JP2003048780A - Porous aluminum nitride - Google Patents

Porous aluminum nitride

Info

Publication number
JP2003048780A
JP2003048780A JP2001233369A JP2001233369A JP2003048780A JP 2003048780 A JP2003048780 A JP 2003048780A JP 2001233369 A JP2001233369 A JP 2001233369A JP 2001233369 A JP2001233369 A JP 2001233369A JP 2003048780 A JP2003048780 A JP 2003048780A
Authority
JP
Japan
Prior art keywords
aln
aluminum nitride
heat treatment
polytypoid
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001233369A
Other languages
Japanese (ja)
Other versions
JP2003048780A5 (en
Inventor
Katsutoshi Yoneya
勝利 米屋
Takeji Meguro
竹司 目黒
Junichi Tadami
純一 多々見
Masanori Abe
昌則 阿部
Akihiko Tsuge
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Ceramics Research Association
Original Assignee
Fine Ceramics Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Ceramics Research Association filed Critical Fine Ceramics Research Association
Priority to JP2001233369A priority Critical patent/JP2003048780A/en
Publication of JP2003048780A publication Critical patent/JP2003048780A/en
Publication of JP2003048780A5 publication Critical patent/JP2003048780A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous aluminum nitride, especially formed by reductively nitriding AlN polytypoid. SOLUTION: In this invention, it is noticed that a sintered compact in which plate-like crystals intertangle with one another and the pore distribution is uniform can be produced by reductively nitriding the AlN polytypoid because the AlN polytypoid, especially 27 R is a crystal having a plate-like form. The porous aluminum nitride having excellent quality is obtained by following two stage process, comprising (1) a first stage for producing a porous AlN polytypoid, and (2) a second stage for reducing the porous AlN polytypoid with carbon. The porous aluminum nitride has a porosity of 5 to 60% and pore diameter distribution of ○○ to ○○. Further, the porous aluminum nitride having a porosity of 5 to 60% is obtained by subjecting Al-Si-O-N-based AlN polytypoid to heat treatment in the presence of nitrogen and carbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、多孔質窒化アル
ミニウムに関し、より詳細には多孔質AlNポリタイポ
イドを還元窒化することにより生成する多孔質窒化アル
ミニウムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to porous aluminum nitride, and more particularly to porous aluminum nitride produced by reducing and nitriding porous AlN polytypoid.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)は高い熱伝
導率(〜320W/mK)、優れた電気絶縁性、及びシ
リコンに近い熱膨張係数によって特徴付けられ、高放熱
性の半導体実装用基板をはじめ、半導体封止用樹脂への
フイラーとしての応用が期待されている。一方、AlN
のAlをSiで、NをOで置換したAlNポリタイポイ
ドは、AlNの腐食性や機械強度を改善するために検討
されてきている(例えば、米屋勝利ら;材料科学 31(19
94) 169-174 )。また、AlNポリタイポイド多孔体に
ついては、AlN−SiO系AlNポリタイポイドの
中でSiO添加量10重量%及び15重量%の試料の
主相である27Rは気孔率が高く、気孔径の小さい多孔
体の形成に適していることや、この27Rは板状結晶粒
を呈することが解明されている(K. Komeya, et. al.
“Fabrication and Evaluation of Porous AlN Polytyp
oid” The 17th International Korea-Japan Semina on
Ceramics, 289-293 (2000))。更に、炭素還元雰囲気
下での熱処理によって固溶しているSi、Oを除去する
研究も行われ、この炭素還元雰囲気下での熱処理によっ
て構成相がAlNポリタイポイドからAlNへ変化する
ことが解明されている(K. Komeya, K. Wagatsuma, T.
Meguro ”Processing and Fabrication of Advanced Ma
terials VI” volume 1, 947-953 (1998))。しかし、
このような板状結晶を持つ焼結体が、炭素還元雰囲気下
での熱処理によってどのように変化し、同時にAlNの
特徴でもある熱伝導率がどう変化するかについてはまだ
明らかにされていない。更に、窒化アルミニウムの誘電
率は約8〜9であり、ガラス、プラスチック、空気など
より高く、電気信号の伝播速度が遅れることが問題とな
っている。
2. Description of the Related Art Aluminum nitride (AlN) is characterized by high thermal conductivity (-320 W / mK), excellent electrical insulation, and a coefficient of thermal expansion similar to that of silicon. The application as a filler to semiconductor encapsulation resin is expected. On the other hand, AlN
AlN polytypoids in which Al is replaced by Si and N is replaced by O have been studied in order to improve the corrosiveness and mechanical strength of AlN (eg, Yoneya K. et al .; Material Science 31 (19)).
94) 169-174). Regarding the AlN polytypoid porous body, 27R, which is the main phase of the sample of the AlN-SiO 2 -based AlN polytypoid with the SiO 2 addition amounts of 10% by weight and 15% by weight, has a high porosity and a small pore size. It has been elucidated that it is suitable for the formation of erythrocytes and that 27R exhibits plate-like crystal grains (K. Komeya, et. Al.
“Fabrication and Evaluation of Porous AlN Polytyp
oid "The 17 th International Korea- Japan Semina on
Ceramics, 289-293 (2000)). Furthermore, studies were conducted to remove solid solution Si and O by heat treatment in a carbon reducing atmosphere, and it was clarified that the constituent phase was changed from AlN polytypoid to AlN by this heat treatment in a carbon reducing atmosphere. (K. Komeya, K. Wagatsuma, T.
Meguro ”Processing and Fabrication of Advanced Ma
terials VI ”volume 1, 947-953 (1998)).
It has not yet been clarified how a sintered body having such a plate-like crystal changes by heat treatment in a carbon-reducing atmosphere, and at the same time, the thermal conductivity, which is a characteristic of AlN, changes. Furthermore, the dielectric constant of aluminum nitride is about 8 to 9, which is higher than that of glass, plastic, air, and the like, which poses a problem that the propagation speed of electric signals is delayed.

【0003】[0003]

【発明が解決しようとする課題】そこで、発明者らは各
種AlN−SiO系焼結体を炭素還元雰囲気下で熱処
理することによる気孔率、構成相、微構造、熱伝導率な
どの諸特性の変化について明らかにすることを目的とし
た研究を行った。また、窒化アルミニウムの多孔体の作
製が種々試みられているが微細で均質に気孔を存在させ
た多孔質窒化アルミニウムは開発されていないため、こ
のような多孔質窒化アルミニウムを製造するための条件
を解明することを目的とした。
Therefore, the present inventors have made various properties such as porosity, constituent phase, microstructure, and thermal conductivity by heat-treating various AlN--SiO 2 system sintered bodies in a carbon reducing atmosphere. A study was conducted to clarify the changes in the. Various attempts have been made to produce a porous body of aluminum nitride, but since porous aluminum nitride having fine and uniform pores has not been developed, the conditions for producing such a porous aluminum nitride are The purpose was to clarify.

【0004】[0004]

【課題を解決するための手段】本発明は、AlNポリタ
イポイド、特に27Rが板状結晶を有することから、焼
結体として板状結晶が絡み合ってほぼ気孔分布のそろっ
た焼結体を作製することが可能であることに着目し、次
のような2段階工程によって品質の優れた窒化アルミニ
ウム多孔体を得ることを特徴とする。 (1)多孔質AlNポリタイポイドを作製する工程 (2)多孔質AlNポリタイポイドを炭素還元処理する
工程 また、窒化アルミニウムの誘電率は約8〜9とガラス、
プラスチック、空気などより高いが、高熱伝導性を有す
る窒化アルミニウムを多孔質にすることができれば空気
の誘電率が1であることから、複合則に従って窒化アル
ミニウムの誘電率を低下させることができる。このよう
な考え方に従って、多孔質のAlNポリタイポイドを窒
化還元することにより微細で均質に気孔を存在させた多
孔質窒化アルミニウムを製造することに成功した。更
に、希土類酸化物やアルカリ土類化合物がAlNの緻密
化をはかるために焼結助剤として有用であることが知ら
れてきたが、このような焼結助剤を用いることにより本
発明の多孔質窒化アルミニウムの気孔率を制御すること
ができる。
According to the present invention, since AlN polytypoid, particularly 27R, has plate-like crystals, a sintered body having plate-like crystals entangled with each other to have a substantially uniform pore distribution is produced. It is characterized in that it is possible to obtain a porous aluminum nitride body of excellent quality by the following two-step process. (1) Step of producing porous AlN polytypoid (2) Step of carbon reduction treatment of porous AlN polytypoid Further, the dielectric constant of aluminum nitride is about 8 to 9 and glass,
If aluminum nitride, which has higher thermal conductivity than plastics and air, can be made porous, the permittivity of air is 1, so that the permittivity of aluminum nitride can be reduced according to the complex rule. In accordance with this idea, it has succeeded in producing porous aluminum nitride having fine and uniform pores by nitriding and reducing the porous AlN polytypoid. Further, it has been known that a rare earth oxide or an alkaline earth compound is useful as a sintering aid for densifying AlN. However, by using such a sintering aid, the porosity of the present invention can be improved. The porosity of porous aluminum nitride can be controlled.

【0005】即ち、本発明の目的は、気孔率が5〜60
%であって、気孔径がナノサイズから100μm程度の
範囲である多孔質窒化アルミニウムを提供することであ
る。ここで、ナノサイズとはnmオーダーの大きさをい
い、具体的には1〜100nm程度の大きさを意味す
る。100μm程度とはやはり100μmオーダーの大
きさをいい、具体的には100〜1000μm程度の大
きさをいう。本発明の別の目的は、Al−Si−O−N
系のAlNポリタイポイドを窒素と炭素の存在下で熱処
理することにより生成する気孔率5〜60%の多孔質窒
化アルミニウムを提供することである。ここで、窒素と
炭素以外に、炭化水素(C(xとyは適当な正
数。)で表される。)やNHが存在してもよい。この
AlNポリタイポイドの50重量%以上がAlNポリタ
イポイドの多形の一つである27Rであることが好まし
い。このAlNポリタイポイドを窒素と炭素の存在下で
熱処理(即ち、還元窒化)する際の温度は1700〜2
050℃であることが好ましい。また、上記多孔質窒化
アルミニウムを製造するために用いるAlNポリタイポ
イドはAlNとSiOとの混合系を焼成することによ
り生成することができる。これはAlN及びSiO
主成分であること意味するものであり、他成分や不純物
を含むことを除外するものではない。また、AlN−S
iO系でのSiOの割合が30重量%以下、特に5
〜20重量%であることが好ましい。また、他の方法で
もAl−Si−O−Nを含む前駆体からAlNポリタイ
ポイドを合成することができる。また、前記AlNポリ
タイポイドに焼結助剤として希土類酸化物又はアルカリ
土類酸化物を加えて焼成してもよい。この焼結助剤を加
えることにより多孔質窒化アルミニウムの気孔率を制御
することが可能になる。この焼結助剤がイットリア(Y
)などの希土類元素化合物であって、前記AlN
ポリタイポイドに対する希土類元素化合物の割合は10
重量%以下、特に0.5〜3.0重量%であることが好
ましい。
That is, the object of the present invention is to have a porosity of 5 to 60.
%, And to provide porous aluminum nitride having a pore size in the range of nano size to about 100 μm. Here, the nano size means a size on the order of nm, and specifically means a size of about 1 to 100 nm. The size of about 100 μm also means a size on the order of 100 μm, and specifically, a size of about 100 to 1000 μm. Another object of the present invention is Al-Si-O-N.
The object is to provide a porous aluminum nitride having a porosity of 5 to 60%, which is produced by heat treating an AlN polytypoid of the system in the presence of nitrogen and carbon. Here, in addition to nitrogen and carbon, hydrocarbon (C x H y (x and y are represented by appropriate positive numbers)) and NH 3 may be present. It is preferable that 50% by weight or more of the AlN polytypoid is 27R, which is one of the polymorphs of the AlN polytypoid. The temperature at which this AlN polytypoid is heat-treated (that is, reductive nitriding) in the presence of nitrogen and carbon is 1700 to 2
It is preferably 050 ° C. The AlN polytypoid used for producing the porous aluminum nitride can be produced by firing a mixed system of AlN and SiO 2 . This means that AlN and SiO 2 are main components, and does not exclude the inclusion of other components or impurities. Also, AlN-S
The ratio of SiO 2 in the iO 2 system is 30 wt% or less, especially 5
It is preferably ˜20% by weight. Also, the AlN polytypoid can be synthesized from the precursor containing Al—Si—O—N by other methods. In addition, a rare earth oxide or an alkaline earth oxide may be added to the AlN polytypoid as a sintering aid, and the mixture may be fired. By adding this sintering aid, it becomes possible to control the porosity of the porous aluminum nitride. This sintering aid is yttria (Y
2 O 3 ), such as AlN
The ratio of rare earth compound to polytypoid is 10
It is preferably not more than wt%, particularly preferably 0.5 to 3.0 wt%.

【0006】[0006]

【発明の実施の形態】AlNポリタイポイドは酸窒化物
の中でウルツ鉱型のAlNを基本格子とした6種類の長
周期の層状構造をもつ化合物群であり、この相はAlN
のAlをSiで、NをOで置換し、その置換量に応じて
c軸方向の積層周期が変化する特異な構造をもつ。Al
−Si−O−N系のAlNポリタイポイドは一般に化学
式Mm+1(式中、Mは金属原子、Xは非金属原
子、mは整数で4〜11の値を持つ。)で表され、27
R(7AlN・SiO)、21R(6AlN・SiO
)、15R(4AlN・SiO)、12R(5Al
N・SiO)、8R(3AlN・SiO)、2R
(AlN)、33R(10AlN・SiO)、24R
(11AlN・SiO)、39R(12AlN・Si
)の多形がある。本発明のAlNポリタイポイドは
これらのいかなる形態を含むものであってよい。この中
で好ましいAlN−SiO系の27Rポリタイポイド
は、上式でm=9であり、組成は7AlN・SiO
表され、ウルツ型構造で格子定数a=3.079Å、b
=71.98Å、c/a=2.67である。この27R
ポリタイポイドは板状結晶を有することから、焼結体と
して板状結晶が絡み合って気孔分布のそろった焼結体を
作製することが可能であるため、本発明のAlNポリタ
イポイドが27Rを50重量%以上含むことが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION AlN polytypoids are a group of compounds having six kinds of long-period layered structures using wurtzite type AlN as a basic lattice in oxynitrides, and this phase is composed of AlN.
Al is replaced with Si and N is replaced with O, and the stacking cycle in the c-axis direction changes depending on the replacement amount. Al
The —Si—O—N AlN polytypoid is generally represented by the chemical formula M m X m + 1 (where M is a metal atom, X is a non-metal atom, and m is an integer having a value of 4 to 11), and is 27.
R (7AlN ・ SiO 2 ), 21R (6AlN ・ SiO 2
2 ), 15R (4AlN · SiO 2 ), 12R (5Al
N ・ SiO 2 ), 8R (3AlN ・ SiO 2 ), 2R
(AlN), 33R (10AlN · SiO 2 ), 24R
(11AlN ・ SiO 2 ), 39R (12AlN ・ Si
There is a polymorph of O 2 ). The AlN polytypoid of the present invention may include any of these forms. Among them, the preferable AlN-SiO 2 27R polytypoid has m = 9 in the above formula, the composition is represented by 7AlN · SiO 2 , and has a wurtz-type structure with a lattice constant a = 3.079Å, b
= 71.98Å, c / a = 2.67. This 27R
Since the polytypoid has a plate-like crystal, it is possible to produce a sintered body having a uniform pore distribution by intertwining the plate-like crystals as a sintered body. Therefore, the AlN polytypoid of the present invention contains 50% by weight or more of 27R. It is preferable to include.

【0007】本発明の焼結助剤としては、希土類酸化物
及びアルカリ土類化合物、より高い熱伝導率と優れた電
気絶縁性をもたらすことから好ましくは希土類酸化物、
より好ましくはイットリア(Y)を用いることが
できる。アルカリ土類化合物としてはCaOが代表的な
ものである。このような焼結助剤は従来AlNの緻密化
をはかるために用いられてきたものである。焼結助剤を
用いると粒成長や気孔成長、更に気孔率を制御すること
ができる。
The sintering aid of the present invention is preferably a rare earth oxide and an alkaline earth compound, preferably a rare earth oxide because it provides higher thermal conductivity and excellent electrical insulation.
More preferably, yttria (Y 2 O 3 ) can be used. CaO is a typical alkaline earth compound. Such a sintering aid has heretofore been used for densifying AlN. If a sintering aid is used, grain growth, pore growth, and porosity can be controlled.

【0008】以下、本発明の多孔質窒化アルミニウムを
作製するための下記2段階工程について具体例を示しな
がら詳細に述べる。 (1)多孔質AlNポリタイポイドを作製する工程 (2)多孔質AlNポリタイポイドを炭素還元処理する
工程 この第一段階(1)のAlNポリタイポイドの作製には
特に制限はなく公知の方法で行ってよいが、最終的に板
状結晶である27Rを多く含む方法を採ることが好まし
い。原料としては、AlN及びSiOの粉末を用いる
ことが好ましく、更に希土類元素酸化物(Y
ど)を加えてもよい。希土類元素酸化物は緻密化させる
ため、気孔率を低くする方向で働くので、気孔率をコン
トロールすることができる。このような混合物を適宜有
機物のバインダーを用いて成形し、500℃前後で脱脂
した後、非酸化性雰囲気(一般にはN雰囲気)で17
00〜1900℃で焼成する。次に、第二段階(2)で
は第一段階で作製した多孔質AlNポリタイポイドを炭
素還元処理する。反応は窒素雰囲気で行い、その圧力は
ほぼ常圧でよい。反応温度は1800〜2050℃、好
ましくは1800〜2000℃である。この温度範囲内
で処理すると、特にAlN−SiO系の場合は、第一
段階で形成された多孔質形状(気孔率と気孔径)がほぼ
保持される。反応時間は温度及び採取量によって決まる
が通常数時間以内である。なお、AlNに変換した後
は、若干の収縮が認められることがある。
The following two-step process for producing the porous aluminum nitride of the present invention will be described in detail below with reference to specific examples. (1) Step of producing porous AlN polytypoid (2) Step of carbon reduction treatment of porous AlN polytypoid The production of the AlN polytypoid of the first step (1) is not particularly limited and may be performed by a known method. Finally, it is preferable to adopt a method that finally contains a large amount of 27R, which is a plate-like crystal. As a raw material, it is preferable to use powder of AlN and SiO 2 , and a rare earth element oxide (Y 2 O 3 or the like) may be added. Since the rare earth element oxide is densified, it works in the direction of lowering the porosity, so that the porosity can be controlled. Such a mixture is molded using an organic binder as appropriate, degreased at around 500 ° C., and then subjected to 17 in a non-oxidizing atmosphere (generally N 2 atmosphere).
Bake at 00 to 1900 ° C. Next, in the second step (2), the porous AlN polytypoid produced in the first step is subjected to carbon reduction treatment. The reaction is carried out in a nitrogen atmosphere, and the pressure may be almost normal pressure. The reaction temperature is 1800 to 2050 ° C, preferably 1800 to 2000 ° C. When the treatment is performed within this temperature range, particularly in the case of AlN—SiO 2 system, the porous shape (porosity and pore diameter) formed in the first step is almost maintained. The reaction time is usually within several hours, although it depends on the temperature and the collected amount. After conversion to AlN, some shrinkage may be observed.

【0009】[0009]

【実施例】以下実施例により本発明を例証するが本発明
を制限することを意図したものではない。また、組成に
関して「%」は特に記載のない限り「重量%」を意味す
る。実施例1 1)AlNポリタイポイド粉末の調製 下記表1に記載のSiO粉末を5、10、15重量
%、残りを同表のAlN粉末とし、合計100重量%と
なるように調製した。
The present invention will be illustrated by the following examples.
Is not intended to be limited. Also, in the composition
In this regard, "%" means "% by weight" unless otherwise specified.
ItExample 1 1) Preparation of AlN polytypoid powder SiO listed in Table 1 belowTwo5, 10, 15 weight of powder
%, The rest is AlN powder in the same table, and the total is 100% by weight.
Was prepared.

【表1】 これらの粉末に解膠剤(セルナE503)を原料粉末に
対して1重量%添加し、250mlのポリエチレン製ポ
ット中でφ11mmのアルミナボール150gを混合メ
ディアとし、エタノール200mlを分散媒としたボー
ルミルにより回転速度100rpm、6時間の湿式混合
を行った。
[Table 1] A peptizing agent (Celna E503) was added to these powders in an amount of 1% by weight based on the raw material powder, and 150 g of alumina balls having a diameter of 11 mm were used as a mixed medium in a 250 ml polyethylene pot, and the mixture was rotated by a ball mill using 200 ml of ethanol as a dispersion medium. Wet mixing was performed at a speed of 100 rpm for 6 hours.

【0010】混合後、アルミナボールを除いて試料を磁
製皿に移し、マントルヒーターでエタノールを十分に蒸
発させた。その後、磁製皿に入れたまま試料を放冷し、
32メッシュのナイロン篩を用いて強制通篩を行い、さ
らに48メッシュのナイロン篩を用いて強制通篩を行
い、混合粉末とした。次に、別の磁製皿にパラフイン
(m.p.:46〜48℃)を混合粉末に対して1重量
%入れ、磁製皿を加熱してパラフィンが溶けた後、その
中に、シクロヘキサン15mlと上記混合粉末を加えて
粉末全体に溶液が浸透するように撹拌し乾燥させた。得
られた粉末を放冷し48メッシュのナイロン篩を用いて
強制通篩を行い造粒粉末を作製した。
After mixing, the alumina balls were removed and the sample was transferred to a porcelain dish, and ethanol was sufficiently evaporated with a mantle heater. After that, let the sample cool while still in the porcelain dish,
A 32 mesh nylon sieve was used for forced passing, and a 48 mesh nylon sieve was used for forced passing to obtain a mixed powder. Next, 1% by weight of paraffin (mp: 46 to 48 ° C.) with respect to the mixed powder was put in another porcelain dish, the porcelain dish was heated to melt the paraffin, and then cyclohexane was added thereto. 15 ml and the above mixed powder were added, and the mixture was stirred and dried so that the solution could permeate the whole powder. The obtained powder was allowed to cool and was forced to pass through a 48-mesh nylon sieve to produce a granulated powder.

【0011】造粒後の粉末約0.2gをステンレス製金
型に入れ、理研精機(株)製MP−500Hのプレス機
を用いて50MPaで15秒間、一軸加圧成形を行い、
φ15×0.7mmの成形体を得た。アルミナボート上
に成形体を乗せた後、ボートを脱脂炉に充填し、500
℃で3時間、空気気流中で脱脂を行った。脱脂後、試料
の直径をノギスを用いて、また、厚さをマイクロメータ
ーを用いて測定し、上皿電子分析天秤を用いて秤量し
た。グラファイト容器にSi製坩堝を入れ、その
中に上述の脱脂体を入れた。このグラファイト容器を富
士電波工業(株)製の高温焼成炉ハイマルチ5000に
挿入して、0.6MPaの窒素雰囲気下で1900℃×
6時間の焼結を行った。
Approximately 0.2 g of the granulated powder was placed in a stainless steel mold and uniaxially pressure-molded at 50 MPa for 15 seconds using a press machine of MP-500H manufactured by Riken Seiki Co., Ltd.
A molded body of φ15 × 0.7 mm was obtained. After placing the molded body on the alumina boat, the boat was charged into a degreasing furnace and
Degreasing was performed in an air stream at 3 ° C. for 3 hours. After degreasing, the diameter of the sample was measured using a caliper and the thickness was measured using a micrometer, and the sample was weighed using a precision electronic analytical balance. A Si 4 N 4 crucible was put in a graphite container, and the above-mentioned degreased body was put therein. This graphite container was inserted into a high temperature firing furnace Hi-Multi 5000 manufactured by Fuji Denpa Kogyo Co., Ltd., and the temperature was 1900 ° C. in a nitrogen atmosphere of 0.6 MPa.
Sintering was performed for 6 hours.

【0012】2)多孔質窒化アルミニウムの製造 得られた焼結体を、カーボン製坩堝に入れ、日本電子
(株)製トランジスタ式高周波誘導加熱装置JTR−1
0を用いて温度1900℃〜2000℃、熱処理時間0
〜3時間、1リットル/分の窒素気流中で熱処理を行っ
た。昇温パターンは、室温から1750℃まで60℃/
分、1750℃から熱処理温度までを10℃/分で行っ
た。熱処理時間が0時間とは、熱処理温度に達した後、
直ちに室温に戻すことを意味する。
2) Production of porous aluminum nitride The obtained sintered body was put in a carbon crucible, and a transistor type high frequency induction heating device JTR-1 manufactured by JEOL Ltd.
0 at a temperature of 1900 ° C. to 2000 ° C. and a heat treatment time of 0
Heat treatment was performed in a nitrogen stream of 1 liter / min for ~ 3 hours. The temperature rise pattern is from room temperature to 1750 ° C at 60 ° C /
Min, from 1750 ° C. to the heat treatment temperature at 10 ° C./min. The heat treatment time of 0 hour means that after the heat treatment temperature is reached,
This means returning to room temperature immediately.

【0013】3)評価方法 かさ密度dは以下に示すアルキメデス法の式(1)を
用いて算出した。
3) Evaluation method The bulk density d b was calculated using the following Archimedes' equation (1).

【数1】 なお、AlNは水と反応しやすいので、水の代わりに1
−ブタノール(和光純薬工業(株)製試薬特級)を用い
た。ここでWは乾燥重量、W:飽水重量、W:水
中重量、ρ1:測定時の水の密度である。また、焼結体
の理論密度は、AlN(d=3.26g/cm)、S
iO(d=2.65g/cm)の組成比を用い、熱
処理後の試料については、構成相がAlNであったので
AlNの理論密度(d=3.26g/cm)より計算
し、得られた焼結体のかさ密度と比較して気孔率の算出
を行った。構成相の同定にはX線回折装置(XRD、
(株)理学電機製RAD−2R)を使用した。X線回折
法は、電圧40KV、電流20mA、走査スピード2°
/分、発散スリット1°、受光スリット0.3mm、走
査角度(2θ)範囲10〜80°の条件で行った。微構
造には焼結体破面に対して走査型電子顕徴鏡(SEM、
日本電子(株)製JSM5200)を用いて微構造観察
を行った。試料は絶縁体であるため金蒸着を日本電子
(株)製を用いて、電圧40kV、電流20mA、保持
時間3分の条件で行った。
[Equation 1] AlN easily reacts with water, so
-Butanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used. Here, W 1 is dry weight, W 2 : saturated water weight, W 3 : underwater weight, ρ 1: water density at the time of measurement. The theoretical density of the sintered body is AlN (d = 3.26 g / cm 3 ), S
Using the composition ratio of io 2 (d = 2.65 g / cm 3 ), the heat-treated sample was calculated from the theoretical density of AlN (d = 3.26 g / cm 3 ) because the constituent phase was AlN. The porosity was calculated by comparing with the bulk density of the obtained sintered body. X-ray diffractometer (XRD,
RAD-2R manufactured by Rigaku Denki Co., Ltd. was used. X-ray diffraction method, voltage 40KV, current 20mA, scanning speed 2 °
/ Min, divergence slit 1 °, light-receiving slit 0.3 mm, scanning angle (2θ) range 10 to 80 °. For the microstructure, a scanning electron microscope (SEM,
The microstructure was observed using JSM5200 manufactured by JEOL Ltd. Since the sample is an insulator, gold vapor deposition was performed using a product manufactured by JEOL Ltd. under the conditions of a voltage of 40 kV, a current of 20 mA and a holding time of 3 minutes.

【0014】熱伝導率κは、(株)理学電機製LF/T
CM−FA8510Bレーザーフラッシュ法熱定数測定
装置を用い、YAGレーザーで熱拡散率を測定し、式
(2)によって算出した。 κ=α×c×d (2) ここでαは熱拡敵数、cは比熱、dは測定密度である。
なお、測定試料の寸法はφ10.5×0.4mmとして
試料表面にカーボンスプレーを塗布して表面処理を行っ
た。
The thermal conductivity κ is LF / T manufactured by Rigaku Denki Co., Ltd.
The thermal diffusivity was measured by a YAG laser using a CM-FA8510B laser flash method thermal constant measuring device, and calculated by the formula (2). κ = α × c × d (2) where α is the number of heat expansion targets, c is the specific heat, and d is the measured density.
The dimensions of the measurement sample were φ10.5 × 0.4 mm, and carbon spray was applied to the surface of the sample for surface treatment.

【0015】気孔径分布は水銀ポロシメーター(ユアサ
アイオニクス(株)社製Pore Master33P-GT)を用いて
測定し、試料に対して水銀圧入法にて測定を行った。水
銀のように表面張力の大きな、濡れにくい液体は、圧力
をかけないと小さな細孔の中には入っていかない。この
時圧力Pと入り込んでいく最小の細孔半径rとの間に
は、 π×r×P=−2π×r×γ×cosθ (3) すなわち r×P=−2γ×cosθ (4) の関係がある。ここでγは水銀の表面張力、θは水銀と
試料との接触角である。よって、水銀注入圧力とその時
の体積を測定することによって、気孔の大きさとその気
孔の体積を求めることが出来る。
The pore size distribution was measured using a mercury porosimeter (Pore Master 33P-GT manufactured by Yuasa Ionics Co., Ltd.), and the sample was measured by the mercury injection method. Liquids with high surface tension, such as mercury, that are difficult to wet do not enter the small pores unless pressure is applied. At this time, between the pressure P and the minimum pore radius r that enters, π × r 2 × P = −2π × r × γ × cos θ (3) That is, r × P = −2γ × cos θ (4) Have a relationship. Here, γ is the surface tension of mercury, and θ is the contact angle between mercury and the sample. Therefore, the pore size and the pore volume can be determined by measuring the mercury injection pressure and the volume at that time.

【0016】4)結果構成相 熱処理時間を0〜3時間として熱処理温度を1900〜
2000℃と変化させたときの各試料の構成相をXRD
によって同定した結果及び気孔率を表2に示す。熱処理
時間が0時間とは、熱処理温度に達した後、直ちに室温
に戻すことを意味する。
4) ResultsConstituent phase The heat treatment time is 0 to 3 hours, and the heat treatment temperature is 1900 to
XRD of constituent phases of each sample when changed to 2000 ° C
Table 2 shows the results of the identification and the porosity. Heat treatment
Time is 0 hours means that the temperature reaches room temperature immediately after reaching the heat treatment temperature.
Means to return to.

【表2】 この表において、処理前の27R+AlNとの記載して
ある箇所ではAlNは極微であるのに対して27Rが遥
かに多かった。SiO添加量5%、10%、15%の
試料共に熱処理前の構成相が27R+AlNで27Rの
方が多い構成であったものが1900℃×0時間の熱処
理によって27Rが減少し、AlNが増加している。さ
らに1900℃×1〜3時間及び2000℃×3時間の
熱処理でSiO添加量5重量%、10重量%、15重
量%の試料共に全てAlNになっている。このことか
ら、少なくとも1900℃×1時間の熱処理でSi及び
Oの排出がほぼ完了したものと思われる。
[Table 2] In this table, in the place where 27R + AlN before treatment was described, AlN was extremely small, whereas 27R was much more. For the samples with 5%, 10%, and 15% SiO 2 addition, the composition phase before heat treatment was 27R + AlN, with 27R being the larger composition, but the heat treatment at 1900 ° C x 0 hours reduced 27R and increased AlN. is doing. Further, by heat treatment at 1900 ° C. for 1 to 3 hours and 2000 ° C. for 3 hours, all the samples with the SiO 2 addition amounts of 5% by weight, 10% by weight, and 15% by weight are AlN. From this, it is considered that the discharge of Si and O is almost completed by the heat treatment of at least 1900 ° C. for 1 hour.

【0017】気孔率 AlNポリタイポイド焼結体を熱処理時間を3時間とし
て温度1900〜2000℃に変化させて熱処理したと
きの気孔率の変化を図1に示す。気孔率は、熱処理温度
の上昇と共に増加する傾向が見られる。これは、AlN
ポリタイポイド結晶粒中のSi及びOが結晶粒から多く
排出されるために気孔率が上昇し、同時にポリタイポイ
ドから変化したAlNも1気圧のN雰囲気下で蒸散し
てしまったものと考えられ、このことが温度上昇に伴っ
て気孔率が上昇した原因と考えられる。また、SiO
添加量が増加するに従って27Rの量も増加すると思わ
れる。このため、27Rによる板状結晶が多いために熱
処理前焼結体の気孔率が塙くなっていることから、Si
添加量15重量%の気孔率が他の試料に比べて高く
なったと思われる。熱処理温度を1900℃として時間
を変化させたときの気孔率の変化を図2に示す。気孔率
は熱処理を行うとすぐに増加し、その後はほぼ一定の値
を示す。ここでもSiO添加量15重量%の気孔率が
高くなっているが、SiO添加量が増加するに従って
27Rの量も増加すると思われるために、この気孔率が
他の試料に比べて大きくなっていると考えられる。
[0017]Porosity The heat treatment time for the AlN polytypoid sintered body is set to 3 hours.
And heat treatment was performed by changing the temperature to 1900 to 2000 ° C.
Fig. 1 shows the change in porosity of mushrooms. Porosity is the heat treatment temperature
There is a tendency to increase with the rise of. This is AlN
A large amount of Si and O in the polytypoid crystal grains
The porosity increases as it is discharged, and at the same time
AlN changed from the pressure is 1 atm NTwoTranspiration in the atmosphere
It is believed that the temperature has risen
It is considered that this is the reason why the porosity increased. Also, SiOTwo
It seems that the amount of 27R will increase as the amount added increases.
Be done. For this reason, there are many plate crystals of 27R and
Since the porosity of the untreated sintered body is increased, Si
OTwoThe porosity of the added amount of 15% by weight is higher than other samples.
It seems that it has become. Heat treatment temperature is 1900 ℃ and time
FIG. 2 shows the change in porosity when V is changed. Porosity
Increases immediately after heat treatment and then remains almost constant
Indicates. Again, SiOTwoThe porosity of the addition amount of 15% by weight is
Higher, but SiOTwoAs the amount added increases
Since the amount of 27R is also expected to increase, this porosity
It is considered to be larger than other samples.

【0018】SEM写真 SiO添加量を5〜15重量%変化させた熱処理前の
各試料、及び熱処理時間を3時間として熱処理温度を1
900又は2000℃と変化させたときの各試料の破面
のSEM写真を図3〜11に示す。図3〜5には、熱処
理前の試料であるAlNポリタイポイドの板状結晶が確
認できる。この板状結晶は結晶粒の大きさがSiO
加量が5重量%(図3)、10重量%(図4)、15重
量%(図5)と増えるに従って大きくなっている。次
に、図6〜8に示されるように、この板状結晶が190
0℃×3hの熱処理を行うことによってAlNポリタイ
ポイドの板状結晶の形を残しながらAlNの粒状結晶と
なる。更に、図9〜11に示されるように、熱処理が2
000℃×3時間になるとこの粒状結晶が成長し、同時
に気孔も成長したことが確認できる。熱処理後の結晶粒
の大きさは、ほぼ同じであることが認められる。これら
のSEM写真から分かるように、AlNポリタイポイド
(特に、27R)が板状結晶を有することから、第一段
階として焼結するとこの板状結晶が絡み合ったある程度
気孔分布のそろった焼結体が形成され、これを第2段階
で1900〜2000℃で熱処理することにより気孔分
布のそろった窒化アルミニウムが形成される。これは次
項の気孔径分布の測定でより明らかになる。
[0018]SEM photograph SiOTwoBefore the heat treatment in which the addition amount is changed by 5 to 15% by weight
Each sample and heat treatment time is 3 hours, and heat treatment temperature is 1
Fracture surface of each sample when changed to 900 or 2000 ℃
3 to 11 show SEM photographs of the above. The heat treatment is shown in FIGS.
The plate-like crystal of AlN polytypoid, which is a sample before
I can accept it. This plate crystal has a grain size of SiO 2.TwoAttendant
5 wt% (Fig. 3), 10 wt% (Fig. 4), 15 weight
It increases as the amount increases (Fig. 5). Next
In addition, as shown in FIGS.
By heat treatment at 0 ° C x 3h, AlN
Granular crystals of AlN, while leaving the shape of plate crystals of voids
Become. Further, as shown in FIGS.
At 000 ° C x 3 hours, these granular crystals grow and
It can be confirmed that the pores also grew. Crystal grains after heat treatment
It can be seen that the size of the is almost the same. these
As you can see from the SEM picture of AlN polytypoid
(Especially 27R) has a plate crystal, the first stage
When sintered as a floor, the plate crystals are entangled to some extent
A sintered body with a uniform pore distribution is formed.
Porosity by heat treatment at 1900-2000 ℃
A coherent aluminum nitride is formed. This is next
It becomes more apparent by the measurement of the pore size distribution of the term.

【0019】気孔径分布 次に、SiO添加量を5、10、15重量%と変化さ
せて熱処理前試料と同じ組成で1900℃×2時間の熱
処理後の試料の気孔径分布をそれぞれ図12及び図13
に示す。図12に示す熱処理前試料について見てみる
と、SiO添加量10重量%及び15重量%の試料に
ついてバイモダルなピークになっていることが確認され
る。これは、水銀圧入法による気孔径は気孔の入り口の
径で決定されることから、板状結晶で囲まれて入り口の
狭い気孔では実際の気孔径よりも小さい値になることが
予想され、それによってこのようなピークになったと思
われる。次に、図13に示す1900℃×2時間の熱処
理後の試料については、モノモダルなピークとなってお
り、粒が成長するときに気孔も成長し、小さな気孔が消
滅したものと考えられる。その他にSiO添加量が5
重量%から15重量%まで増加していくと共に最も頻度
の高い気孔径が徐々に大きくなっている。これは熱処理
前AlNポリタイポイドの粒がSiO添加量が5重量
%、10重量%、15重量%と増えるに従って大きいた
め、気孔も同様にSiO添加量に従って大きくなった
ものと考えられる。
[0019]Pore size distribution Next, SiOTwoThe amount added varies from 5, 10 and 15% by weight
Let it be the same composition as the sample before heat treatment and heat at 1900 ° C for 2 hours
The pore size distributions of the treated sample are shown in FIGS. 12 and 13, respectively.
Shown in. Look at the sample before heat treatment shown in FIG.
And SiOTwoFor 10% and 15% by weight samples
It was confirmed that it had a bimodal peak
It This is because the pore size measured by mercury porosimetry is
Since it is determined by the diameter, it is surrounded by plate crystals and the entrance
With narrow pores, the value may be smaller than the actual pore diameter.
Expected, and I think it caused such a peak
Be seen. Next, heat treatment at 1900 ° C. for 2 hours shown in FIG.
The post-treatment sample has a monomodal peak.
As the grains grow, the pores also grow and the small pores disappear.
It is considered destroyed. In addition, SiOTwo5 added
Most frequent with increasing from 15% to 15% by weight
The high pore size of is gradually increasing. This is heat treatment
Pre-AlN polytypoid grains are SiOTwo5 weight added
%, 10% by weight, 15% by weight
Therefore, the pores are also made of SiO.TwoIncreased with the amount added
It is considered to be a thing.

【0020】熱伝導率 SiO添加量5、10、15重量%で熱処理前試料
と、同じ組成で1900℃×2時間の熱処理後試料の熱
伝導率を図14に示す。全体を通して比較すると、熱処
理後試料と比べて熱処理前試料は3〜3.5W/Kmと
いう、ほぼ一定で低い値を示している。AlN焼結体に
おける熱伝導の坦体はフォノン(格子振動)であり、フ
ォノン散乱の原因としてひずみ、転位、格子欠陥、不純
物の固溶が挙げられる。AlNとSiOの固溶体であ
るAlNポリタイポイドはc軸方向に積層の乱れた長周
期構造となっており、結晶格子の対称性が低く、その結
果として格子振動の調和性が散乱される。よって、27
Rポリタイポイドで構成されている熱処理前試料が、A
lNで構成されている熱処理後試料と比較して低い熱伝
導率を示したものと考える。同時に熱処理前の試料で
は、SiO添加量の増加と共に熱伝導率がわずかなが
ら減少していることも、Si、Oの固溶量が増加したた
めと思われる。熱処理後の試料については、SiO
加量5重量%から10重量%までは熱伝導率が増加して
いるが、10重量%から15重量%については減少して
いる。この中で、SiO添加量10重量%から15重
量%についての熱伝導率の減少については気孔率がSi
添加量15重量%の方が10重量%に比べて高いた
めと思われる。
[0020]Thermal conductivity SiOTwoSample before heat treatment with addition amount of 5, 10, 15% by weight
And heat of the sample with the same composition after heat treatment at 1900 ° C for 2 hours
The conductivity is shown in FIG. Comparing the whole, heat treatment
The sample before heat treatment is 3 to 3.5 W / Km compared with the sample after heat treatment.
That is, the value is almost constant and low. For AlN sintered body
The heat-conducting carrier in the phonon (lattice vibration)
Strains, dislocations, lattice defects, and impurities that cause nonon scattering
The solid solution of the substance can be mentioned. AlN and SiOTwoIs a solid solution of
AlN polytypoid is a long circumference with disordered stacking in the c-axis direction.
Structure, the symmetry of the crystal lattice is low,
As a result, the harmonics of lattice vibrations are scattered. Therefore, 27
The sample before heat treatment composed of R polytypoid is A
Low heat transfer compared to the heat-treated sample composed of 1N
I think that it shows the conductivity. At the same time with the sample before heat treatment
Is SiOTwoAlthough the thermal conductivity becomes small as the amount added increases,
The amount of solid solution of Si and O was also increased.
It seems that For the sample after heat treatment, SiOTwoAttendant
The thermal conductivity increases from 5 wt% to 10 wt%
But 10% to 15% by weight decreased
There is. In this, SiOTwoAddition amount 10 to 15 weight
As for the decrease of thermal conductivity with respect to the amount%, the porosity is Si
OTwoThe addition amount of 15% by weight was higher than that of 10% by weight.
It seems that

【0021】誘電率 上記と同様にして調整した10%SiOの試料につい
て、○○装置を用いて、熱処理(1900℃×3時間)
前後の誘電率を測定した。この2つの試料についての気
孔率、熱伝導率及び誘電率を表3に示す。
[0021]Permittivity 10% SiO adjusted in the same manner as aboveTwoAbout the sample
hand,○○ DeviceHeat treatment (1900 ° C x 3 hours)
The dielectric constant before and after was measured. Care about these two samples
Table 3 shows the porosity, thermal conductivity and dielectric constant.

【表3】 熱処理後は試料は窒化アルミニウムとなっているため
(表2)、熱伝導率は処理前の15倍以上である。気孔
率も48%と高くなって多孔質になっているため、窒化
アルミニウムの誘電率8と空気の誘電率が1であること
から複合則に従って予測したとうりに、4.8という低
い誘電率を有する窒化アルミニウムが生成したことを確
認できた。
[Table 3] Since the sample is aluminum nitride after the heat treatment (Table 2), the thermal conductivity is 15 times or more that before the treatment. Since the porosity is as high as 48% and it is porous, the permittivity of aluminum nitride is 8 and the permittivity of air is 1. Therefore, it was predicted according to the compound rule that the permittivity was as low as 4.8. It was confirmed that aluminum nitride having

【0022】実施例2 実施例1に準じて次のような実験を行った。出発組成と
して(R1)AlN−10重量%SiO−0.2重量
%Y、(R2)AlN−10重量%SiO
0.5重量%Y、(R3)AlN−5重量%Si
−0.5重量%Y、(R4)AlN−10重
量%SiO−1重量%Y の4種類を選び次の
条件で焼成して多孔質焼結体を作製した。窒化ケイ素る
つぼ中、1900℃、2時間、0.6MPaNの条件
で焼成してポリタイポイドを作製した。得られた焼結体
をカーボンるつぼ中に入れて、1900℃、2時間、
0.6MPaNの条件で焼成して、AlN多孔体を作
製した。得られた焼結体の特性を表4に示す。この表
は、Yの添加によって気孔率の制御が可能であ
り、熱伝導率、誘電率に変化をもたせることが可能であ
ることを示している。
[0022]Example 2 The following experiment was conducted according to Example 1. Starting composition and
Then (R1) AlN-10 wt% SiOTwo-0.2 weight
% YTwoOThree, (R2) AlN-10 wt% SiOTwo
0.5% by weight YTwoOThree, (R3) AlN-5 wt% Si
OTwo-0.5 wt% YTwoOThree, (R4) AlN-10 fold
Amount% SiOTwo-1% by weight YTwoOThree  Select 4 types of
A porous sintered body was produced by firing under the conditions. Silicon nitride
In a pot, 1900 ° C, 2 hours, 0.6 MPaNTwoConditions
Was fired to prepare a polytypoid. The obtained sintered body
Put in a carbon crucible, 1900 ℃, 2 hours,
0.6 MPaNTwoBy firing under the conditions of
Made Table 4 shows the characteristics of the obtained sintered body. This table
Is YTwoOThreePorosity can be controlled by adding
It is possible to change the thermal conductivity and the dielectric constant.
Which indicates that.

【表4】 本発明においては、SiO量が増加すると15R等の
他のポリタイポイドが生成する。この場合は均質で優れ
た気孔の形成は困難であるが、体積率で50%程度まで
はその含有が許容されることを実験的に確認した。
[Table 4] In the present invention, as the amount of SiO 2 increases, other polytypoids such as 15R are produced. In this case, it is difficult to form homogeneous and excellent pores, but it was experimentally confirmed that the inclusion is allowed up to about 50% by volume.

【0023】[0023]

【発明の効果】このように高い熱伝導率と低い誘電率と
を有し、かつ気孔径分布の狭い多孔質窒化アルミニウム
は従来見られないものである。このような性質を利用し
て、本発明の多孔質窒化アルミニウムを、誘電率の低い
半導体素子用基板や耐食性に優れたフィルタ材料のよう
な用途に用いることができる。
As described above, a porous aluminum nitride having such a high thermal conductivity and a low dielectric constant and a narrow pore size distribution has never been seen before. By utilizing such a property, the porous aluminum nitride of the present invention can be used for applications such as a substrate for a semiconductor device having a low dielectric constant and a filter material having excellent corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】AlNポリタイポイド焼結体を3時間熱処理し
たときの気孔率と熱処理温度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between porosity and heat treatment temperature when an AlN polytypoid sintered body is heat treated for 3 hours.

【図2】AlNポリタイポイド焼結体を1900℃で熱
処理したときの気孔率と熱処理時間との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between porosity and heat treatment time when an AlN polytypoid sintered body is heat treated at 1900 ° C.

【図3】熱処理前の試料(SiO 5%)のSEM写
真である。
FIG. 3 is a SEM photograph of a sample (5% SiO 2 ) before heat treatment.

【図4】熱処理前の試料(SiO 10%)のSEM
写真である。
FIG. 4 is a SEM of a sample (SiO 2 10%) before heat treatment.
It is a photograph.

【図5】熱処理前の試料(SiO 15%)のSEM
写真である。
FIG. 5: SEM of sample (SiO 2 15%) before heat treatment
It is a photograph.

【図6】熱処理(1900℃×3時間)後の試料(Si
5%)のSEM写真である。
FIG. 6 shows a sample (Si that has been subjected to heat treatment (1900 ° C. × 3 hours).
It is an SEM photograph of O 2 5%).

【図7】熱処理(1900℃×3時間)後の試料(Si
10%)のSEM写真である。
FIG. 7: Sample (Si at 1900 ° C. × 3 hours) after heat treatment
It is a SEM photograph of O 2 10%).

【図8】熱処理(1900℃×3時間)後の試料(Si
15%)のSEM写真である。
FIG. 8: Sample (Si at 1900 ° C. × 3 hours) after heat treatment
It is a SEM photograph of O 2 15%).

【図9】熱処理(2000℃×3時間)後の試料(Si
5%)のSEM写真である。
FIG. 9: Sample (Si after heat treatment (2000 ° C. × 3 hours)
It is an SEM photograph of O 2 5%).

【図10】熱処理(2000℃×3時間)後の試料(S
iO 10%)のSEM写真である。
FIG. 10: Sample (S after heat treatment (2000 ° C. × 3 hours)
It is a SEM photograph of iO 2 10%).

【図11】熱処理(2000℃×3時間)後の試料(S
iO 15%)のSEM写真である。
FIG. 11: Sample (S after heat treatment (2000 ° C. × 3 hours)
It is a SEM photograph of iO 2 15%).

【図12】熱処理前試料の気孔径分布を示す図である。FIG. 12 is a diagram showing a pore size distribution of a sample before heat treatment.

【図13】熱処理(1900℃×2時間)後試料の気孔
径分布を示す図である。
FIG. 13 is a diagram showing a pore size distribution of a sample after heat treatment (1900 ° C. × 2 hours).

【図14】熱処理前及び熱処理後の試料の熱伝導率を示
す図である。
FIG. 14 is a diagram showing the thermal conductivity of a sample before and after heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多々見 純一 神奈川県横浜市西区老松町30 老松住宅3 −401 (72)発明者 阿部 昌則 神奈川県横浜市港北区綱島西5−22−12 (72)発明者 柘植 章彦 神奈川県横浜市旭区若葉町2−12−401 Fターム(参考) 4G001 BA04 BA05 BA09 BA36 BB04 BB05 BB09 BB36 BD38 BE33 BE34 4G019 FA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junichi Tatami             30 Oromatsu-cho, Nishi-ku, Yokohama-shi, Kanagawa Prefecture             −401 (72) Inventor Masanori Abe             5-22-12 Tsunashima Nishi, Kohoku Ward, Yokohama City, Kanagawa Prefecture (72) Inventor Akihiko Tsuge             2-12-401 Wakaba-cho, Asahi-ku, Yokohama-shi, Kanagawa F-term (reference) 4G001 BA04 BA05 BA09 BA36 BB04                       BB05 BB09 BB36 BD38 BE33                       BE34                 4G019 FA13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 気孔率が5〜60%であって、気孔径が
ナノサイズから100μm程度の範囲である多孔質窒化
アルミニウム。
1. A porous aluminum nitride having a porosity of 5 to 60% and a pore size in the range of nano size to about 100 μm.
【請求項2】 Al−Si−O−N系のAlNポリタイ
ポイドを窒素と炭素の存在下で熱処理することにより生
成する気孔率5〜60%の多孔質窒化アルミニウム。
2. Porous aluminum nitride having a porosity of 5 to 60%, which is produced by heat treating an Al—Si—O—N-based AlN polytypoid in the presence of nitrogen and carbon.
【請求項3】 前記AlNポリタイポイドの50重量%
以上が27Rである請求項2に記載の多孔質窒化アルミ
ニウム。
3. 50% by weight of said AlN polytypoid
The porous aluminum nitride according to claim 2, wherein the above is 27R.
【請求項4】 前記熱処理の温度が1800〜2050
℃である請求項2又は3に記載の多孔質窒化アルミニウ
ム。
4. The temperature of the heat treatment is 1800 to 2050.
The porous aluminum nitride according to claim 2 or 3, which has a temperature of ° C.
【請求項5】 前記AlNポリタイポイドがAlN及び
SiOを焼成することにより生成した請求項2〜4の
いずれか一項に記載の多孔質窒化アルミニウム。
5. The porous aluminum nitride according to claim 2, wherein the AlN polytypoid is produced by firing AlN and SiO 2 .
【請求項6】 AlN−SiO混合系におけるSiO
の割合が30重量%以下である請求項5に記載の多孔
質窒化アルミニウム。
6. SiO in an AlN—SiO 2 mixed system
The porous aluminum nitride according to claim 5, wherein the ratio of 2 is 30% by weight or less.
【請求項7】 前記AlNポリタイポイドに焼結助剤と
して希土類酸化物又はアルカリ土類酸化物を加えて焼成
した請求項5又は6に記載の多孔質窒化アルミニウム。
7. The porous aluminum nitride according to claim 5, wherein a rare earth oxide or an alkaline earth oxide is added as a sintering aid to the AlN polytypoid and fired.
【請求項8】 前記焼結助剤がイットリアであって、前
記AlNポリタイポイドに対するイットリアの割合が1
0重量%以下である請求項7に記載の多孔質窒化アルミ
ニウム。
8. The sintering aid is yttria, and the ratio of yttria to the AlN polytypoid is 1.
The porous aluminum nitride according to claim 7, which is 0% by weight or less.
JP2001233369A 2001-08-01 2001-08-01 Porous aluminum nitride Pending JP2003048780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233369A JP2003048780A (en) 2001-08-01 2001-08-01 Porous aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233369A JP2003048780A (en) 2001-08-01 2001-08-01 Porous aluminum nitride

Publications (2)

Publication Number Publication Date
JP2003048780A true JP2003048780A (en) 2003-02-21
JP2003048780A5 JP2003048780A5 (en) 2008-09-25

Family

ID=19065152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233369A Pending JP2003048780A (en) 2001-08-01 2001-08-01 Porous aluminum nitride

Country Status (1)

Country Link
JP (1) JP2003048780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
CN106653652A (en) * 2015-10-30 2017-05-10 日本碍子株式会社 Member for a semiconductor manufacturing device, manufacturing method therefor and shaft-equipped heater
CN114477988A (en) * 2022-03-28 2022-05-13 天通控股股份有限公司 Easily-formed and high-strength ferrite material and preparation method thereof
CN115141022A (en) * 2022-07-28 2022-10-04 江苏正力新能电池技术有限公司 Preparation method of porous ceramic bottom supporting plate, porous ceramic bottom supporting plate and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270210A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of aluminum nitride-silicon carbide composite fine powder
JPH02175666A (en) * 1988-12-27 1990-07-06 Ibiden Co Ltd Production of calcined aluminum nitride compact
JPH046161A (en) * 1990-04-23 1992-01-10 Kawasaki Steel Corp Production of aln sintered body
JPH04108668A (en) * 1990-08-29 1992-04-09 Kyocera Corp Aluminum nitride polytype sintered body and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270210A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of aluminum nitride-silicon carbide composite fine powder
JPH02175666A (en) * 1988-12-27 1990-07-06 Ibiden Co Ltd Production of calcined aluminum nitride compact
JPH046161A (en) * 1990-04-23 1992-01-10 Kawasaki Steel Corp Production of aln sintered body
JPH04108668A (en) * 1990-08-29 1992-04-09 Kyocera Corp Aluminum nitride polytype sintered body and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
US7973481B2 (en) 2004-06-21 2011-07-05 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP2012025660A (en) * 2004-06-21 2012-02-09 Tokuyama Corp Nitride sintered compact and method for manufacturing the same
JP4937738B2 (en) * 2004-06-21 2012-05-23 株式会社トクヤマ Nitride sintered body and manufacturing method thereof
EP2420482A3 (en) * 2004-06-21 2012-08-01 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
CN106653652A (en) * 2015-10-30 2017-05-10 日本碍子株式会社 Member for a semiconductor manufacturing device, manufacturing method therefor and shaft-equipped heater
KR20170051310A (en) * 2015-10-30 2017-05-11 엔지케이 인슐레이터 엘티디 Member for a semiconductor manufacturing device, manufacturing method therefor, and shaft-equipped heater
CN106653652B (en) * 2015-10-30 2021-11-26 日本碍子株式会社 Member for semiconductor manufacturing apparatus, method of manufacturing the same, and shaft-attached heater
KR102461566B1 (en) 2015-10-30 2022-10-31 엔지케이 인슐레이터 엘티디 Member for a semiconductor manufacturing device, manufacturing method therefor, and shaft-equipped heater
CN114477988A (en) * 2022-03-28 2022-05-13 天通控股股份有限公司 Easily-formed and high-strength ferrite material and preparation method thereof
CN115141022A (en) * 2022-07-28 2022-10-04 江苏正力新能电池技术有限公司 Preparation method of porous ceramic bottom supporting plate, porous ceramic bottom supporting plate and battery

Similar Documents

Publication Publication Date Title
Fukasawa et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze‐drying process
JP5060092B2 (en) Semiconductor device heat sink
KR20060103146A (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
KR101233744B1 (en) Manufacturing method of pre-sintered porous Si-mixture granules for porous sintered reaction-bonded silicon nitride, pre-sintered porous granules therefrom, and method manufacturing the porous sintered reaction-bonded silicon nitride
JPH09165265A (en) Silicon nitride ceramic having high heat conduction and its production
TWI746750B (en) Aligned AlN sintered body and its manufacturing method
JP3472585B2 (en) Aluminum nitride sintered body
KR20120008427A (en) Silicon nitride-based composite ceramics and process for producing the same
US7368076B2 (en) Method for producing a silicon nitride filter
JP2003048780A (en) Porous aluminum nitride
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
Go et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: the particle size effects of MgO additive
JP6346718B1 (en) Aluminum nitride particles
TW200902474A (en) Ceramic member and corrosion-resistant member
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP3106160B2 (en) Aluminum nitride sintered body and method for producing the same
楊建鋒 et al. Fabrication and mechanical properties of porous silicon nitride ceramics from low-purity powder
JP4376479B2 (en) Method for producing Si-SiC composite material
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
Wang et al. Effect of CaCN2 addition on the densification behavior and electric properties of AlN ceramics
JPH0288467A (en) Aluminum nitride sintered body and production thereof
KR101350542B1 (en) Fabrication method of porous sic platelet ceramics

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040303

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110425