを無駄なく決定できる。このことは、製造コストおよび管理コストの観点から大きなメリットである。 Furthermore, according to the above management method, it is possible to determine the timing of overhauling the manufacturing apparatus or renewing an aging manufacturing apparatus by focusing on the amount and presence of impurities and, for example, determining a reference value and performing an evaluation. . If expensive overhauls or renewals are made on a regular basis or made by sensory judgment based on the performance of the organic electronics device, extra manufacturing and management costs can be incurred. According to the above management method, the timing of overhaul or update can be determined without waste. This is a great merit from the viewpoint of manufacturing cost and management cost.
 〔2.製造装置〕
 次に、上記管理方法において管理の対象となる製造装置について説明する。管理の対象となる製造装置は、有機エレクトロニクスデバイスを製造する製造装置であれば、特に限定されない。
[2. Manufacturing equipment〕
Next, a manufacturing apparatus that is a management target in the management method will be described. The production apparatus to be managed is not particularly limited as long as it is a production apparatus for producing an organic electronic device.
 上記有機エレクトロニクスデバイスとしては、例えば、有機EL、有機太陽電池、有機トランジスタおよび有機メモリ等が挙げられる。 Examples of the organic electronic device include an organic EL, an organic solar battery, an organic transistor, and an organic memory.
 上記有機エレクトロニクスデバイスは、基板上に1層の有機膜が形成されたものであってもよく、多層膜が形成されたものであってもよい。上記管理方法であれば、有機エレクトロニクスデバイスが多層膜を有する場合にも、各層に含まれる不純物を検出することができる。よって、多層膜を有する有機エレクトロニクスデバイスを製造する製造装置において上記管理方法を適用した場合、多層膜中のいずれの層を製造する段階に不純物が多く含まれ得るかを評価することができる。 The organic electronic device may be one in which a single layer organic film is formed on a substrate, or may be one in which a multilayer film is formed. According to the management method described above, impurities contained in each layer can be detected even when the organic electronic device has a multilayer film. Therefore, when the management method is applied to a manufacturing apparatus that manufactures an organic electronic device having a multilayer film, it can be evaluated which layer in the multilayer film can contain a large amount of impurities.
 上記製造装置としては、蒸着プロセスまたは塗布プロセスによって有機エレクトロニクスデバイスを製造する製造装置が挙げられる。 As the manufacturing apparatus, a manufacturing apparatus for manufacturing an organic electronic device by a vapor deposition process or a coating process can be used.
 図2は、有機エレクトロニクスデバイスの製造方法を模式的に示す図である。図2の(a)は、蒸着プロセスによる製造方法を示しており、図2の(b)は、塗布プロセスによる製造方法を示している。 FIG. 2 is a diagram schematically showing a method for manufacturing an organic electronic device. FIG. 2A shows a manufacturing method by a vapor deposition process, and FIG. 2B shows a manufacturing method by a coating process.
 まず、図2の(a)に基づいて、蒸着プロセスによる製造方法を説明する。製造装置1内(例えば、製造装置のチャンバー内)の成膜材料保持部3に成膜材料4を配置する。成膜材料保持部3の上部に、基板5を配置する。加熱機構6によって成膜材料4を加熱すると、成膜材料4が気化して基板5に蒸着する。ここで矢印9は、気化した成膜材料4が基板5に蒸着する様子を模式的に表している。そして、真空ポンプ等に接続された排気管7から排気することによって製造装置1内を真空状態にして、基板5に蒸着した成膜材料を乾燥させる。これにより、成膜材料4に由来する膜8が基板5上に形成された有機エレクトロニクスデバイスを得ることができる。 First, a manufacturing method by a vapor deposition process will be described with reference to FIG. The film forming material 4 is disposed in the film forming material holding unit 3 in the manufacturing apparatus 1 (for example, in the chamber of the manufacturing apparatus). A substrate 5 is disposed on the upper part of the film forming material holding unit 3. When the film forming material 4 is heated by the heating mechanism 6, the film forming material 4 is vaporized and deposited on the substrate 5. Here, the arrow 9 schematically represents the vaporized film forming material 4 being deposited on the substrate 5. And the inside of the manufacturing apparatus 1 is made into a vacuum state by exhausting from the exhaust pipe 7 connected to the vacuum pump etc., and the film-forming material vapor-deposited on the board | substrate 5 is dried. Thereby, an organic electronic device in which the film 8 derived from the film forming material 4 is formed on the substrate 5 can be obtained.
 次に、図2の(b)に基づいて、塗布プロセスによる製造方法を説明する。なお、図示していないが、塗布プロセスはグローブボックスまたはクリーンベンチ内で行われ得る。本明細書においては、グローブボックスおよびクリーンベンチ等も上記製造装置に包含される。塗布プロセスでは、基板5上に、液滴吐出機構10から成膜材料4の溶液を滴下する。そして、基板5上に塗布された成膜材料を乾燥させる。これにより、成膜材料4に由来する膜8が基板5上に形成された有機エレクトロニクスデバイスを得ることができる。 Next, a manufacturing method using a coating process will be described with reference to FIG. Although not shown, the application process can be performed in a glove box or a clean bench. In the present specification, a glove box, a clean bench, and the like are also included in the manufacturing apparatus. In the coating process, a solution of the film forming material 4 is dropped onto the substrate 5 from the droplet discharge mechanism 10. Then, the film forming material applied on the substrate 5 is dried. Thereby, an organic electronic device in which the film 8 derived from the film forming material 4 is formed on the substrate 5 can be obtained.
 〔3.配置工程〕
 上記管理方法は、上記製造装置内に基材を配置する配置工程を含む。それゆえ、有機エレクトロニクスデバイスの材料および製造装置の材料の少なくとも一方に由来する不純物を基材に付着させることができる。そのため、後述する検出工程において、有機エレクトロニクスデバイスの製造工程の任意の段階において基材に付着し得る不純物の種類および/または量を評価することができる。
[3. Arrangement process)
The management method includes an arrangement step of arranging a base material in the manufacturing apparatus. Therefore, impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus can be attached to the substrate. Therefore, in the detection process to be described later, the type and / or amount of impurities that can adhere to the substrate at any stage of the manufacturing process of the organic electronics device can be evaluated.
 <3-1.基材>
 上記基材は、不純物を検出するために当該不純物を付着させる対象となるものである。上記基材の材質は、特に限定されるものではなく、無機物であってもよく、有機物であってもよく、有機物と無機物との混合物であってもよい。基材の材質は、例えば、有機エレクトロニクス分野で一般的に使用される材質であることが好ましい。
<3-1. Base material>
The base material is a target to which the impurity is attached in order to detect the impurity. The material of the base material is not particularly limited, and may be an inorganic material, an organic material, or a mixture of an organic material and an inorganic material. The material of the substrate is preferably a material generally used in the field of organic electronics, for example.
 また、基材の形状も特に限定されるものではなく、平面を含んでいてもよく、曲面を含んでいてもよい。基材は例えば、平面からなる立体であってもよく、曲面からなる球体であってもよく、平面と曲面とが混在する立体であってもよい。また、基材は、柔軟性を有しており、平面と曲面とが自由に変化し得る基材であってもよい。基材は、例えば、有機エレクトロニクス分野で一般的に使用される基板であってもよい。また、基材は1層であってもよく、2層以上の多層であってもよい。 Further, the shape of the substrate is not particularly limited, and may include a flat surface or a curved surface. For example, the base material may be a three-dimensional solid body, may be a spherical body composed of a curved surface, or may be a solid body in which a flat surface and a curved surface are mixed. The base material may be a base material that has flexibility and whose plane and curved surface can freely change. The substrate may be, for example, a substrate generally used in the organic electronics field. Further, the substrate may be a single layer or a multilayer of two or more layers.
 上記基材は、基板および有機膜の少なくとも一方を含むことが好ましい。すなわち、基材は、基板または有機膜であってもよく、基板上に有機膜が形成されたものであってもよい。上記基板および上記有機膜は有機エレクトロニクス分野で一般的に使用される形態であるため、有機エレクトロニクスデバイスの製造工程において付着し得る不純物を検出するために好ましい。 The base material preferably includes at least one of a substrate and an organic film. That is, the base material may be a substrate or an organic film, or an organic film formed on the substrate. Since the substrate and the organic film are in a form generally used in the field of organic electronics, they are preferable for detecting impurities that may adhere in the manufacturing process of the organic electronics device.
 例えば、上記基板の材料は、無機物としてはシリコンおよびガラス等が挙げられ、有機物としては合成樹脂等が挙げられる。有機物として具体的には、ポリイミド樹脂、ポリエステル樹脂、液晶ポリマー、エポキシ樹脂、フェノール樹脂およびフッ素樹脂等が挙げられる。 For example, examples of the material for the substrate include silicon and glass as inorganic materials, and synthetic resin as organic materials. Specific examples of the organic substance include polyimide resin, polyester resin, liquid crystal polymer, epoxy resin, phenol resin, and fluorine resin.
 なお、本明細書において、有機膜とは、有機物を含む膜を意味し、当該有機物としては芳香族炭化水素、多環芳香族炭化水素、ヘテロ芳香族炭化水素もしくはヘテロ多環芳香族炭化水素から誘導される化合物、環同士が共有結合を介して連結された化合物、フラーレンを骨格に含む化合物、ポルフィリンおよびフタロシアニンを骨格に含む化合物、これらの構造を含む金属錯体化合物、並びに、これらの構造を含むオリゴマーおよびポリマー等が挙げられる。 Note that in this specification, an organic film means a film containing an organic substance, and the organic substance includes an aromatic hydrocarbon, a polycyclic aromatic hydrocarbon, a heteroaromatic hydrocarbon, or a heteropolycyclic aromatic hydrocarbon. Induced compounds, compounds in which rings are linked via a covalent bond, compounds containing fullerene in the skeleton, compounds containing porphyrin and phthalocyanine in the skeleton, metal complex compounds containing these structures, and those structures Examples include oligomers and polymers.
 有機膜の膜厚は特に制限されず、1nm以下であってもよく、1~10nmであってもよく、10~100nmであってもよく、100~1000nmであってもよく、1μm以上であってもよい。特に製造装置に由来する不純物を評価する場合には、基材である有機膜の内部に含まれる不純物が少なくなるように、基材としてはできるだけ薄い有機膜を用いることが好ましい。この観点からは、当該基材としての有機膜の膜厚は、10nm以下であることがより好ましく、1nm以下であることがさらに好ましい。 The film thickness of the organic film is not particularly limited, and may be 1 nm or less, 1 to 10 nm, 10 to 100 nm, 100 to 1000 nm, or 1 μm or more. May be. In particular, when evaluating impurities derived from a manufacturing apparatus, it is preferable to use an organic film that is as thin as possible as the substrate so that impurities contained in the organic film that is the substrate are reduced. From this viewpoint, the film thickness of the organic film as the substrate is more preferably 10 nm or less, and further preferably 1 nm or less.
 なお、上述の特許文献1においては、基板のみでは不純物を検出することができず、不純物を検出するためには有機膜を用いる必要があることが記載されている。これは、特許文献1に記載の技術では、潤滑剤由来の不純物を検出対象としているため、基板を用いた検出ができなかったと考えられる。一方、上記管理方法の場合は、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物を検出することを目的としているため、基材の材料については特に限定されない。 Note that the above-mentioned Patent Document 1 describes that impurities cannot be detected only by a substrate, and an organic film must be used to detect impurities. This is considered that the technique described in Patent Document 1 cannot detect using a substrate because impurities derived from a lubricant are targeted for detection. On the other hand, in the case of the management method described above, since the object is to detect impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus, the material of the base material is not particularly limited.
 上記基材は、上記有機エレクトロニクスデバイスの材料を含み、かつ上記不純物とは異なる材料からなることが好ましい。当該材料としては、例えば、上述した芳香族炭化水素、多環芳香族炭化水素、ヘテロ芳香族炭化水素もしくはヘテロ多環芳香族炭化水素から誘導される化合物、環同士が共有結合を介して連結された化合物、フラーレンを骨格に含む化合物、ポルフィリンおよびフタロシアニンを骨格に含む化合物、これらの構造を含む金属錯体化合物、並びに、これらの構造を含むオリゴマーおよびポリマー等が挙げられる。これにより、実際に使用される有機エレクトロニクスデバイスの材料に付着し得る不純物を検出することができる。また、検出対象となる不純物とは別の材料を基材として用いることにより、不純物の検出を容易に行うことができる。 The base material preferably includes a material of the organic electronics device and is made of a material different from the impurities. Examples of the material include compounds derived from the above-described aromatic hydrocarbons, polycyclic aromatic hydrocarbons, heteroaromatic hydrocarbons or heteropolycyclic aromatic hydrocarbons, and rings are connected via a covalent bond. Compounds, compounds containing fullerene in the skeleton, compounds containing porphyrin and phthalocyanine in the skeleton, metal complex compounds containing these structures, oligomers and polymers containing these structures, and the like. Thereby, the impurities which can adhere to the material of the organic electronic device actually used can be detected. Further, by using a material different from the impurity to be detected as a base material, the impurity can be easily detected.
 <3-2.配置方法>
 上記基材を配置する場所は、上記製造装置内であれば特に限定されない。基材の配置場所としては、例えば、製造装置のチャンバー内が挙げられる。本明細書において、チャンバーとは、有機エレクトロニクスデバイスが製造される空間を意味し、製造室とも称する。
<3-2. Placement method>
The place where the base material is disposed is not particularly limited as long as it is within the manufacturing apparatus. As an arrangement | positioning location of a base material, the inside of the chamber of a manufacturing apparatus is mentioned, for example. In this specification, a chamber means a space in which an organic electronic device is manufactured, and is also referred to as a manufacturing room.
 また、クラスター型製造装置またはインライン型製造装置等は、複数の製造室を有している。この場合、複数の製造室の少なくとも1つに基材を配置すればよい。上記管理方法によれば、製造室ごとに不純物を評価することにより、どの製造室において汚染が生じ得るかを特定することができる。これにより、製造室ごとに洗浄のタイミングを無駄なく決定できる。このことは、製造コストの観点から、大きなメリットである。 Moreover, the cluster type manufacturing apparatus or the inline type manufacturing apparatus has a plurality of manufacturing rooms. In this case, the substrate may be disposed in at least one of the plurality of manufacturing chambers. According to the above management method, it is possible to specify in which manufacturing chamber contamination may occur by evaluating impurities for each manufacturing chamber. Thereby, the timing of washing can be determined without waste for each manufacturing room. This is a great merit from the viewpoint of manufacturing cost.
 上記基材の配置方向も特に限定されず、例えば、不純物を付着させたい基材の面が、重力方向に対して同じ向き、逆向き、横向き(垂直)または斜め方向であってもよい。 The arrangement direction of the base material is not particularly limited, and for example, the surface of the base material to which impurities are to be attached may be the same direction, the reverse direction, the horizontal direction (vertical), or the oblique direction with respect to the gravity direction.
 上記基材を配置する時間も特に限定されない。不純物をより確実に基材に付着させるという観点からは、配置時間は5分以上であることが好ましく、10分以上であることがより好ましく、20分以上であることがさらに好ましく、30分以上であることが特に好ましい。また、配置工程を短期間で完了させるという観点からは、配置時間は15時間以下であることが好ましく、10時間以下であることがより好ましい。製造装置の操業中に管理を行うという観点からは、配置時間は8時間以下であることが特に好ましい。ただし、配置時間は目的によって変更すればよく、短時間における不純物の量および有無を評価する場合には5分未満であってもよく、長期間における不純物の量および有無を評価する場合には15時間以上であってもよく、数日間、数週間または数か月間単位でも問題ない。例えば、配置時間は、1日間、2日間、3日間、4日間、5日間、6日間、7日間(1週間)、8日間、9日間、10日間、2週間、3週間、4週間、1か月間、2か月間または3か月間であってもよい。 The time for arranging the base material is not particularly limited. From the viewpoint of more reliably attaching impurities to the substrate, the arrangement time is preferably 5 minutes or more, more preferably 10 minutes or more, further preferably 20 minutes or more, more preferably 30 minutes or more. It is particularly preferred that Further, from the viewpoint of completing the arrangement process in a short period, the arrangement time is preferably 15 hours or less, and more preferably 10 hours or less. From the viewpoint of performing management during the operation of the manufacturing apparatus, the arrangement time is particularly preferably 8 hours or less. However, the arrangement time may be changed depending on the purpose, and may be less than 5 minutes when evaluating the amount and presence of impurities in a short time, and 15 when evaluating the amount and presence of impurities over a long period of time. It can be more than hours and can be in units of days, weeks or months. For example, the placement time is 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days (1 week), 8 days, 9 days, 10 days, 2 weeks, 3 weeks, 4 weeks, There may be months, two months, or three months.
 上記配置工程は、有機エレクトロニクスデバイスの製造前、製造中および製造後の少なくともいずれか1つの段階で行われることが好ましい。これにより、有機エレクトロニクスデバイスの製造前、製造中および製造後の各段階において付着し得る不純物を、後述する検出工程において検出することができる。よって、有機エレクトロニクスデバイスの製造工程のいずれの段階において特に不純物が多くなり得るのかを特定することができる。従って、製造装置内の洗浄を行うべきタイミング等を決定するための判断材料を得ることができる。また、製造装置内の洗浄を行わなくてもよいタイミング等も決定することができるため、有機エレクトロニクスデバイスの製造の効率化およびコストダウンにつながり得る。 The placement step is preferably performed at least one stage before, during, or after the manufacture of the organic electronic device. Thereby, the impurities which can adhere in each stage before manufacture of an organic electronic device, during manufacture, and after manufacture can be detected in the detection process mentioned below. Therefore, it can be specified at which stage of the manufacturing process of the organic electronic device that impurities can be increased. Therefore, it is possible to obtain a judgment material for determining the timing or the like for cleaning in the manufacturing apparatus. Moreover, since the timing etc. which do not need to perform the washing | cleaning in a manufacturing apparatus can also be determined, it can lead to the efficiency improvement and cost reduction of manufacture of an organic electronics device.
 図1は、上記管理方法における配置工程を模式的に示す図である。図1の(a)は、配置工程が有機エレクトロニクスデバイスの製造前または製造後に行われる場合を示しており、図1の(b)は、配置工程が有機エレクトロニクスデバイスの製造中に行われる場合を示している。 FIG. 1 is a diagram schematically showing an arrangement process in the management method. FIG. 1 (a) shows a case where the placement step is performed before or after the manufacture of the organic electronics device, and FIG. 1 (b) shows a case where the placement step is performed during the manufacture of the organic electronics device. Show.
 配置工程が有機エレクトロニクスデバイスの製造前または製造後に行われる場合は、例えば、図1の(a)に示すように、有機エレクトロニクスデバイスの材料(基板および成膜材料)または完成した有機エレクトロニクスデバイス等が配置されていない状態で、基材2を製造装置1内(例えば、製造装置のチャンバー内)に配置する。ここで、矢印11は、不純物が基材2に付着する様子を模式的に表している。成膜材料保持部3の上部にはシャッター12が設けられていてもよい。 When the placement step is performed before or after the manufacture of the organic electronic device, for example, as shown in FIG. 1A, the organic electronic device material (substrate and film forming material), the completed organic electronic device, etc. The base material 2 is arrange | positioned in the manufacturing apparatus 1 (for example, in the chamber of a manufacturing apparatus) in the state which is not arrange | positioned. Here, the arrow 11 schematically represents a state in which impurities adhere to the substrate 2. A shutter 12 may be provided on the upper part of the film forming material holding unit 3.
 一方、配置工程が有機エレクトロニクスデバイスの製造中に行われる場合は、図1の(b)に示すように、基板5および成膜材料4を配置するとともに、基材2を配置し、上述の蒸着プロセスまたは塗布プロセス等を開始すればよい。 On the other hand, when the placement step is performed during the manufacture of the organic electronics device, as shown in FIG. 1 (b), the substrate 5 and the film forming material 4 are placed, the base material 2 is placed, and the above-described deposition is performed. A process or a coating process may be started.
 ここで、上述のように有機エレクトロニクスデバイスが多層膜を有している場合は、多層膜中のいずれか少なくとも1つの層(例えば、第1の層、第2の層または更なる層)を形成中に付着し得る不純物を検出することもできる。 Here, when the organic electronic device has a multilayer film as described above, any one of the multilayer films (for example, the first layer, the second layer, or the further layer) is formed. Impurities that can be deposited inside can also be detected.
 上記管理方法によれば、同じ製造室内で多層膜の製造または異なる材料を用いた製造を行う場合、どの段階で汚染が生じ得るかを特定することができる。また、多層膜中のいずれの層の形成中に特に不純物が多くなり得るのかを特定することができる。どの段階にて汚染が生じ得るかを特定できなければ、製造装置の改善のための作業コストが大幅に増加し得る。上記管理方法によれば、製造工程の段階ごとに切り分けて汚染を評価することができるため、有機エレクトロニクスデバイスの性能が悪化した場合の問題特定が容易となる。それゆえ、高性能な有機エレクトロニクスデバイスを製造する歩留まりの向上につながる。 According to the above management method, when manufacturing a multilayer film or manufacturing using different materials in the same manufacturing chamber, it is possible to specify at which stage contamination may occur. In addition, it can be specified which of the layers in the multilayer film can have a particularly large amount of impurities. If it cannot be determined at which stage contamination can occur, the operating costs for improving the manufacturing equipment can be significantly increased. According to the above management method, contamination can be evaluated for each stage of the manufacturing process, so that it is easy to identify a problem when the performance of the organic electronic device deteriorates. Therefore, it leads to an improvement in yield for manufacturing high-performance organic electronics devices.
 また、配置工程は、製造装置を新規に導入した場合の有機エレクトロニクスデバイスの製造前に行われてもよい。上記管理方法によれば、製造装置を新規導入する場合、製造装置の材料に由来する不純物による汚染を評価することによって製造装置の据え付け時の状態を管理することができる。製造装置の新規導入時に発生し得る製造装置の材料に由来する不純物による初期汚染を十分に除去できていない場合は、試製造後に追加洗浄の要否を判断することになり、製造コストがかかる。また、初期汚染に気づかなかった場合、高性能な有機エレクトロニクスデバイスを製造することができずに歩留まりが悪くなるおそれがある。よって、製造装置の材料に由来する初期の汚染を評価することは、製造装置の導入後の歩留まり向上、並びに洗浄および調整等の再セッティング作業の発生防止につながる。このことは、製造コストの観点から大きなメリットである。 In addition, the arrangement step may be performed before the manufacture of the organic electronic device when the manufacturing apparatus is newly introduced. According to the above management method, when a new manufacturing apparatus is introduced, it is possible to manage the state when the manufacturing apparatus is installed by evaluating contamination due to impurities derived from the material of the manufacturing apparatus. If the initial contamination due to impurities derived from the material of the manufacturing apparatus that may occur at the time of newly introducing the manufacturing apparatus has not been sufficiently removed, it is determined whether or not additional cleaning is necessary after trial manufacture, and manufacturing costs increase. In addition, if the initial contamination is not noticed, a high-performance organic electronic device cannot be manufactured and the yield may be deteriorated. Therefore, evaluating the initial contamination derived from the material of the manufacturing apparatus leads to improvement in yield after the introduction of the manufacturing apparatus, and prevention of re-setting operations such as cleaning and adjustment. This is a great merit from the viewpoint of manufacturing cost.
 また、配置工程が有機エレクトロニクスデバイスの製造中に行われる場合は、製造工程の任意の段階で待機時間を設けてもよい。例えば、有機エレクトロニクスデバイスの製造工程において多層膜を形成する場合、第1の層を形成した後、第2の層の形成を開始するまでに待機時間を設けてもよい。これにより、待機時間において不純物を十分に付着させることができる。また、これらの待機時間を設けたことによる不純物の付着への影響および完成した有機エレクトロニクスデバイスの性能への影響を評価することができる。この評価結果に基づいて、製造工程中のいずれの段階における作業時間を短縮する必要があるか等を検討することができる。 Further, when the arrangement process is performed during the manufacture of the organic electronic device, a standby time may be provided at any stage of the manufacturing process. For example, when a multilayer film is formed in a manufacturing process of an organic electronic device, a waiting time may be provided after the first layer is formed and before the formation of the second layer is started. Thereby, impurities can be sufficiently adhered during the standby time. In addition, it is possible to evaluate the influence on the adhesion of impurities and the performance of the completed organic electronic device by providing these waiting times. Based on this evaluation result, it is possible to examine at which stage in the manufacturing process it is necessary to shorten the working time.
 〔4.検出工程〕
 上記管理方法は、上記基材に付着した、上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物を検出する検出工程を含む。これにより、従来知られている真空ポンプの潤滑剤由来の不純物、大気中の有機物、並びに水分および酸素ではなく、有機エレクトロニクスデバイスの材料および上記製造装置の材料に由来する不純物を検出することができ、その結果を製造装置の管理に反映することができる。
[4. Detection process)
The management method includes a detection step of detecting impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus attached to the base material. As a result, it is possible to detect impurities derived from materials of organic electronics devices and materials of the above manufacturing apparatus, not impurities derived from conventionally known vacuum pump lubricants, organic substances in the atmosphere, and moisture and oxygen. The result can be reflected in the management of the manufacturing apparatus.
 <4-1.不純物>
 上記検出工程において、検出対象となる不純物は、上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物である。本明細書において、「上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物」とは、真空ポンプの潤滑剤由来の不純物、大気中の有機物、並びに水分および酸素を除く不純物を意味する。
<4-1. Impurity>
In the detection step, the impurity to be detected is an impurity derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus. In the present specification, “impurities derived from at least one of the material of the organic electronics device and the material of the manufacturing apparatus” means impurities derived from the lubricant of the vacuum pump, organic matter in the atmosphere, and impurities excluding moisture and oxygen. Means.
 上記有機エレクトロニクスデバイスの材料に由来する不純物としては、上記有機エレクトロニクスデバイスの材料として用いられる有機物材料および無機物材料、並びにこれらの材料の派生物等が挙げられる。また、上記有機エレクトロニクスデバイスの材料に由来する不純物としては、上記有機物材料および上記無機物材料に混入している不純物も挙げられる。 Examples of the impurities derived from the material of the organic electronics device include organic materials and inorganic materials used as the material of the organic electronics device, and derivatives of these materials. Examples of the impurities derived from the material of the organic electronic device include impurities mixed in the organic material and the inorganic material.
 上記有機物材料としては、芳香族炭化水素、多環芳香族炭化水素、ヘテロ芳香族炭化水素もしくはヘテロ多環芳香族炭化水素から誘導される化合物、環同士が共有結合を介して連結された化合物、フラーレンを骨格に含む化合物、ポルフィリンおよびフタロシアニンを骨格に含む化合物、これらの構造を含む金属錯体化合物、並びに、これらの構造を含むオリゴマーおよびポリマー等が挙げられる。 Examples of the organic material include aromatic hydrocarbons, polycyclic aromatic hydrocarbons, compounds derived from heteroaromatic hydrocarbons or heteropolycyclic aromatic hydrocarbons, compounds in which rings are linked via a covalent bond, Examples include compounds containing fullerene in the skeleton, compounds containing porphyrin and phthalocyanine in the skeleton, metal complex compounds containing these structures, oligomers and polymers containing these structures, and the like.
 上記無機物材料としては、アルミニウムおよびマグネシウム等の金属、並びにそれらを含む金属合金が挙げられる。無機物材料としては、酸化リチウム、フッ化リチウム、フッ化ナトリウムおよびフッ化カリウム等も挙げられる。 The inorganic material includes metals such as aluminum and magnesium, and metal alloys containing them. Examples of the inorganic material include lithium oxide, lithium fluoride, sodium fluoride, and potassium fluoride.
 上記材料の派生物としては、上記有機物材料および上記無機物材料の分解物および重合物等が挙げられる。上記分解物としては、熱分解物および加水分解物等が挙げられる。さらに、上記材料の派生物には、上記分解物および上記重合物が生じる反応における反応生成物(すなわち、副生成物等)も包含される。例えば、上記材料の派生物としては、上記有機物材料および上記無機物材料を由来として発生する有機化合物および金属成分が挙げられる。 Derivatives of the above materials include decomposition products and polymers of the above organic materials and inorganic materials. Examples of the decomposition products include thermal decomposition products and hydrolysis products. Further, the derivative of the material includes a reaction product (that is, a by-product) in the reaction in which the decomposition product and the polymer are generated. For example, the derivative of the material includes an organic compound and a metal component generated from the organic material and the inorganic material.
 上記有機物材料および上記無機物材料に混入している不純物としては、有機エレクトロニクスデバイスの材料としては本来含有されていることが意図されていなかったが結果的に含有されていた有機物、金属、非金属およびハロゲン等が挙げられる。 As impurities mixed in the organic material and the inorganic material, organic materials, metals, non-metals, and organic materials that were not originally intended to be contained as organic electronics device materials, Halogen etc. are mentioned.
 上記有機エレクトロニクスデバイスの材料に由来する不純物は、例えば、〔アルカリ金属元素〕Li、Na、K、Rb、Cs;〔アルカリ土類金属元素〕Be、Mg、Ca、Sr、Ba;〔ランタノイド元素〕La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu;〔アクチノイド元素〕Th、U;〔遷移金属元素〕Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au;〔ホウ素族元素〕B、Al、Ga、In、Tl;〔炭素族元素〕Si、Ge、Sn、Pb;〔ニクトゲン元素〕P、As、Sb、Bi;〔カルコゲン元素〕S、Se、Te;〔ハロゲン元素〕F、Cl、Br、I;のうちの少なくとも一つであってもよい。 Impurities derived from the material of the organic electronic device include, for example, [alkali metal elements] Li, Na, K, Rb, Cs; [alkaline earth metal elements] Be, Mg, Ca, Sr, Ba; [lanthanoid elements] La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; [actinoid element] Th, U; [transition metal element] Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au; [boron group element] B, Al, Ga, In, Tl; [Carbon group element] Si, Ge, Sn, Pb; [Nictogen element] P, As, Sb, Bi; [Chalkogen element] S, Se, Te; [Halogen element] F , Cl, Br, I It may be at least one of.
 上記製造装置の材料としては、合成樹脂、合成樹脂添加剤、合成樹脂および合成樹脂添加剤の派生物、金属材料、セラミックス材料、並びにガラス材料等が挙げられる。 Examples of the material for the production apparatus include synthetic resins, synthetic resin additives, synthetic resins and derivatives of synthetic resin additives, metal materials, ceramic materials, and glass materials.
 上記合成樹脂としては、ポリプロピレン、ポリエチレン、ポリアセタール、フッ素樹脂(ポリテトラフルオロエチレン等)、ポリウレタン、ポリフェニレンサルファイド、ポリメタクリル酸メチル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ABS樹脂、ポリアミドおよびポリエステル等が挙げられる。 Examples of the synthetic resin include polypropylene, polyethylene, polyacetal, fluorine resin (polytetrafluoroethylene, etc.), polyurethane, polyphenylene sulfide, polymethyl methacrylate resin, polyvinyl chloride, polyvinylidene chloride, ABS resin, polyamide and polyester. It is done.
 上記合成樹脂添加剤としては、上記合成樹脂に添加された可塑剤、酸化防止剤、光安定剤、帯電防止剤および難燃剤等が挙げられる。 Examples of the synthetic resin additive include a plasticizer, an antioxidant, a light stabilizer, an antistatic agent and a flame retardant added to the synthetic resin.
 上記可塑剤としては、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、エポキシ系可塑剤、トリメリット酸エステル系可塑剤、クエン酸エステル系可塑剤およびポリエステル系可塑剤等が挙げられる。上記酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤およびイオウ系酸化防止剤等が挙げられる。上記光安定剤としては、ベンゾトリアゾール系光安定剤、ベンゾフェノン系光安定剤、サリシレート系光安定剤、シアノアクリレート系光安定剤、ニッケル系光安定剤、トリアジン系光安定剤、ヒンダードアミン系光安定剤、フェノール系光安定剤、リン酸系光安定剤およびイオウ系光安定剤等が挙げられる。上記帯電防止剤としては、ジノニルナフチルスルホン酸、メタクリル酸グリシジル、ポリエーテルエステルアミド系帯電防止剤、エチレンオキシド-エピクロルヒドリン系帯電防止剤、ポリエーテルエステル系帯電防止剤、ポリスチレンスルホン酸系帯電防止剤および四級アンモニウム塩基含有アクリレート重合体系帯電防止剤等が挙げられる。上記難燃剤としては、臭素系難燃剤、リン系難燃剤および無機系難燃剤等が挙げられる。上記臭素系難燃剤としては、テトラブロモビスフェノールAおよびデカブロモジフェニルエーテル等が挙げられる。上記リン系難燃剤としては、芳香族リン酸エステル、芳香族縮合リン酸エステルおよびハロゲン化リン酸エステル等が挙げられる。無機系難燃剤としては、三酸化アンチモンおよび水酸化マグネシウム等が挙げられる。 Examples of the plasticizer include phthalate plasticizers, adipate ester plasticizers, phosphate ester plasticizers, epoxy plasticizers, trimellitic ester plasticizers, citrate ester plasticizers, and polyester plasticizers. Agents and the like. Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and sulfurous antioxidants. Examples of the light stabilizer include benzotriazole light stabilizer, benzophenone light stabilizer, salicylate light stabilizer, cyanoacrylate light stabilizer, nickel light stabilizer, triazine light stabilizer, hindered amine light stabilizer. Phenolic light stabilizers, phosphoric acid light stabilizers, sulfur light stabilizers, and the like. Examples of the antistatic agent include dinonylnaphthyl sulfonic acid, glycidyl methacrylate, polyether ester amide antistatic agent, ethylene oxide-epichlorohydrin antistatic agent, polyether ester antistatic agent, polystyrene sulfonic acid antistatic agent, and Examples include quaternary ammonium base-containing acrylate polymer antistatic agents. Examples of the flame retardant include brominated flame retardants, phosphorus flame retardants, and inorganic flame retardants. Examples of the brominated flame retardant include tetrabromobisphenol A and decabromodiphenyl ether. Examples of the phosphorus flame retardant include aromatic phosphate esters, aromatic condensed phosphate esters, and halogenated phosphate esters. Examples of the inorganic flame retardant include antimony trioxide and magnesium hydroxide.
 上記合成樹脂および上記合成樹脂添加剤の派生物としては、上記合成樹脂および上記合成樹脂添加剤の分解物および重合物等が挙げられる。上記分解物としては、熱分解物および加水分解物等が挙げられる。さらに、上記派生物には、上記分解物および上記重合物が生じる反応における反応生成物(すなわち、副生成物等)も包含される。例えば、上記派生物としては、上記合成樹脂および合成樹脂添加剤を由来として発生する有機化合物、並びに無機塩および無機酸化物等の無機物が挙げられる。 Examples of the synthetic resin and derivatives of the synthetic resin additive include the synthetic resin and a decomposition product and a polymer of the synthetic resin additive. Examples of the decomposition products include thermal decomposition products and hydrolysis products. Furthermore, the derivative includes a reaction product (that is, a by-product) in the reaction in which the decomposition product and the polymer are generated. For example, examples of the derivative include organic compounds generated from the synthetic resin and the synthetic resin additive, and inorganic substances such as inorganic salts and inorganic oxides.
 上記金属材料とは、上記製造装置の金属素材に使用される成分を意味する。上記金属材料としては、ステンレス鋼、アルミニウム、銅、ニッケル、および、それらの金属合金等が挙げられる。また、上記金属材料としては、めっき鋼等も包含される。 The metal material means a component used for the metal material of the manufacturing apparatus. Examples of the metal material include stainless steel, aluminum, copper, nickel, and metal alloys thereof. The metal material includes plated steel and the like.
 上記セラミックス材料としては、アルミナ、ジルコニア、窒化ホウ素、炭化ケイ素および窒化ケイ素等が挙げられる。 Examples of the ceramic material include alumina, zirconia, boron nitride, silicon carbide, and silicon nitride.
 上記ガラス材料としては、二酸化ケイ素、酸化ホウ素、五酸化二リン、酸化チタン、炭化ビスマス、酸化鉛、フッ化アルミ、塩化亜鉛、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、塩化リチウム、酸化ジルコニウム等が挙げられる。 Examples of the glass material include silicon dioxide, boron oxide, diphosphorus pentoxide, titanium oxide, bismuth carbide, lead oxide, aluminum fluoride, zinc chloride, lithium oxide, sodium oxide, potassium oxide, magnesium oxide, calcium oxide, and strontium oxide. , Lithium chloride, zirconium oxide and the like.
 図3は、上記検出工程において検出対象となる不純物の具体例を示した図である。 FIG. 3 is a diagram showing a specific example of impurities to be detected in the detection step.
 図3の(a)に示す化合物は、化学式C3644、CAS番号677275-33-1で表され、TBPe(2,5,8,11-テトラ-tert-ブチルペリレン)とも呼ばれる。 The compound shown in (a) of FIG. 3 is represented by the chemical formula C 36 H 44 , CAS number 677275-33-1 and is also called TBPe (2,5,8,11-tetra-tert-butylperylene).
 図3の(b)に示す化合物は、化学式C3020、CAS番号550378-78-4で表され、9,9’-(1,3-フェニレン)ビス-9H-カルバゾールとも呼ばれる。 The compound shown in FIG. 3B is represented by the chemical formula C 30 H 20 N 2 , CAS No. 550378-78-4, and is also called 9,9 ′-(1,3-phenylene) bis-9H-carbazole.
 図3の(c)に示す化合物は、化学式C4646、CAS番号1174006-36-0で表され、ジ-[4-(N,N-ジ-p-トリル-アミノ)-フェニル]シクロヘキサンとも呼ばれる。 The compound shown in (c) of FIG. 3 is represented by chemical formula C 46 H 46 N 2 , CAS No. 1174006-36-0, and di- [4- (N, N-di-p-tolyl-amino) -phenyl. ] Also called cyclohexane.
 図3の(d)に示す化合物は、化学式C1310、CAS番号716-79-0で表される。 The compound shown in FIG. 3D is represented by the chemical formula C 13 H 10 N 2 , CAS No. 716-79-0.
 図3の(e)に示す化合物は、化学式C1412で表される。 The compound shown in (e) of FIG. 3 is represented by the chemical formula C 14 H 12 N 2 .
 図3の(f)に示す化合物は、化学式C1914、CAS番号2622-67-5で表される。 The compound shown in (f) of FIG. 3 is represented by the chemical formula C 19 H 14 N 2 , CAS No. 2622-67-5.
 図3の(g)に示す化合物は、化学式C4432、CAS番号123847-85-8で表され、NPD(N,N’-ビス-(1-ナフチル)-N,N’-ビス-フェニル-(1,1’-ビフェニル)-4,4’-ジアミン)とも呼ばれる。 The compound shown in FIG. 3 (g) is represented by the chemical formula C 44 H 32 N 2 , CAS No. 123847-85-8, and NPD (N, N′-bis- (1-naphthyl) -N, N′- Also referred to as bis-phenyl- (1,1′-biphenyl) -4,4′-diamine).
 図3の(h)に示す化合物は、化学式C5435、CAS番号1141757-83-6で表され、TrisPCz(9,9’-ジフェニル-6-(9-フェニル-9H-カルバゾール-3-イル)-9H,9’H-3,3’-ビカルバゾール)とも呼ばれる。 The compound shown in (h) of FIG. 3 is represented by chemical formula C 54 H 35 N 3 , CAS No. 1141757-83-6, and TrisPCz (9,9′-diphenyl-6- (9-phenyl-9H-carbazole-) 3-yl) -9H, 9′H-3,3′-bicarbazole).
 図3の(i)に示す化合物は、化学式C4530で表される。 The compound shown in (i) of FIG. 3 is represented by the chemical formula C 45 H 30 N 6 .
 図3の(j)に示す化合物は、化学式C3927、CAS番号1201800-83-0で表され、T2T(2,4,6-トリス(ビフェニル-3-イル)-1,3,5-トリアジン)とも呼ばれる。 The compound shown in FIG. 3 (j) is represented by the chemical formula C 39 H 27 N 3 , CAS No. 1201800-83-0, and T2T (2,4,6-tris (biphenyl-3-yl) -1,3 , 5-triazine).
 図3の(k)に示す化合物は、化学式C5632、CAS番号1416881-52-1で表され、4CzIPN(2,4,5,6-テトラキス(カルバゾール-9-イル)-1,3-ジシアノベンゼン)とも呼ばれる。 The compound shown in (k) of FIG. 3 is represented by the chemical formula C 56 H 32 N 6 , CAS No. 1416881-52-1 and represented by 4CzIPN (2,4,5,6-tetrakis (carbazol-9-yl) -1 , 3-dicyanobenzene).
 図3の(l)に示す化合物は、化学式C5436、CAS番号139092-78-7で表され、TCTA(4,4’,4’’-トリ-9-カルバゾリルトリフェニルアミン)とも呼ばれる。 The compound shown in (l) of FIG. 3 is represented by the chemical formula C 54 H 36 N 4 , CAS No. 139092-78-7, and TCTA (4,4 ′, 4 ″ -tri-9-carbazolyltriphenylamine). ).
 図3の(m)に示す化合物は、化学式C2242、CAS番号103-23-1で表され、ジオクチルアジペートとも呼ばれる。 The compound shown in FIG. 3 (m) is represented by the chemical formula C 22 H 42 O 4 , CAS No. 103-23-1, and is also called dioctyl adipate.
 図3の(n)に示す化合物は、化学式C2438、CAS番号117-81-7で表され、ジオクチルフタレートとも呼ばれる。 The compound shown in (n) of FIG. 3 is represented by the chemical formula C 24 H 38 O 4 , CAS No. 117-81-7, and is also called dioctyl phthalate.
 また、上記不純物としては、2-フェニル-1H-ベンゾイミダゾール、フェニル-(p-トリル)-ベンゾイミダゾール、テレフタル酸ビス(2-エチルヘキシル)、2-エチル-1-ヘキサノール、アジピン酸ジ-2-エチルヘキシル(DOA)、フタル酸ジ-2-エチルヘキシル(DOP)、無水フタル酸(DOP分解物)および環状シロキサンD10~12等も包含される。 Examples of the impurities include 2-phenyl-1H-benzimidazole, phenyl- (p-tolyl) -benzimidazole, bis (2-ethylhexyl) terephthalate, 2-ethyl-1-hexanol, di-2-adipate Also included are ethylhexyl (DOA), di-2-ethylhexyl phthalate (DOP), phthalic anhydride (DOP decomposition product), and cyclic siloxane D10-12.
 検出対象となる不純物が付着する部分は基材上のいずれの部分であってもよい。不純物が付着する部分は、例えば、基材の表面であってもよい。基材が有機膜である場合は、不純物が付着する部分は有機膜の表面であってもよいし、有機膜の内部であってもよく、有機膜全体であってもよい。後述する前処理方法および測定方法によっては、有機膜の厚さ方向において段階的に分析することもできる。基材が平面状であり、表裏が存在する場合、不純物が付着する部分は、いずれの面であってもよく、両方であってもよい。 The portion to which the impurity to be detected adheres may be any portion on the substrate. The part to which the impurities adhere may be, for example, the surface of the substrate. When the substrate is an organic film, the portion to which the impurities adhere may be the surface of the organic film, the inside of the organic film, or the entire organic film. Depending on the pretreatment method and the measurement method described later, the analysis can be performed in stages in the thickness direction of the organic film. When the substrate is planar and there are front and back surfaces, the portion to which the impurities adhere may be either surface or both.
 <4-2.前処理方法>
 不純物を測定する場合に、不純物を回収するために基材に対して前処理を行ってもよい。不純物を直接測定できる測定方法を用いる場合は、前処理を行わなくてもよい。
<4-2. Pretreatment method>
When measuring impurities, the substrate may be pretreated to recover the impurities. When a measurement method capable of directly measuring impurities is used, pretreatment does not have to be performed.
 例えば、不純物を回収する方法として、溶媒接触による回収、蒸気接触による回収、加熱脱離による回収、真空脱離による回収、レーザー脱離による回収および物理的な剥ぎ取りによる回収等が挙げられる。溶媒接触または蒸気接触を行う場合、不純物および有機膜が溶媒に溶解してもよいし、溶解しなくてもよい。不純物および有機膜が溶媒に溶解する場合は、溶媒ごと不純物を回収することができる。不純物および有機膜が溶媒に溶解しない場合は、不純物および有機膜を洗い流す等して回収することができる。なお、蒸気接触の場合、基材を液体の溶媒に浸漬および溶解させる方法と比べて、少量の溶媒で不純物を回収できるので、溶媒由来の汚染を低減することができる。 For example, as a method for recovering impurities, recovery by solvent contact, recovery by vapor contact, recovery by heat desorption, recovery by vacuum desorption, recovery by laser desorption, recovery by physical peeling, etc. may be mentioned. When performing solvent contact or vapor contact, the impurities and the organic film may or may not dissolve in the solvent. When the impurities and the organic film are dissolved in the solvent, the impurities can be recovered together with the solvent. When the impurities and the organic film are not dissolved in the solvent, the impurities and the organic film can be recovered by washing away. In the case of vapor contact, impurities can be recovered with a small amount of solvent, compared to a method of immersing and dissolving the substrate in a liquid solvent, so that contamination derived from the solvent can be reduced.
 溶媒接触を行う場合、溶媒は、水、酸、アルカリまたは有機溶媒であってもよく、これらの混合物であってもよい。また、溶媒は、有機膜が溶解する溶媒であってもよく、有機膜が剥離するものの溶解しない溶媒であってもよい。また、有機膜に含まれる成分の性質を変化させずに回収するという観点からは、上記溶媒は、有機膜を分解しない溶媒であることが好ましい。さらに、基材に含まれる不純物の溶出を防ぐという観点から、上記溶媒としては、基材を溶解または分解しない溶媒が選択されることが好ましい。 When performing solvent contact, the solvent may be water, an acid, an alkali, an organic solvent, or a mixture thereof. The solvent may be a solvent in which the organic film is dissolved, or may be a solvent in which the organic film is peeled but not dissolved. Further, from the viewpoint of recovering without changing the properties of the components contained in the organic film, the solvent is preferably a solvent that does not decompose the organic film. Furthermore, from the viewpoint of preventing the elution of impurities contained in the substrate, it is preferable to select a solvent that does not dissolve or decompose the substrate.
 有機溶媒としては、例えば、アセトニトリル、クロロホルム、ジクロロメタン、テトラヒドロフラン、ヘキサン、トルエンおよびメタノールが挙げられる。また、分析対象となる成分を水溶性のイオンとして評価できるという観点からは、溶媒は水であることが好ましい。 Examples of the organic solvent include acetonitrile, chloroform, dichloromethane, tetrahydrofuran, hexane, toluene and methanol. Further, from the viewpoint that the component to be analyzed can be evaluated as water-soluble ions, the solvent is preferably water.
 酸としては、例えば、フッ化水素酸、硝酸、塩酸、硫酸、リン酸、過酸化水素水および過塩素酸が挙げられる。酸は水溶液であってもよいし、2種類以上の酸の混合液であってもよい。溶液中の酸の濃度は高いほうが好ましく、例えば、20%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。 Examples of the acid include hydrofluoric acid, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, hydrogen peroxide solution, and perchloric acid. The acid may be an aqueous solution or a mixture of two or more acids. The acid concentration in the solution is preferably higher, for example, preferably 20% or more, more preferably 50% or more, and particularly preferably 60% or more.
 アルカリとしては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウムおよび水酸化テトラメチルアンモニウムが挙げられる。アルカリは水溶液であってもよいし、2種類以上のアルカリの混合液であってもよい。溶液中のアルカリの濃度は高いほうが好ましく、例えば、20%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。 Examples of the alkali include ammonia, sodium hydroxide, calcium hydroxide, and tetramethylammonium hydroxide. The alkali may be an aqueous solution or a mixture of two or more alkalis. The alkali concentration in the solution is preferably higher, for example, preferably 20% or more, more preferably 50% or more, and particularly preferably 60% or more.
 蒸気接触を行う場合は、上述の溶媒が気化した蒸気を基材に接触させればよい。溶媒を気化させる方法として、具体的には、加熱する方法、減圧する方法および超音波振動させる方法等が挙げられる。また、これらの方法を適宜組み合わせることもできる。 When the vapor contact is performed, the vapor vaporized from the solvent may be brought into contact with the substrate. Specific examples of the method for vaporizing the solvent include a heating method, a depressurizing method, and a ultrasonic vibration method. Moreover, these methods can also be combined suitably.
 加熱する方法においては、溶媒を沸騰させてもよく、有機膜を剥離または溶解させるために充分な蒸気が発生するのであれば、沸騰させなくてもよい。従って、溶媒の沸点まで加熱してもよいし、沸点未満の温度まで加熱してもよい。好ましくは、蒸気は、飽和蒸気である。加熱温度は、溶媒の種類等に応じて適宜決定され得るが、十分に蒸気を発生させるという観点からは、溶媒の沸点に近い温度であることが好ましく、溶媒の沸点であることがより好ましい。例えば、溶媒が水である場合、1気圧下での加熱温度は80℃~100℃であることが好ましく、90℃~100℃であることがより好ましく、100℃であることが特に好ましい。蒸気接触の場合、有機膜を高温で酸化分解する方法に比べて、低温にて処理することが可能である。また、加熱時間は、例えば溶媒が水である場合は、5分~120分であることが好ましく、10分~30分であることがより好ましい。例えば溶媒がアセトニトリル、クロロホルム、ジクロロメタン、テトラヒドロフラン、ヘキサンまたはメタノール等の低沸点溶媒である場合は、3分~60分であることが好ましく、5分~20分であることがより好ましい。例えば溶媒がトルエン、硝酸、フッ化水素酸、硝酸、塩酸、過酸化水素水、過塩素酸、水酸化ナトリウム水溶液、水酸化カリウム水溶液または水酸化テトラメチルアンモニウム水溶液等の中沸点溶媒である場合は、5分~120分であることが好ましく、10分~30分であることがより好ましい。例えば溶媒が硫酸またはリン酸等の高沸点溶媒である場合は、10分~120分であることが好ましく、20分~60分であることがより好ましい。当該加熱時間であれば、十分に蒸気を発生させるという観点から好ましい。 In the heating method, the solvent may be boiled, and it is not necessary to boil as long as sufficient vapor is generated to peel or dissolve the organic film. Therefore, you may heat to the boiling point of a solvent and may heat to the temperature below a boiling point. Preferably the steam is saturated steam. The heating temperature can be appropriately determined according to the type of the solvent, but from the viewpoint of sufficiently generating steam, the temperature is preferably close to the boiling point of the solvent, and more preferably the boiling point of the solvent. For example, when the solvent is water, the heating temperature at 1 atm is preferably 80 ° C. to 100 ° C., more preferably 90 ° C. to 100 ° C., and particularly preferably 100 ° C. In the case of vapor contact, it is possible to perform the treatment at a low temperature as compared with the method of oxidizing and decomposing the organic film at a high temperature. In addition, for example, when the solvent is water, the heating time is preferably 5 minutes to 120 minutes, and more preferably 10 minutes to 30 minutes. For example, when the solvent is a low boiling point solvent such as acetonitrile, chloroform, dichloromethane, tetrahydrofuran, hexane or methanol, it is preferably 3 minutes to 60 minutes, more preferably 5 minutes to 20 minutes. For example, when the solvent is a medium boiling point solvent such as toluene, nitric acid, hydrofluoric acid, nitric acid, hydrochloric acid, hydrogen peroxide, perchloric acid, aqueous sodium hydroxide, aqueous potassium hydroxide or aqueous tetramethylammonium hydroxide It is preferably 5 minutes to 120 minutes, more preferably 10 minutes to 30 minutes. For example, when the solvent is a high boiling point solvent such as sulfuric acid or phosphoric acid, it is preferably 10 minutes to 120 minutes, and more preferably 20 minutes to 60 minutes. The heating time is preferable from the viewpoint of sufficiently generating steam.
 減圧する方法においては、蒸気が発生する圧力まで減圧すればよい。 In the method of reducing the pressure, the pressure may be reduced to a pressure at which steam is generated.
 基材が有機膜および基板を含む場合、有機膜は、膜の形状を保ったまま基板から剥離されてもよいし、一部または全部が溶解されてもよい。例えば、蒸気が有機膜に浸透して有機膜と基板との界面に達し、有機膜と基板との結合を弱めることによって、有機膜が剥離されてもよい。また、有機膜の表面が徐々に溶解されてもよい。有機膜が複数の層から構成されている場合、一層ずつ剥離されてもよい。 When the base material includes an organic film and a substrate, the organic film may be peeled off from the substrate while maintaining the shape of the film, or a part or all of the organic film may be dissolved. For example, the organic film may be peeled off when vapor penetrates into the organic film and reaches the interface between the organic film and the substrate to weaken the bond between the organic film and the substrate. Further, the surface of the organic film may be gradually dissolved. When the organic film is composed of a plurality of layers, the layers may be separated one by one.
 溶解された有機膜は、溶媒と共に回収されてもよい。剥離された有機膜は、溶媒と共に回収されるか、若しくは、溶媒と分離して、具体的には、基板上に残留する膜状の有機物として回収されてもよい。従って、溶媒は、有機膜の回収液としての機能を兼ねていてもよい。 The dissolved organic film may be collected together with the solvent. The peeled organic film may be collected together with the solvent, or separated from the solvent, and specifically collected as a film-like organic substance remaining on the substrate. Therefore, the solvent may also function as a recovery liquid for the organic film.
 さらに、溶媒の種類を変更することで、分析対象となる成分として含まれる揮発性の元素の回収、または当該成分の形態別(固体、液体または気体)での回収が可能である。また、分析対象となる成分として含まれる元素をイオンの形態にて回収することもできる。また、溶媒の種類を選択することにより、操作中のブランクを低減することができる。 Furthermore, by changing the type of the solvent, it is possible to recover the volatile element contained as a component to be analyzed, or to recover the component according to the form (solid, liquid or gas). Moreover, the element contained as a component used as analysis object can also be collect | recovered with the form of ion. Moreover, the blank in operation can be reduced by selecting the kind of solvent.
 基材に蒸気を接触させる時間は、溶媒の種類および蒸気圧、並びに基材の大きさ等に応じて、適宜設定すればよい。有機膜を十分に剥離または溶解させるという観点からは、例えば、蒸気を接触させる時間は、30分~60分であることが好ましく、60分~180分であることがより好ましく、180分~480分であることが特に好ましい。 The time for bringing the vapor into contact with the substrate may be appropriately set according to the type and vapor pressure of the solvent, the size of the substrate, and the like. From the viewpoint of sufficiently peeling or dissolving the organic film, for example, the time for contacting the vapor is preferably 30 minutes to 60 minutes, more preferably 60 minutes to 180 minutes, and 180 minutes to 480. It is particularly preferred that the minute.
 前処理においては、基材と蒸気とを接触させるとともに、基材を加熱または冷却してもよい。 In the pretreatment, the base material may be brought into contact with the steam, and the base material may be heated or cooled.
 また、蒸気を発生させるときの温度および/または時間等の条件を変更することで、例えば有機膜の剥離強度を変化させることができる。このため、上述の前処理方法は、有機膜に含まれる成分の、深さ方向(有機膜の厚み方向)での評価に適用することができる可能性を有している。よって、剥離強度を調節することにより、有機膜の厚み方向の一部の領域のみを回収してもよい。これにより、有機膜の厚み方向の任意の領域を選択的に回収することができる。よって、有機膜の厚み方向において段階的に分析することができる。従って、例えば、有機膜の表面に存在する成分の含有量、および、基板と有機膜との界面に近い領域に存在する成分の含有量を区別して分析することができる。 Also, for example, the peel strength of the organic film can be changed by changing conditions such as temperature and / or time when the steam is generated. For this reason, the above-mentioned pre-processing method has a possibility of being applicable to the evaluation in the depth direction (thickness direction of an organic film) of the component contained in an organic film. Therefore, only a partial region in the thickness direction of the organic film may be collected by adjusting the peel strength. Thereby, an arbitrary region in the thickness direction of the organic film can be selectively recovered. Therefore, it can analyze in steps in the thickness direction of the organic film. Therefore, for example, the content of a component present on the surface of the organic film and the content of a component present in a region close to the interface between the substrate and the organic film can be distinguished and analyzed.
 なお、本明細書において、有機膜の表面に存在する成分とは、有機膜の内部であって有機膜の表面に近い領域に存在する成分および有機膜の表面に付着している成分を意味する。有機膜の内部であって有機膜の表面に近い領域とは、例えば、有機膜の表面から内部に向かって厚み方向へ10nm以内の領域であってもよく、厚み方向へ1nm以内の領域であってもよく、厚み方向へ0.1nm以内の領域であってもよい。 In the present specification, the component existing on the surface of the organic film means a component that exists inside the organic film and that is close to the surface of the organic film and a component that is attached to the surface of the organic film. . The region inside the organic film and close to the surface of the organic film may be, for example, a region within 10 nm in the thickness direction from the surface of the organic film to the inside, or a region within 1 nm in the thickness direction. It may be a region within 0.1 nm in the thickness direction.
 基材に蒸気を接触させる方向も特に限定されない。基材を容器内に配置し、当該容器内にて蒸気を発生させることにより、容器内を蒸気で満たし、基材と蒸気とを接触させてもよい。また、蒸気を含んだガスを基材に吹き付けることにより、所望の方向から基材に蒸気を接触させてもよい。 The direction in which steam is brought into contact with the base material is not particularly limited. The base material may be disposed in the container, and steam may be generated in the container, so that the container is filled with the steam and the base material and the steam may be brought into contact with each other. Alternatively, the vapor may be brought into contact with the substrate from a desired direction by blowing a gas containing vapor onto the substrate.
 蒸気接触は、密閉容器内において行われることが好ましい。この場合、分析の対象となる成分が揮発性を有している場合においても回収のロスを少なくすることができる。密閉容器は、容器の外側の環境への分析対象成分の揮発を防ぐことができる容器であれば特に限定されない。開口部を有する容器を用い、基材によって開口部を塞ぐことによって密閉容器としてもよい。また、密閉容器内にて蒸気接触を行う場合、操作環境由来の汚染を防ぐこともできる。 The vapor contact is preferably performed in a closed container. In this case, recovery loss can be reduced even when the component to be analyzed has volatility. The sealed container is not particularly limited as long as it can prevent the analysis target component from volatilizing into the environment outside the container. It is good also as an airtight container by using the container which has an opening part, and closing an opening part with a base material. In addition, when the vapor contact is performed in the sealed container, contamination from the operating environment can be prevented.
 容器内にて蒸気を発生させる方法の一例を以下に説明する。まず、回収対象となる不純物または有機膜の材質に対応した溶媒を容器に入れる。溶媒を入れる容器は、当該溶媒に対する耐性を備えた(溶媒によって溶解されない)材質で形成されていればよい。具体的には、フッ素樹脂または石英等で形成された容器であれば、回収された分析用サンプルを汚染することがなく、好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリビニリデンフルオライド(PVDF)およびポリクロロトリフルオロエチレン(PCTFE)が挙げられる。 An example of a method for generating steam in the container will be described below. First, a solvent corresponding to the impurity to be collected or the material of the organic film is put in a container. The container which puts a solvent should just be formed with the material provided with the tolerance with respect to the said solvent (it is not melt | dissolved with a solvent). Specifically, a container formed of fluororesin or quartz is preferable because it does not contaminate the collected analysis sample. Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride (PVDF), and polychlorotrifluoroethylene (PCTFE).
 次に、溶媒を入れた容器に、基材を配置する。当該基材は、液体状の溶媒(気化する前の溶媒)と接触しない位置にセットされればよい。そして、容器を加熱することによって、または容器内において減圧もしくは超音波振動させることによって蒸気を発生させて、基材と蒸気とを接触させればよい。 Next, the base material is placed in a container containing a solvent. The said base material should just be set in the position which does not contact with a liquid solvent (solvent before vaporizing). And a vapor | steam may be generated by heating a container or carrying out pressure reduction or ultrasonic vibration in a container, and a base material and a vapor | steam should be contacted.
 例えば、基材が基板および有機膜を含んでいる場合、有機膜が形成された面が下を向くように基材を配置し、下側から蒸気を接触させてもよい。また、有機膜が形成された面が上を向くように基材を配置し、上側から蒸気を接触させてもよい。なお、ここで、「下」とは重力方向を意図し、「上」とは重力方向と逆の方向を意図する。また、有機膜が形成された面が重力方向と垂直な方向を向くように基材を配置し、蒸気を接触させてもよい。 For example, when the base material includes a substrate and an organic film, the base material may be disposed so that the surface on which the organic film is formed faces downward, and vapor may be contacted from below. Moreover, a base material may be arrange | positioned so that the surface in which the organic film was formed may face upward, and vapor | steam may be contacted from the upper side. Here, “down” means the direction of gravity, and “up” means the direction opposite to the direction of gravity. Further, the base material may be arranged so that the surface on which the organic film is formed faces in a direction perpendicular to the direction of gravity, and vapor may be contacted.
 有機膜が形成された面が下を向くように基材を設置し、下側から蒸気を接触させた場合、有機膜(または有機膜の溶解物)を自重によって重力方向へ落下させることによって回収することもできる。また、この場合、蒸気の発生源となる溶媒を下側に配置しておけば、溶媒中に、剥離された有機膜(または有機膜の溶解物)を落下させて回収することができる。 When the base is placed so that the surface on which the organic film is formed faces downward, and vapor is contacted from below, the organic film (or dissolved organic film) is dropped by gravity in the direction of gravity. You can also Further, in this case, if a solvent that is a generation source of vapor is disposed on the lower side, the peeled organic film (or a dissolved substance of the organic film) can be dropped and recovered in the solvent.
 また、基材における蒸気を接触させる面積を調整することにより、蒸気を基材の一部の領域にのみ接触させてもよい。これにより、基材の任意の領域に由来する成分を選択的に回収することができる。よって、基材の任意の領域に存在する不純物を選択的に分析することができる。例えば、分析対象となる任意の領域以外の領域をマスキングした後に蒸気を接触させることによって、基材における蒸気を接触させる面積を調整してもよい。 Also, the vapor may be brought into contact with only a partial region of the substrate by adjusting the area of the substrate with which the vapor is brought into contact. Thereby, the component originating in the arbitrary area | regions of a base material can be collect | recovered selectively. Therefore, impurities existing in an arbitrary region of the substrate can be selectively analyzed. For example, you may adjust the area which contacts the vapor | steam in a base material by masking areas other than the arbitrary area | region used as analysis object, and making a vapor contact.
 蒸気接触によれば、蒸気の接触面積および接触強度を調節することにより、基材全体に由来する成分を回収することもできるし、基材の一部の領域に由来する成分を回収することもできる。また、蒸気接触によれば、例えば基材を高温にて酸化分解する方法に比べて、基材の任意の領域に由来する成分を選択的に回収することが容易である。 According to the vapor contact, by adjusting the contact area and the contact strength of the vapor, it is possible to recover the component derived from the entire base material, or to recover the component derived from a partial region of the base material. it can. In addition, according to the vapor contact, it is easier to selectively recover components derived from an arbitrary region of the base material than, for example, a method of oxidizing and decomposing the base material at a high temperature.
 <4-3.測定方法>
 不純物の量および有無の測定方法は、基材の形態および測定対象とする不純物の種類に応じて、適宜選択され得る。
<4-3. Measuring method>
The method for measuring the amount and presence of impurities can be appropriately selected depending on the form of the substrate and the type of impurities to be measured.
 測定方法としては、液体クロマトグラフィー質量分析法(LC-MS)、ガスクロマトグラフィー質量分析法(GC-MS)、イオンクロマトグラフィー(IC)、誘導結合プラズマ質量分析法(ICP-MS)、X線光電子分光法(XPS)、X線回折法(XRD)、飛行時間型二次イオン質量分析法(TOF-SIMS)、マトリックス支援型レーザー脱離イオン化飛行時間型質量分析法(MALDI-TOFMS)、水素炎イオン化検出器を用いたガスクロマトグラフィー(GC-FID)、炎光光度検出器を用いたガスクロマトグラフィー(GC-FPD)、UV検出器を用いた液体クロマトグラフィー(LC-UV)、誘導結合プラズマ発光分光分析法(ICP-AES)、キャピラリー電気泳動法(CE)、原子吸光分析法(AAS)およびグロー放電発光分析法(GD-OES)等が挙げられる。測定方法は、上記方法を組み合わせたLC-MS/UVまたはGC-MS/FID等であってもよく、測定対象によってその他の検出器を用いた測定方法であってもよい。また、上記測定方法は、水接触角の測定を除くものであってもよい。 Measurement methods include liquid chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS), ion chromatography (IC), inductively coupled plasma mass spectrometry (ICP-MS), X-ray Photoelectron spectroscopy (XPS), X-ray diffraction (XRD), time-of-flight secondary ion mass spectrometry (TOF-SIMS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS), hydrogen Gas chromatography using a flame ionization detector (GC-FID), Gas chromatography using a flame photometric detector (GC-FPD), Liquid chromatography using a UV detector (LC-UV), Inductive coupling Plasma emission spectroscopy (ICP-AES), capillary electrophoresis (CE), atomic absorption spectrometry ( AS) and glow discharge optical emission spectrometry (GD-OES), and the like. The measurement method may be LC-MS / UV or GC-MS / FID combined with the above methods, or may be a measurement method using other detectors depending on the measurement object. Moreover, the said measuring method may exclude the measurement of a water contact angle.
 〔5.その他の工程〕
 上記管理方法は、上記検出工程によって検出された不純物の量が、予め設定された基準量以下であるか否か、または予め設定された基準量以上であるか否かを判定する判定工程を含んでいてもよい。当該判定工程は、検出された不純物の量が基準量より多いか否か、または基準量未満であるか否かを判定する工程であるともいえる。上記判定工程によれば、不純物を除去するために洗浄等の処理が必要であるか否かを決定するための判断材料を得ることができる。
[5. Other processes]
The management method includes a determination step of determining whether or not the amount of impurities detected by the detection step is less than or equal to a preset reference amount or greater than or equal to a preset reference amount. You may go out. It can be said that the determination step is a step of determining whether or not the detected amount of impurities is greater than the reference amount or less than the reference amount. According to the determination step, it is possible to obtain a determination material for determining whether or not a process such as cleaning is necessary to remove impurities.
 上記管理方法は、製造装置を洗浄する洗浄工程を含んでいてもよい。上記洗浄工程によれば、製造装置において不純物の除去を適切に行うことができる。上記洗浄工程は、上記判定工程において不純物の量が予め設定された基準量以上である、または基準量より多いと判定された場合に行われてもよい。これにより、不要な洗浄を行わずに済むため、有機エレクトロニクスデバイスを効率的に製造することができる。 The above management method may include a cleaning process for cleaning the manufacturing apparatus. According to the cleaning step, impurities can be appropriately removed in the manufacturing apparatus. The cleaning step may be performed when it is determined in the determination step that the amount of impurities is greater than or equal to a preset reference amount or greater than a reference amount. Thereby, since unnecessary cleaning is not required, an organic electronic device can be efficiently manufactured.
 また、上述の配置工程は、洗浄工程の後に行われてもよい。上記管理方法によれば、洗浄後の製造装置について、不純物の増減および有無に着目し、例えば基準値を決めて評価を行うことにより、製造装置の再稼働前の段階で、洗浄効果を確認することができる。大がかりな洗浄作業を行ったにもかかわらず、再稼働後に有機エレクトロニクスデバイスの性能が向上せず、洗浄が不十分であると判断される場合は、製造装置の稼働を停止して再洗浄を行う必要がある。この場合、余分な製造コストおよび管理コストが発生し得る。上記管理方法によれば、無駄な稼働停止および再洗浄の防止につながる。このことは、製造コストおよび管理コストの観点から大きなメリットである。 Further, the above-described arrangement process may be performed after the cleaning process. According to the above management method, paying attention to the increase / decrease and presence / absence of impurities in the manufacturing apparatus after cleaning, for example, by determining and evaluating a reference value, the cleaning effect is confirmed at a stage before the manufacturing apparatus is restarted. be able to. If the performance of the organic electronics device does not improve after restarting and it is judged that cleaning is inadequate even after extensive cleaning work, stop the operation of the manufacturing equipment and perform cleaning again There is a need. In this case, extra manufacturing costs and management costs can occur. According to the above management method, it is possible to prevent useless operation stop and re-cleaning. This is a great merit from the viewpoint of manufacturing cost and management cost.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下では、製造装置として真空蒸着装置を用いた。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples. In the following, a vacuum deposition apparatus was used as the manufacturing apparatus.
 〔実施例1〕
 2台の真空蒸着装置内にそれぞれ基材として4インチφのシリコンウェハを配置した。具体的には、真空蒸着装置のチャンバー内の基板ホルダによって基材を保持した。当該基材を30分間静置後および15時間静置後に取り出した。基材の表側(以下では、基材の表側とは、図1の(a)の基材2において成膜材料保持部3と対向する面を意味する)に付着した不純物を、有機溶媒に接触させて回収し、回収液をLC-MSによって測定した。結果を表1に示す。有機エレクトロニクスデバイスの材料に由来する不純物として図3の(a)~(l)に示す芳香族化合物が検出され、製造装置の材料に由来する不純物として図3の(m)に示すアジピン酸エステルおよび図3の(n)に示すフタル酸エステルが検出された。
[Example 1]
In each of the two vacuum deposition apparatuses, a 4-inch φ silicon wafer was placed as a base material. Specifically, the base material was held by a substrate holder in a chamber of a vacuum deposition apparatus. The substrate was taken out after standing for 30 minutes and after standing for 15 hours. Impurities attached to the front side of the base material (hereinafter, the front side of the base material means the surface facing the film-forming material holding unit 3 in the base material 2 of FIG. 1A) contact the organic solvent. The recovered solution was measured by LC-MS. The results are shown in Table 1. The aromatic compounds shown in (a) to (l) of FIG. 3 are detected as impurities derived from the material of the organic electronics device, and the adipic acid ester shown in (m) of FIG. The phthalate ester shown in (n) of FIG. 3 was detected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、検出された化合物の精密質量(Exact Mass)を以下に示す。 The exact mass (Exact (Mass) of the detected compound is shown below.
 図3の(a)に示す化合物:476.3443
 図3の(b)に示す化合物:408.1626
 図3の(c)に示す化合物:626.3661
 図3の(d)に示す化合物:194.0844
 図3の(e)に示す化合物:208.1000
 図3の(f)に示す化合物:270.1157
 図3の(g)に示す化合物:588.2565
 図3の(h)に示す化合物:725.2831
 図3の(i)に示す化合物:654.2532
 図3の(j)に示す化合物:537.2205
 図3の(k)に示す化合物:788.2688
 図3の(l)に示す化合物:740.2940
 図3の(m)に示す化合物:370.3083
 図3の(n)に示す化合物:390.2770。
Compound shown in FIG. 3 (a): 476.3443
Compound shown in FIG. 3 (b): 408.1626
Compound shown in (c) of FIG. 3: 626.3661
Compound shown in FIG. 3 (d): 194.0844
Compound shown in FIG. 3 (e): 208.1000
Compound shown in FIG. 3 (f): 270.1157
Compound shown in FIG. 3 (g): 588.2565
Compound shown in (h) of FIG. 3: 725.2831
Compound shown in FIG. 3 (i): 654.2532
Compound shown in FIG. 3 (j): 537.2205
Compound shown in FIG. 3 (k): 788.2688
Compound shown in FIG. 3 (l): 740.2940
Compound shown in FIG. 3 (m): 370.3083
Compound shown in (n) of FIG. 3: 390.2770.
 以上のことから、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物が製造装置内に存在し得ることがわかる。これらが有機エレクトロニクスデバイスの性能に影響を与え得ることが予想される。また、実施例1では、静置時間が長いほど検出された不純物の量および種類が増加した。 From the above, it can be seen that impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus can exist in the manufacturing apparatus. It is anticipated that these can affect the performance of organic electronic devices. In Example 1, the amount and type of impurities detected increased as the standing time increased.
 〔実施例2〕
 1台の真空蒸着装置内に基材として4インチφのシリコンウェハを配置し、30分静置後および15時間静置後に取り出した。基材の表側に付着した不純物をウェハ加熱脱離ガスクロマトグラフィー質量分析法(WTD-GC-MS)によって測定した。ヘキサデカン標準試料を用いて上記シリコンウェハ1cmあたりの不純物量を定量した結果を表2に示す。有機エレクトロニクスデバイスの材料に由来する不純物である芳香族化合物(No.1~4)、製造装置の材料に由来する不純物である添加剤等(No.5~12)が検出された。
[Example 2]
A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum deposition apparatus, and was taken out after standing for 30 minutes and standing for 15 hours. Impurities adhering to the front side of the substrate were measured by wafer heating desorption gas chromatography mass spectrometry (WTD-GC-MS). Table 2 shows the results of quantifying the amount of impurities per 1 cm 2 of the silicon wafer using a hexadecane standard sample. Aromatic compounds (Nos. 1 to 4), which are impurities derived from organic electronics device materials, and additives (Nos. 5 to 12), which are impurities derived from materials for manufacturing equipment, were detected.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例2においても、有機エレクトロニクスデバイスの材料および製造装置の材料に由来する不純物が製造装置内に存在し得ることがわかる。また、実施例2では、静置時間が長いほど検出不純物の量および種類が増加の傾向にあった。 Also in Example 2, it can be seen that impurities derived from the material of the organic electronics device and the material of the manufacturing apparatus can exist in the manufacturing apparatus. In Example 2, the amount and type of detected impurities tended to increase as the standing time increased.
 〔実施例3〕
 1台の真空蒸着装置内に基材として4インチφのシリコンウェハを配置し、15時間静置後に取り出した。基材の表側に付着した不純物を酸溶媒に接触させて溶解し、溶解液をICP-MSによって測定した。各検出元素の標準試料を用いて上記シリコンウェハ1枚あたりの不純物量を定量した結果を表3に示す。
Example 3
A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum deposition apparatus, and was taken out after standing for 15 hours. Impurities adhering to the front side of the substrate were dissolved by contacting with an acid solvent, and the dissolved solution was measured by ICP-MS. Table 3 shows the results of quantifying the amount of impurities per one silicon wafer using a standard sample of each detection element.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記管理方法によれば、不純物として有機物のみならず、無機元素成分も検出可能であることがわかる。 According to the above management method, it can be seen that not only organic substances but also inorganic element components can be detected as impurities.
 〔実施例4〕
 1台の真空蒸着装置内に基材として4インチφのシリコンウェハを配置し、15時間静置後に取り出し、この基材を装置洗浄前の不純物量測定用サンプルとして評価した。続いて同じ装置にて有機ELデバイスを作成した。装置内を洗浄後、洗浄前と同様に基材として4インチφのシリコンウェハを配置し、15時間静置後に取り出し、この基材を装置洗浄後の不純物量測定用サンプルとして評価した。同じ装置にて再度、有機ELデバイスを作成した。基材の表側に付着した不純物を有機溶媒に接触させて回収し、回収液をLC-MSで測定した。検出された不純物の総量を汚染度として評価した。なお、当該不純物の総量には、真空ポンプの潤滑剤由来の不純物、大気中の有機物、並びに水分および酸素は含まれていない。また、有機ELデバイスの発光寿命LT90(初期輝度1000cd/m)を評価した。それぞれ装置洗浄前を100%としたときの相対汚染度と相対発光寿命を表4に示す。
Example 4
A silicon wafer having a diameter of 4 inches was placed as a base material in one vacuum vapor deposition apparatus, and was left after standing for 15 hours, and this base material was evaluated as a sample for measuring the amount of impurities before cleaning the apparatus. Subsequently, an organic EL device was created using the same apparatus. After cleaning the inside of the apparatus, a 4-inch φ silicon wafer was placed as a base material in the same manner as before cleaning, taken out after standing for 15 hours, and this base material was evaluated as a sample for measuring the amount of impurities after cleaning the apparatus. An organic EL device was created again with the same apparatus. Impurities adhering to the front side of the substrate were recovered by contacting with an organic solvent, and the recovered liquid was measured by LC-MS. The total amount of impurities detected was evaluated as the degree of contamination. Note that the total amount of the impurities does not include impurities derived from the lubricant of the vacuum pump, organic substances in the atmosphere, moisture and oxygen. Moreover, the light emission lifetime LT90 (initial luminance 1000 cd / m 2 ) of the organic EL device was evaluated. Table 4 shows the relative contamination degree and the relative light emission lifetime when the pre-device cleaning is 100%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記管理方法は、洗浄効果の確認においても有効であることが示された。 It was shown that the above management method is effective in confirming the cleaning effect.
 〔実施例5〕
 真空蒸着装置内に基材として3インチφのSiウェハを配置した。当該真空蒸着装置内を用いて、多層膜としてホール注入層、ホール輸送層、発光層、ホールブロック層および電子輸送層を有する有機ELデバイスを作成した。各層の成膜時間および次の層を形成するまでの待機時間を一定に保ちつつ、発光層成膜前後で次の層の形成を開始するまでに意図的に60分ずつまたは40分ずつの待機時間を設けたデバイスと、待機時間を設けなかったデバイスとを作成し、寿命評価をおこなった。すなわち、待機時間を設けたデバイスでは、ホール輸送層の成膜後から発光層の成膜前までと、発光層の成膜後からホールブロック層の成膜前までとにおいて、それぞれ60分または40分の待機時間を設けた。また、各層の成膜中は基材に成膜材料が付着しないように基材と成膜材料保持部との間にシャッターを配置した。このようにして得られた基材を不純物量測定用サンプルとして評価した。基材の表側に付着した不純物を有機溶媒に接触させて回収し、回収液をLC-MSで測定した。検出された不純物の総量を汚染度として評価した。なお、当該不純物の総量には、真空ポンプの潤滑剤由来の不純物、大気中の有機物、並びに水分および酸素は含まれていない。また、有機ELデバイスは発光寿命LT90(初期輝度1000cd/m)で評価した。発光層前後で60分ずつ待機した結果を100%としたときの相対汚染度と相対発光寿命を表5に示す。
Example 5
A 3-inch φ Si wafer was placed as a substrate in a vacuum deposition apparatus. Using the inside of the vacuum deposition apparatus, an organic EL device having a hole injection layer, a hole transport layer, a light emitting layer, a hole block layer and an electron transport layer as a multilayer film was prepared. While maintaining the film formation time of each layer and the waiting time until the next layer is formed, waiting for 60 minutes or 40 minutes intentionally before starting the formation of the next layer before and after the formation of the light emitting layer. A device with time and a device without standby time were created and evaluated for life. That is, in a device provided with a standby time, it is 60 minutes or 40 minutes after the formation of the hole transport layer and before the formation of the light emitting layer and after the formation of the light emitting layer and before the formation of the hole block layer, respectively. A waiting time of minutes was set up. In addition, a shutter was disposed between the base material and the film forming material holding unit so that the film forming material did not adhere to the base material during the film formation of each layer. The substrate thus obtained was evaluated as a sample for measuring the amount of impurities. Impurities adhering to the front side of the substrate were recovered by contacting with an organic solvent, and the recovered liquid was measured by LC-MS. The total amount of impurities detected was evaluated as the degree of contamination. Note that the total amount of the impurities does not include impurities derived from the lubricant of the vacuum pump, organic substances in the atmosphere, moisture and oxygen. The organic EL device was evaluated with a light emission lifetime LT90 (initial luminance 1000 cd / m 2 ). Table 5 shows the relative contamination degree and the relative light emission lifetime when the result of waiting for 60 minutes before and after the light emitting layer is 100%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 この結果から、上記管理方法において、有機エレクトロニクスデバイスの製造工程の任意の段階で待機時間を設けた場合、これらの待機時間を設けたことによる不純物の付着への影響および完成した有機エレクトロニクスデバイスの性能への影響を評価することができることがわかる。この評価結果を、製造工程中のいずれの段階における作業時間を短縮する必要があるか等の検討に利用することができる。 From this result, in the above management method, when waiting times are provided at any stage of the manufacturing process of the organic electronics device, the influence on the adhesion of impurities due to the provision of these waiting times and the performance of the completed organic electronics device It can be seen that the impact on the environment can be evaluated. This evaluation result can be used for studying at which stage in the manufacturing process it is necessary to shorten the work time.
 本発明は、主に有機エレクトロニクスデバイス分野において利用することができる。 The present invention can be used mainly in the field of organic electronics devices.
 1 製造装置
 2 基材
1 Manufacturing equipment 2 Base material

Claims (6)

  1.  有機エレクトロニクスデバイスを製造する製造装置の管理方法であって、
     上記製造装置内に基材を配置する配置工程と、
     上記基材に付着した、上記有機エレクトロニクスデバイスの材料および上記製造装置の材料の少なくとも一方に由来する不純物を検出する検出工程と、を含むことを特徴とする管理方法。
    A method for managing a manufacturing apparatus for manufacturing an organic electronic device,
    An arrangement step of arranging a substrate in the manufacturing apparatus;
    And a detection step of detecting impurities originating from at least one of the material of the organic electronics device and the material of the manufacturing apparatus attached to the base material.
  2.  上記基材は、基板および有機膜の少なくとも一方を含むことを特徴とする請求項1に記載の管理方法。 The management method according to claim 1, wherein the base material includes at least one of a substrate and an organic film.
  3.  上記基材は、上記有機エレクトロニクスデバイスの材料を含み、かつ上記不純物とは異なる材料からなることを特徴とする請求項1または2に記載の管理方法。 The management method according to claim 1 or 2, wherein the base material includes a material of the organic electronic device and is made of a material different from the impurity.
  4.  上記配置工程は、有機エレクトロニクスデバイスの製造前、製造中および製造後の少なくともいずれか1つの段階で行われることを特徴とする請求項1~3のいずれか1項に記載の管理方法。 The management method according to any one of claims 1 to 3, wherein the arranging step is performed in at least one stage before, during or after the manufacture of the organic electronic device.
  5.  上記有機エレクトロニクスデバイスが多層膜を有することを特徴とする請求項4に記載の管理方法。 The management method according to claim 4, wherein the organic electronic device has a multilayer film.
  6.  上記製造装置は、蒸着プロセスまたは塗布プロセスによって有機エレクトロニクスデバイスを製造する製造装置であることを特徴とする請求項1~5のいずれか1項に記載の管理方法。 The management method according to any one of claims 1 to 5, wherein the manufacturing apparatus is a manufacturing apparatus for manufacturing an organic electronic device by a vapor deposition process or a coating process.
PCT/JP2016/084639 2015-11-30 2016-11-22 Method for managing manufacturing apparatus for manufacturing organic electronic device WO2017094566A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187018368A KR102575102B1 (en) 2015-11-30 2016-11-22 Management method of manufacturing equipment for manufacturing organic electronic elements
JP2017553793A JP6808642B2 (en) 2015-11-30 2016-11-22 How to manage manufacturing equipment that manufactures organic electronics devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-234166 2015-11-30
JP2015234166 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094566A1 true WO2017094566A1 (en) 2017-06-08

Family

ID=58797305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084639 WO2017094566A1 (en) 2015-11-30 2016-11-22 Method for managing manufacturing apparatus for manufacturing organic electronic device

Country Status (4)

Country Link
JP (1) JP6808642B2 (en)
KR (1) KR102575102B1 (en)
TW (1) TWI759274B (en)
WO (1) WO2017094566A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068467A (en) * 2001-06-15 2003-03-07 Canon Inc Light-emitting element and its manufacturing method
WO2013145640A1 (en) * 2012-03-27 2013-10-03 パナソニック株式会社 Method for evacuating vacuum chamber, vacuum device, method for forming organic film, method for manufacturing organic el element, organic el display panel, organic el display device, organic el light emitting device, and method for detecting impurities
JP2015065152A (en) * 2013-06-28 2015-04-09 株式会社半導体エネルギー研究所 Method of producing light-emitting element, and light-emitting element
WO2015133090A1 (en) * 2014-03-07 2015-09-11 株式会社Joled Method for repairing bank, organic el display device, and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139204B2 (en) 2002-12-09 2008-08-27 株式会社アルバック Organic EL element manufacturing method and organic EL element manufacturing apparatus cleaning method
JP2005138041A (en) * 2003-11-07 2005-06-02 Hitachi Instruments Service Co Ltd Method of removing organic contaminant from apparatus for manufacture of organic el and apparatus for manufacture of semiconductor and apparatus for removing organic contaminant
CN102576815B (en) * 2010-03-17 2015-12-16 柯尼卡美能达控股株式会社 Organic electronic device and manufacture method thereof
JP6035706B2 (en) * 2010-04-09 2016-11-30 三菱化学株式会社 Manufacturing method of composition for organic electric field element, composition for organic electric field element, manufacturing method of organic electroluminescent element, organic electroluminescent element, organic EL display device and organic EL lighting
US9578718B2 (en) 2012-05-04 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element and deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068467A (en) * 2001-06-15 2003-03-07 Canon Inc Light-emitting element and its manufacturing method
WO2013145640A1 (en) * 2012-03-27 2013-10-03 パナソニック株式会社 Method for evacuating vacuum chamber, vacuum device, method for forming organic film, method for manufacturing organic el element, organic el display panel, organic el display device, organic el light emitting device, and method for detecting impurities
JP2015065152A (en) * 2013-06-28 2015-04-09 株式会社半導体エネルギー研究所 Method of producing light-emitting element, and light-emitting element
WO2015133090A1 (en) * 2014-03-07 2015-09-11 株式会社Joled Method for repairing bank, organic el display device, and method for manufacturing same

Also Published As

Publication number Publication date
TW201728773A (en) 2017-08-16
KR20180085020A (en) 2018-07-25
JPWO2017094566A1 (en) 2018-09-13
TWI759274B (en) 2022-04-01
KR102575102B1 (en) 2023-09-05
JP6808642B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
Reinhardt et al. Handbook of silicon wafer cleaning technology
Krogmeier et al. Quantitative analysis of the transient photoluminescence of CH 3 NH 3 PbI 3/PC 61 BM heterojunctions by numerical simulations
TWI661011B (en) Plasma treatment detection indicator using inorganic substance as color changing layer
Fujimoto et al. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes
JP4738610B2 (en) Contamination evaluation method for substrate surface, contamination evaluation apparatus and semiconductor device manufacturing method
JP2006318837A (en) Organic electroluminescent element and organic electroluminescent device
JP6108367B1 (en) Silicon substrate analyzer
Tsai et al. Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal‐Organic Frameworks for Stable Blue Light Emitting Diodes
JP4973133B2 (en) Epitaxial layer pretreatment method, epitaxial layer evaluation method, and epitaxial layer evaluation apparatus
Hou et al. Photoluminescence of monolayer MoS 2 modulated by water/O 2/laser irradiation
WO2017094566A1 (en) Method for managing manufacturing apparatus for manufacturing organic electronic device
Whitcher et al. Enhancement of the work function of indium tin oxide by surface modification using caesium fluoride
Li Energy level alignment at organic semiconductor interfaces
CN102864417A (en) Method for encapsulating organic devices by passivation layer prepared by electron beam evaporation and atomic layer deposition
CN107466420B (en) In-situ etch rate for chamber clean terminal determines
Jacko et al. Models of organometallic complexes for optoelectronic applications
TWI711823B (en) Method of collecting analytic sample, and use of the method
Castillo‐Seoane et al. Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancing‐Angle Deposition
Choi et al. Enhanced hole injection into indium-free organic red light-emitting diodes by fluorine-doping-induced texturing of a zinc oxide surface
US20150050756A1 (en) Method of manufacturing organic light-emitting display apparatus
Saga et al. Analysis of organic contamination adsorbed on a silicon surface in a vacuum chamber in electron beam lithography
TWI270311B (en) The film fabricating method of the organic electroluminescent device and the film forming apparatus thereof
Wan et al. Nickel Oxide Hole Injection Layers for Balanced Charge Injection in Quantum Dot Light‐Emitting Diodes
TW201807411A (en) Method of evaluating physical structure
Samadi et al. Particle free handling of substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018368

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16870503

Country of ref document: EP

Kind code of ref document: A1