JP2003064406A - Parts made of aluminum alloy and production method therefor - Google Patents

Parts made of aluminum alloy and production method therefor

Info

Publication number
JP2003064406A
JP2003064406A JP2001255587A JP2001255587A JP2003064406A JP 2003064406 A JP2003064406 A JP 2003064406A JP 2001255587 A JP2001255587 A JP 2001255587A JP 2001255587 A JP2001255587 A JP 2001255587A JP 2003064406 A JP2003064406 A JP 2003064406A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
alloy powder
aspect ratio
rapidly solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001255587A
Other languages
Japanese (ja)
Inventor
Terukazu Tokuoka
輝和 徳岡
Hisao Hattori
久雄 服部
Takao Nishioka
隆夫 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001255587A priority Critical patent/JP2003064406A/en
Publication of JP2003064406A publication Critical patent/JP2003064406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the overspecks of parts produced by using rapidly solidifying aluminum alloy powder obtained by an atomizing method as a starting raw material, and to reduce useless working. SOLUTION: A preliminary compact 1 obtained by compacting the atomizing powder of an Al alloy containing 10 to 40 mass% Si as the raw material is heated to a temperature in a prescribed range. Next, plastic deformation is applied only to the part requiring mechanical strength therein by an amount required for the appearance of the characteristics, and the densification of the alloy and the impartation of the shape of parts are simultaneously performed. The part with the required plastic deformation applied is provided with a structure in which the mean value of the aspect ratios of the alloy powder grains is >=3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、粉末冶金法で製
造される強度、耐熱性、耐クリープ性等に優れたアルミ
ニウム合金製部品と、その部品を過剰仕様にならないよ
うに無駄な工程を省いて作製するための製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention eliminates wasteful steps for avoiding excessive specifications of aluminum alloy parts manufactured by powder metallurgy, which have excellent strength, heat resistance and creep resistance. And a manufacturing method for manufacturing the same.

【0002】[0002]

【従来の技術】アトマイズ法で得られる急冷凝固アルミ
ニウム合金粉末を出発原料にして圧粉、鍛造工程を経て
製造されるアルミニウム合金製部品としては、例えば、
特開2001−98304が述べている内燃機関用ピス
トン、シリンダスリーブ、コンロッド、バルブリフタ、
ロッカーアーム、コンプレッサのスクロールプレート
等、種々のものがある。
2. Description of the Related Art Aluminum alloy parts manufactured by pressing and forging using a rapidly solidified aluminum alloy powder obtained by an atomizing method as a starting material include, for example,
JP 2001-98304 A describes a piston for internal combustion engine, a cylinder sleeve, a connecting rod, a valve lifter,
There are various things such as rocker arms and scroll plates for compressors.

【0003】アトマイズして作る急冷凝固アルミニウム
合金粉末の表面には酸化膜が存在し、従って、この粉末
を原料にして部品化を図る場合には、部品に要求される
強度や靱性を確保するために表面の酸化膜を破壊して粉
末の接合を促進する必要がある。
An oxide film is present on the surface of the rapidly solidified aluminum alloy powder produced by atomization. Therefore, when the powder is used as a raw material for making parts, the strength and toughness required for the parts are ensured. In addition, it is necessary to destroy the oxide film on the surface and promote the bonding of the powder.

【0004】そのための手法として、上記特開2001
−98304は、原料を圧粉成形して金属塊となし、次
いでこれを熱間で押圧して組織を緻密化し、その後更に
据え込み加工して鍛造用アルミニウム合金ビレットを作
製し、このビレットを用いて内燃機関用の鍛造ピストン
を製造するようにしている。
As a technique therefor, the above-mentioned Japanese Patent Laid-Open No. 2001
-98304 is a raw material which is compacted into a metal lump, which is then pressed hot to densify the structure, and then upset to produce an aluminum alloy billet for forging. To manufacture forged pistons for internal combustion engines.

【0005】[0005]

【発明が解決しようとする課題】上記公報等に示される
従来技術では、圧粉成形体を一旦緻密化し、さらに、据
え込み加工することで全域の材料を塑性変形させてい
る。ところが、その塑性変形で原料粉末表面の酸化膜を
破って材料を強化することが要求されるのは負荷の高い
ピストンの天井部などであるのに対し、従来法によれ
ば、大きな機械的強度を必要としない部位でも大きな塑
性流動が起こり、材料特性がオーバスペックとなる可能
性が高い。
In the prior art disclosed in the above publications, the compacted powder compact is once densified, and the material in the entire region is plastically deformed by upsetting. However, the plastic deformation is required to break the oxide film on the surface of the raw material powder to strengthen the material, such as the ceiling of the piston where the load is high, whereas according to the conventional method, a large mechanical strength is required. There is a high possibility that large plastic flow will occur even in the parts that do not require, and the material properties will be over-specified.

【0006】その材料特性のオーバスペックは不必要な
加工を増加させる。しかし、部品のどの部位に最終的に
どの程度の塑性変形量を加えればよいかが判らず、その
ため、無駄な加工を増やすオーバスペックは防ぎようが
なかった。
The overspec of its material properties increases unnecessary processing. However, it is not known which part of the component should be finally added with the amount of plastic deformation, and thus it is impossible to prevent over-spec which increases unnecessary machining.

【0007】この発明は、かかる点に鑑みてなされたも
のであって、部品の断面の組織を指標にしてオーバスペ
ックを無くしたアルミニウム合金製部品とその部品の製
造方法を提供することを目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide an aluminum alloy part in which over-spec is eliminated by using the cross-sectional structure of the part as an index and a method for manufacturing the part. There is.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、組織を緻密化する工程で機械
的強度を要する部位のみに特性発現に必要な量の塑性変
形が与えられてその部位の内部組織が、機械的強度を要
する方位と平行な面内に観察されるアルミニウム合金粉
末粒のアスペクト比の平均値が、粉末粒の長軸長さを
a、短軸長さをbとしてa/b≧3で表わされる組織に
なっているアルミニウム合金製部品を提供する。
In order to solve the above-mentioned problems, in the present invention, the amount of plastic deformation required for exhibiting the characteristics is given only to the portion requiring mechanical strength in the process of densifying the structure. The average value of the aspect ratio of the aluminum alloy powder particles observed in the plane in which the internal structure of the site is parallel to the direction requiring mechanical strength is the major axis length of the powder particles is a, and the minor axis length is b. As a result, an aluminum alloy part having a structure represented by a / b ≧ 3 is provided.

【0009】また、出発原料として、Si:10〜40
質量%、V、Cr、Mn、Fe、Co、Niの中から選
ばれる一種以上の元素が合計で3〜11質量%、Ti:
1〜3質量%、残部が実質的にAlから成る組成の急冷
凝固アルミニウム合金粉末を用いた部品と、Si:10
〜30質量%、Ti、V、Cr、Mn、Fe、Co、N
i、Mo、Wの中から選ばれる一種以上の元素が合計で
3〜10質量%、Zr:1〜3質量%、希土類元素(ミ
ッシュメタルを含む):3〜6質量%、残部が実質的に
Alから成る組成の急冷凝固アルミニウム合金粉末を用
いた部品を提供する。
As a starting material, Si: 10-40
Mass%, 3 to 11 mass% of one or more elements selected from V, Cr, Mn, Fe, Co and Ni, Ti:
Parts using a rapidly solidified aluminum alloy powder having a composition of 1 to 3 mass% and the balance substantially consisting of Al, and Si: 10
~ 30 mass%, Ti, V, Cr, Mn, Fe, Co, N
One or more elements selected from i, Mo and W are 3 to 10% by mass in total, Zr: 1 to 3% by mass, rare earth elements (including misch metal): 3 to 6% by mass, and the balance is substantially And a part using a rapidly solidified aluminum alloy powder having a composition of Al.

【0010】さらに、出発原料の組成を特定したものに
ついては、溶湯をアトマイズして所望の組成の急冷凝固
アルミニウム合金粉末を得る工程、その急冷凝固アルミ
ニウム合金粉末を冷間で圧粉成形して予備成形体を得る
工程、その予備成形体を430℃以上、530℃以下の
温度に加熱する工程、加熱した予備成形体を直ちに熱間
塑性加工し、必要部位の相対密度99%以上の緻密化と
部品形状の付与を併せて行う工程、以上の各工程を経て
アルミニウム合金製部品を製造すると共に、緻密化及び
部品形状の付与工程において、部品の機械的強度を要す
る部位のみに特性発現に必要な量の塑性変形を与え、当
該部位について、最大応力が負荷される方位と平行な面
内に観察される固化後のアルミニウム合金粉末粒のアス
ペクト比の平均値が、粉末粒の長軸長さをa、短軸長さ
をbとして、a/b≧3で表わされる組織を得ることを
特徴とするアルミニウム合金製部品の製造方法を併せて
提供する。
Further, regarding the starting material having the specified composition, a step of atomizing the molten metal to obtain a rapidly solidified aluminum alloy powder having a desired composition, the rapidly solidified aluminum alloy powder being cold compacted and preliminarily prepared The step of obtaining a compact, the step of heating the preform to a temperature of 430 ° C. or higher and 530 ° C. or lower, the heated preform is immediately subjected to hot plastic working, and the relative density of necessary parts is 99% or higher. In addition to manufacturing the aluminum alloy parts through the steps of performing part shape imparting and the above steps, in the densification and part shape imparting steps, it is necessary to develop characteristics only in the parts that require mechanical strength of the parts. The average value of the aspect ratio of the aluminum alloy powder particles after solidification observed in a plane parallel to the direction in which the maximum stress is applied, given the amount of plastic deformation. , Powder particle major axis length a, short axis as b, providing together a method of manufacturing an aluminum alloy part, wherein the obtaining tissue represented by a / b ≧ 3.

【0011】[0011]

【作用】部品の特性発現に必要な塑性変形量が判れば余
分な塑性変形を与えずに済む。
[Operation] If the amount of plastic deformation necessary for manifesting the characteristics of the part is known, it is not necessary to give extra plastic deformation.

【0012】この発明では、その塑性変形の指標として
内部組織中に観察されるアルミニウム合金粉末粒の形状
を採用し、特性発現に必要な塑性変形量を決める。
In the present invention, the shape of the aluminum alloy powder grains observed in the internal structure is adopted as an index of the plastic deformation, and the amount of plastic deformation necessary for manifesting the characteristics is determined.

【0013】緻密化と部品形状の付与のために加える圧
力により、合金粉末粒は塑性変形して印加圧力の方向に
対して垂直となる方向に延び、固化後の合金粉末粒のア
スペクト比a/bが大きくなる。このアスペクト比と部
品の機械的特性には相関関係があり、アスペクト比が3
を越えると、粒の表面の酸化膜の破壊が一気に進むと考
えられ、部品強度が急激に高まる。
The alloy powder grains are plastically deformed by the pressure applied for densification and imparting of the shape of the parts and extend in the direction perpendicular to the direction of the applied pressure, and the aspect ratio a / of the alloy powder grains after solidification is b becomes large. There is a correlation between this aspect ratio and the mechanical properties of parts, and the aspect ratio is 3
If it exceeds, it is considered that the oxide film on the surface of the grains will be destroyed at once, and the strength of the component will be rapidly increased.

【0014】機械的強度を要求される部位の平均アスペ
クト比が3以上になる鍛造圧や圧縮比は予め実験で求め
ることができ、その鍛造圧や圧縮比を制御して必要部位
に必要量の塑性変形を与える。こうすることで、材料の
オーバスペックを防止し、不必要な加工も省くことがで
きる。
The forging pressure and compression ratio at which the average aspect ratio of the portion requiring mechanical strength is 3 or more can be obtained in advance by experiments, and the forging pressure and compression ratio can be controlled to obtain the required amount of the required amount in the required portion. Gives plastic deformation. By doing so, it is possible to prevent over-specification of the material and eliminate unnecessary processing.

【0015】[0015]

【発明の実施の形態】図1に示すフローに基づいて図3
に示す形状の鍛造体10を作製した。この鍛造体10
は、急冷凝固アルミニウム合金粉末を冷間で圧粉成形し
て得られる図2(a)の予備成形体1を430℃以上、
530℃以下に加熱し、それを図2(b)の金型2、3
(上型と下型)を用いて直ちに熱間鍛造して作られたも
のであって、大径ヘッド11の部分が必要量圧縮されて
相対密度99%以上に緻密化され、軸部12とその延長
上に位置するヘッドの中心部は金型2、3による圧縮が
殆どなされていない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a flowchart based on the flow shown in FIG.
A forged body 10 having the shape shown in was produced. This forged body 10
Is a preformed body 1 of FIG. 2 (a) obtained by cold compaction of rapidly solidified aluminum alloy powder at 430 ° C. or higher,
It is heated to 530 ° C. or below, and the molds 2 and 3 shown in FIG.
It is made by immediately hot forging using (upper die and lower die), and the portion of the large diameter head 11 is compressed by a necessary amount to densify it to a relative density of 99% or more. The central portion of the head located on the extension thereof is hardly compressed by the molds 2 and 3.

【0016】この図3の鍛造体10から図4に示すテス
トピース4を切り出し、引張り試験を行った。テストピ
ース4は、必要な塑性変形を与えたヘッド11の部分か
ら図3(a)、(b)に示す向きに切り出した。図3
(c)は、そのテストピース4の内部組織のイメージ図
である。
A test piece 4 shown in FIG. 4 was cut out from the forged body 10 shown in FIG. 3 and subjected to a tensile test. The test piece 4 was cut out in the direction shown in FIGS. 3 (a) and 3 (b) from the portion of the head 11 to which the necessary plastic deformation was applied. Figure 3
(C) is an image view of the internal structure of the test piece 4.

【0017】次に、引張り試験後のテストピース4を軸
方向(破断面4aと略直角)及び鍛造時に主応力が働く
方向(図3(a)の矢印A方向)の2方向に対して平行
な図5の面5(これは紙面に対して垂直)にて切断し、
その切断面を鏡面研磨し、さらに研磨面をエッチングし
て組織の観察を行った。観察された面を拡大して図6に
示す。同図(a)において白くコントラストのついた楕
円状の粒子が組織緻密化後の原料アルミニウム合金粉末
粒である。その合金粉末粒の長軸長さaと短軸長さb
(図6(b)参照)を測定してその粒のアスペクト比a
/bを求めた。そして、ひとつのテストピースについて
合金粉末粒のアスペクト比を15点測定し、その平均値
を各テストピースについて求めた。
Next, the test piece 4 after the tensile test is parallel to the axial direction (substantially right angle to the fracture surface 4a) and the direction in which the principal stress acts during forging (the direction of arrow A in FIG. 3A). Cut at plane 5 in Figure 5 (this is perpendicular to the paper),
The cut surface was mirror-polished, and the polished surface was etched to observe the structure. The observed surface is enlarged and shown in FIG. In FIG. 6A, the white and contrasted elliptical particles are the raw material aluminum alloy powder particles after the tissue densification. The major axis length a and the minor axis length b of the alloy powder particles
(See FIG. 6B) and measure the aspect ratio a of the grain.
/ B was determined. Then, with respect to one test piece, the aspect ratio of the alloy powder particles was measured at 15 points, and the average value was obtained for each test piece.

【0018】また、比較例として図7のフローで作製さ
れた鍛造体(一旦全体を緻密化したビレットを熱間加工
したもの)からテストピースを切り出して上記と同様の
試験と観察を行った。
Further, as a comparative example, a test piece was cut out from a forged body manufactured by the flow shown in FIG. 7 (a billet whose entire body was once densified was hot worked) and the same test and observation as above were performed.

【0019】以下はその試験の詳細である。The following are details of the test.

【0020】−実験例1− 図1のフローに基づいて表1に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表2示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、室温で引張試験を行った。その結果を表5に示す。
-Experimental Example 1-Test pieces were made from the materials shown in Table 1 based on the flow of FIG. 1 and the forged body manufactured under the conditions, and the materials shown in Table 2 based on the flow of FIG. 7 and the forged body manufactured under the conditions. Was cut out and subjected to a tensile test at room temperature. The results are shown in Table 5.

【0021】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図8に、テストピースの破断伸びとピース中の合
金粉末粒の平均アスペクト比の関係の調査結果を図9に
各々示す。
FIG. 8 shows the results of investigation of the relationship between the tensile strength of the test piece and the average aspect ratio of the alloy powder particles in the test piece. FIG. 8 shows the relationship between the breaking elongation of the test piece and the average aspect ratio of the alloy powder particles in the piece. The results of the investigation are shown in FIG.

【0022】図8及び図9から判るように、緻密化後の
合金中における原料アルミニウム合金粉末粒のアスペク
ト比と合金の機械的特性には相関関係があり、平均アス
ペクト比が3以上のもの(試料番号1〜47)は、図7
のフローによる鍛造体(試料番号66、67)と同程度
の引張り強さが得られ、平均アスペクト比の大きなもの
は引張り伸びも遜色の無い値が得られている。
As can be seen from FIGS. 8 and 9, there is a correlation between the aspect ratio of the raw material aluminum alloy powder particles in the alloy after densification and the mechanical properties of the alloy, and the average aspect ratio of 3 or more ( Sample numbers 1 to 47) are shown in FIG.
The same tensile strength as that of the forged body (Sample Nos. 66 and 67) obtained by the flow of No. 2 was obtained, and those having a large average aspect ratio had comparable tensile elongation values.

【0023】また、予備成形体の加熱温度が430℃未
満のもの(試料番号48〜55)は伸び値が低下し、加
熱温度が530℃を上回ったもの(試料番号56〜6
5)は、引張り強さが大きく低下している。
The preforms whose heating temperature is lower than 430 ° C. (Sample Nos. 48 to 55) have lower elongation values and whose heating temperature exceeds 530 ° C. (Sample Nos. 56 to 6).
In 5), the tensile strength is greatly reduced.

【0024】−実験例2− 図1のフローに基づいて表3に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表4示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、室温で引張試験を行った。その結果を表6に示す。
-Experimental Example 2-A test piece is made from the material shown in Table 3 based on the flow of FIG. 1 and the forged body produced under the conditions, and the material shown in Table 4 based on the flow of FIG. 7 and the forged body produced under the conditions. Was cut out and subjected to a tensile test at room temperature. The results are shown in Table 6.

【0025】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図10に、テストピースの破断伸びとピース中の
合金粉末粒の平均アスペクト比の関係の調査結果を図1
1に各々示す。
FIG. 10 shows the results of investigation of the relationship between the tensile strength of the test piece and the average aspect ratio of the alloy powder particles in the test piece. FIG. 10 shows the relationship between the breaking elongation of the test piece and the average aspect ratio of the alloy powder particles in the piece. Figure 1 shows the survey results
1 shows each.

【0026】図10及び図11から判るように、緻密化
後の合金中における原料アルミニウム合金粉末粒のアス
ペクト比と合金の機械的特性には相関関係があり、平均
アスペクト比が3以上のもの(試料番号68〜114)
は、図7のフローによる鍛造体(試料番号133、13
4)と同程度の引張り強さが得られ、平均アスペクト比
の大きなものは引張り伸びも遜色のない値が得られてい
る。
As can be seen from FIGS. 10 and 11, there is a correlation between the aspect ratio of the raw material aluminum alloy powder particles in the alloy after densification and the mechanical properties of the alloy, and those having an average aspect ratio of 3 or more ( (Sample Nos. 68 to 114)
Is a forged body (sample numbers 133, 13
The same tensile strength as that of 4) was obtained, and those having a large average aspect ratio had comparable tensile elongation values.

【0027】また、予備成形体の加熱温度が430℃未
満のもの(試料番号115〜122)は伸び値が低下
し、加熱温度が530℃を上回ったもの(試料番号12
3〜132)は、引張り強さが大きく低下している。
The preforms having a heating temperature of less than 430 ° C. (Sample Nos. 115 to 122) had a lower elongation value and had a heating temperature of more than 530 ° C. (Sample No. 12).
3 to 132), the tensile strength is greatly reduced.

【0028】−実験例3− 図1のフローに基づいて表1に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表2示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、200℃で引張試験を行った。その結果を表7に示
す。
-Experimental Example 3-Test pieces were made from the materials shown in Table 1 based on the flow of FIG. 1 and the forged body manufactured under the conditions, and the materials shown in Table 2 based on the flow of FIG. 7 and the forged body manufactured under the conditions. Was cut out and subjected to a tensile test at 200 ° C. The results are shown in Table 7.

【0029】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図12に、テストピースの破断伸びとピース中の
合金粉末粒の平均アスペクト比の関係の調査結果を図1
3に各々示す。
FIG. 12 shows the results of investigation of the relationship between the tensile strength of the test piece and the average aspect ratio of the alloy powder particles in the test piece. FIG. 12 shows the relationship between the breaking elongation of the test piece and the average aspect ratio of the alloy powder particles in the piece. Figure 1 shows the survey results
3 respectively.

【0030】図12及び図13から判るように、緻密化
後の合金中における原料アルミニウム合金粉末粒のアス
ペクト比と合金の機械的特性には相関関係があり、平均
アスペクト比が3以上のもの(試料番号133〜14
2)は、図7のフローによる鍛造体(試料番号151、
152)と同程度の引張り強さが得られている。
As can be seen from FIGS. 12 and 13, there is a correlation between the aspect ratio of the raw material aluminum alloy powder particles in the alloy after densification and the mechanical properties of the alloy, and the average aspect ratio of 3 or more ( Sample number 133-14
2) is a forged body (Sample No. 151,
The same tensile strength as 152) is obtained.

【0031】合金の引張り伸びは、平均アスペクト比が
小さくなるに従って低下しているが、平均アスペクト比
の大きなものは引張り伸びも遜色がない。なお、平均ア
スペクト比が3以下のもの(試料番号143〜150)
は、200℃での引張り伸びが悪い。
The tensile elongation of the alloy decreases as the average aspect ratio becomes smaller, but the tensile elongation of alloys with a large average aspect ratio is comparable. Those having an average aspect ratio of 3 or less (Sample Nos. 143-150)
Has a poor tensile elongation at 200 ° C.

【0032】−実験例4− 図1のフローに基づいて表3に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表4示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、200℃で引張試験を行った。その結果を表8に示
す。
-Experimental Example 4-Test pieces were made from the materials shown in Table 3 based on the flow of FIG. 1 and the forged body manufactured under the conditions, and the materials shown in Table 4 based on the flow of FIG. 7 and the forged body manufactured under the conditions. Was cut out and subjected to a tensile test at 200 ° C. The results are shown in Table 8.

【0033】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図14に、テストピースの破断伸びとピース中の
合金粉末粒の平均アスペクト比の関係の調査結果を図1
5に各々示す。
FIG. 14 shows the results of investigation of the relationship between the tensile strength of the test piece and the average aspect ratio of the alloy powder particles in the test piece. FIG. 14 shows the relationship between the breaking elongation of the test piece and the average aspect ratio of the alloy powder particles in the piece. Figure 1 shows the survey results
5 shows each.

【0034】原料アルミニウム合金粉末粒のアスペクト
比と合金の機械的特性には相関関係があり、平均アスペ
クト比が3以上のもの(試料番号153〜160)は、
図7のフローによる鍛造体(試料番号169、170)
と同程度の引張り強さが得られ、平均アスペクト比の大
きなものは引張り伸びも遜色の無い値が得られている。
There is a correlation between the aspect ratio of the raw material aluminum alloy powder particles and the mechanical properties of the alloy, and those having an average aspect ratio of 3 or more (Sample Nos. 153 to 160) are:
Forged body according to the flow of FIG. 7 (Sample Nos. 169 and 170)
The same tensile strength is obtained, and those with a large average aspect ratio have comparable tensile elongation values.

【0035】合金中の原料合金粉末粒の平均アスペクト
比が3以下のもの(試料番号161〜168)は、20
0℃での引張り強さ、引張り伸びがともに小さくなって
いる。
If the average aspect ratio of the raw material alloy powder particles in the alloy is 3 or less (Sample Nos. 161 to 168),
Both the tensile strength and tensile elongation at 0 ° C are small.

【0036】−実験例5− 表10に示す組成の急冷凝固アルミニウム合金粉末を用
い、図1のフロー、表9に示す条件で作製した鍛造体か
らテストピースを切り出し200℃で引張試験を行っ
た。その結果を表10に示す。
-Experimental Example 5- Using a rapidly solidified aluminum alloy powder having the composition shown in Table 10, a test piece was cut out from a forged body produced under the conditions shown in the flow chart of Fig. 1 and Table 9, and a tensile test was conducted at 200 ° C. . The results are shown in Table 10.

【0037】この実験で用いた出発原料は、Si:10
〜40質量%、V、Cr、Mn、Fe、Co、Niの中
から選ばれる一種以上の元素が合計で3〜11質量%、
Ti:1〜3質量%、残部が実質的にAlから成る組成
のものである。
The starting material used in this experiment was Si: 10.
˜40% by mass, one or more elements selected from V, Cr, Mn, Fe, Co and Ni in total is 3 to 11% by mass,
Ti: 1 to 3% by mass, the balance substantially consisting of Al.

【0038】この組成のアルミニウム合金は、Siが合
金の耐摩耗性を向上させ、また、V、Cr、Mn、F
e、Co、Ni、TiはAl−V系、Al−Cr系、A
l−Fe系、Al−Co系、Al−Ti系の微細金属間
化合物やAl−Fe−Niの2元金属間化合物をAlマ
トリックス中に晶出させてマトリックスの耐熱性を向上
させるが、Si、Ti又は遷移金属の添加量が不足する
と200℃での引張り強さが低下し(試料番号186、
188、190)、また、そのSi、Ti又は遷移金属
が過剰添加されると200℃での引張り伸びが低下する
(試料番号187、189、191)。試料番号171
〜185の実施例は、それ等の元素が指定範囲内にあ
り、200℃での引張り強さ、引張り伸びとも良好な値
が得られている。
In the aluminum alloy of this composition, Si improves the wear resistance of the alloy, and V, Cr, Mn, F
e, Co, Ni and Ti are Al-V type, Al-Cr type, A
The 1-Fe-based, Al-Co-based, Al-Ti-based fine intermetallic compounds and the binary intermetallic compounds of Al-Fe-Ni are crystallized in the Al matrix to improve the heat resistance of the matrix. If the addition amount of Ti, Ti, or a transition metal is insufficient, the tensile strength at 200 ° C. decreases (Sample No. 186,
188, 190), and when its Si, Ti or transition metal is added excessively, the tensile elongation at 200 ° C. decreases (Sample Nos. 187, 189, 191). Sample number 171
In Examples 185 to 185, those elements are within the specified range, and favorable values are obtained for both the tensile strength and the tensile elongation at 200 ° C.

【0039】−実験例6− 表11に示す組成の急冷凝固アルミニウム合金粉末を用
い、図1のフロー、表9に示す条件で作製した鍛造体か
らテストピースを切り出し200℃で引張試験を行っ
た。その結果を表11に示す。
--Experimental Example 6-- Using a rapidly solidified aluminum alloy powder having the composition shown in Table 11, a test piece was cut out from a forged body produced under the conditions shown in the flow chart of FIG. 1 and shown in Table 9 and subjected to a tensile test at 200.degree. . The results are shown in Table 11.

【0040】この実験で用いた出発原料は、Si:10
〜30質量%、Ti、V、Cr、Mn、Fe、Co、N
i、Mo、Wの中から選ばれる一種以上の元素が合計で
3〜10質量%、Zr:1〜3質量%、希土類元素(ミ
ッシュメタルも含む):3〜6質量%、残部が実質的に
Alから成る組成のものである。
The starting material used in this experiment was Si: 10.
~ 30 mass%, Ti, V, Cr, Mn, Fe, Co, N
One or more elements selected from i, Mo, and W are 3 to 10% by mass in total, Zr: 1 to 3% by mass, rare earth elements (including misch metal): 3 to 6% by mass, and the balance is substantially Is composed of Al.

【0041】この組成のアルミニウム合金は、実験例5
と共通の元素を加えているが、希土類元素がアルミ−遷
移金属系金属間化合物やシリコン結晶を微細化する働き
があり、その希土類元素はZrとの同時添加が有効なこ
とから希土類元素とZrを含め、一方、Tiは、Zrと
同時に添加すると結晶粒の微細化が妨げられることから
Tiを含まない組成にし、必要に応じてWを加えてい
る。この組成の合金も、Si、遷移金属、Zr、希土類
元素の過不足により200℃での引張り強さや伸びが低
下する(試料番号202〜209)。各元素が指定範囲
内にあるもの(試料番号192〜201)は、200℃
での引張り強さは表10の組成のものに比べてやや見劣
りするものがあるが、200℃での伸びは、いずれも非
常に高い数値が得られている。
The aluminum alloy of this composition was used in Experimental Example 5
However, since the rare earth element has a function of refining the aluminum-transition metal intermetallic compound and the silicon crystal, and the simultaneous addition of Zr with the rare earth element is effective, the rare earth element and Zr are added. On the other hand, Ti is added to Zr at the same time as it prevents the refinement of crystal grains, so that the composition does not contain Ti, and W is added if necessary. Also in the alloy having this composition, the tensile strength and the elongation at 200 ° C. are lowered due to the excess or deficiency of Si, transition metal, Zr, and rare earth elements (Sample Nos. 202 to 209). 200 ℃ for each element within the specified range (Sample Nos. 192-201)
Although the tensile strength at 100 ° C. is slightly inferior to that of the composition shown in Table 10, the elongation at 200 ° C. is extremely high in all cases.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【表8】 [Table 8]

【0050】[0050]

【表9】 [Table 9]

【0051】[0051]

【表10】 [Table 10]

【0052】[0052]

【表11】 [Table 11]

【0053】[0053]

【発明の効果】以上説明したように、この発明によれ
ば、機械的強度が要求される部位のみを、当該部位の組
織中に観察されるアルミニウム合金粉末粒のアスペクト
比平均値がa/b≧3となるところまで塑性変形させる
ようにしたので、急冷凝固アルミニウム合金粉末を出発
原料にして作製されるアルミニウム合金製部品のオーバ
スペックを抑制し、また、合金の緻密化と部品形状の付
与を同時に行って不必要な加工を減らすことが可能にな
る。
As described above, according to the present invention, the average aspect ratio of the aluminum alloy powder grains observed in the structure of only the portion requiring mechanical strength is a / b. Since it is plastically deformed to the point where ≧ 3, over-spec of aluminum alloy parts produced by using rapidly solidified aluminum alloy powder as a starting material is suppressed, and the alloy is densified and the shape of parts is given. At the same time, it is possible to reduce unnecessary processing.

【0054】また、無駄な加工を減らすことで設備の簡
素化や製品の出来高の向上も図れる。
Further, by reducing wasteful processing, it is possible to simplify equipment and improve product yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の部品の製造フローを示す図FIG. 1 is a diagram showing a manufacturing flow of a component of the present invention.

【図2】(a)予備成形体の形状、寸法を示す図 (b)鍛造体の形状と鍛造法を示す図FIG. 2 (a) is a view showing the shape and dimensions of a preform. (B) Diagram showing the shape of the forged body and the forging method

【図3】(a)図2(b)の鍛造体の斜視図 (b)同じく平面図 (c)テストピースの内部組織のイメージ図3 (a) is a perspective view of the forged body of FIG. 2 (b). (B) The same plan view (C) Image of internal structure of test piece

【図4】テストピースの形状、寸法を示す図FIG. 4 is a diagram showing the shape and dimensions of a test piece.

【図5】引張り試験で破断したテストピースを示す図FIG. 5 is a diagram showing a test piece fractured in a tensile test.

【図6】(a)テストピースの内部組織を表す図 (b)組織中のアルミニウム合金粉末粒のアスペクト比
を示す図
FIG. 6A is a diagram showing an internal structure of a test piece, and FIG. 6B is a diagram showing an aspect ratio of aluminum alloy powder grains in the structure.

【図7】従来法による部品の製造フローを示す図FIG. 7 is a diagram showing a flow of manufacturing parts by a conventional method.

【図8】実験例1におけるアスペクト比平均値と引張り
強さの関係を示す図
FIG. 8 is a diagram showing the relationship between the average aspect ratio and tensile strength in Experimental Example 1.

【図9】実験例1におけるアスペクト比平均値と破断伸
びの関係を示す図
FIG. 9 is a diagram showing the relationship between the average aspect ratio and breaking elongation in Experimental Example 1.

【図10】実験例2におけるアスペクト比平均値と引張
り強さの関係を示す図
FIG. 10 is a graph showing the relationship between the average aspect ratio and tensile strength in Experimental Example 2.

【図11】実験例2におけるアスペクト比平均値と破断
伸びの関係を示す図
FIG. 11 is a graph showing the relationship between the average aspect ratio and elongation at break in Experimental Example 2.

【図12】実験例3におけるアスペクト比平均値と引張
り強さの関係を示す図
FIG. 12 is a diagram showing the relationship between the average aspect ratio and tensile strength in Experimental Example 3.

【図13】実験例3におけるアスペクト比平均値と破断
伸びの関係を示す図
FIG. 13 is a graph showing the relationship between the average aspect ratio and breaking elongation in Experimental Example 3.

【図14】実験例4におけるアスペクト比平均値と引張
り強さの関係を示す図
FIG. 14 is a diagram showing the relationship between average aspect ratio and tensile strength in Experimental Example 4.

【図15】実験例4におけるアスペクト比平均値と破断
伸びの関係を示す図
FIG. 15 is a diagram showing the relationship between average aspect ratio and breaking elongation in Experimental Example 4.

【符号の説明】[Explanation of symbols]

1 予備成形体 2、3 金型 4 テストピース 4a 破断面 5 ピース切断面 10 鍛造体 11 ヘッド 12 軸部 1 Preform A few molds 4 test pieces 4a fracture surface 5 piece cut surface 10 Forged body 11 heads 12 Shaft

【手続補正書】[Procedure amendment]

【提出日】平成14年2月28日(2002.2.2
8)
[Submission date] February 28, 2002 (2002.2.2)
8)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 アルミニウム合金製部品およびその製
造方法
Title: Aluminum alloy part and method of manufacturing the same

【特許請求の範囲】[Claims]

【請求項】 出発原料の急冷凝固アルミニウム合金粉
末として、 Si:10〜30質量%、 Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wの
中から選ばれる一種以上の元素が合計で3〜10質量
%、 Zr:1〜3質量%、 希土類元素(ミッシュメタルを含む):3〜6質量%、 残部が実質的にAlから成る組成のものを用いた請求項
1に記載のアルミニウム合金製部品。
2. A rapidly solidified aluminum alloy powder as a starting material, wherein Si: 10 to 30% by mass, and one or more elements selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W. 3-10% by mass in total, Zr: 1-3% by mass, rare earth element (including misch metal): 3-6% by mass, and a composition having a balance substantially consisting of Al is used. Aluminum alloy parts.

【請求項】 Si:10〜30質量%、 Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wの
中から選ばれる一種以上の元素が合計で3〜10質量
%、 Zr:1〜3質量%、 希土類元素(ミッシュメタルを含む):3〜6質量%、 残部が実質的にAlから成る組成を有する溶湯をアトマ
イズして急冷凝固アルミニウム合金粉末を得る工程、 その急冷凝固アルミニウム合金粉末を冷間で圧粉成形し
て予備成形体を得る工程、 その予備成形体を430℃以上、530℃以下の温度に
加熱する工程、 加熱した予備成形体を直ちに熱間塑性加工し、必要部位
の相対密度99%以上の緻密化と部品形状の付与を併せ
て行う工程、 以上の各工程を経てアルミニウム合金製部品を製造する
と共に、緻密化及び部品形状の付与工程において、部品
の機械的強度を要する部位のみに特性発現に必要な量の
塑性変形を与え、当該部位について、最大応力が負荷さ
れる方位と平行な面内に観察される固化後のアルミニウ
ム合金粉末粒のアスペクト比の平均値が、粉末粒の長軸
長さをa、短軸長さをbとして、a/b≧3で表わされ
る組織を得ることを特徴とするアルミニウム合金製部品
の製造方法。
3. Si: 10 to 30% by mass, one or more elements selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W in total 3 to 10% by mass, Zr: 1-3 mass%, rare earth element (including misch metal): 3-6 mass%, a step of atomizing a molten metal having a composition in which the balance substantially consists of Al to obtain rapidly solidified aluminum alloy powder, the rapidly solidified aluminum A step of cold compacting the alloy powder to obtain a preformed body, a step of heating the preformed body to a temperature of 430 ° C. or higher and 530 ° C. or lower, immediately hot plastic working the heated preformed body, A step of performing densification with a relative density of 99% or more in a necessary part and imparting a part shape together. Through the above steps, an aluminum alloy part is manufactured, and in the step of densifying and imparting a part shape, a part machine is used. Aspect ratio of aluminum alloy powder particles after solidification, which is observed in a plane parallel to the direction in which maximum stress is applied, by giving the amount of plastic deformation required to develop characteristics only to the part requiring mechanical strength. The method of manufacturing an aluminum alloy part is characterized in that the average value of a is a and the minor axis length is b and the minor axis length is b, and a structure represented by a / b ≧ 3 is obtained.

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、粉末冶金法で製
造される強度、耐熱性、耐クリープ性等に優れたアルミ
ニウム合金製部品と、その部品を過剰仕様にならないよ
うに無駄な工程を省いて作製するための製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention eliminates wasteful steps for avoiding excessive specifications of aluminum alloy parts manufactured by powder metallurgy, which have excellent strength, heat resistance and creep resistance. And a manufacturing method for manufacturing the same.

【0002】[0002]

【従来の技術】アトマイズ法で得られる急冷凝固アルミ
ニウム合金粉末を出発原料にして圧粉、鍛造工程を経て
製造されるアルミニウム合金製部品としては、例えば、
特開2001−98304が述べている内燃機関用ピス
トン、シリンダスリーブ、コンロッド、バルブリフタ、
ロッカーアーム、コンプレッサのスクロールプレート
等、種々のものがある。
2. Description of the Related Art Aluminum alloy parts manufactured by pressing and forging using a rapidly solidified aluminum alloy powder obtained by an atomizing method as a starting material include, for example,
JP 2001-98304 A describes a piston for internal combustion engine, a cylinder sleeve, a connecting rod, a valve lifter,
There are various things such as rocker arms and scroll plates for compressors.

【0003】アトマイズして作る急冷凝固アルミニウム
合金粉末の表面には酸化膜が存在し、従って、この粉末
を原料にして部品化を図る場合には、部品に要求される
強度や靱性を確保するために表面の酸化膜を破壊して粉
末の接合を促進する必要がある。
An oxide film is present on the surface of the rapidly solidified aluminum alloy powder produced by atomization. Therefore, when the powder is used as a raw material for making parts, the strength and toughness required for the parts are ensured. In addition, it is necessary to destroy the oxide film on the surface and promote the bonding of the powder.

【0004】そのための手法として、上記特開2001
−98304は、原料を圧粉成形して金属塊となし、次
いでこれを熱間で押圧して組織を緻密化し、その後更に
据え込み加工して鍛造用アルミニウム合金ビレットを作
製し、このビレットを用いて内燃機関用の鍛造ピストン
を製造するようにしている。
As a technique therefor, the above-mentioned Japanese Patent Laid-Open No. 2001
-98304 is a raw material which is compacted into a metal lump, which is then pressed hot to densify the structure, and then upset to produce an aluminum alloy billet for forging. To manufacture forged pistons for internal combustion engines.

【0005】[0005]

【発明が解決しようとする課題】上記公報等に示される
従来技術では、圧粉成形体を一旦緻密化し、さらに、据
え込み加工することで全域の材料を塑性変形させてい
る。ところが、その塑性変形で原料粉末表面の酸化膜を
破って材料を強化することが要求されるのは負荷の高い
ピストンの天井部などであるのに対し、従来法によれ
ば、大きな機械的強度を必要としない部位でも大きな塑
性流動が起こり、材料特性がオーバスペックとなる可能
性が高い。
In the prior art disclosed in the above publications, the compacted powder compact is once densified, and the material in the entire region is plastically deformed by upsetting. However, the plastic deformation is required to break the oxide film on the surface of the raw material powder to strengthen the material, such as the ceiling of the piston where the load is high, whereas according to the conventional method, a large mechanical strength is required. There is a high possibility that large plastic flow will occur even in the parts that do not require, and the material properties will be over-specified.

【0006】その材料特性のオーバスペックは不必要な
加工を増加させる。しかし、部品のどの部位に最終的に
どの程度の塑性変形量を加えればよいかが判らず、その
ため、無駄な加工を増やすオーバスペックは防ぎようが
なかった。
The overspec of its material properties increases unnecessary processing. However, it is not known which part of the component should be finally added with the amount of plastic deformation, and thus it is impossible to prevent over-spec which increases unnecessary machining.

【0007】この発明は、かかる点に鑑みてなされたも
のであって、部品の断面の組織を指標にしてオーバスペ
ックを無くしたアルミニウム合金製部品とその部品の製
造方法を提供することを目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide an aluminum alloy part in which over-spec is eliminated by using the cross-sectional structure of the part as an index and a method for manufacturing the part. There is.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、組織を緻密化する工程で機械
的強度を要する部位のみに特性発現に必要な量の塑性変
形が与えられてその部位の内部組織が、機械的強度を要
する方位と平行な面内に観察されるアルミニウム合金粉
末粒のアスペクト比の平均値が、粉末粒の長軸長さを
a、短軸長さをbとしてa/b≧3で表わされる組織に
なっているアルミニウム合金製部品を提供する。
In order to solve the above-mentioned problems, in the present invention, the amount of plastic deformation required for exhibiting the characteristics is given only to the portion requiring mechanical strength in the process of densifying the structure. The average value of the aspect ratio of the aluminum alloy powder particles observed in the plane in which the internal structure of the site is parallel to the direction requiring mechanical strength is the major axis length of the powder particles is a, and the minor axis length is b. As a result, an aluminum alloy part having a structure represented by a / b ≧ 3 is provided.

【0009】また、出発原料として、Si:10〜30
質量%、Ti、V、Cr、Mn、Fe、Co、Ni、M
o、Wの中から選ばれる一種以上の元素が合計で3〜1
0質量%、Zr:1〜3質量%、希土類元素(ミッシュ
メタルを含む):3〜6質量%、残部が実質的にAlか
ら成る組成の急冷凝固アルミニウム合金粉末を用いた部
品を提供する。
As a starting material, Si: 10-30
Mass%, Ti, V, Cr, Mn, Fe, Co, Ni, M
One or more elements selected from o and W are 3-1 in total
A part using a rapidly solidified aluminum alloy powder having a composition of 0 mass%, Zr: 1 to 3 mass%, rare earth element (including misch metal): 3 to 6 mass%, and the balance substantially consisting of Al is provided.

【0010】さらに、出発原料の組成を特定したものに
ついては、溶湯をアトマイズして所望の組成の急冷凝固
アルミニウム合金粉末を得る工程、その急冷凝固アルミ
ニウム合金粉末を冷間で圧粉成形して予備成形体を得る
工程、その予備成形体を430℃以上、530℃以下の
温度に加熱する工程、加熱した予備成形体を直ちに熱間
塑性加工し、必要部位の相対密度99%以上の緻密化と
部品形状の付与を併せて行う工程、以上の各工程を経て
アルミニウム合金製部品を製造すると共に、緻密化及び
部品形状の付与工程において、部品の機械的強度を要す
る部位のみに特性発現に必要な量の塑性変形を与え、当
該部位について、最大応力が負荷される方位と平行な面
内に観察される固化後のアルミニウム合金粉末粒のアス
ペクト比の平均値が、粉末粒の長軸長さをa、短軸長さ
をbとして、a/b≧3で表わされる組織を得ることを
特徴とするアルミニウム合金製部品の製造方法を併せて
提供する。
Further, regarding the starting material having the specified composition, a step of atomizing the molten metal to obtain a rapidly solidified aluminum alloy powder having a desired composition, the rapidly solidified aluminum alloy powder being cold compacted and preliminarily prepared The step of obtaining a compact, the step of heating the preform to a temperature of 430 ° C. or higher and 530 ° C. or lower, the heated preform is immediately subjected to hot plastic working, and the relative density of necessary parts is 99% or higher. In addition to manufacturing the aluminum alloy parts through the steps of performing part shape imparting and the above steps, in the densification and part shape imparting steps, it is necessary to develop characteristics only in the parts that require mechanical strength of the parts. The average value of the aspect ratio of the aluminum alloy powder particles after solidification observed in a plane parallel to the direction in which the maximum stress is applied, given the amount of plastic deformation. , Powder particle major axis length a, short axis as b, providing together a method of manufacturing an aluminum alloy part, wherein the obtaining tissue represented by a / b ≧ 3.

【0011】[0011]

【作用】部品の特性発現に必要な塑性変形量が判れば余
分な塑性変形を与えずに済む。
[Operation] If the amount of plastic deformation necessary for manifesting the characteristics of the part is known, it is not necessary to give extra plastic deformation.

【0012】この発明では、その塑性変形の指標として
内部組織中に観察されるアルミニウム合金粉末粒の形状
を採用し、特性発現に必要な塑性変形量を決める。
In the present invention, the shape of the aluminum alloy powder grains observed in the internal structure is adopted as an index of the plastic deformation, and the amount of plastic deformation necessary for manifesting the characteristics is determined.

【0013】緻密化と部品形状の付与のために加える圧
力により、合金粉末粒は塑性変形して印加圧力の方向に
対して垂直となる方向に延び、固化後の合金粉末粒のア
スペクト比a/bが大きくなる。このアスペクト比と部
品の機械的特性には相関関係があり、アスペクト比が3
を越えると、粒の表面の酸化膜の破壊が一気に進むと考
えられ、部品強度が急激に高まる。
The alloy powder grains are plastically deformed by the pressure applied for densification and imparting of the shape of the parts and extend in the direction perpendicular to the direction of the applied pressure, and the aspect ratio a / of the alloy powder grains after solidification is b becomes large. There is a correlation between this aspect ratio and the mechanical properties of parts, and the aspect ratio is 3
If it exceeds, it is considered that the oxide film on the surface of the grains will be destroyed at once, and the strength of the component will be rapidly increased.

【0014】機械的強度を要求される部位の平均アスペ
クト比が3以上になる鍛造圧や圧縮比は予め実験で求め
ることができ、その鍛造圧や圧縮比を制御して必要部位
に必要量の塑性変形を与える。こうすることで、材料の
オーバスペックを防止し、不必要な加工も省くことがで
きる。
The forging pressure and compression ratio at which the average aspect ratio of the portion requiring mechanical strength is 3 or more can be obtained in advance by experiments, and the forging pressure and compression ratio can be controlled to obtain the required amount of the required amount in the required portion. Gives plastic deformation. By doing so, it is possible to prevent over-specification of the material and eliminate unnecessary processing.

【0015】[0015]

【発明の実施の形態】図1に示すフローに基づいて図3
に示す形状の鍛造体10を作製した。この鍛造体10
は、急冷凝固アルミニウム合金粉末を冷間で圧粉成形し
て得られる図2(a)の予備成形体1を430℃以上、
530℃以下に加熱し、それを図2(b)の金型2、3
(上型と下型)を用いて直ちに熱間鍛造して作られたも
のであって、大径ヘッド11の部分が必要量圧縮されて
相対密度99%以上に緻密化され、軸部12とその延長
上に位置するヘッドの中心部は金型2、3による圧縮が
殆どなされていない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a flowchart based on the flow shown in FIG.
A forged body 10 having the shape shown in was produced. This forged body 10
Is a preformed body 1 of FIG. 2 (a) obtained by cold compaction of rapidly solidified aluminum alloy powder at 430 ° C. or higher,
It is heated to 530 ° C. or below, and the molds 2 and 3 shown in FIG.
It is made by immediately hot forging using (upper die and lower die), and the portion of the large diameter head 11 is compressed by a necessary amount to densify it to a relative density of 99% or more. The central portion of the head located on the extension thereof is hardly compressed by the molds 2 and 3.

【0016】この図3の鍛造体10から図4に示すテス
トピース4を切り出し、引張り試験を行った。テストピ
ース4は、必要な塑性変形を与えたヘッド11の部分か
ら図3(a)、(b)に示す向きに切り出した。図3
(c)は、そのテストピース4の内部組織のイメージ図
である。
A test piece 4 shown in FIG. 4 was cut out from the forged body 10 shown in FIG. 3 and subjected to a tensile test. The test piece 4 was cut out in the direction shown in FIGS. 3 (a) and 3 (b) from the portion of the head 11 to which the necessary plastic deformation was applied. Figure 3
(C) is an image view of the internal structure of the test piece 4.

【0017】次に、引張り試験後のテストピース4を軸
方向(破断面4aと略直角)及び鍛造時に主応力が働く
方向(図3(a)の矢印A方向)の2方向に対して平行
な図5の面5(これは紙面に対して垂直)にて切断し、
その切断面を鏡面研磨し、さらに研磨面をエッチングし
て組織の観察を行った。観察された面を拡大して図6に
示す。同図(a)において白くコントラストのついた楕
円状の粒子が組織緻密化後の原料アルミニウム合金粉末
粒である。その合金粉末粒の長軸長さaと短軸長さb
(図6(b)参照)を測定してその粒のアスペクト比a
/bを求めた。そして、ひとつのテストピースについて
合金粉末粒のアスペクト比を15点測定し、その平均値
を各テストピースについて求めた。
Next, the test piece 4 after the tensile test is parallel to the axial direction (substantially right angle to the fracture surface 4a) and the direction in which the principal stress acts during forging (the direction of arrow A in FIG. 3A). Cut at plane 5 in Figure 5 (this is perpendicular to the paper),
The cut surface was mirror-polished, and the polished surface was etched to observe the structure. The observed surface is enlarged and shown in FIG. In FIG. 6A, the white and contrasted elliptical particles are the raw material aluminum alloy powder particles after the tissue densification. The major axis length a and the minor axis length b of the alloy powder particles
(See FIG. 6B) and measure the aspect ratio a of the grain.
/ B was determined. Then, with respect to one test piece, the aspect ratio of the alloy powder particles was measured at 15 points, and the average value was obtained for each test piece.

【0018】また、比較例として図7のフローで作製さ
れた鍛造体(一旦全体を緻密化したビレットを熱間加工
したもの)からテストピースを切り出して上記と同様の
試験と観察を行った。
Further, as a comparative example, a test piece was cut out from a forged body manufactured by the flow shown in FIG. 7 (a billet whose entire body was once densified was hot worked) and the same test and observation as above were performed.

【0019】以下はその試験の詳細である。The following are details of the test.

【0020】−実験例− 図1のフローに基づいて表に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、室温で引張試験を行った。その結果を表に示す。
-Experimental Example 1- Test pieces were made from the materials shown in Table 1 based on the flow of FIG. 1 and the forged body produced under the conditions, and the materials shown in Table 2 based on the flow of FIG. 7 and the forged body produced under the conditions. Was cut out and subjected to a tensile test at room temperature. The results are shown in Table 3 .

【0021】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図に、テストピースの破断伸びとピース中の合
金粉末粒の平均アスペクト比の関係の調査結果を図
各々示す。
FIG. 8 shows the results of investigation of the relationship between the tensile strength of the test piece and the average aspect ratio of the alloy powder particles in the test piece. FIG. 8 shows the relationship between the breaking elongation of the test piece and the average aspect ratio of the alloy powder particles in the piece. respectively show findings in Fig.

【0022】図及び図から判るように、緻密化後の
合金中における原料アルミニウム合金粉末粒のアスペク
ト比と合金の機械的特性には相関関係があり、平均アス
ペクト比が3以上のもの(試料番号68〜114)は、
図7のフローによる鍛造体(試料番号133、134)
と同程度の引張り強さが得られ、平均アスペクト比の大
きなものは引張り伸びも遜色のない値が得られている。
As can be seen from FIGS. 8 and 9, there is a correlation between the aspect ratio of the raw material aluminum alloy powder particles in the alloy after densification and the mechanical properties of the alloy, and the average aspect ratio of 3 or more ( Sample numbers 68-114)
Forged body according to the flow of FIG. 7 (Sample Nos. 133 and 134)
The same tensile strength was obtained, and those with a large average aspect ratio had comparable tensile elongation values.

【0023】また、予備成形体の加熱温度が430℃未
満のもの(試料番号115〜122)は伸び値が低下
し、加熱温度が530℃を上回ったもの(試料番号12
3〜132)は、引張り強さが大きく低下している。
The preforms whose heating temperature is lower than 430 ° C. (Sample Nos. 115 to 122) have a lower elongation value and whose heating temperature exceeds 530 ° C. (Sample No. 12).
3 to 132), the tensile strength is greatly reduced.

【0024】−実験例− 図1のフローに基づいて表に示す材料、条件で作製し
た鍛造体及び図7のフローに基づいて表示す材料、条
件で作製した鍛造体からそれぞれテストピースを切り出
し、200℃で引張試験を行った。その結果を表に示
す。
-Experimental Example 2-A test piece is made from the material shown in Table 1 based on the flow of FIG. 1 and the forged body produced under the conditions, and the material shown in Table 2 based on the flow of FIG. 7 and the forged body produced under the conditions. Was cut out and subjected to a tensile test at 200 ° C. The results are shown in Table 4 .

【0025】また、テストピースの引張り強さとテスト
ピース中の合金粉末粒の平均アスペクト比の関係の調査
結果を図1に、テストピースの破断伸びとピース中の
合金粉末粒の平均アスペクト比の関係の調査結果を図1
に各々示す。
Further, in the tensile strength and the test piece of test piece 1 0 findings of the relationship between the average aspect ratio of the alloy powder particles, the alloy powder particles in the elongation at break and pieces of the test pieces average aspect ratio Figure 1 shows the results of the relationship survey
1 shows each.

【0026】原料アルミニウム合金粉末粒のアスペクト
比と合金の機械的特性には相関関係があり、平均アスペ
クト比が3以上のもの(試料番号153〜160)は、
図7のフローによる鍛造体(試料番号169、170)
と同程度の引張り強さが得られ、平均アスペクト比の大
きなものは引張り伸びも遜色の無い値が得られている。
There is a correlation between the aspect ratio of the raw material aluminum alloy powder particles and the mechanical properties of the alloy, and those having an average aspect ratio of 3 or more (Sample Nos. 153 to 160) are:
Forged body according to the flow of FIG. 7 (Sample Nos. 169 and 170)
The same tensile strength is obtained, and those with a large average aspect ratio have comparable tensile elongation values.

【0027】合金中の原料合金粉末粒の平均アスペクト
比が3以下のもの(試料番号161〜168)は、20
0℃での引張り強さ、引張り伸びがともに小さくなって
いる。
If the average aspect ratio of the raw material alloy powder particles in the alloy is 3 or less (Sample Nos. 161 to 168), 20
Both the tensile strength and tensile elongation at 0 ° C are small.

【0028】−実験例− 表に示す組成の急冷凝固アルミニウム合金粉末を用
い、図1のフロー、表に示す条件で作製した鍛造体か
らテストピースを切り出し200℃で引張試験を行っ
た。その結果を表に示す。
-Experimental Example 3- Using a rapidly solidified aluminum alloy powder having the composition shown in Table 6 , a test piece was cut out from a forged body produced under the conditions shown in the flow of FIG. 1 and Table 5, and a tensile test was conducted at 200 ° C. . The results are shown in Table 6 .

【0029】この実験で用いた出発原料は、Si:10
〜30質量%、Ti、V、Cr、Mn、Fe、Co、N
i、Mo、Wの中から選ばれる一種以上の元素が合計で
3〜10質量%、Zr:1〜3質量%、希土類元素(ミ
ッシュメタルも含む):3〜6質量%、残部が実質的に
Alから成る組成のものである。
The starting material used in this experiment was Si: 10.
~ 30 mass%, Ti, V, Cr, Mn, Fe, Co, N
One or more elements selected from i, Mo, and W are 3 to 10% by mass in total, Zr: 1 to 3% by mass, rare earth elements (including misch metal): 3 to 6% by mass, and the balance is substantially Is composed of Al.

【0030】この組成のアルミニウム合金は、希土類元
素がアルミ−遷移金属系金属間化合物やシリコン結晶を
微細化する働きがあり、その希土類元素はZrとの同時
添加が有効なことから希土類元素とZrを含め、一方、
Tiは、Zrと同時に添加すると結晶粒の微細化が妨げ
られることからTiを含まない組成にし、必要に応じて
Wを加えている。この組成の合金も、Si、遷移金属、
Zr、希土類元素の過不足により200℃での引張り強
さや伸びが低下する(試料番号202〜209)。各元
素が指定範囲内にあるもの(試料番号192〜201)
は、200℃での引張り強さはZrに代えてTiを1〜
3質量%添加した組成のものに比べてやや見劣りするも
のがあるが、200℃での伸びは、いずれも非常に高い
数値が得られている。
The aluminum alloy of this composition, the rare earth element aluminum - It works by refining the transition metal intermetallic compound and the silicon crystal, rare earth elements since the rare earth element is simultaneous addition of Zr valid And Zr, on the other hand,
If Ti is added at the same time as Zr, grain refining is hindered. Therefore, the composition does not include Ti, and W is added as necessary. Alloys of this composition also include Si, transition metals,
Due to the excess or deficiency of Zr and rare earth elements, the tensile strength and elongation at 200 ° C. decrease (Sample Nos. 202 to 209). Each element is within the specified range (Sample No. 192-201)
Has a tensile strength at 200 ° C. of 1 to 1% for Ti instead of Zr.
Although some of them are inferior to those of the composition with 3% by mass added , the elongation at 200 ° C. is extremely high in all cases.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【発明の効果】以上説明したように、この発明によれ
ば、機械的強度が要求される部位のみを、当該部位の組
織中に観察されるアルミニウム合金粉末粒のアスペクト
比平均値がa/b≧3となるところまで塑性変形させる
ようにしたので、急冷凝固アルミニウム合金粉末を出発
原料にして作製されるアルミニウム合金製部品のオーバ
スペックを抑制し、また、合金の緻密化と部品形状の付
与を同時に行って不必要な加工を減らすことが可能にな
る。
As described above, according to the present invention, the average aspect ratio of the aluminum alloy powder grains observed in the structure of only the portion requiring mechanical strength is a / b. Since it is plastically deformed to the point where ≧ 3, over-spec of aluminum alloy parts produced by using rapidly solidified aluminum alloy powder as a starting material is suppressed, and the alloy is densified and the shape of parts is given. At the same time, it is possible to reduce unnecessary processing.

【0038】また、無駄な加工を減らすことで設備の簡
素化や製品の出来高の向上も図れる。
Further, by reducing wasteful processing, it is possible to simplify equipment and improve product yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の部品の製造フローを示す図FIG. 1 is a diagram showing a manufacturing flow of a component of the present invention.

【図2】(a)予備成形体の形状、寸法を示す図 (b)鍛造体の形状と鍛造法を示す図FIG. 2 (a) is a view showing the shape and dimensions of a preform. (B) Diagram showing the shape of the forged body and the forging method

【図3】(a)図2(b)の鍛造体の斜視図 (b)同じく平面図 (c)テストピースの内部組織のイメージ図3 (a) is a perspective view of the forged body of FIG. 2 (b). (B) The same plan view (C) Image of internal structure of test piece

【図4】テストピースの形状、寸法を示す図FIG. 4 is a diagram showing the shape and dimensions of a test piece.

【図5】引張り試験で破断したテストピースを示す図FIG. 5 is a diagram showing a test piece fractured in a tensile test.

【図6】(a)テストピースの内部組織を表す図 (b)組織中のアルミニウム合金粉末粒のアスペクト比
を示す図
FIG. 6A is a diagram showing an internal structure of a test piece, and FIG. 6B is a diagram showing an aspect ratio of aluminum alloy powder grains in the structure.

【図7】従来法による部品の製造フローを示す図FIG. 7 is a diagram showing a flow of manufacturing parts by a conventional method.

【図8】実験例1におけるアスペクト比平均値と引張り
強さの関係を示す図
FIG. 8 is a diagram showing the relationship between the average aspect ratio and tensile strength in Experimental Example 1.

【図9】実験例1におけるアスペクト比平均値と破断伸
びの関係を示す図
FIG. 9 is a diagram showing the relationship between the average aspect ratio and breaking elongation in Experimental Example 1.

【図10】実験例2におけるアスペクト比平均値と引張
り強さの関係を示す図
FIG. 10 is a graph showing the relationship between the average aspect ratio and tensile strength in Experimental Example 2.

【図11】実験例2におけるアスペクト比平均値と破断
伸びの関係を示す図
FIG. 11 is a graph showing the relationship between the average aspect ratio and elongation at break in Experimental Example 2.

【符号の説明】 1 予備成形体 2、3 金型 4 テストピース 4a 破断面 5 ピース切断面 10 鍛造体 11 ヘッド 12 軸部[Explanation of symbols] 1 Preform A few molds 4 test pieces 4a fracture surface 5 piece cut surface 10 Forged body 11 heads 12 Shaft

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Fig. 11

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図11】 FIG. 11

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図12[Name of item to be corrected] Fig. 12

【補正方法】削除[Correction method] Delete

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図13[Name of item to be corrected] Fig. 13

【補正方法】削除[Correction method] Delete

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図14[Name of item to be corrected] Fig. 14

【補正方法】削除[Correction method] Delete

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図15[Correction target item name] Figure 15

【補正方法】削除[Correction method] Delete

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 隆夫 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 Fターム(参考) 3G016 BB02 BB09 EA08 EA10 EA24 FA04 FA11 FA15 4K018 AA16 BA07 BB01 EA41 EA44   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takao Nishioka             Sumitomo Electric Co., Ltd. 1-1-1 Koyo Kita, Itami City             Business Itami Manufacturing Co., Ltd. F term (reference) 3G016 BB02 BB09 EA08 EA10 EA24                       FA04 FA11 FA15                 4K018 AA16 BA07 BB01 EA41 EA44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の組成を有する溶湯をアトマイズし
て得られる急冷凝固アルミニウム合金粉末を出発原料に
し、圧粉、熱間塑性加工工程を経て製造される部品であ
って、機械的強度を要する部位のみに特性発現に必要な
量の塑性変形が与えられてその部位の内部組織が、機械
的強度を要する方位と平行な面内に観察されるアルミニ
ウム合金粉末粒のアスペクト比の平均値が、粉末粒の長
軸長さをa、短軸長さをbとしてa/b≧3で表わされ
る組織になっていることを特徴とするアルミニウム合金
製部品。
1. A component manufactured by using a rapidly solidified aluminum alloy powder obtained by atomizing a molten metal having a predetermined composition as a starting material, through a powder compacting process and a hot plastic working process, which requires mechanical strength. The average value of the aspect ratio of the aluminum alloy powder particles observed in the plane parallel to the orientation requiring mechanical strength is given the amount of plastic deformation required for the characteristic expression only to the site, and the internal structure of the site, An aluminum alloy part characterized by having a structure represented by a / b ≧ 3 in which the major axis length of powder particles is a and the minor axis length is b.
【請求項2】 出発原料の急冷凝固アルミニウム合金粉
末として、 Si:10〜40質量%、 V、Cr、Mn、Fe、Co、Niの中から選ばれる一
種以上の元素が合計で3〜11質量%、 Ti:1〜3質量%、 残部が実質的にAlから成る組成のものを用いた請求項
1に記載のアルミニウム合金製部品。
2. A rapidly solidified aluminum alloy powder as a starting material, wherein Si: 10 to 40% by mass, and one or more elements selected from V, Cr, Mn, Fe, Co and Ni in total is 3 to 11% by mass. %, Ti: 1 to 3 mass%, and the aluminum alloy part according to claim 1, which has a composition in which the balance substantially consists of Al.
【請求項3】 出発原料の急冷凝固アルミニウム合金粉
末として、 Si:10〜30質量%、 Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wの
中から選ばれる一種以上の元素が合計で3〜10質量
%、 Zr:1〜3質量%、 希土類元素(ミッシュメタルを含む):3〜6質量%、 残部が実質的にAlから成る組成のものを用いた請求項
1に記載のアルミニウム合金製部品。
3. A rapidly solidified aluminum alloy powder as a starting material, which comprises Si: 10 to 30 mass%, one or more elements selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W. 3-10% by mass in total, Zr: 1-3% by mass, rare earth element (including misch metal): 3-6% by mass, and a composition having a balance substantially consisting of Al is used. Aluminum alloy parts.
【請求項4】 Si:10〜40質量%、 V、Cr、Mn、Fe、Co、Niの中から選ばれる一
種以上の元素が合計で3〜11質量%、 Ti:1〜3質量%、 残部が実質的にAlから成る組成を有する溶湯をアトマ
イズして急冷凝固アルミニウム合金粉末を得る工程、 その急冷凝固アルミニウム合金粉末を冷間で圧粉成形し
て予備成形体を得る工程、 その予備成形体を430℃以上、530℃以下の温度に
加熱する工程、 加熱した予備成形体を直ちに熱間塑性加工し、必要部位
の相対密度99%以上の緻密化と部品形状の付与を併せ
て行う工程、 以上の各工程を経てアルミニウム合金製部品を製造する
と共に、緻密化及び部品形状の付与工程において、部品
の機械的強度を要する部位のみに特性発現に必要な量の
塑性変形を与え、当該部位について、最大応力が負荷さ
れる方位と平行な面内に観察される固化後のアルミニウ
ム合金粉末粒のアスペクト比の平均値が、粉末粒の長軸
長さをa、短軸長さをbとして、a/b≧3で表わされ
る組織を得ることを特徴とするアルミニウム合金製部品
の製造方法。
4. Si: 10 to 40% by mass, V, Cr, Mn, Fe, Co, and Ni in total of 3 to 11% by mass, and Ti: 1 to 3% by mass. A step of atomizing a molten metal having a composition with the balance substantially consisting of Al to obtain a rapidly solidified aluminum alloy powder, a step of cold compacting the rapidly solidified aluminum alloy powder to obtain a preform, and its preforming A step of heating the body to a temperature of 430 ° C. or higher and 530 ° C. or lower, a step of subjecting the heated preformed body to hot plastic working immediately, and densification of a necessary portion to a relative density of 99% or more and imparting a part shape together While manufacturing aluminum alloy parts through each of the above steps, in the step of densifying and imparting the shape of parts, plastic deformation of the amount necessary for characteristic expression is given only to the parts requiring mechanical strength of the parts, The average value of the aspect ratios of the aluminum alloy powder particles after solidification observed in a plane parallel to the direction in which the maximum stress is applied is the major axis length of the powder particles is a and the minor axis length is b. As a method of manufacturing an aluminum alloy part, a structure represented by a / b ≧ 3 is obtained.
【請求項5】 Si:10〜30質量%、 Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wの
中から選ばれる一種以上の元素が合計で3〜10質量
%、 Zr:1〜3質量%、 希土類元素(ミッシュメタルを含む):3〜6質量%、 残部が実質的にAlから成る組成を有する溶湯をアトマ
イズして急冷凝固アルミニウム合金粉末を得る工程、 その急冷凝固アルミニウム合金粉末を冷間で圧粉成形し
て予備成形体を得る工程、 その予備成形体を430℃以上、530℃以下の温度に
加熱する工程、 加熱した予備成形体を直ちに熱間塑性加工し、必要部位
の相対密度99%以上の緻密化と部品形状の付与を併せ
て行う工程、 以上の各工程を経てアルミニウム合金製部品を製造する
と共に、緻密化及び部品形状の付与工程において、部品
の機械的強度を要する部位のみに特性発現に必要な量の
塑性変形を与え、当該部位について、最大応力が負荷さ
れる方位と平行な面内に観察される固化後のアルミニウ
ム合金粉末粒のアスペクト比の平均値が、粉末粒の長軸
長さをa、短軸長さをbとして、a/b≧3で表わされ
る組織を得ることを特徴とするアルミニウム合金製部品
の製造方法。
5. Si: 10 to 30% by mass, a total of 3 to 10% by mass of one or more elements selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W, Zr: 1-3 mass%, rare earth element (including misch metal): 3-6 mass%, a step of atomizing a molten metal having a composition in which the balance substantially consists of Al to obtain rapidly solidified aluminum alloy powder, the rapidly solidified aluminum A step of cold compacting the alloy powder to obtain a preformed body, a step of heating the preformed body to a temperature of 430 ° C. or higher and 530 ° C. or lower, immediately hot plastic working the heated preformed body, A step of performing densification with a relative density of 99% or more in a necessary part and imparting a part shape together. Through the above steps, an aluminum alloy part is manufactured, and in the step of densifying and imparting a part shape, a part machine is used. The amount of plastic deformation required to develop the characteristics is given only to the part that requires static strength, and the aspect ratio of the aluminum alloy powder particles after solidification observed in a plane parallel to the direction in which the maximum stress is applied to that part. A method for manufacturing an aluminum alloy component, wherein an average value is a structure in which a / b ≧ 3 is obtained, where a major axis length of powder particles is a and a minor axis length is b.
JP2001255587A 2001-08-27 2001-08-27 Parts made of aluminum alloy and production method therefor Pending JP2003064406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255587A JP2003064406A (en) 2001-08-27 2001-08-27 Parts made of aluminum alloy and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255587A JP2003064406A (en) 2001-08-27 2001-08-27 Parts made of aluminum alloy and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002053290A Division JP2003073714A (en) 2002-02-28 2002-02-28 Parts made of aluminum alloy and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003064406A true JP2003064406A (en) 2003-03-05

Family

ID=19083533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255587A Pending JP2003064406A (en) 2001-08-27 2001-08-27 Parts made of aluminum alloy and production method therefor

Country Status (1)

Country Link
JP (1) JP2003064406A (en)

Similar Documents

Publication Publication Date Title
EP2376248B1 (en) Method for the manufacture of a metal part
JP2000135543A (en) Titanium system metal forging method, engine valve manufacturing method and engine valve
CN1009741B (en) Nickel base superalloy articles and method for making
CN106967900B (en) A kind of titanium-based metal glass particle reinforced aluminum matrix composites and preparation method thereof
CN1504637A (en) Process for manufacturing a piston for an internal combustion engine, and the piston thus obtained
JPH0480081B2 (en)
EP0639653B1 (en) Shaft clamping member and process for producing the same
JP3389590B2 (en) Manufacturing method of connecting rod
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
JP2003064406A (en) Parts made of aluminum alloy and production method therefor
JPWO2002077308A1 (en) Heat-resistant creep-resistant aluminum alloy, its billet, and method for producing them
JP2003073714A (en) Parts made of aluminum alloy and manufacturing method therefor
WO2001023629A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
JP3110637B2 (en) Closed powder forging method
JP3468605B2 (en) Green compact of connecting rod made of Al sintered alloy
JP2003136177A (en) Mold for extrusion molding cylindrical member as well as method and apparatus for molding in the same
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JP3668125B2 (en) Manufacturing method of engine valve
JP3837230B2 (en) Method for producing heat-resistant Al alloy structural member
JPH0525591A (en) Wire for piston ring and its manufacture
JPH0953141A (en) Production of oxide dispersion reinforced type alloy material
JPH06330714A (en) Manufacture of heat resistance aluminum alloy made valve body
JP2003253306A (en) METHOD FOR MANUFACTURING COMPACT OF Al-Si ALLOY BY COMPRESSION PLASTIC WORKING
JP2004099996A (en) Process for manufacturing component part of internal-combustion engine