JP2003062648A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JP2003062648A
JP2003062648A JP2001255533A JP2001255533A JP2003062648A JP 2003062648 A JP2003062648 A JP 2003062648A JP 2001255533 A JP2001255533 A JP 2001255533A JP 2001255533 A JP2001255533 A JP 2001255533A JP 2003062648 A JP2003062648 A JP 2003062648A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
temperature
mold
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001255533A
Other languages
Japanese (ja)
Other versions
JP4728532B2 (en
Inventor
Satoshi Yamada
智 山田
Takayuki Shiragami
孝之 白神
Tomoaki Yoshiyama
智明 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001255533A priority Critical patent/JP4728532B2/en
Publication of JP2003062648A publication Critical patent/JP2003062648A/en
Application granted granted Critical
Publication of JP4728532B2 publication Critical patent/JP4728532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for steel wherein the surface cracking of a cast steel piece is prevented securely even when the casting speed changes. SOLUTION: A continuous casting machine having a re-bending correction section inside itself produces a cast steel piece containing one or more elements of Al of 0.02% mass or more, Nb of 0.004% mass or more, Ti of 0.004% mass or more and V of 0.001% mass or more wherein part of the cast steel piece of which casting speed inside a mold is below the preset value is perceived and that part of the cast steel piece is cast without water pouring at least in the re-bending correction section.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】鋼の鋳片の表面割れを防止す
る鋼の連続鋳造方法に関する。 【0002】 【従来の技術】近年材料特性上の要求からNb、V、T
i、など種々の合金元素を含有した低合金鋼の生産が増
加している。しかしながら、これらの合金元素の添加に
伴い連続鋳造時に鋳片表面に横割れ、横ひび割れと呼ば
れる表面割れが発生する場合があり、製造上の問題とな
っている。これらの表面割れは、表面付近のAlNやN
bCNなどの析出に伴い脆弱化したオーステナイト
(γ)粒界に沿って、またはγ粒界に析出した初析フェ
ライト(α)に沿って、鋳片矯正のための矯正応力がか
けられる際に発生することが知られている。従って、γ
がαに変態する温度域にて矯正される時に重度の表面割
れが発生する。そこで通常は、表面の熱間延性が低下す
る温度域(以下、脆化温度域と呼ぶ)を高温側に回避し
て矯正を行い表面割れを防止する方法が採られており、
例えば特開平11―33688号公報にその技術が開示
されている。 【0003】前記従来技術によれば、鋳造速度一定の速
度定常部では、2次冷却を緩冷却することで矯正部にお
いて鋳片表面温度を高温に保つことが可能となり、表面
割れの防止ができる。しかし鋳造初期や鍋交換等の鋳造
速度が変動した際は鋳片表面温度の制御が難しく、前記
特開平11―33688号開示技術を用いても、表面温
度の低下した部位に表面割れが発生しやすい課題があっ
た。 【0004】 【発明が解決しようとする課題】そこで本発明の目的
は、鋳造速度が変動した際も鋳片表面割れを確実に防止
できる鋼の連続鋳造方法を提供することにある。 【0005】 【課題を解決するための手段】本発明の要旨は下記の連
続鋳造方法にある。すなわち鋳片の矯正部を有する連続
鋳造機により、質量割合で、Al:0.02%、Nb:
0.004%、Ti:0.004%、V:0.001%
の元素を1種以上含む鋳片を製造する方法において、鋳
型内での鋳造速度が予め設定した値を下回った鋳片部位
を認識し、該部位に対し少なくとも曲げ戻し矯正部区間
内の二次冷却帯を無注水で鋳造することを特徴とする鋼
の連続鋳造方法。 【0006】 【発明の実施の形態】まず鋳造速度変動と表面割れの関
係を調べ、鋳造速度変動の及ぼす影響を考察した。図1
に鋳片の鋳造速度変動と表面割れ発生率の関係を示す。
図1で示す鋳造速度とは、連続鋳造機端で鋳片を長手方
向に予め決められた間隔で幅方向にカッターで切断した
後の各鋳片毎に、基準鋳造速度(この場合では1.2m
pm)に対し、鋳型から曲げ戻し矯正部までで最も鋳造
速度が下がった極小値を指す。この結果から、基準鋳造
速度1.2mpmに対して低速に変動した鋳片ほど表面
割れ発生率が高いことがわかる。 【0007】次に連続鋳造機内で鋳造速度の変動発生位
置と鋳片表面温度の関係について調査を行った。機長4
5mを有する垂直曲げ型連続鋳造機を対象(基準鋳造速
度1.2mpmが場合)に、連続鋳造機鋳型から連続
鋳造機端まで基準鋳造速度一定で鋳造した場合、鋳型
内では基準鋳造速度であったが鋳型下方で低速の速度変
動があった場合、鋳型内で基準鋳造速度を下回る低速
の速度変動があったが鋳型下方では基準鋳造速度一定で
鋳造した場合の3ケースについて、計算により鋳片表面
温度を求めた結果を図2に示す。なお、前記とのケ
ースは共に基準速度を下回っている時間とその鋳造速度
は同じ条件で行った 【0008】図2より、鋳型内で低速の速度変動を受け
た場合(図2中の)が、曲げ戻し応力が加わる矯正部
では脆化温度領域まで表面温度の低下していることを示
している。従って前記のように鋳型内で基準速度より
も下回る低速の鋳造速度変動した場合には、曲げ戻し応
力が加わる矯正部で割れが発生し易いと言える。 【0009】そこで、鋳型内で低速の速度変動を受けた
鋳片部位に対し、連続鋳造機二次冷却帯(鋳型より下方
の連続鋳造機内の冷却帯)の冷却方法の改善により表面
割れを防止する方法を検討した。 【0010】前記のごとく、表面割れの発生原因は曲げ
戻し矯正部での鋳片表面温度の低下にある。そこで鋳型
内で鋳造速度が低下した部位に対しても、曲げ戻し矯正
部での温度低下を防止し、脆化温度域を高温回避するこ
とで表面割れの防止が図られると考えた。 【0011】1つの手段として、鋳型内で鋳造速度が低
下した部位に対し連続鋳造機内の二次冷却帯の上部から
冷却水量を低減し、鋳片表面温度の低下を防止する策が
挙げられるが、鋳片内部の凝固シェル成長をも考慮して
鋳片温度制御が必要であり、工業的に制御が困難であ
る。 【0012】本発明者らが検討を重ねた結果、以下のこ
とを知見した。表面割れの発生箇所は連続鋳造機の曲げ
戻し矯正部であり、発生位置は鋳片の幅方向の最表面な
いし高々表層から5mmの間である。そこで表面割れを
防止するには、少なくとも温度が低下する曲げ戻し矯正
部において前記の高々表層から5mmの間の脆化温度域
を回避すれば良いと考えた。一方連続鋳造機内の曲げ戻
しと言われる矯正部位置において、通過する鋳片内部は
完全に凝固しておらず、鋳片最表面に比べ高温の溶融状
態(1500℃強)となっているので、鋳片最表面に比
べ温度が高い鋳片内部を熱源として利用することを思い
ついた。 【0013】即ち、鋳片内部の熱源を利用し、曲げ戻し
矯正部では少なくとも鋳片表面付近の温度を脆化温度よ
りも高くすることで、鋳片の表面割れを防止することに
想到したのである。具体的には鋳型内で低速の速度変動
を受けた部位に対し、連続鋳造機内でその位置のトラッ
キングを行い、少なくとも鋳片曲げ戻し矯正部の区間内
では二次冷却帯の鋳片への注水を停止させ、それによっ
て鋳片内部の熱源により鋳片表面は復熱し温度が上昇す
るので、脆化温度域を高温回避して表面割れの防止が出
来るようになったものである。 【0014】少なくとも曲げ戻し矯正部のみ無注水を行
えば効果はあるが、鋳片のさらなる高温化を図るため、
凝固シェルの成長を阻害してバルジングしなければ、連
続鋳造機の曲げ戻し矯正部位置の手前からも無注水とす
ることが可能である。 【0015】次に無注水にする鋳型内における鋳造速度
条件の考え方を説明する。鋳型内で速度変動を受けた鋳
片部位について、図3に鋳型内の最低鋳造速度と、曲げ
戻し矯正部における鋳片最冷点温度の関係の一例を示
す。例えば鋳片の成分等によって得られる脆化温度が9
30℃以下である鋼種については、鋳型内の鋳造速度が
0.95mpm以下となった部位に対し無注水鋳造を実
施する。 【0016】図4は連続鋳造機の機長が45mの場合
に、鋳型内の鋳造速度が0.95mpmとなった部位に
対し、曲げ戻し矯正部においても通常通り注水して鋳
造したケース、曲げ戻し矯正部において無注水で鋳造
したケースについて鋳片表面温度の計算結果を示す。
曲げ戻し矯正部において無注水で鋳造した場合、図4の
に示すように鋳片表面は曲げ戻し矯正部において復熱
し、曲げ戻し矯正部において脆化温度域の930℃超と
なり脆化温度域を高温回避可能となる。 【0017】次に本発明の対象となる鋼の化学組成につ
いて説明する。以後の説明で、合金元素の鋼中での含有
率を表す「%」は「質量%」を意味する。 【0018】本発明方法においては、表面割れ感受性が
高い鋼を対象とするものであり、即ちAlおよびNb、
Ti、Vが、それぞれAl:0.02%以上、Nb:
0.004%以上、Ti:0.004%以上、V:0.
001%以上の元素を少なくとも1種以上含む表面割れ
感受性が高い鋼を対象とするものである。AlおよびN
b、Ti、Vがそれぞれ前記の値未満の場合には、脆化
の影響が無く、本発明によらずとも表面疵の発生はない
ものである。なお、C、Mn、Si、P、Sの五元素に
ついては特に限定せず、得られる鋼の特性に応じて範囲
を限定すれば良い。 【0019】 【実施例】つぎに本発明方法の効果を実施例により説明
する。連続鋳造機として、45mの機長を有す垂直曲型
連続鋳造機を使用した。本連続鋳造機は、鋳型長さは
0.8mで2ストランドを有し、鋳型内のメニスカスか
ら2.5〜4.1m部で7点曲げを行い、メニスカスか
ら14.0〜17.0m部で5点曲げ戻し矯正を行う連
続鋳造機である。 【0020】 【表1】 【0021】試験対象とした鋼の成分と脆化温度を表1
に示す。試験対象とした鋼の脆化温度は930℃近傍に
ある。また曲げ戻し矯正点での鋳片最冷点温度が930
℃となるのは、鋳型内で0.95mpmとなった部位で
ある(図3参照)。この検討を基に、鋳型内の鋳造速度
が0.95mpm以下となった部位に対し、連続鋳造機
内位置のトラッキングを行い、該鋳片が曲げ戻し矯正部
内においては無注水で鋳造した。 【0022】曲げ戻し矯正部無注水による表面割れ防止
効果を検証するため、一方のストランドを試験ストラン
ドとして無注水化を行い、他方のストランドを比較とし
て通常通りの鋳造を行い、両ストランドで鋳造された鋳
片の精整結果を評価した。表面割れの発生状況は黒皮の
ままでは判別が困難なので、鋳片表面に厚さ3mmのス
カーフをかけ目視観察により評価した。 【0023】鋳片段階での表面割れ発生状況と曲げ戻し
矯正部での表面温度(計算)を表2に示す。N=16本
試験を実施し、比較ストランド側ではN=2本表面割れ
が発生した(発生率:12.5%)のに対し、試験スト
ランド側では表面割れの発生無しに抑えた(発生率:0
%)。 【0024】 【表2】【0025】 【発明の効果】本発明により、連続鋳片の表面割れを効
果的に抑制できる。その結果、表面の無手入れによって
直行率向上とともに歩留まりが向上し、製造コストの削
減に大きく寄与することができた。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a continuous casting method of steel for preventing a surface slab of a steel slab. 2. Description of the Related Art In recent years, Nb, V, T
The production of low alloy steels containing various alloying elements such as i. However, with the addition of these alloying elements, surface cracks called lateral cracks or lateral cracks may occur on the slab surface during continuous casting, which is a problem in manufacturing. These surface cracks are caused by AlN and N near the surface.
Occurs when a straightening stress is applied to correct slabs along austenite (γ) grain boundaries weakened by precipitation of bCN, etc., or along proeutectoid ferrite (α) precipitated at γ grain boundaries. It is known to Therefore, γ
Severe surface cracking occurs when is corrected in the temperature range where α is transformed into α. Therefore, usually, a method of avoiding a temperature range in which the hot ductility of the surface is reduced (hereinafter, referred to as an embrittlement temperature range) to a high temperature side and performing correction to prevent surface cracking is adopted.
For example, JP-A-11-33688 discloses the technique. [0003] According to the prior art, in the constant speed portion where the casting speed is constant, the slab surface temperature can be maintained at a high level in the straightening portion by slow cooling the secondary cooling, and surface cracks can be prevented. . However, it is difficult to control the slab surface temperature when the casting speed fluctuates in the initial stage of casting or when changing the pot, and even if the technique disclosed in Japanese Patent Application Laid-Open No. 11-33688 is used, surface cracks may occur in the portion where the surface temperature has decreased. There was an easy task. SUMMARY OF THE INVENTION An object of the present invention is to provide a continuous casting method for steel capable of reliably preventing a slab surface crack even when the casting speed varies. The gist of the present invention resides in the following continuous casting method. That is, by a continuous casting machine having a slab correction section, Al: 0.02%, Nb:
0.004%, Ti: 0.004%, V: 0.001%
In a method for producing a slab containing at least one element of the following, a slab part whose casting speed in a mold is lower than a preset value is recognized, and at least a secondary part in a straightening section is returned to the part. A continuous casting method for steel, wherein the cooling zone is cast without water injection. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the relationship between casting speed fluctuation and surface cracking was examined, and the effect of casting speed fluctuation was considered. FIG.
Fig. 6 shows the relationship between the casting speed fluctuation of the slab and the rate of occurrence of surface cracks.
The casting speed shown in FIG. 1 refers to a reference casting speed (in this case, 1....) For each slab after cutting the slab with a cutter in the width direction at a predetermined interval in the longitudinal direction at the end of the continuous casting machine. 2m
pm) refers to the minimum value at which the casting speed has decreased most from the mold to the straightening portion. From this result, it can be seen that the slab that fluctuated at a lower speed with respect to the reference casting speed of 1.2 mpm has a higher surface cracking occurrence rate. Next, the relationship between the position at which the casting speed fluctuates and the slab surface temperature was investigated in a continuous casting machine. Captain 4
For a vertical bending type continuous casting machine having a length of 5 m (reference casting speed of 1.2 mpm), when casting at a constant reference casting speed from the continuous casting machine mold to the end of the continuous casting machine, the casting speed in the casting mold is equal to the reference casting speed. However, when there was a low speed fluctuation under the mold, there was a low speed fluctuation below the reference casting speed in the mold, but under the mold, casting was performed at a constant reference casting speed. FIG. 2 shows the result of determining the surface temperature. In both cases, the time during which the speed was lower than the reference speed and the casting speed were performed under the same conditions. From FIG. 2, the case where a low speed fluctuation in the mold (in FIG. 2) was observed. In addition, it shows that the surface temperature has decreased to the brittle temperature region in the straightening portion to which the bending return stress is applied. Therefore, when the casting speed fluctuates at a low speed lower than the reference speed in the mold as described above, it can be said that cracks are likely to occur in the straightening portion to which the bending stress is applied. In view of the above, for the slab portion subjected to a low-speed fluctuation in the mold, the surface cracks are prevented by improving the cooling method of the secondary cooling zone of the continuous casting machine (the cooling zone in the continuous casting machine below the mold). I considered how to do it. As described above, the cause of the occurrence of surface cracks is a decrease in the surface temperature of the slab at the straightening portion. Therefore, it was considered that the surface cracking could be prevented by preventing the temperature reduction in the straightening portion and avoiding the brittle temperature range at a high temperature even in a portion where the casting speed was reduced in the mold. One means is to reduce the amount of cooling water from the upper part of the secondary cooling zone in the continuous casting machine for the part where the casting speed has decreased in the mold, and to prevent the slab surface temperature from decreasing. In addition, it is necessary to control the slab temperature in consideration of the growth of the solidified shell inside the slab, and it is industrially difficult to control the slab temperature. As a result of repeated studies by the present inventors, the following has been found. The location where the surface cracks occur is the straightening portion of the continuous casting machine, and the location of occurrence is between 5 mm from the outermost surface or at most the surface layer in the width direction of the slab. Therefore, in order to prevent surface cracks, it was considered that it is sufficient to avoid the embrittlement temperature range of at most 5 mm from the surface layer at least in the bent back straightening portion where the temperature decreases. On the other hand, at the position of the straightening section, which is referred to as bending back in the continuous casting machine, the inside of the slab that passes is not completely solidified, and is in a molten state at a higher temperature (more than 1500 ° C) than the slab's outermost surface. I came up with the idea of using the inside of the slab, which has a higher temperature than the slab outermost surface, as a heat source. That is, the present inventors have conceived to prevent the surface crack of the slab by using the heat source inside the slab and making the temperature of at least the vicinity of the surface of the slab higher than the embrittlement temperature in the bent-back straightening section. is there. Specifically, for a part that has undergone low-speed fluctuations in the mold, its position is tracked in a continuous casting machine, and water is injected into the slab of the secondary cooling zone at least within the section of the slab bending and straightening section. Is stopped, whereby the slab surface is reheated by the heat source inside the slab and the temperature rises, so that the brittle temperature range can be avoided at a high temperature to prevent surface cracking. There is an effect if no water injection is performed only in at least the bending correction section, but in order to further increase the temperature of the slab,
If bulging is not hindered by the growth of the solidified shell, it is possible to make no water injection even before the position of the straightening portion of the continuous casting machine. Next, the concept of the casting speed condition in the mold without water injection will be described. FIG. 3 shows an example of the relationship between the lowest casting speed in the mold and the temperature of the coldest point of the slab in the bend correction section for the slab portion that has undergone speed fluctuations in the mold. For example, the brittle temperature obtained by the components of the slab is 9
With respect to steel types having a temperature of 30 ° C. or lower, waterless casting is performed on a portion where the casting speed in the mold is 0.95 mpm or lower. FIG. 4 shows a case where the casting speed is 0.95 mpm in the mold when the length of the continuous casting machine is 45 m. The calculation result of the slab surface temperature is shown about the case cast without water injection in the straightening part.
In the case of casting without water injection in the bent back straightening section, as shown in FIG. 4, the slab surface regains heat in the bent back straightening section, and becomes more than 930 ° C. in the brittle temperature range in the bent back straightening section. High temperatures can be avoided. Next, the chemical composition of the steel that is the subject of the present invention will be described. In the following description, “%” representing the content of alloying elements in steel means “% by mass”. The method of the present invention is intended for steel having high surface cracking susceptibility, that is, Al and Nb,
Ti and V are respectively Al: 0.02% or more, Nb:
0.004% or more, Ti: 0.004% or more, V: 0.
It is intended for steel having high surface cracking susceptibility containing at least one element of 001% or more. Al and N
When each of b, Ti, and V is less than the above values, there is no influence of embrittlement, and no surface flaw is generated even if the present invention is not used. The five elements of C, Mn, Si, P, and S are not particularly limited, and the range may be limited according to the properties of the obtained steel. Next, the effects of the method of the present invention will be described with reference to examples. As the continuous casting machine, a vertical curved continuous casting machine having a length of 45 m was used. This continuous casting machine has a mold length of 0.8 m, has two strands, performs 7-point bending at a portion of 2.5 to 4.1 m from the meniscus in the mold, and has a portion of 14.0 to 17.0 m from the meniscus. Is a continuous casting machine that performs 5-point bending correction. [Table 1] Table 1 shows the composition and the brittle temperature of the steels to be tested.
Shown in The embrittlement temperature of the test steel is around 930 ° C. In addition, the coldest temperature of the slab at the point where the bending is corrected is 930.
C is the site of 0.95 mpm in the mold (see FIG. 3). Based on this study, tracking of the position in the continuous casting machine was performed for a portion where the casting speed in the mold was 0.95 mpm or less, and the slab was cast without water injection in the straightening portion. In order to verify the effect of preventing surface cracking due to no water injection in the bending and straightening section, one strand is used as a test strand and no water injection is performed, and the other strand is compared to perform normal casting. The refined results of the cast slabs were evaluated. Since it is difficult to determine the occurrence of surface cracks as it is with black scale, a 3 mm-thick scarf was applied to the slab surface and evaluated by visual observation. Table 2 shows the state of occurrence of surface cracks at the slab stage and the surface temperature (calculation) in the straightening portion. An N = 16 test was conducted, and N = 2 surface cracks occurred on the comparative strand side (occurrence rate: 12.5%), while the test strand side was suppressed without occurrence of surface cracks (occurrence rate). : 0
%). [Table 2] According to the present invention, the surface cracks of the continuous slab can be effectively suppressed. As a result, the yield was improved as well as the straightness rate due to the untouched surface, which was able to greatly contribute to the reduction in manufacturing cost.

【図面の簡単な説明】 【図1】鋳造速度の変動と割れの相関を示す図 【図2】メニスカスから機長20mまでの鋳片表面温度
の推移を示すグラフ 【図3】鋳型内鋳造速度と曲げ戻し矯正部最冷点温度と
の関係の一例 【図4】曲げ戻し矯正部において無注水で鋳造した場
合と曲げ戻し矯正部においても通常通り注水して鋳造
した場合との鋳片表面温度の比較図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a correlation between a variation in casting speed and cracking. FIG. 2 is a graph showing a transition of a slab surface temperature from a meniscus to a machine length of 20 m. FIG. 4 shows an example of the relationship between the cold spot temperature of the bent back straightening part. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉山 智明 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tomoaki Yoshiyama             Oita City, Oita City             Inside Oita Works of Iron Corporation

Claims (1)

【特許請求の範囲】 【請求項1】 連続鋳造機内で鋳造鋳片を矯正する箇所
を有する連続鋳造機により、質量割合で、Al:0.0
2%以上、Nb:0.004%以上、Ti:0.004
%以上、V:0.001%以上の元素を1種以上含む鋳
片を製造する方法において、鋳型内での鋳造速度が予め
設定した値を下回った鋳片部位を認識し、該部位に対し
少なくとも曲げ戻し矯正部区間内の二次冷却帯を無注水
で鋳造することを特徴とする鋼の連続鋳造方法。
Claims: 1. A continuous casting machine having a portion for correcting a cast slab in a continuous casting machine, wherein Al: 0.0
2% or more, Nb: 0.004% or more, Ti: 0.004
% Or more, V: in a method for producing a slab containing at least one element of 0.001% or more, a slab part whose casting speed in a mold is lower than a preset value is recognized, and A continuous casting method for steel, characterized in that at least a secondary cooling zone in a section of a straightening section is cast without water injection.
JP2001255533A 2001-08-27 2001-08-27 Steel continuous casting method Expired - Fee Related JP4728532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255533A JP4728532B2 (en) 2001-08-27 2001-08-27 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255533A JP4728532B2 (en) 2001-08-27 2001-08-27 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2003062648A true JP2003062648A (en) 2003-03-05
JP4728532B2 JP4728532B2 (en) 2011-07-20

Family

ID=19083488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255533A Expired - Fee Related JP4728532B2 (en) 2001-08-27 2001-08-27 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4728532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100249A (en) * 2006-10-18 2008-05-01 Nippon Steel Corp Continuous casting method and continuous casting equipment for steel
JP2010005634A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Method for producing cast metal
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339555A (en) * 1991-05-15 1992-11-26 Sumitomo Metal Ind Ltd Method for controlling surface temperature on continuously cast slab
JP2001062551A (en) * 1999-08-31 2001-03-13 Sumitomo Metal Ind Ltd Continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339555A (en) * 1991-05-15 1992-11-26 Sumitomo Metal Ind Ltd Method for controlling surface temperature on continuously cast slab
JP2001062551A (en) * 1999-08-31 2001-03-13 Sumitomo Metal Ind Ltd Continuous casting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100249A (en) * 2006-10-18 2008-05-01 Nippon Steel Corp Continuous casting method and continuous casting equipment for steel
JP4690995B2 (en) * 2006-10-18 2011-06-01 新日本製鐵株式会社 Steel continuous casting method and continuous casting equipment
JP2010005634A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Method for producing cast metal
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Also Published As

Publication number Publication date
JP4728532B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4725216B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JPH09225607A (en) Method for continuously casting steel
JP2015178647A (en) Extra thick steel plate excellent in hic resistance performance and production method thereof
JP3008825B2 (en) Slab surface crack suppression method
JP5928413B2 (en) Steel continuous casting method
JP2003062648A (en) Continuous casting method for steel
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JP4398879B2 (en) Steel continuous casting method
JP3239808B2 (en) Steel continuous casting method
JP4561755B2 (en) Method for continuous casting of steel containing B and N
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JP6589096B2 (en) Continuous casting method of Ni-containing steel
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JPH0616919B2 (en) Surface crack prevention method in continuous casting of Sb-containing steel
JP6019989B2 (en) Secondary cooling method for continuous cast slabs
JP2001026844A (en) Steel for structural purpose excellent in lamellar tearability and its production
JP6402533B2 (en) Continuous casting method of Ni-containing steel
JPS6121301B2 (en)
JP3186614B2 (en) Continuous casting method of Ni-containing steel
JP6866650B2 (en) Continuous casting method of Ni-containing steel
JPH0135908B2 (en)
JPH0135907B2 (en)
JPS6364516B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees