JP2003061665A - Method for detecting spore forming bacterium - Google Patents

Method for detecting spore forming bacterium

Info

Publication number
JP2003061665A
JP2003061665A JP2001250187A JP2001250187A JP2003061665A JP 2003061665 A JP2003061665 A JP 2003061665A JP 2001250187 A JP2001250187 A JP 2001250187A JP 2001250187 A JP2001250187 A JP 2001250187A JP 2003061665 A JP2003061665 A JP 2003061665A
Authority
JP
Japan
Prior art keywords
spore
forming bacterium
nucleic acid
spore forming
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001250187A
Other languages
Japanese (ja)
Inventor
Soichi Makino
壯一 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Bioscience Research Foundation
Original Assignee
Yakult Bioscience Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Bioscience Research Foundation filed Critical Yakult Bioscience Research Foundation
Priority to JP2001250187A priority Critical patent/JP2003061665A/en
Publication of JP2003061665A publication Critical patent/JP2003061665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is useful for detecting a spore forming bacterium having strong toxicity such as Bacillus anthracis because accurate detection can be carried out if the one spore forming bacterium is present in a sample such as soil. SOLUTION: This method for isolating a spore forming bacterium-derived nucleic acid from a spore forming bacterium-containing composition is characterized by subjecting the spore forming bacterium-containing composition to the following steps (a) to (c). (a) a step of treating the spore forming bacterium- containing composition with an alcohol, (b) a step of culturing the spore forming bacterium in the resultant composition and (c) a step of extracting the nucleic acid from the resultant cultured product by a physical crushing means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、土壌等の芽胞形成
菌含有組成物からPCR反応に適した核酸試料を効率良
く単離し、正確に芽胞形成菌を検出する方法に関する。
TECHNICAL FIELD The present invention relates to a method for efficiently isolating a nucleic acid sample suitable for a PCR reaction from a composition containing spore-forming bacteria such as soil, and accurately detecting the spore-forming bacteria.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】芽胞形
成菌の一種である炭疽菌は、世界中で恐れられてきた伝
染病、炭疽の原因菌である。炭疽菌は、芽胞形成菌であ
るが故に、容易に大量の芽胞菌体として精製できるの
で、紛争が起こると常に生物兵器のための病原菌として
恐れられてきた。従って、土壌、食品等の芽胞形成菌の
精度の高い検出法が求められている。
BACKGROUND OF THE INVENTION Anthrax, which is a type of spore-forming bacterium, is a causative bacterium of anthrax, an infectious disease feared all over the world. Since Bacillus anthracis is a spore-forming bacterium, it can be easily purified as a large amount of spore-forming cells, and thus has always been feared as a pathogen for biological weapons when a conflict occurs. Therefore, there is a demand for a highly accurate detection method for spore-forming bacteria such as soil and food.

【0003】感度の高い細菌検出法としてPCR法があ
る。当該PCR法による検出法を土壌に代表される芽胞
形成菌含有組成物に適用した場合、正確な検出ができな
かった。従って、土壌等の芽胞形成菌含有組成物中の芽
胞形成菌を高精度で検出する方法の確立が望まれてい
た。
The PCR method is a highly sensitive bacterial detection method. When the detection method by the PCR method was applied to a spore-forming bacterium-containing composition represented by soil, accurate detection could not be performed. Therefore, it has been desired to establish a method for detecting spore-forming bacteria in a composition containing spore-forming bacteria such as soil with high accuracy.

【0004】[0004]

【課題を解決するための手段】そこで本発明者らは、土
壌等を検体とした場合のPCR法による検出が十分でな
い理由について検討してきたところ、芽胞形成菌含有組
成物からの核酸の単離手段に問題のあることが判明し
た。そして、更に検討を続け、芽胞形成菌含有組成物
を、まずアルコール処理した後培養し、次いで物理的破
砕して核酸を抽出すれば、極めて効率良く芽胞形成菌由
来の核酸が単離でき、これを用いればPCR法により極
めて高精度で芽胞形成菌の検出ができることを見出し、
本発明を完成するに至った。
The inventors of the present invention have investigated the reason why the detection by the PCR method is not sufficient when soil or the like is used as a sample, and as a result, isolation of nucleic acid from a spore-forming bacterium-containing composition is confirmed. It turned out to be a problem with the means. Then, further study, if the composition containing spore-forming bacteria is first treated with alcohol and then cultured, and then physically disrupted to extract the nucleic acid, the nucleic acid derived from the spore-forming bacteria can be isolated very efficiently. It was found that PCR can detect spore-forming bacteria with extremely high accuracy by using
The present invention has been completed.

【0005】すなわち、本発明は、芽胞形成菌含有組成
物を次の工程(a)〜(c): (a)芽胞形成菌含有組成物をアルコール処理する工
程、(b)得られた組成物中の芽胞形成菌を培養する工
程、(c)得られた培養物から物理的破砕手段により核
酸を抽出する工程、を行うことを特徴とする芽胞形成菌
含有組成物からの芽胞菌由来核酸の単離方法を提供する
ものである。また、本発明は、上記の方法により単離さ
れた核酸を、特異的プライマーを用いたPCRにより増
幅して同定することを特徴とする芽胞形成菌含有組成物
中の芽胞形成菌の検出方法を提供するものである。
That is, the present invention provides the spore-forming bacterium-containing composition with the following steps (a) to (c): (a) a step of treating the spore-forming bacterium-containing composition with alcohol, (b) the resulting composition A spore-forming bacterium-derived nucleic acid from a spore-forming bacterium-containing composition, comprising the steps of: culturing the spore-forming bacterium in the medium; and (c) extracting the nucleic acid from the obtained culture by physical disruption An isolation method is provided. The present invention also provides a method for detecting a spore-forming bacterium in a spore-forming bacterium-containing composition, characterized by amplifying and identifying the nucleic acid isolated by the above method by PCR using a specific primer. It is provided.

【0006】[0006]

【発明の実施の形態】本発明の測定対象である芽胞形成
菌としては、炭疽菌(Bacillus anthracis)、バチルス・
ブレビス(Bacillus brevis)、バチルス・ズブチリス(Ba
cillus subtilis)、バチルス・セレウス(Bacillus cere
us)、バチルス・パミルス(Bacillus pumilus)、バチル
ス・レンタス(Bacillus lentus)、バチルス・サーキュ
ランス(Bacillus circulans)、バチルス・スファエリク
ス(Bacillus sphaericus)等のバチルス属細菌;破傷風
菌(Clostridium tetani)、ボツリヌス菌(Clostridiu
mbotulinum)等のClostridium属細菌等が挙げられる。
このうち、バチルス属細菌、特に炭疽菌が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of spore-forming bacteria to be measured according to the present invention include Bacillus anthracis and Bacillus
Bacillus brevis, Bacillus subtilis
cillus subtilis), Bacillus cereus
us), Bacillus pumilus, Bacillus lentus, Bacillus circulans, Bacillus sphaericus and other Bacillus bacteria; Clostridium tetani, Clostridium tetani (Clostridiu
Clostridium bacteria such as mbotulinum).
Of these, Bacillus bacteria, particularly Bacillus anthracis, are preferred.

【0007】芽胞形成菌含有組成物は、芽胞形成菌の遺
伝子検出(主にPCR)を行うための芽胞形成菌含有被検
試料であり、土壌、大気などが挙げられる。中でも、従
来正確な検出が不可能であった土壌に対して本発明方法
を適用するのが特に好ましい。
The spore-forming bacterium-containing composition is a spore-forming bacterium-containing test sample for performing gene detection (mainly PCR) of the spore-forming bacterium, and examples thereof include soil and air. Above all, it is particularly preferable to apply the method of the present invention to the soil which has not been able to be detected accurately in the past.

【0008】本発明においては、まず試料(芽胞形成菌
含有組成物)をアルコール処理する[工程(a)]。こ
こで用いるアルコールとしては、エタノール、イソプロ
パノール等が挙げられるが、エタノールが好ましい。処
理に用いるアルコールは、70重量%〜90重量%のア
ルコール水溶液が芽胞形成菌の検出感度を高めるために
好ましく、特に85重量%〜90重量%のエタノール水
溶液がより好ましい。アルコール処理は、例えば試料1
gに対して1〜100mLのアルコール、例えば70重量
%以上のアルコール水溶液で洗浄すればよい。
In the present invention, the sample (spore-forming bacterium-containing composition) is first treated with alcohol [step (a)]. Examples of the alcohol used here include ethanol and isopropanol, and ethanol is preferable. As the alcohol used for the treatment, 70% by weight to 90% by weight of an aqueous alcohol solution is preferable in order to enhance the detection sensitivity of spore-forming bacteria, and particularly preferably 85% by weight to 90% by weight of an aqueous ethanol solution. For example, the sample 1 is treated with alcohol.
It may be washed with 1 to 100 mL of alcohol based on g, for example, 70% by weight or more of an aqueous alcohol solution.

【0009】次に得られた試料中の芽胞形成菌を培養す
る[工程(b)]。培養条件は芽胞形成菌が増殖する条
件であればよく、例えば種々の液体培地を用いて30〜
40℃、特に37℃付近の温度で12〜16時間培養す
るのが好ましい。炭疽菌を対象とする場合、トリプトケ
ースソイ液体培地等の液体培地中で、30〜40℃、特
に37℃付近の温度で12〜16時間培養するのが好ま
しい。また、培養は2回以上、すなわち1回培養後、培
養液を新鮮な液体培地等で希釈して再度培養することに
より、後工程であるPCRの感度を上げることができ好
ましい。2回目以降の培養は、30〜40℃、特に37
℃付近の温度で3〜6時間振盪培養することが芽胞の形
成を極力抑えるために好ましく、振盪速度はできるだけ
速く設定することが好ましい。また、培地による希釈は
100倍希釈程度で行えばよく、培養は2回が好まし
い。
Next, the spore-forming bacterium in the obtained sample is cultured [step (b)]. The culture conditions may be such that the spore-forming bacteria grow, and for example, 30 to 30 using various liquid media.
It is preferable to culture at a temperature of 40 ° C., particularly around 37 ° C. for 12 to 16 hours. When targeting B. anthracis, it is preferable to culture in a liquid medium such as tryptocase soy liquid medium at 30 to 40 ° C., particularly at 37 ° C. for 12 to 16 hours. In addition, it is preferable that the culture is performed twice or more, that is, after the culture is performed once, the culture solution is diluted with a fresh liquid medium or the like, and then the culture is performed again, so that the sensitivity of PCR as a subsequent step can be increased. The second and subsequent cultures are performed at 30 to 40 ° C., especially 37
It is preferable to carry out shaking culture for 3 to 6 hours at a temperature in the vicinity of ° C in order to suppress the formation of spores as much as possible, and it is preferable to set the shaking speed as fast as possible. Further, the medium may be diluted by about 100 times, and the culture is preferably performed twice.

【0010】次に得られた培養物を物理的破砕手段によ
り核酸を抽出する[工程(c)]。工程(c)は、具体
的にはビーズ存在下での攪拌により菌体を破砕し、菌体
内から核酸を抽出するとともに、有機溶媒層に核酸以外
の夾雑物を移行させる。このとき用いるビーズの素材
は、菌体を破砕し得る程度の硬度を有するものであれば
特に限定されず、ガラス、シリコン、ジルコニウム(zi
rconium)等を例示できるが、入手の容易性やコストの
点からガラスビーズを用いることが好ましい。また、ビ
ーズの形状は、球状或いは楕円球状であることが破砕効
率の点から好ましく、その粒子径としては、長径が0.
01mm〜1mm、特に0.08mm〜0.5mm程度であるこ
とが菌体の破砕効率の点から好ましい。
Next, the obtained culture is subjected to physical disruption to extract nucleic acids [step (c)]. In step (c), specifically, the cells are crushed by stirring in the presence of beads to extract nucleic acids from the cells, and contaminants other than the nucleic acids are transferred to the organic solvent layer. The material of the beads used at this time is not particularly limited as long as it has a hardness enough to crush the bacterial cells, and glass, silicon, zirconium (zi
rconium) and the like can be exemplified, but it is preferable to use glass beads from the viewpoint of easy availability and cost. Further, the shape of the beads is preferably spherical or ellipsoidal from the viewpoint of crushing efficiency, and the particle diameter is such that the major axis is 0.
From the standpoint of cell crushing efficiency, it is preferable that the thickness is from 01 mm to 1 mm, particularly from 0.08 mm to 0.5 mm.

【0011】なお、物理的破砕処理には、公知の方法や
装置、例えば、FastPrep FP120(BIO101 社製)、Mini Be
ad Beater(Biospec Products社製)等を用いれば良い。
この物理的破砕は、撹拌が弱すぎると菌体の破砕が不十
分であり、撹拌が強すぎたりするとDNAの断片化が起
きてPCRが上手くいかない恐れがあるので試料により
最適化が必要であるが、一般には4000〜6000rp
mで10秒〜3分、特に20秒〜1分が好ましい条件で
ある。
For the physical crushing treatment, known methods and devices such as FastPrep FP120 (manufactured by BIO101) and Mini Be
For example, ad Beater (manufactured by Biospec Products) may be used.
This physical disruption requires optimization depending on the sample, because if the agitation is too weak, the bacterial cells are not sufficiently disrupted, and if the agitation is too strong, DNA fragmentation may occur and PCR may not work well. Yes, but generally 4000-6000rp
m is 10 seconds to 3 minutes, and particularly 20 seconds to 1 minute is a preferable condition.

【0012】具体的には、Fast Prepを用いた場合であ
れば、パワーレベル4.0から6.0で20秒から3
分、特に土壌サンプルを試料に用いたときはパワーレベ
ル5.0で20〜30秒程度反応するのが望ましい。ま
たMini Bead Beaterを用いた場合、4200rpmから5
000rpmで20秒から5分、特に土壌サンプルを試料
に用いた時は、5000rpmにて30秒から3分間程度
反応するのが望ましい。
Specifically, if Fast Prep is used, the power level is 4.0 to 6.0 and 20 seconds to 3 seconds.
It is desirable to react for about 20 to 30 seconds at a power level of 5.0 when a minute, particularly a soil sample is used as a sample. When using the Mini Bead Beater, 4200 rpm to 5
It is desirable to react at 000 rpm for 20 seconds to 5 minutes, especially when a soil sample is used as a sample, for about 30 seconds to 3 minutes at 5000 rpm.

【0013】より具体的な条件としては、例えば試料を
0.5mL程度のTris−EDTAバッファーに浮遊
し、0.3g程度のビーズ及び0.5mL程度の有機溶媒
の存在下で攪拌することにより、菌体から核酸を放出さ
せる方法が挙げられる。
More specific conditions include, for example, suspending a sample in about 0.5 mL of Tris-EDTA buffer and stirring in the presence of about 0.3 g of beads and about 0.5 mL of an organic solvent, A method of releasing the nucleic acid from the bacterial cells can be mentioned.

【0014】また、有機溶媒は、蛋白質変性作用を有す
るものであれば特に限定されないが、抽出効率等の点か
らTE(又は水)飽和フェノールが好ましく、特にフェ
ノールが好ましい。
The organic solvent is not particularly limited as long as it has a protein denaturing action, but TE (or water) saturated phenol is preferable, and phenol is particularly preferable from the viewpoint of extraction efficiency and the like.

【0015】菌体破砕後は遠心分離等の手段により水層
と有機溶媒層を分離し、DNA等核酸の含まれる水層を
回収する。このとき、回収物について、更に前記蛋白質
変性能を有する有機溶媒で処理すると、有機溶媒層に核
酸以外の狭雑物の多くが有機溶媒層に溶出されるため好
ましい。用いる有機溶媒としては、フェノール、フェノ
ール/クロロホルム/イソアミルアルコール(25:24:
1)、塩化ベンジル等が挙げられ、特にフェノールとフ
ェノール/クロロホルム/イソアミルアルコール(25:
24:1)処理を組み合わせて行うのが好ましい。得られ
た核酸は、最終的にはエタノール沈殿等により回収す
る。
After crushing the cells, the aqueous layer and the organic solvent layer are separated by a means such as centrifugation to recover the aqueous layer containing nucleic acids such as DNA. At this time, it is preferable that the recovered substance is further treated with the organic solvent having the protein denaturing property, because most of the impurities other than the nucleic acid are eluted in the organic solvent layer in the organic solvent layer. The organic solvent used is phenol, phenol / chloroform / isoamyl alcohol (25:24:
1), benzyl chloride and the like, particularly phenol and phenol / chloroform / isoamyl alcohol (25:
It is preferable to carry out the combination of 24: 1) treatments. The obtained nucleic acid is finally recovered by ethanol precipitation or the like.

【0016】次に、回収された核酸について、必要に応
じてゲル濾過カラムを用いて精製を行う。用いるカラム
はMicro Spin Column S-400(Pharmacia社製)などが好ま
しいが、同様の充填剤であれば、特にこれらに限定され
ない。
Next, the recovered nucleic acid is purified using a gel filtration column, if necessary. The column used is preferably Micro Spin Column S-400 (manufactured by Pharmacia) or the like, but is not particularly limited to these as long as it is a similar packing material.

【0017】このようにして得られた核酸、例えばDN
Aは、特異的プライマーを用いたPCR反応により、目
的とする芽胞形成菌が試料中に存在していたかを検出す
ることができる。検出の感度を上げ、試料中の菌数が極
微量な場合であっても検出を可能とするためには、PC
Rとして、キャピラリーPCR又はnested PCRを用
いることが好ましく、キャピラリーPCRであれば、迅
速な検出が可能となるため、特に好ましい。
The nucleic acid thus obtained, for example DN
A can detect whether or not the target spore-forming bacterium was present in the sample by a PCR reaction using a specific primer. To increase the sensitivity of detection and enable detection even when the number of bacteria in the sample is extremely small, PC
It is preferable to use capillary PCR or nested PCR as R, and capillary PCR is particularly preferable because rapid detection is possible.

【0018】対象芽胞形成菌が炭疽菌の場合には、表1
に示すようなプライマーを用いるのが好ましい。すなわ
ち、SL−U1とSL−D1の組み合せ、SL−U2と
SL−D2の組み合せ、PA8とPA5の組み合せ、P
A7とPA6の組み合せ、MO11とMO12の組み合
せ、BA547とBA546の組み合せが好ましい。表
1にはnested−PCR用のプライマーが示してある。表
1中、標的部位S−layerは、染色体部分であり、PA
はプラスミド中の毒素遺伝子部分、CAPは別のプラス
ミド中の夾膜(cap)遺伝子部分である。これらは土壌等
夾雑物の多い試料に対して用いても、高感度かつ非特異
的に反応することなく検出を行える、特に優れたプライ
マーである。
When the target spore-forming bacterium is anthrax, Table 1
It is preferable to use a primer as shown in. That is, the combination of SL-U1 and SL-D1, the combination of SL-U2 and SL-D2, the combination of PA8 and PA5, P
The combination of A7 and PA6, the combination of MO11 and MO12, and the combination of BA547 and BA546 are preferable. Table 1 shows the primers for nested-PCR. In Table 1, the target site S-layer is a chromosome part and PA
Is the toxin gene part in the plasmid and CAP is the cap gene part in another plasmid. These are particularly excellent primers that can be detected with high sensitivity and non-specific reaction even when used for samples containing many contaminants such as soil.

【0019】[0019]

【表1】 [Table 1]

【0020】表1中、プライマーSL−U2(配列番号
3)、SL−D2(配列番号4)、PA7(配列番号
7)、PA6(配列番号8)、MO11(配列番号9)
及びMO12(配列番号10)は新規である。これらの
プライマー、すなわち、染色体遺伝子、毒素遺伝子を含
むプラスミド及び夾膜を含むプラスミドの3種類の遺伝
子に特異的なプライマーを組合わせて用いれば、前記プ
ラスミドを脱落した菌であっても感度よく検出すること
が可能である。
In Table 1, the primers SL-U2 (SEQ ID NO: 3), SL-D2 (SEQ ID NO: 4), PA7 (SEQ ID NO: 7), PA6 (SEQ ID NO: 8), MO11 (SEQ ID NO: 9).
And MO12 (SEQ ID NO: 10) are new. If these primers, that is, primers specific to three kinds of genes including a chromosomal gene, a plasmid containing a toxin gene and a plasmid containing a capsular membrane, are used in combination, even a bacterium that has lost the plasmid can be detected with high sensitivity. It is possible to

【0021】また、Light Cyclar(Roche社製)やABI Pri
zm 7700、7900(PE Biosystems)、I−サイクラー(BIO-
RAD社製)などを用い、増幅産物の量をサイバーグリー
ンやタックマンプローブ、モレキュラービーコンなどの
蛍光量として検出することで、目的とする芽胞形成菌が
試料中に存在していたかを定量的に解析することができ
る。
In addition, Light Cyclar (manufactured by Roche) and ABI Pri
zm 7700, 7900 (PE Biosystems), I-Cycler (BIO-
Quantitative analysis of whether the target spore-forming bacteria were present in the sample by detecting the amount of amplified product as the fluorescence amount of Cyber Green, Taqman probe, molecular beacon, etc. using RAD) can do.

【0022】更に、本発明の方法により得られた核酸
は、DNAチップによるハイブリダイゼーションや、ク
ローンライブラリー法、変性グラジェンドゲル電気泳動
法(DGGE法)、温度グラジェンドゲル電気泳動法(TGG
E)法、SSCP法により、芽胞形成菌含有組成物中の
芽胞形成菌を特異的に検出・同定することができる。
Further, the nucleic acid obtained by the method of the present invention can be used for hybridization by a DNA chip, clone library method, denaturing gradient gel electrophoresis method (DGGE method), temperature gradient gel electrophoresis method (TGG).
By the E) method and the SSCP method, it is possible to specifically detect and identify the spore-forming bacterium in the composition containing the spore-forming bacterium.

【0023】[0023]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

【0024】実施例1 (1)菌体とプライマーの設定及びPCRの条件 新規な炭疽菌検出用プライマーとして、炭疽菌の病原因
子である莢膜(Cap)、毒素(PA)及び染色体上の配列
(S-layer遺伝子)に特異的なプライマーを設計した。
なお、これらの配列は表1に示してある。 (設計方法)M011、M012、BA547、BA5
46の各プライマーは炭疽菌の莢膜形成遺伝子の塩基配
列を決定後設計した。プライマーの設計には、データバ
ンク(国立遺伝学研究所)よりダウンロードした塩基配
列等の以下の菌種の塩基配列を用いた。設計したプライ
マーの特異性は、以下の菌種から定法にて得た染色体D
NAを分離精製した後、これらを鋳型DNAとして確認
した。菌株は、バシラス属以外のグラム陽性菌はLister
ia monocytogenes(血清型1/2a,1/2b,1/2c,3a,3b,3c,4a,
4ab,4b,4c,4d,4e,5,6,7)、L.innocua、L.seeligeri、L.
welshimeri、L.ivanovii、L.grayi、L.murrayi、Clostr
idium botulinum 003-9、Clostridium difficile7626、
Clostridium perfringens 5256、Corynebacterium diph
theriae 3182、Corynebacterium pyogenes、Erysipelot
hrix rhusiopathiae、Enterococcus faecalis 8357、St
reptococcus suis、Lactococcus lactis 8591、Mycobac
terium tuberculosis 27874、Staphylococcus aureus、
Streptococcus pneumoniaeで、グラム陰性菌はActinoba
cillus pleuropneumoniae Ngl、Aeromonas sp. ATCC 90
71、Campylobacter fetus 8746、Campylobacter jejuni
91-569、Enterohemorrhagic Escherichia coli、Enter
opathogenic Escherichia coli、EnterotoxigenicEsche
richia coli、Klebsiella pneumoniae IID 5209、Legio
nella pneumophila10260、Pasteurella multocida 87-3
7、Proteus vulgaris IID 874、Pseudomonas acidovora
ns 11501、Pseudomonas aeruginosa P 13、Salmonella
choleraesuis SB 242、Salmonella enteritidis、Salmo
nella typhimurium LT 2、Serratiamarcescens IID 521
8、Shigella flexneri YSH 6000、Vibrio cholerae IID
936、Vibrio parahaemolyticus 91-572、Yersinia ent
erocolitica、Yersinia pseudotuberculosisである。バ
シラス属の内炭疽菌以外は、B.cereus HSCC 187、B.cer
eus HSCC 1049、B.cereus HSCC 1207、B.thuringieusis
HSCC 345、B.mycoides HSCC 395、B.pseudomycodes HS
CC 1477、B.weihenstephanensis HSCC 1480、B.amyloli
quefaciens IAM 1521、B.badius IAM 11059、B.cereus
IAM 12605、B.circulans IAM 12462、B.firmus IAM 124
64、B.licheniformis IAM 13417、B.megaterium IAM 13
418、B.mycoides IAM 1190、B.pumilus IAM 12469、B.s
phaericus IAM 13420、B.subtilis IAM 12118、B.thuri
ngiensis IAM 12077、B.subtilis UOTO 277、B.subtili
s ISW 1214、B.megaterium #210、B.cereus #211、B.th
uringensis # 212、B.nato # 213、B.subtilis # 360、
B.brevis HPD 31で、炭疽菌はB.anthracis Shikan、B.a
nthracis Morioka、B.anthracis No.1、B.anthracis N
o.2、B.anthracis Nakakawa、B.anthracis Ryugasaki、
B.anthracis 52、B.anthracis P-I、B.anthracis 34-F2
を用いた。こうして得られたプライマー3種を用いたプ
ライマーセットを用い、PCRを実施した。PCRの条
件は95℃15秒、55℃30秒、72℃60秒を1サ
イクルとして35サイクル行い、アガロースゲル電気泳
動により増幅産物を確認した。
Example 1 (1) Cell and primer setting and PCR conditions As a novel primer for detecting B. anthracis, a capsular (Cap), toxin (PA), which is a causative agent of B. anthracis, and a sequence on the chromosome A primer specific to (S-layer gene) was designed.
The sequences are shown in Table 1. (Design method) M011, M012, BA547, BA5
Each of the 46 primers was designed after the nucleotide sequence of the capsular gene of B. anthracis was determined. The base sequences of the following bacterial species such as the base sequences downloaded from the data bank (National Institute of Genetics) were used for designing the primers. The specificity of the designed primer is the chromosome D obtained by the conventional method from the following bacterial species.
After NA was separated and purified, these were confirmed as template DNAs. Strains are Lister for Gram-positive bacteria other than Bacillus
ia monocytogenes (serotype 1 / 2a, 1 / 2b, 1 / 2c, 3a, 3b, 3c, 4a,
4ab, 4b, 4c, 4d, 4e, 5,6,7), L.innocua, L.seeligeri, L.
welshimeri, L.ivanovii, L.grayi, L.murrayi, Clostr
idium botulinum 003-9, Clostridium difficile7626,
Clostridium perfringens 5256, Corynebacterium diph
theriae 3182, Corynebacterium pyogenes, Erysipelot
hrix rhusiopathiae, Enterococcus faecalis 8357, St
reptococcus suis, Lactococcus lactis 8591, Mycobac
terium tuberculosis 27874, Staphylococcus aureus,
Streptococcus pneumoniae, the Gram-negative bacterium is Actinoba
cillus pleuropneumoniae Ngl, Aeromonas sp. ATCC 90
71, Campylobacter fetus 8746, Campylobacter jejuni
91-569, Enterohemorrhagic Escherichia coli, Enter
opathogenic Escherichia coli, EnterotoxigenicEsche
richia coli, Klebsiella pneumoniae IID 5209, Legio
nella pneumophila 10260, Pasteurella multocida 87-3
7, Proteus vulgaris IID 874, Pseudomonas acidovora
ns 11501, Pseudomonas aeruginosa P 13, Salmonella
choleraesuis SB 242, Salmonella enteritidis, Salmo
nella typhimurium LT 2, Serratia marcescens IID 521
8, Shigella flexneri YSH 6000, Vibrio cholerae IID
936, Vibrio parahaemolyticus 91-572, Yersinia ent
erocolitica and Yersinia pseudotuberculosis. B. cereus HSCC 187, B. cer, except Bacillus anthracis
eus HSCC 1049, B. cereus HSCC 1207, B. thuringieusis
HSCC 345, B.mycoides HSCC 395, B.pseudomycodes HS
CC 1477, B.weihenstephanensis HSCC 1480, B.amyloli
quefaciens IAM 1521, B. badius IAM 11059, B. cereus
IAM 12605, B.circulans IAM 12462, B.firmus IAM 124
64, B. licheniformis IAM 13417, B. megaterium IAM 13
418, B.mycoides IAM 1190, B.pumilus IAM 12469, Bs
phaericus IAM 13420, B. subtilis IAM 12118, B. thuri
ngiensis IAM 12077, B.subtilis UOTO 277, B.subtili
s ISW 1214, B.megaterium # 210, B.cereus # 211, B.th
uringensis # 212, B.nato # 213, B.subtilis # 360,
B. brevis HPD 31, B. anthracis Shikan, Ba
nthracis Morioka, B.anthracis No.1, B.anthracis N
o.2, B.anthracis Nakakawa, B.anthracis Ryugasaki,
B.anthracis 52, B.anthracis PI, B.anthracis 34-F2
Was used. PCR was carried out using a primer set using the three kinds of primers thus obtained. PCR conditions were 95 ° C. for 15 seconds, 55 ° C. for 30 seconds, 72 ° C. for 60 seconds for 35 cycles, and the amplification product was confirmed by agarose gel electrophoresis.

【0025】炭疽菌の芽胞を作る元株としてパスツール
2苗(毒素、莢膜産生株)を用いた。芽胞液はパスツー
ル2苗株をLブロスで37℃一夜培養し、遠心後、一回
生理食塩水で菌体を洗浄後、生理食塩水に再懸濁し、3
7℃で3日間振盪培養し作成した。更に、80℃15分
間加熱後、PBSで3回遠心洗浄後、芽胞数の計測をL
寒天平板上にて行い、使用した。
Pasteur 2 seedlings (toxin, capsular strain) were used as the original strain for producing anthrax spores. The spore fluid was prepared by culturing Pasteur 2 seedlings in L broth overnight at 37 ° C., centrifuging, washing the cells once with physiological saline, and resuspending in physiological saline.
It was prepared by shaking culture at 7 ° C for 3 days. After heating at 80 ° C for 15 minutes, centrifuge and wash with PBS three times, and then measure the number of spores with L.
It was performed on an agar plate and used.

【0026】(2)培地 炭疽菌用の選択培地PLET培地 (ハートインフュージョン寒天培地に酢酸タリウム;0.
04g/l、ポリミキシンB;30000units/l、lyzosyme;3000
00units/l、EDTA;0.3g/lを添加)と共に、Bacillus ce
reusselective agar(BCA;Oxoid)平板及び非選択培地で
あるTrypticasesoy agar(TSA)を用いた。液体培地とし
ては、Trypticase soy broth(TSB)を用いた。
(2) Medium Selection medium for B. anthracis PLET medium (heart infusion agar medium containing thallium acetate;
04g / l, Polymyxin B; 30000units / l, lyzosyme; 3000
00units / l, EDTA; 0.3g / l added) together with Bacillus ce
Reusselective agar (BCA; Oxoid) plates and non-selective medium Trypticases oy agar (TSA) were used. Trypticase soy broth (TSB) was used as the liquid medium.

【0027】(3)(炭疽菌芽胞の土壌からの分離方法
の確立) 各種土壌を採取し、人工的に炭疽菌芽胞を0、1、1
0、100及び1000個を添加して実験を行った。
(3) (Establishment of Method for Separation of B. anthracis Spores from Soil) Various soils were collected to artificially remove B. anthracis spores from 0, 1, 1
The experiment was conducted by adding 0, 100 and 1000 pieces.

【0028】(a)土壌からの炭疽菌の分離:WHOの
指針に従い、それぞれの土壌を生食で10倍、100倍
に希釈し、その希釈液を70重量%アルコール水溶液で
処理して芽胞菌以外を除いた。この検体を用いた直接の
PCRでは10g当たり1000個以上の炭疽菌が土壌
中に存在しないと、検出できなかった。
(A) Separation of Bacillus anthracis from soil: In accordance with WHO guidelines, each soil was diluted 10-fold and 100-fold with saline and the diluted solution was treated with 70% by weight alcohol aqueous solution to remove spores Excluded. Direct PCR using this sample could not be detected unless 1000 or more anthrax bacteria per 10 g were present in the soil.

【0029】(b)増菌法による検出:土壌から直接P
CRを行うのは炭疽菌芽胞を多く含む場合も成功しなか
ったので、増菌法を使用した。先ず芽胞を添加した土壌
10グラムを100mLの70%エタノールにより2回遠
心により洗浄した。その後、100mLの滅菌蒸留水で2
回遠心により洗浄し、最終的に100mLのトリプトケー
スソイ液体培地(TSB)と混合し、37℃で12時間振
盪培養を行った。翌朝その1次増菌液0.1mLを10mL
のTSBに加え、更に4時間37℃で振盪培養した。そ
の二次増菌液1.0mLを遠心後、滅菌水で2回洗浄し、
マニュアル通りにFast Prep TMFP120 instrument(Bio
101, Inc. CA., USA)を用いてPCR用のDNAの精製
(5000rpm、30秒の物理的破砕処理)を行った。DNA
は濃度調整後、100ngをnested−PCRに使用した。
(B) Detection by enrichment method: P directly from soil
CR was also unsuccessful with high B. anthracis spores, so the enrichment method was used. First, 10 g of the spore-added soil was washed twice with 100 mL of 70% ethanol by centrifugation. Then 2 with 100 mL of sterile distilled water
The cells were washed by centrifugation once, finally mixed with 100 mL of tryptocase soy liquid medium (TSB), and shake-cultured at 37 ° C. for 12 hours. The next morning, 10 mL of the primary enrichment solution 0.1 mL
In addition to TSB, the cells were further cultured with shaking at 37 ° C. for 4 hours. After centrifuging 1.0 mL of the secondary enrichment solution, washed twice with sterile water,
Fast Prep TMFP120 instrument (Bio
101, Inc. CA., USA) was used to purify DNA for PCR (physical disruption treatment at 5000 rpm for 30 seconds). DNA
After adjusting the concentration, 100 ng was used for nested-PCR.

【0030】(4)土壌からの芽胞菌の検出 前記(3)(a)の直接法では、計算上10g当り10
00個以上炭疽菌が土壌中に存在しないと検出できなか
った。従って通常の手段では、炭疽菌芽胞を僅かに含ん
だ土壌サンプルから菌体を分離することは不可能である
と結論された。
(4) Detection of spore-forming bacteria from soil In the direct method of (3) (a) above, 10 per 10 g was calculated.
It could not be detected unless more than 00 anthrax was present in the soil. Therefore, it was concluded that it is impossible to separate the cells from the soil sample containing a small amount of Bacillus anthracis spores by conventional means.

【0031】(5)そこで(3)(b)の方法(アルコ
ール処理及び増菌法)によりDNAを単離しnested−P
CRを行った。得られた増幅産物を電気泳動した結果を
図1に示す。図1中、それぞれの写真のレーン左から陽
性精製DNA、芽胞数0、芽胞数1、芽胞数10、芽胞
数100、DNAマーカーである。この結果、本発明方
法により単離された核酸を用いれば、試料中に芽胞が1
個でもあれば正確に検出できることがわかる。
(5) Then, DNA is isolated by the method of (3) (b) (alcohol treatment and enrichment method) and nested-P
CR was performed. The result of electrophoresis of the obtained amplification product is shown in FIG. In FIG. 1, positive purified DNA, spore number 0, spore number 1, spore number 10, spore number 100, and DNA marker are shown from the left lane of each photograph. As a result, when the nucleic acid isolated by the method of the present invention is used, 1 spore is contained in the sample.
It can be seen that even if there are individual pieces, they can be detected accurately.

【0032】比較例1 前記実施例1(3)(b)において、土壌に100mLの
70%エタノールにより洗浄する操作を、75℃30分
間加熱処理して変更する以外は同様にして核酸を単離
し、nested−PCRを行った。その結果、アルコール処
理を加熱処理に変えると芽胞が10個以上ではじめて検
出できる場合と検出できない場合がありデータに安定性
がなかった。また、芽胞1個の場合は検出できなかっ
た。
Comparative Example 1 A nucleic acid was isolated in the same manner as in Example 1 (3) (b) except that the operation of washing the soil with 100 mL of 70% ethanol was changed by heating at 75 ° C. for 30 minutes. , Nested-PCR was performed. As a result, when the alcohol treatment was changed to the heat treatment, there were cases where the spores could not be detected for the first time with 10 or more spores, and cases where the spores could not be detected. Moreover, it could not be detected in the case of one spore.

【0033】実施例2 (1)土壌100gに炭疽菌芽胞を0、1、10、10
0、1000個添加し、これに蒸留水をそれぞれ200
mL添加して希釈液を得た。希釈液に100mLの90%エ
タノール100mLを加えて良く混和後、室温で15分程
度振盪した。500rpm15分間遠心後上清を捨て、更
にこれらの操作をもう一度繰り返し、他の菌を除菌し
た。その後、滅菌蒸留水100mLで2回沈渣を洗浄後、
100mLのTSBを加え、37℃で12時間振盪培養
し、培養物を得た。培養物0.1mLを10mLのTABに
添加し、37℃で4時間培養して得た二次増菌液1.0
mLを遠心後、滅菌水で2回洗浄しマニュアル通りにFast
Prep TMFP120 instrument(Bio 101, Inc. CA., USA)を
用いてPCR用のDNAの精製を行った。DNAは濃度
調整後、キャピラリーPCRに使用した。
Example 2 (1) 0, 1, 10, 10 of B. anthracis spores was added to 100 g of soil.
Add 0 or 1000 pieces and add distilled water to each 200
mL was added to obtain a diluted solution. 100 mL of 90% ethanol was added to the diluted solution, mixed well, and shaken at room temperature for about 15 minutes. After centrifugation at 500 rpm for 15 minutes, the supernatant was discarded, and these operations were repeated once again to remove other bacteria. After washing the precipitate twice with 100 mL of sterile distilled water,
100 mL of TSB was added, and the mixture was cultured at 37 ° C for 12 hours with shaking to obtain a culture. Secondary enrichment solution 1.0 obtained by adding 0.1 mL of culture to 10 mL of TAB and culturing at 37 ° C. for 4 hours
After centrifuging mL, wash twice with sterilized water and fast as per manual.
The DNA for PCR was purified using Prep ™ FP120 instrument (Bio 101, Inc. CA., USA). After adjusting the concentration of DNA, it was used for capillary PCR.

【0034】(2)また、プライマーとしてM011及
びM012を用いて、Light Cyclerを用いた結果を図2
及び3に示す。図2がリアルタイムの増幅曲線であり、
図3が増幅物の電気泳動像である。なお、このときの増
幅条件は95℃10分間、その後95℃15秒、62℃
10秒、72℃25秒を40サイクル行った。この結
果、本発明の方法により単離された核酸を用いれば、試
料中に芽胞が1個でもあれば、正確に検出できることが
わかる。
(2) In addition, the results of using Light Cycler with M011 and M012 as primers are shown in FIG.
And 3 are shown. Figure 2 shows the real-time amplification curve,
FIG. 3 is an electrophoretic image of the amplified product. The amplification conditions at this time were 95 ° C for 10 minutes, then 95 ° C for 15 seconds, and 62 ° C.
40 cycles of 10 seconds and 72 ° C. for 25 seconds were performed. As a result, it can be seen that the nucleic acid isolated by the method of the present invention can be accurately detected even if there is even one spore in the sample.

【0035】比較例2 前記実施例2において、土壌の希釈液を70℃で30分
間加熱し、芽胞菌を除く以外は(1)と同様にして培養
物を得た。加熱除菌の場合には、検出に安定性がなく、
芽胞が10個以上でも検出がうまくいかない場合があ
り、1個混入の場合はほとんど陽性にならなかった。
Comparative Example 2 A culture was obtained in the same manner as in Example 1 except that the diluted solution of soil was heated at 70 ° C. for 30 minutes to remove spores. In the case of heat sterilization, detection is not stable,
Even if the number of spores was 10 or more, the detection could not be successful in some cases.

【0036】[0036]

【発明の効果】本発明方法によれば、土壌等の試料中に
1個の芽胞形成菌があれば正確に検出できるため、炭疽
菌などの毒性の強い芽胞形成菌の検出に有用である。
EFFECTS OF THE INVENTION According to the method of the present invention, one spore-forming bacterium can be accurately detected in a sample such as soil, and therefore it is useful for detecting highly virulent spore-forming bacterium such as anthrax.

【0037】[0037]

【配列表】 SEQUENCE LISTING <110> ZAIDANHOJIN YAKULT・BIO SCIENCE KENKYU ZAIDAN <120> DETECTING METHOD FOR SPORE FORMATION BACTERIA <130> P03571308 <140> <141> <160> 12 <170> PatentIn Ver. 2.1 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis S-layer <400> 1 cgcgtttcta tggcatctct tct 23 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis S-layer <400> 2 ttctgaagct ggcgttacaa at 22 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis S-layer <400> 3 cggtacagaa gcagcaaaa 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis S-layer <400> 4 gctgttggct catcagcta 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis S-layer <400> 5 gaggtagaag gatatacggt 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis PA <400> 6 tcctaacact aacgaagtcg 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis PA <400> 7 atcaccagag gcaagacacc c 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis PA <400> 8 accaatatca aagaacgacg c 21 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis CAP <400> 9 gacggattat ggtgctaag 19 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis CAP <400> 10 gcactggcaa ctggttttg 19 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis CAP <400> 11 gctgatcttg actatgtggg tg 22 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA based on Bacillus brevis CAP <400> 12 ggcttcctgt ctaggactcg g 21[Sequence list] SEQUENCE LISTING <110> ZAIDAN HOJIN YAKULT ・ BIO SCIENCE KENKYU ZAIDAN <120> DETECTING METHOD FOR SPORE FORMATION BACTERIA <130> P03571308 <140> <141> <160> 12 <170> PatentIn Ver. 2.1 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis S-layer <400> 1 cgcgtttcta tggcatctct tct 23 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis S-layer <400> 2 ttctgaagct ggcgttacaa at 22 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis S-layer <400> 3 cggtacagaa gcagcaaaa 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis S-layer <400> 4 gctgttggct catcagcta 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis S-layer <400> 5 gaggtagaag gatatacggt 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis PA <400> 6 tcctaacact aacgaagtcg 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis PA <400> 7 atcaccagag gcaagacacc c 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis PA <400> 8 accaatatca aagaacgacg c 21 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis CAP <400> 9 gacggattat ggtgctaag 19 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis CAP <400> 10 gcactggcaa ctggttttg 19 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis CAP <400> 11 gctgatcttg actatgtggg tg 22 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Designed DNA       based on Bacillus brevis CAP <400> 12 ggcttcctgt ctaggactcg g 21

【図面の簡単な説明】[Brief description of drawings]

【図1】特異的プライマーとしてCAP、PA及びS−
layer上の配列(表1)を用いたnested−PCRの結果
を示す電気泳動像である(それぞれの泳動像のレーン
は、左から陽性特製DNA、芽胞数0、芽胞数1、芽胞数1
0、芽胞数100、DNAマーカーである)。
FIG. 1 CAP, PA and S- as specific primers.
1 is an electrophoretic image showing the results of nested-PCR using the sequence on the layer (Table 1) (lanes of each electrophoretic image are from the left, positive special DNA, spore number 0, spore number 1, spore number 1
0, 100 spores, is a DNA marker).

【図2】Light Cyclerを用いた結果を示すリアルタイム
の増幅曲線である。
FIG. 2 is a real-time amplification curve showing the results using Light Cycler.

【図3】Light Cyclerを用いた結果を示す増幅物の電気
泳動像である(レーンは、左からDNAマーカー、芽胞数
0、陽性精製DNA、芽胞数1、芽胞数10、芽胞数100であ
る)。
FIG. 3 is an electrophoretic image of the amplified product showing the results using Light Cycler (lanes are from left to right: DNA marker, spore number)
0, positive purified DNA, spore number 1, spore number 10, spore number 100).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B024 AA01 AA13 CA09 GA27 HA12 4B063 QA01 QA18 QA19 QQ05 QQ19 QQ42 QR08 QR32 QR42 QR55 QR62 QS25 QS32 QX01 4B065 AA15X AA15Y AC20 BD01 CA23 CA46    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4B024 AA01 AA13 CA09 GA27 HA12                 4B063 QA01 QA18 QA19 QQ05 QQ19                       QQ42 QR08 QR32 QR42 QR55                       QR62 QS25 QS32 QX01                 4B065 AA15X AA15Y AC20 BD01                       CA23 CA46

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 芽胞形成菌含有組成物を次の工程(a)
〜(c): (a)芽胞形成菌含有組成物をアルコール処理する工
程、(b)得られた組成物中の芽胞形成菌を培養する工
程、(c)得られた培養物から物理的破砕手段により核
酸を抽出する工程、を行うことを特徴とする芽胞形成菌
含有組成物からの芽胞菌由来核酸の単離方法。
1. A composition containing a spore-forming bacterium is subjected to the following step (a):
-(C): (a) a step of treating the spore-forming bacterium-containing composition with alcohol, (b) a step of culturing the spore-forming bacterium in the obtained composition, and (c) a physical disruption of the obtained culture. A method of isolating a spore-forming nucleic acid from a composition containing a spore-forming bacterium, which comprises the step of extracting the nucleic acid by means.
【請求項2】 芽胞形成菌含有組成物が、土壌である請
求項1記載の単離方法。
2. The isolation method according to claim 1, wherein the spore-forming bacterium-containing composition is soil.
【請求項3】 アルコール処理が、70重量%〜90重
量%のエタノール水溶液処理である請求項1又は2記載
の単離方法。
3. The isolation method according to claim 1 or 2, wherein the alcohol treatment is treatment with an aqueous 70% by weight to 90% by weight ethanol solution.
【請求項4】 請求項1〜3のいずれか1項記載の方法
により単離された核酸を、特異的プライマーを用いたP
CRにより増幅して同定することを特徴とする芽胞形成
菌含有組成物中の芽胞形成菌の検出方法。
4. A nucleic acid isolated by the method according to any one of claims 1 to 3 is prepared by using P using a specific primer.
A method for detecting a spore-forming bacterium in a composition containing a spore-forming bacterium, which is characterized by being amplified and identified by CR.
【請求項5】 PCRがキャピラリーPCRであること
を特徴とする請求項4記載の芽胞形成菌の検出方法。
5. The method for detecting a spore-forming bacterium according to claim 4, wherein the PCR is a capillary PCR.
【請求項6】 配列番号7で示される塩基配列を有する
DNA断片及び配列番号8で示される塩基配列を有する
DNA断片からなる炭疽菌用プライマー。
6. An anthrax primer comprising a DNA fragment having the base sequence represented by SEQ ID NO: 7 and a DNA fragment having the base sequence represented by SEQ ID NO: 8.
【請求項7】 配列番号11で示される塩基配列を有す
るDNA断片及び配列番号12で示される塩基配列を有
するDNA断片からなる炭疽菌用プライマー。
7. A primer for anthrax comprising a DNA fragment having the base sequence represented by SEQ ID NO: 11 and a DNA fragment having the base sequence represented by SEQ ID NO: 12.
【請求項8】 配列番号13で示される塩基配列を有す
るDNA断片及び配列番号14で示される塩基配列を有
するDNA断片からなる炭疽菌用プライマー。
8. A primer for anthrax comprising a DNA fragment having the base sequence represented by SEQ ID NO: 13 and a DNA fragment having the base sequence represented by SEQ ID NO: 14.
JP2001250187A 2001-08-21 2001-08-21 Method for detecting spore forming bacterium Pending JP2003061665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250187A JP2003061665A (en) 2001-08-21 2001-08-21 Method for detecting spore forming bacterium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250187A JP2003061665A (en) 2001-08-21 2001-08-21 Method for detecting spore forming bacterium

Publications (1)

Publication Number Publication Date
JP2003061665A true JP2003061665A (en) 2003-03-04

Family

ID=19079064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250187A Pending JP2003061665A (en) 2001-08-21 2001-08-21 Method for detecting spore forming bacterium

Country Status (1)

Country Link
JP (1) JP2003061665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067974A (en) * 2004-09-06 2006-03-16 Sysmex Corp Method for measuring sterilization effect on microorganism
WO2006071241A3 (en) * 2004-02-18 2007-09-13 Isis Pharmaceuticals Inc Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253847A (en) * 1993-03-04 1994-09-13 Chisso Corp Polynucleotide for detecting bacillus anthracis and method for detection using the same
JP2001037470A (en) * 1999-07-28 2001-02-13 Nippo Kagaku Kk Production of clostridium butyricum spore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253847A (en) * 1993-03-04 1994-09-13 Chisso Corp Polynucleotide for detecting bacillus anthracis and method for detection using the same
JP2001037470A (en) * 1999-07-28 2001-02-13 Nippo Kagaku Kk Production of clostridium butyricum spore

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
WO2006071241A3 (en) * 2004-02-18 2007-09-13 Isis Pharmaceuticals Inc Compositions for use in identification of bacteria
JP2006067974A (en) * 2004-09-06 2006-03-16 Sysmex Corp Method for measuring sterilization effect on microorganism

Similar Documents

Publication Publication Date Title
Van Opijnen et al. Genome‐wide fitness and genetic interactions determined by Tn‐seq, a high‐throughput massively parallel sequencing method for microorganisms
Fasanella et al. Detection of anthrax vaccine virulence factors by polymerase chain reaction
EP3505628A1 (en) Method for concentrating microorganism or extracting nucleic acid using dtbp
JP2004507217A (en) Listeria monocytogenes genomes, polypeptides and uses thereof
Pilehchian et al. Fusion of Clostridium perfringens type D and B epsilon and beta toxin genes and it’s cloning in E. coli
Angelos et al. Identification and characterization of complete RTX operons in Moraxella bovoculi and Moraxella ovis
Mirkalantari et al. Molecular cloning of virB12 gene of Brucella melitensis 16M strain in pET28a vector
JP2003061665A (en) Method for detecting spore forming bacterium
KR102096025B1 (en) Primer set for loop-mediated isothemal amplification for toxin detecting of actinobacilus pleuropneumoniae and toxin detecting method of actinobacilus pleuropneumoniae using the same
FR3055339A1 (en) METHOD OF IN VITRO DETECTION AND IDENTIFICATION OF ONE OR MORE TARGET PATHOGENS PRESENT IN A BIOLOGICAL SAMPLE
JP4176837B2 (en) M.M. A fragment of a nucleic acid that is specific for mycobacteria that are members of the tuberculosis complex; Detection of members of the tuberculosis complex and their application for differential diagnosis
US20060223084A1 (en) Methods and compositions for detecting Bacillus anthracis
JPH07500502A (en) Nucleotide sequences that specifically hybridize with bacterial strains of Mycobacterium avium-intracellulare complex
Ohadi et al. Evaluation of Genetic Content of the CRISPR Locus in Listeria monocytogenes Isolated From Clinical, Food, Seafood and Animal Samples in Iran
JP2006061134A (en) Primer for detection of mycobacterium tuberculosis and method for detecting and identifying the same bacterium
KR101279396B1 (en) Primer set for the detection of Mycoplasma, and method and kit for the detection of Mycoplasma by using the primer set
RU2551764C2 (en) METHOD FOR DETECTING TUBERCULOUSIS MYCOBACTERIA OF GENETIC CLUSTER Beijing B0/W148
EP3356545B1 (en) Use of pcr primers and methods for the identification of bacillus coagulans
JP2007159533A (en) Primer for detecting clostridium perfringens and method
US20120225091A1 (en) Modified live (jmso strain) haemophilus parasuis vaccine
RU2514663C2 (en) Method of differentiating bacillus anthracis from other closely related species of genus bacillus based on determining differences in structure of chromosomal genes
Ribeiro-Guimarães et al. Expression analysis of proteases of Mycobacterium leprae in human skin lesions
KR101387288B1 (en) Method of detecting cereus strain producing emetic toxin and primer set for the method
Miao Development of a Gram-type Specific Method for Detection of Bovine Mastitis Pathogens by Combining Loop-mediated Isothermal Amplification (LAMP) and Split Trehalase Technologies
Blanco Elucidating Mechanisms of Post-Transcriptional Regulation in Mycobacterium smegmatis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109