JP2003049228A - Sintered ore having excellent softening and melting property - Google Patents

Sintered ore having excellent softening and melting property

Info

Publication number
JP2003049228A
JP2003049228A JP2002183450A JP2002183450A JP2003049228A JP 2003049228 A JP2003049228 A JP 2003049228A JP 2002183450 A JP2002183450 A JP 2002183450A JP 2002183450 A JP2002183450 A JP 2002183450A JP 2003049228 A JP2003049228 A JP 2003049228A
Authority
JP
Japan
Prior art keywords
powder
sintered ore
limestone
coke
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002183450A
Other languages
Japanese (ja)
Other versions
JP4077668B2 (en
Inventor
Yozo Hosoya
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002183450A priority Critical patent/JP4077668B2/en
Publication of JP2003049228A publication Critical patent/JP2003049228A/en
Application granted granted Critical
Publication of JP4077668B2 publication Critical patent/JP4077668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide sintered ore which has excellent softening and melting properties. SOLUTION: The sintered ore has a sintered structure in which macropores are dispersed into a bonded structure essentially consisting of silicate slag and magnetite. Hematite can be contained in a part of the above bonded structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は軟化溶融性状の優れ
た焼結鉱に関するものである。
TECHNICAL FIELD The present invention relates to a sinter having excellent softening and melting properties.

【0002】[0002]

【従来の技術】従来から焼結鉱の製造においては、焼結
原料に粉コークスや粉石灰石等の副原料を配合して混合
し、その配合原料を、造粒機で造粒した後、焼結機に装
入し、焼結層の通気を良好に保ちながら操業を行ってい
る。焼結鉱の品質を向上させるために、通気性に悪影響
を及ぼす粉コークス中0.5mm以下を少なくする粒度
調整や、融液生成に重要な働きをする粉石灰石の特定粒
度を増減させる粒度調整などが実施されてきた。ただ、
これらの手段では、還元粉化性や被還元性を改善できる
が、高炉下部の反応で最も重要な軟化溶融性状を改善す
る手段にはなっていなかった。
2. Description of the Related Art Conventionally, in the production of sintered ores, auxiliary raw materials such as powdered coke and powdered limestone are mixed and mixed with a sintering raw material, and the mixed raw material is granulated by a granulator and then burned. It is put into a binding machine and operated while maintaining good ventilation of the sintered layer. In order to improve the quality of the sinter, the particle size is adjusted to reduce 0.5 mm or less in the powder coke, which adversely affects the air permeability, and the particle size is adjusted to increase or decrease the specific particle size of the powdered limestone that plays an important role in melt formation. Etc. have been implemented. However,
Although these methods can improve the reducing pulverization property and the reducibility, they have not been the means for improving the softening and melting property, which is most important in the reaction in the lower part of the blast furnace.

【0003】例えば、特公昭63−13475号公報に
は、粒径7mm未満が100重量%の粉コークスにセメ
ントと水を加えて混合して、混合物を積付けし、セメン
トの水和反応により形成された水和物でコークス粒子間
が結合されるまで養生し、この積付け養生物を、粒径
0.5mm未満が40重量%以下となるように解砕して
鉄鉱石の焼結時に使用し、粉コークスの燃焼効率を向上
させて成品焼結鉱の被還元性(JIS還元率)を向上さ
せる方法が開示されている。しかし、高炉下部における
反応を大幅に向上させるには、焼結鉱の被還元性の向上
だけでは不十分で、焼結鉱の軟化溶融性状の改善が重要
であるが、上記公報に、焼結鉱の軟化溶融性状の改善に
ついては、何も記載されていない。
For example, in Japanese Examined Patent Publication No. 63-13475, cement and water are added to and mixed with powder coke having a particle size of less than 7 mm and 100% by weight, and the mixture is stacked and formed by a hydration reaction of cement. The coke particles are cured with the hydrated hydrate, and the stowed culture is crushed to a particle size of less than 0.5 mm to 40% by weight or less and used during the sintering of iron ore. However, a method for improving the combustion efficiency of the powder coke and improving the reducibility (JIS reduction rate) of the product sintered ore is disclosed. However, in order to significantly improve the reaction in the lower part of the blast furnace, it is not enough to improve the reducibility of the sinter, and it is important to improve the softening and melting properties of the sinter. Nothing is said about improving the softening and melting properties of ores.

【0004】特公昭63−6616号公報には、粉鉄鉱
石を下方吸気式焼結機で焼結する際、粒度が10mm以
下0.5mm以上の粗粒石灰石を他の配合原料と共に配
合して、石灰石の焼結過程における反応を遅らせること
により、2次ヘマタイトの生成または成長を少なくし
て、耐還元粉化性を向上させる焼結鉱の製造法が開示さ
れている。しかし、高炉下部の反応で最も重要な軟化溶
融性状の改善については、何も記載されていない。
In Japanese Examined Patent Publication No. 63-6616, when powdered iron ore is sintered by a lower intake type sintering machine, coarse limestone having a grain size of 10 mm or less and 0.5 mm or more is blended with other blending raw materials. Disclosed is a method for producing a sintered ore in which the production or growth of secondary hematite is reduced by delaying the reaction in the sintering process of limestone to improve the reduction pulverization resistance. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0005】特開昭57−192228号公報には、粉
鉄鉱石を下方吸気式焼結機で焼結する際、粒度1〜3m
mが50%以上の石灰石、粒度3〜5mmが10%以下
の石灰石、粒度0.25mm以下の微粒子が19%以下
の石灰石等を他の原料と配合して焼結することにより、
骸晶状菱型ヘマタイトおよび板状カルシウムフェライト
の生成を抑制し、被還元性の良い針状カルシウムフェラ
イトと耐還元粉化性の良好な斑状ヘマタイトの生成を増
やした、耐還元粉化性と被還元性を向上させる焼結鉱の
製造法が開示されている。しかし、高炉下部の反応で最
も重要な軟化溶融性状の改善については、何も記載され
ていない。
In Japanese Patent Application Laid-Open No. 57-192228, when powdered iron ore is sintered by a lower air intake type sintering machine, the grain size is 1 to 3 m.
By mixing limestone having m of 50% or more, limestone having a particle size of 3 to 5 mm of 10% or less, limestone having particles of 0.25 mm or less of 19% or less with other raw materials, and sintering,
Suppressing the formation of skeletal rhomboid hematite and plate-like calcium ferrite, and increasing the formation of acicular calcium ferrite with good reducibility and mottled hematite with good reduction pulverization resistance. A method for producing a sinter that improves reducibility is disclosed. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0006】特開昭61−34119号公報には、微粉
鉱石に石灰石を他の配合原料と共に添加して焼結する方
法において、石灰石の粒度を3〜5mmの粒子が全石灰
石量の35wt%以上となるように調整して、焼結層の
通気を良好にしてヒートパターンの高温保持時間を短く
し、カルシウムフェライトと再酸化ヘマタイトの隣接を
抑制して、耐還元粉化性を著しく改善する焼結鉱の製造
法が開示されている。上記公報では、落下強度や被還元
性は、従来の焼結法によるものと同等であると説明され
ているが、高炉下部の反応で最も重要な軟化溶融性状の
改善については、何も記載されていない。
JP-A-61-34119 discloses a method in which limestone is added to finely divided ores together with other compounding raw materials and sintered, and particles of limestone having a particle size of 3 to 5 mm account for 35 wt% or more of the total amount of limestone. To improve the ventilation of the sintered layer, shorten the high-temperature holding time of the heat pattern, suppress the adjacency of calcium ferrite and reoxidized hematite, and significantly improve the reduction pulverization resistance. A method for producing slag is disclosed. The above publication describes that the drop strength and the reducibility are equivalent to those obtained by the conventional sintering method, but nothing is mentioned about the most important improvement in the softening and melting property in the reaction in the lower part of the blast furnace. Not not.

【0007】特開昭58−91132号公報には、粉状
鉱石を下方吸気式焼結機で焼結する際、石灰石を水分2
〜7%で造粒し、造粒後の粒度が、0.5mm以下が2
0%以下、3mm以上が40%以下の石灰石を他の原料
と配合して焼結し、還元粉化性に悪い2次ヘマタイトの
生成を抑えながら被還元性の良いカルシウムフェライト
を多量に生成して、JIS還元率と還元粉化指数(RD
I)の向上を図る焼結鉱の製造法が開示されている。し
かし、高炉下部の反応で最も重要な軟化溶融性状の改善
については、何も記載されていない。
In Japanese Patent Laid-Open No. 58-91132, when powdered ore is sintered by a lower air intake type sintering machine, limestone has a water content of 2%.
Granulate at ~ 7% and the particle size after granulation is 0.5 mm or less is 2
Limestone with 0% or less, 3 mm or more and 40% or less is mixed with other raw materials and sintered to produce a large amount of calcium ferrite with good reducibility while suppressing the formation of secondary hematite that is poor in reduction powderability. JIS reduction rate and reduction pulverization index (RD
A method for producing a sintered ore for improving I) is disclosed. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0008】ISIJ International,
31(1991)5,p.468には、焼結過程で粒径
が0.7mm以上の石灰石や0.5mm以上の粉コーク
スが消滅した後に、焼結鉱中にマクロ気孔が生成し易い
ことが記載されている。しかし、高炉下部の反応で最も
重要な軟化溶融性状の改善については、何も触れられて
いない。
ISIJ International,
31 (1991) 5, p. 468 describes that macro pores are easily generated in the sintered ore after the limestone having a particle size of 0.7 mm or more and the powder coke having a particle size of 0.5 mm or more disappear in the sintering process. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0009】材料とプロセス,4(1991),p.1
126には、スケールなどの高FeO原料を5wt%以
上配合すれば低融点のシリケートスラグが生成し易いこ
とが記載されている。しかし、高FeO原料多配合以外
の手段については記載されておらず、微粉コークスの減
少とシリケートスラグの生成増の関係、ならびに、高炉
下部の反応で最も重要な軟化溶融性状の改善に関する記
載はない。
Materials and Processes, 4 (1991), p. 1
It is described in 126 that if a high FeO raw material such as scale is mixed in an amount of 5 wt% or more, a low-melting point silicate slag is easily generated. However, there is no description about means other than high FeO raw material multi-mixing, and there is no description about the relationship between the decrease of fine coke and the increase of silicate slag formation, and the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace. .

【0010】[0010]

【発明が解決しようとする課題】本発明は、これまで制
御する手段が確立されていなかった軟化溶融性状(高炉
下部の反応で最も重要な性状)の優れた焼結鉱を提供す
ることを目的とする。
The object of the present invention is to provide a sinter having excellent softening and melting properties (the most important properties in the reaction in the lower part of a blast furnace), which means for controlling the sinter have not been established so far. And

【0011】[0011]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
The gist of the present invention is as follows.

【0012】(1) シリケートスラグとマグネタイト
主体の結合組織にマクロ気孔が分散した焼結組織を有す
ることを特徴とする軟化溶融性状の優れた焼結鉱。
(1) A sintered ore having an excellent softening and melting property, which has a sinter structure in which macropores are dispersed in a bond structure mainly composed of silicate slag and magnetite.

【0013】(2) さらに前記結合組織の一部にヘマ
タイトを含有することを特徴とする前記(1)記載の軟
化溶融性状の優れた焼結鉱。
(2) A sinter having excellent softening and melting properties as described in (1) above, which further contains hematite in part of the connective structure.

【0014】[0014]

【発明の実施の形態】本発明は、前記課題を解決するた
め、焼結原料に配合する粉コークスや粉石灰石、返鉱、
焼結鉱粉の粒度分布を焼成前に調整することにより、マ
クロ気孔の生成と粘性の高いシリケートスラグの生成の
組合せで、焼結鉱中のマクロ気孔を多く確保することに
より得られる軟化溶融性状の優れた焼結鉱を提供するも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present invention relates to powdered coke, powdered limestone, reclaimed mineral, and
By adjusting the particle size distribution of the sintered ore powder before firing, the softening and melting properties obtained by securing a large number of macropores in the sintered ore by combining the formation of macropores and the formation of highly viscous silicate slag To provide an excellent sinter.

【0015】本発明は、まず、粉コークスの0.5mm
以下の微粉を大幅に減少させて、擬似粒子の付着粉内へ
埋没する粉コークスの量を減らして燃焼性を大幅に改善
し、単位時間当たりの粉コークスの燃焼量を増加させ
て、焼結層内における酸素分圧(Po2)を低下させ
る。そうすると、図2に示すように、CaO−SiO2
−FeO系の低融点シリケートスラグの生成が促進され
て、融液量も増加し、逆に、図1に示すCaO−SiO
2−Fe23系のカルシウムフェライト融液の生成が抑
制される。
In the present invention, first, 0.5 mm of coke powder is used.
By significantly reducing the following fine powders, the amount of powder coke buried in the powder of the pseudo particles is reduced, and the combustibility is significantly improved.The combustion amount of powder coke per unit time is increased, and sintering is performed. The oxygen partial pressure (Po 2 ) in the layer is lowered. Then, as shown in FIG. 2, CaO-SiO 2
-FeO-based low-melting silicate slag is promoted to be produced, and the amount of melt is also increased. On the contrary, CaO-SiO shown in FIG.
Generation of a 2- Fe 2 O 3 -based calcium ferrite melt is suppressed.

【0016】それに加えて、石灰石の1.0mm以下の
微粉を大幅に減少させて、石灰石の反応性を抑制するの
で、石灰石は、生成した粘性の高いシリケートスラグと
反応することになり、石灰石の反応・消滅後に、マクロ
気孔(50μm以上)が形成される。当然、コークスの
燃焼・消滅後にも、マクロ気孔が形成される。シリケー
トスラグは、粘性が高いので気孔に浸透し難く、気孔自
身を閉塞することも少ないので、マクロ気孔を、焼結鉱
全体に、好ましくは均一に造ることができる。
In addition, the fine powder of limestone of 1.0 mm or less is significantly reduced to suppress the reactivity of limestone, so that the limestone reacts with the generated highly viscous silicate slag, and After reaction and disappearance, macropores (50 μm or more) are formed. Naturally, macro pores are formed even after the coke burns and disappears. Since the silicate slag has a high viscosity, it hardly penetrates into the pores and rarely blocks the pores themselves, so that the macropores can be preferably formed uniformly in the entire sintered ore.

【0017】この粉コークスの0.5mm以下の微粉を
減少させる方法と、粉石灰石の1.0mm以下の微粉を
減少させる方法を組み合わせると、従来と違い、焼結鉱
の組織は、シリケートスラグ結合主体にマクロ気孔を、
焼結鉱全体に、好ましくは均一に分布させたものにな
り、高炉内で昇温、還元されるときは、閉塞しない気孔
内にガスが十分浸透するので、還元が著しく促進され
る。しかも、シリケートスラグとマグネタイトが主体
で、一部ヘマタイトの結合組織であるので、カルシウム
フェライトとヘマタイトが主体の結合組織に多く見られ
るような還元時の粉化は少ない。すなわち、耐還元粉化
性が良好で、マクロ気孔が焼結鉱全体に、好ましくは均
一に分散していることによりJIS還元率も向上した焼
結鉱になる。この焼結鉱は、高炉シャフト下部の軟化融
着ゾーンまで降下しても、マクロ気孔がつぶれないの
で、還元が益々促進されることになり、メタル・スラグ
の分離も、より高温側に移行してスムーズになり、図3
に示すように、焼結鉱の高温荷重軟化溶融試験の性状
が、大幅に改善されることになる。返鉱や焼結鉱粉の微
粉部分には、CaOが10%程度含まれているので、こ
の部分を少なくして配合すれば、シリケートスラグの生
成がさらに促進され、上記効果はより増加することにな
る。
When the method of reducing the fine powder of 0.5 mm or less of the powder coke and the method of reducing the fine powder of 1.0 mm or less of the powder limestone are combined, the structure of the sinter is different from the conventional one, and the structure of the sinter is a silicate slag bond. Macro pores in the main body,
It is preferably uniformly distributed throughout the sinter, and when the temperature is raised and reduced in the blast furnace, the gas sufficiently penetrates into the pores that are not clogged, so the reduction is significantly promoted. Moreover, since silicate slag and magnetite are the main constituents and partly the connective structure of hematite, there is little pulverization during reduction, which is often found in the connective structure of calcium ferrite and hematite. That is, the sintered ore has good reduction powdering resistance, and macro pores are preferably uniformly dispersed throughout the sintered ore, so that the JIS reduction rate is improved. Even if the sintered ore descends to the softening fusion zone under the blast furnace shaft, the macro pores do not collapse, so the reduction is further promoted, and the separation of metal and slag also shifts to the higher temperature side. And becomes smooth, Fig. 3
As shown in, the properties of the high temperature load softening and melting test of the sinter are significantly improved. Since the fine powder part of the return or sintered ore powder contains about 10% of CaO, if the content of this part is reduced, the production of silicate slag is further promoted and the above effect is further increased. become.

【0018】鉄と鋼,72(1986)4,S3には、
高炉内熱保存帯(シャフト中部)までの低温還元性は、
JIS還元率が62%以上であれば良好で、それ以上に
改善してもシャフト効率は横這いになり、また、熱保存
帯以降(シャフト下部)の高温還元性は、JIS還元率
と気孔率によって整理され、JIS還元率のみの改善で
は、高温還元性の向上幅は少なく、焼結鉱の気孔率の増
加との組合せが大きな改善効果をもたらすと記載されて
いる。この記載からも、本発明法のマクロ気孔生成増に
よる軟化溶融性状改善策が妥当であるといえる。
Iron and Steel, 72 (1986) 4, S3,
The low temperature reducibility up to the heat preservation zone in the blast furnace (central shaft)
If the JIS reduction rate is 62% or more, it is good. Even if it is further improved, the shaft efficiency will level off, and the high temperature reducing property after the heat preservation zone (lower part of the shaft) depends on the JIS reduction rate and the porosity. It is stated that the improvement of the high temperature reducibility is small in the improvement of only the JIS reduction rate, and the combination with the increase of the porosity of the sinter brings about a great improvement effect. From this description, it can be said that the measure for improving the softening and melting property of the method of the present invention by increasing macropore generation is appropriate.

【0019】本発明法において、コークスの粒度を、
0.5mm以下の微粉が0超〜25wt%、5.0〜1
0.0mmの粗粒が0超〜10wt%としたのは、事前
に実施した鍋試験結果で、0.5mm以下の微粉コーク
スが25wt%より少なくなると効果が出始め、5.0
〜10.0mmの粗粒が10wt%を越えると、焼結ベ
ッド下層部への偏析増加による下層部熱過剰の悪影響
と、気孔の不均一分散が逆に見られ始めるからである。
微粉コークスの粒度設定を0.5mm以下としたのは、
焼結原料の擬似粒子の顕微鏡観察で0.5mm以下の粉
コークスが付着粉内に多く埋没していたからであり、粗
粒コークス上限の粒度設定を5.0〜10.0mmとし
たのは、同じく、擬似粒子の顕微鏡観察で、5.0mm
の粉コークスは単独で存在し、かつ、焼結ベッド層高方
向の各層解体調査で、下層部分に多く偏析していたから
である。また、この粒度調整をした粉コークスは、焼結
新原料の合計(鉄鉱石と焼結鉱粉、副原料)を100%
とすると、外%(100%に加えての意味)表示で1.
0wt%添加から効果が出始め、7.0wt%以上では
熱過剰で効果が見られなくなった。
In the method of the present invention, the coke grain size is
Fine powder of 0.5 mm or less is more than 0 to 25 wt%, 5.0 to 1
The reason why the coarse particles of 0.0 mm are more than 0 to 10 wt% is the result of the pot test conducted in advance, and when the fine coke of 0.5 mm or less becomes less than 25 wt%, the effect starts to appear and 5.0
This is because, if the coarse particles of ˜10.0 mm exceed 10 wt%, the adverse effect of excessive heat in the lower layer due to an increase in segregation in the lower layer of the sintering bed and the non-uniform distribution of pores start to appear conversely.
The reason for setting the particle size of fine coke to 0.5 mm or less is that
This is because a large amount of powder coke having a size of 0.5 mm or less was buried in the adhered powder by observing the pseudo particles of the sintering raw material under a microscope. The reason why the coarse grain coke upper limit particle size setting was set to 5.0 to 10.0 mm was the same. , Pseudo-particle microscopic observation, 5.0mm
This is because the coke powder of No. 1 existed alone and was segregated in the lower part in a large amount in the layer disassembly survey in the height direction of the sintered bed layer. In addition, the powder coke with this particle size adjustment is 100% of the total of the new sintering raw materials (iron ore, sintered ore powder, and auxiliary raw materials).
Then, the outside% (meaning in addition to 100%) display is 1.
The effect began to appear from the addition of 0 wt%, and the effect was not seen due to excessive heat at 7.0 wt% or more.

【0020】同時に、石灰石の粒度を、1.0mm以下
の微粉が0超〜30wt%、5.0〜10.0mmの粗
粒が0超〜20wt%としたのも、粉コークスの場合と
同様に、事前の鍋試験結果で、1.0mm以下の微粉が
30wt%より少なくなると、マクロ気孔の焼結鉱全体
にわたる生成による効果が出始め、5.0〜10.0m
mの粗粒は、逆に、20wt%を越える辺りから気孔径
が大きくなり過ぎて気孔数が減り、かつ、不均一に分散
し始めるからである。微粉石灰石の粒度設定を1.0m
m以下としたのは、焼結原料の擬似粒子の顕微鏡観察
で、1.0mm以下の微粉石灰石は付着粉内に取り込め
られていたからである。1〜5mmの粗粒の多くは、擬
似粒子の核部分になっていたので、その部分からマクロ
気孔が生成されると推定できた。粗粒石灰石の上限を
5.0〜10.0mmと設定したのは、擬似粒子の顕微
鏡観察で、5.0mmの石灰石は単独で存在し、かつ、
焼結ベッド層高方向の各層解体調査でも下層部分に多く
偏析して、均一なマクロ気孔の形成への悪影響が考えら
れるからである。また、この粉石灰石は、焼結新原料の
合計を100%とすると、内%表示で、5.0wt%以
上の添加から効果が出始め、15wt%以上になると効
果は横這いになった。
At the same time, the particle size of limestone is set to more than 0 to 30 wt% for fine powder of 1.0 mm or less and more than 0 to 20 wt% for coarse particles of 5.0 to 10.0 mm, as in the case of powder coke. In addition, according to the preliminary pot test result, when the fine powder of 1.0 mm or less is less than 30 wt%, the effect due to the formation of macropores over the entire sintered ore begins to appear, and 5.0 to 10.0 m
This is because the coarse particles of m, on the contrary, have a too large pore diameter from around 20 wt% and the number of pores decreases, and the particles start to be dispersed nonuniformly. Set the particle size of fine limestone to 1.0 m
The reason why the particle size was set to m or less was that microscopic particles of 1.0 mm or less were taken into the adhered powder by microscopic observation of pseudo particles of the sintering raw material. Most of the coarse particles of 1 to 5 mm were at the core of the pseudo particles, so it could be estimated that macropores were generated from that part. The upper limit of the coarse-grained limestone was set to 5.0 to 10.0 mm by microscopic observation of pseudo particles, and 5.0 mm of limestone was present alone, and
This is because even in the disassembly examination of each layer in the height direction of the sintered bed layer, a large amount of segregation occurs in the lower layer portion, which may adversely affect the formation of uniform macropores. With respect to this powdered limestone, when the total of the new sintering raw materials was 100%, the effect began to appear from the addition of 5.0 wt% or more in the content of%, and the effect leveled off when it became 15 wt% or more.

【0021】返鉱と焼結鉱粉の0.5mm以下の微粉が
5wt%より少なくなると、粉コークスと粉石灰石の粒
度調整によるマクロ気孔の生成がより促進される。焼結
原料微粉部のCaOがより少なくなって、シリケートス
ラグの生成がさらに促進されたためと考えられる。微粉
の返鉱と焼結鉱粉を0.5mm以下と設定したのは、同
じく、焼結原料の擬似粒子の顕微鏡観察で、0.5mm
以下の返鉱と焼結鉱粉は付着粉内に埋没していたからで
ある。
If the amount of fine powder of reclaimed ore and sintered ore powder of 0.5 mm or less is less than 5% by weight, the generation of macropores is further promoted by adjusting the particle size of coke powder and limestone powder. It is considered that the amount of CaO in the fine powder portion of the sintering raw material was reduced and the production of silicate slag was further promoted. The reason for setting the fine ore powder and the sintered ore powder to be 0.5 mm or less is the same as above.
This is because the following return ore and sintered ore powder were buried in the adhered powder.

【0022】[0022]

【実施例】粉コークスの粒度は、篩い分け法と造粒法の
2方法で調整し、粉石灰石も、同様の篩い分け法と造粒
法の2方法で調整し、返鉱・焼結鉱粉についても、同様
の篩い分け法と上記2方法とは異なる造粒法で調整し
た。粉コークス造粒時の水分は12.5wt%、粉石灰
石造粒時の水分は6%、返鉱・焼結鉱粉の造粒時の水分
は4%とした。篩い分け時の水分は、粉コークスは7
%、粉石灰石は3%、返鉱・焼結鉱粉は1%であった。
[Examples] The particle size of powder coke was adjusted by two methods of sieving method and granulation method, and powder limestone was also adjusted by two methods of the same sieving method and granulation method. The powder was prepared by the same sieving method and a granulation method different from the above two methods. The water content during granulation of coke powder was 12.5 wt%, the water content during granulation of powdered limestone was 6%, and the water content during granulation of return or sintered ore powder was 4%. The water content during sieving is 7 for powder coke.
%, Powdered limestone was 3%, and returned or sintered ore powder was 1%.

【0023】表1に、鍋試験に使用した配合原料の配合
割合、表2に、粉コークス、粉石灰石、返鉱・焼結鉱粉
の篩い分け法と造粒方法、表3に、鍋試験の各水準、表
4に、鍋試験に使用した粉コークスと粉石灰石、返鉱・
焼結鉱粉の粒度分布を示した。なお、粉コークス、粉石
灰石の造粒にはマルメライザー、返鉱・焼結鉱粉の造粒
にはディスクペレタイザーを使用した。表5に、高温荷
重軟化溶融試験の条件を示す。
Table 1 shows the mixing ratio of the raw materials used in the pot test, Table 2 shows the sieving method and granulation method of powdered coke, powdered limestone, reclaimed or sintered ore powder, and Table 3 shows the pot test. Table 4 shows the levels of powdered coke and powdered limestone used in the pan test
The particle size distribution of the sintered ore powder is shown. It should be noted that a mulmelizer was used for granulating coke powder and limestone, and a disk pelletizer was used for granulating return or sintered ore powder. Table 5 shows the conditions of the high temperature load softening and melting test.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】図3に、粉コークス・粉石灰石と返鉱・焼
結鉱粉の粒度調整鍋試験結果の生産率、成品歩留、TI
(冷間強度、JISM8712により測定)、RDI
(還元粉化性、製銑部会法)、JIS還元率(JISM
8713)、成品5〜25mm割合、軟化溶融性状(軟
化開始・滴下終了温度、1350℃での収縮率)を示
す。
FIG. 3 shows the production rate, the product yield, and the TI of the results of the grain size adjustment pan test of coke powder / lime limestone and return or sintered ore powder.
(Cold strength, measured by JISM8712), RDI
(Reducing powderability, pig iron section method), JIS reduction rate (JISM
8713), 5 to 25 mm ratio of product, and softening / melting property (softening start / dropping end temperature, shrinkage rate at 1350 ° C.).

【0030】図4に、焼結過程のヒートパターンの測定
結果の一例を示す。そして、図5に、焼結鉱組織の顕微
鏡写真の一例を、また、図6に、マクロ気孔が分散した
焼結鉱組織の顕微鏡写真の一例を示す。本発明法によれ
ば、焼結層内のヒートパターンが、上層から下層にかけ
て均一化する傾向が見られ(図4、参照)、これが、成
品焼結鉱の均一化をもたらしていると考えられる。ま
た、本発明法による焼結鉱組織は、シリケートスラグと
マグネタイトが主体で、一部ヘマタイトの結合組織にな
り、かつ、マクロ気孔が、好ましくは均一に分散してい
ることも明らかになった(図5と図6、参照)。
FIG. 4 shows an example of the measurement result of the heat pattern during the sintering process. Then, FIG. 5 shows an example of a micrograph of a sinter structure, and FIG. 6 shows an example of a sinter structure in which macropores are dispersed. According to the method of the present invention, the heat pattern in the sintered layer tends to be uniform from the upper layer to the lower layer (see FIG. 4), which is considered to bring about the homogenization of the product sintered ore. . Further, it was also clarified that the sinter structure obtained by the method of the present invention is mainly composed of silicate slag and magnetite, and has a partially hematite bond structure, and macropores are preferably uniformly dispersed ( (See FIGS. 5 and 6).

【0031】以上のように、粉コークスと粉石灰石、さ
らには返鉱・焼結鉱粉の粒度を同時に調整することによ
り、次の点が明らかになった。
As described above, the following points were clarified by simultaneously adjusting the particle sizes of the coke powder, the limestone powder, and the return or sintered ore powder.

【0032】(1)焼結ベッドの通気性が大幅に改善さ
れ、焼結時間が短縮し、生産率が大幅に向上する。
(1) The air permeability of the sintering bed is greatly improved, the sintering time is shortened, and the production rate is greatly improved.

【0033】(2)焼結鉱組織が、シリケートスラグと
マグネタイトが主体で、一部ヘマタイトの結合組織にな
り、さらに融液量も増えるので、成品歩留とTI、RD
Iが向上する。本組織中にマクロ気孔が増えるので、J
IS還元率も向上する。
(2) The sintered ore structure is mainly composed of silicate slag and magnetite, and partly has a hematite bond structure, and since the melt amount also increases, the product yield and TI, RD
I improves. Since macro pores increase in this structure, J
The IS reduction rate is also improved.

【0034】(3)焼結鉱組織にはマクロ気孔が、好ま
しくは均一に分散するので、軟化溶融性状が大幅に改善
(軟化開始温度上昇、軟化開始と溶融滴下終了の温度差
縮小(融着帯幅縮小)、軟化収縮率抑制)される。さら
に、ヒートパターンのシャープ化により、成品粒度分布
がシャープ化(+25mm減、5〜25mm増)する。
この粒度分布の改善は、高炉内の還元性向上にさらに寄
与する。
(3) Since macropores are preferably uniformly dispersed in the sintered ore structure, the softening and melting properties are significantly improved (the softening start temperature is increased, and the temperature difference between the softening start and the melt dropping end is reduced (fusion). Bandwidth reduction), softening shrinkage suppression). Furthermore, the sharpening of the heat pattern sharpens the product particle size distribution (+25 mm decrease, 5-25 mm increase).
The improvement of the particle size distribution further contributes to the improvement of the reducibility in the blast furnace.

【0035】(4)粉コークスと粉石灰石の粒度調整に
加えて、返鉱・焼結鉱粉の粒度を同時に調整すると相乗
効果が発生し、上記(1)、(2)、および、(3)が
さらに増加する。
(4) In addition to adjusting the particle sizes of the powder coke and the powdered limestone, and adjusting the particle sizes of the return or sintered ore powder at the same time, a synergistic effect occurs, and the above (1), (2), and (3) ) Is further increased.

【0036】[0036]

【発明の効果】本発明によれば、焼結鉱品質の冷間強度
や還元粉化性、JIS還元率の向上のみならず、高炉下
部の反応にとって最も重要な軟化溶融性状を大幅に向上
できるので、高炉の安定操業に大きく寄与する。
EFFECTS OF THE INVENTION According to the present invention, not only the cold strength of the quality of sinter ore, the reduction pulverization property, and the JIS reduction rate but also the softening and melting property most important for the reaction in the lower part of the blast furnace can be greatly improved. Therefore, it greatly contributes to the stable operation of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】CaO−SiO2−Fe23系の状態図であ
る。
FIG. 1 is a phase diagram of CaO—SiO 2 —Fe 2 O 3 system.

【図2】CaO−SiO2−FeO系の状態図である。FIG. 2 is a phase diagram of a CaO—SiO 2 —FeO system.

【図3】粉コークス・石灰石と返鉱・焼結鉱粉を粒度調
整して鍋試験を行った結果を示す図である。
[Fig. 3] Fig. 3 is a diagram showing the results of a pot test in which the particle size of powdered coke / limestone and return ore / sintered ore powder is adjusted.

【図4】焼結層内のヒートパターンを測定した結果の一
例を示す図である。
FIG. 4 is a diagram showing an example of a result of measuring a heat pattern in a sintered layer.

【図5】焼結鉱の顕微鏡組織を示す図である。FIG. 5 is a view showing a microstructure of a sinter.

【図6】焼結鉱のマクロ気孔が分散した顕微鏡組織を示
す図である。
FIG. 6 is a view showing a microscopic structure in which macropores of sinter are dispersed.

【符号の説明】[Explanation of symbols]

CF…柱状カルシウムフェライト H…ヘマタイト M…マグネタイト S…シリケートスラグ CF: Columnar calcium ferrite H ... Hematite M ... Magnetite S ... Silicate slag

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリケートスラグとマグネタイト主体の
結合組織にマクロ気孔が分散した焼結組織を有すること
を特徴とする軟化溶融性状の優れた焼結鉱。
1. A sinter having an excellent softening and melting property, which has a sinter structure in which macropores are dispersed in a bond structure mainly composed of silicate slag and magnetite.
【請求項2】 さらに前記結合組織の一部にヘマタイト
を含有することを特徴とする請求項1記載の軟化溶融性
状の優れた焼結鉱。
2. The sinter according to claim 1, further comprising hematite in a part of the connective structure.
JP2002183450A 2002-06-24 2002-06-24 Sinter with excellent softening and melting properties Expired - Lifetime JP4077668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183450A JP4077668B2 (en) 2002-06-24 2002-06-24 Sinter with excellent softening and melting properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183450A JP4077668B2 (en) 2002-06-24 2002-06-24 Sinter with excellent softening and melting properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16836993A Division JP3394563B2 (en) 1993-06-16 1993-06-16 Method for producing sintered ore with excellent softening and melting properties

Publications (2)

Publication Number Publication Date
JP2003049228A true JP2003049228A (en) 2003-02-21
JP4077668B2 JP4077668B2 (en) 2008-04-16

Family

ID=19195377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183450A Expired - Lifetime JP4077668B2 (en) 2002-06-24 2002-06-24 Sinter with excellent softening and melting properties

Country Status (1)

Country Link
JP (1) JP4077668B2 (en)

Also Published As

Publication number Publication date
JP4077668B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5375742B2 (en) Granulation method of sintering raw material
JP2013253281A (en) Method for producing sintered ore
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JP2020158848A (en) Method for using steel slag in sintering
JP6477167B2 (en) Method for producing sintered ore
JP4725230B2 (en) Method for producing sintered ore
JP2003049228A (en) Sintered ore having excellent softening and melting property
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP4982986B2 (en) Method for producing sintered ore
JP5578057B2 (en) Porous unevenly-distributed fired pellet and method for producing the same
JP5004421B2 (en) Method for producing sintered ore
JP4392302B2 (en) Method for producing sintered ore
JP2009167466A (en) Method for producing sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP4501656B2 (en) Method for producing sintered ore
JP6004191B2 (en) Sintering raw material manufacturing method
JPH08120350A (en) Production of sintered ore excellent in high temperature reduction and softening/melting properties
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JPH0442457B2 (en)
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP6295796B2 (en) Sinter ore manufacturing method
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JPH06228663A (en) Prepelletizing method for raw material to be sintered enabling use of large amount of fine powder ore

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term