JP2003048045A - Method for uniformly heating molten steel in tundish - Google Patents

Method for uniformly heating molten steel in tundish

Info

Publication number
JP2003048045A
JP2003048045A JP2001234892A JP2001234892A JP2003048045A JP 2003048045 A JP2003048045 A JP 2003048045A JP 2001234892 A JP2001234892 A JP 2001234892A JP 2001234892 A JP2001234892 A JP 2001234892A JP 2003048045 A JP2003048045 A JP 2003048045A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
heating
plasma
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001234892A
Other languages
Japanese (ja)
Other versions
JP3849471B2 (en
Inventor
Tomoaki Kuranaga
知明 倉永
Kingo Sasame
欽吾 笹目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001234892A priority Critical patent/JP3849471B2/en
Publication of JP2003048045A publication Critical patent/JP2003048045A/en
Application granted granted Critical
Publication of JP3849471B2 publication Critical patent/JP3849471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for uniformly heating molten steel in a tundish without deterioration of the quality in a cast slab, increase of the cost and erosion of the refractory. SOLUTION: In a method for heating the molten steel in the tundish for continuous casting with the plasma arc, such as to show in figure 2, the tundish in which the molten steel depth b at the heating position with plasma torches 4 is <=1 m and a horizontal distance a from a molten steel pouring hole to a molten steel spouting hole becomes at >=4 times of the molten steel depth b at the heating position and also, the plasma torches 4 composed of pair of a cathode and an anode parallel arranged with the molten steel flow from a molten steel pouring hole 2 to a molten steel spouting hole 6 in the tundish, are disposed and heated. It is desirable to separate the disposed positions of the plasma torches to >=1000 mm from the position of the molten steel pouring hole, and to heat at 700-1300 mm of the distance between the torches.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、連続鋳造におい
てタンディッシュ内の溶鋼をプラズマア−クによって均
一に加熱する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for uniformly heating molten steel in a tundish by plasma arc in continuous casting.

【0002】[0002]

【従来の技術】一般に、鋼の連続鋳造では、取鍋からの
溶鋼を一旦タンディッシュに受け入れた後、これを1基
乃至は複数基の鋳型に供給して鋳造することが行われて
いる。その際、鋳型内溶鋼の過熱度(「溶鋼温度」−
「溶鋼の凝固温度」)は、通常、取鍋内溶鋼の過熱度に
よって決まる。この場合、取鍋内溶鋼の過熱度が低い
と、ノズル詰まりが起きたり鋳型内湯面に皮張りが生じ
たりして安定した操業が不可能になることや、溶鋼中に
含まれる非金属介在物の浮上分離が不十分となって鋳片
の品質を悪化させることが知られている。
2. Description of the Related Art Generally, in continuous casting of steel, after the molten steel from a ladle is once received in a tundish, it is supplied to one or a plurality of molds for casting. At that time, the degree of superheat of the molten steel in the mold (“molten steel temperature” −
The "solidification temperature of molten steel") is usually determined by the degree of superheat of molten steel in the ladle. In this case, if the degree of superheat of the molten steel in the ladle is low, nozzle clogging or skinning on the surface of the molten metal in the mold may prevent stable operation, and non-metallic inclusions contained in the molten steel. It is known that the floating separation of the cast iron becomes insufficient and the quality of the slab deteriorates.

【0003】このため、従来から、タンディッシュ内の
溶鋼をプラズマア−クにより加熱して溶鋼温度を補償す
る手段が採られてきた。このプラズマア−クによる加熱
手段は短時間で大量の熱を溶鋼に供給することが可能で
あり、通常、タンディッシュ内の溶鋼に対し上部からプ
ラズマを印加して溶鋼温度の低下を防止したり溶鋼温度
の上昇を図ることが行われている。
For this reason, conventionally, means for compensating the temperature of molten steel by heating the molten steel in the tundish with a plasma arc has been adopted. This plasma arc heating means can supply a large amount of heat to the molten steel in a short time. Normally, plasma is applied from above to the molten steel in the tundish to prevent the molten steel temperature from decreasing. It is attempted to raise the temperature of molten steel.

【0004】しかしながら、プラズマア−クによる加熱
には、熱の供給が着火点近傍において局所的に行われる
ためにタンディッシュ内の溶鋼の温度分布にバラツキが
生じるという問題があった。特に溶鋼上部からの加熱で
あると、タンディッシュ上部に高温の溶鋼が溜まった状
態となって下部を流れる低熱の溶鋼と十分に混合され
ず、そのため着熱効率の低下と耐火物溶損の増大が目立
つ結果となっていた。
However, the heating by the plasma arc has a problem that the temperature distribution of the molten steel in the tundish varies because the heat is locally supplied in the vicinity of the ignition point. In particular, when heating from the upper part of the molten steel, high temperature molten steel accumulates in the upper part of the tundish and is not sufficiently mixed with the low heat molten steel flowing in the lower part, so that the heat deposition efficiency decreases and the melting loss of refractory increases. It was a remarkable result.

【0005】そこで、このような問題の解決を目指して
次の提案がなされている。 a) プラズマア−クによる加熱時にタンディッシュ内の
溶鋼をガス攪拌して溶鋼温度の均一化を図る方法(特開
昭59−107755号公報を参照)。 b) 溶鋼注入位置付近のタンディッシュ底部に堰を設け
て溶鋼の流れを変化させ、溶鋼温度の均一化を図る方法
(特許第2834657号公報を参照)。 c) タンディッシュ内溶鋼のプラズマア−クによって形
成される直流電流通路中に静電磁場を印加し、これによ
り溶鋼流が単純流とならないように流れの向きを制御し
て溶鋼温度の均一化を図る方法(特開平6−11451
1号公報を参照)。
Therefore, the following proposals have been made in order to solve such problems. a) A method of agitating the molten steel in the tundish at the time of heating by a plasma arc so as to make the molten steel temperature uniform (see JP-A-59-107755). b) A method in which a weir is provided at the bottom of the tundish near the pouring position of the molten steel to change the flow of the molten steel so as to make the molten steel temperature uniform (see Japanese Patent No. 2834657). c) An electrostatic magnetic field is applied in the direct current path formed by the plasma arc of the molten steel in the tundish to control the direction of the molten steel flow so that it does not become a simple flow, thereby making the molten steel temperature uniform. Method for achieving this (Japanese Patent Laid-Open No. 6-11451
(See Japanese Patent Publication No. 1).

【0006】しかし、これらの提案方法にはそれぞれ次
のような問題が指摘された。即ち、加熱時にタンディッ
シュ内の溶鋼をガス攪拌する方法では、タンディッシュ
内の微小な気泡の一部が鋳型内に持ち込まれて凝固シェ
ルに付着し、鋳片の内部あるいは表面に欠陥を引き起こ
したり、また攪拌時に生じるスプラッシュ等によってト
−チ寿命が短くなるという問題がある。
However, the following problems have been pointed out in each of these proposed methods. That is, in the method of gas-stirring the molten steel in the tundish during heating, some of the fine bubbles in the tundish are brought into the mold and adhere to the solidification shell, causing defects in the slab or on the surface. In addition, there is a problem that the torch life is shortened due to splash or the like generated during stirring.

【0007】タンディッシュ底部に堰を設ける方法で
は、堰の形状が維持されている間は相応の効果が認めら
れるものの、長時間の使用によって堰が溶損した場合に
は溶鋼温度の均一化効果が無くなってしまう。また、堰
を設けることによって耐火物コストが増大する上、堰の
存在によりタンディッシュ内の残鋼排出が阻害されて歩
留りが悪化するという問題がある。
In the method of providing the weir on the bottom of the tundish, while the shape of the weir is maintained, a corresponding effect is recognized, but when the weir is melted and lost due to long-term use, the effect of equalizing the molten steel temperature is obtained. Disappears. Further, there is a problem that the refractory cost is increased by providing the weir, and the existence of the weir hinders the discharge of the residual steel in the tundish to deteriorate the yield.

【0008】また、静電磁場を印加して溶鋼流を制御す
る方法では、タンディッシュに複雑な設備を配設する必
要があるためコストの増大や設備的な制約(設備のレイ
アウトや付設設備の制約等)を生じるという問題があ
る。
Further, in the method of controlling the molten steel flow by applying an electrostatic magnetic field, it is necessary to arrange complicated equipment in the tundish, so that the cost is increased and the equipment is restricted (the layout of the equipment and the restrictions on the attached equipment). Etc.) is caused.

【0009】[0009]

【発明が解決しようとする課題】このようなことから、
本発明が目的としたのは、プラズマア−クによる加熱手
段を用いてタンディッシュ内の溶鋼を加熱する場合に指
摘される前記問題を解消し、コストの増大を招く大規模
な付帯設備を必要としたり耐火物の溶損や鋳片品質の悪
化を招いたりすることなくタンディッシュ内溶鋼をプラ
ズマア−クによって均一加熱する手段を確立することで
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The object of the present invention is to solve the above problems pointed out when heating molten steel in a tundish by using a heating means by a plasma arc, and to provide a large-scale incidental equipment which causes an increase in cost. It is to establish means for uniformly heating the molten steel in the tundish by plasma arc without causing melting loss of refractory and deterioration of slab quality.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく数多くの試験を繰り返しながら鋭意研究を
行った結果、「プラズマア−クを印加してタンディッシ
ュ内の溶鋼を加熱するに際して、 プラズマト−チの配置
並びにタンディッシュの形状に工夫を加えるだけでタン
ディッシュ内溶鋼の均一加熱性が著しく向上し、 低熱に
よるノズル詰まり、 鋳型内溶鋼表面の皮張り、 不均一加
熱による耐火物溶損を安定して防止できるようになる」
との新しい知見を得ることができた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies while repeating many tests in order to achieve the above-mentioned object. As a result, "a plasma arc is applied to heat molten steel in a tundish. In this case, uniform heating of the molten steel in the tundish is significantly improved simply by modifying the arrangement of the plasma torch and the shape of the tundish, and nozzle clogging due to low heat, skinning of the molten steel surface in the mold, and uneven heating It will be possible to stably prevent melting of refractory materials. ''
I was able to obtain new knowledge.

【0011】本発明は、上記知見事項等を基にしてなさ
れたものであり、次のタンディッシュ内溶鋼の均一加熱
方法を提供するものである。 連続鋳造用タンディッシュ内の溶鋼をプラズマア−
クにより加熱する方法において、プラズマト−チによる
加熱位置での溶鋼深さが1m以下で、溶鋼注入孔から溶
鋼吐出孔までの水平距離が前記加熱位置での溶鋼深さの
4倍以上となるタンディッシュを使用すると共に、タン
ディッシュの溶鋼注入孔から溶鋼吐出孔に至る溶鋼流と
平行にカソ−ド,アノ−ドの対から成るプラズマト−チ
を配置して加熱することを特徴とする、タンディッシュ
内溶鋼の均一加熱方法。 プラズマト−チの配置位置を溶鋼注入孔位置から1
000mm以上離間させ、かつト−チ間距離を700〜1
300mmとして加熱することを特徴とする、前記項記
載のタンディッシュ内溶鋼の均一加熱方法。
The present invention has been made on the basis of the above findings and the like, and provides the following method for uniformly heating molten steel in a tundish. Plasma molten steel in tundish for continuous casting
In the method of heating with a plasma torch, the molten steel depth at the heating position by the plasma torch is 1 m or less, and the horizontal distance from the molten steel injection hole to the molten steel discharge hole is at least 4 times the molten steel depth at the heating position. The tundish is used, and a plasma torch composed of a pair of cathode and anode is arranged in parallel with the molten steel flow from the molten steel injection hole to the molten steel discharge hole of the tundish to heat. , Uniform heating method for molten steel in tundish. Position the plasma torch from the molten steel injection hole position 1
Separated by 000 mm or more, and the distance between torches is 700 to 1
The method for uniformly heating molten steel in a tundish according to the above item, wherein heating is performed at 300 mm.

【0012】[0012]

【発明の実施の形態】以下、本発明に関し、実施の形態
を紹介しながらその作用を説明する。まず、本発明に係
るタンディッシュ内溶鋼の均一加熱方法においては、図
1に示したように、タンディッシュの溶鋼注入孔から溶
鋼吐出孔に至る溶鋼流と平行にカソ−ド,アノ−ドの対
から成るプラズマト−チを配置して加熱することが極め
て重要な要件の1つである。この点は次の試験例によっ
ても確認することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the present invention will be described below while introducing the embodiments. First, in the method for uniformly heating molten steel in a tundish according to the present invention, as shown in FIG. 1, the cathode and anode are parallel to the molten steel flow from the molten steel injection hole to the molten steel discharge hole of the tundish. Arranging and heating a pair of plasma torches is one of the most important requirements. This point can also be confirmed by the following test example.

【0013】図2は、本発明の試験装置に係る概要説明
図あり、符号1は取鍋、2は取鍋からタンディッシュへ
の溶鋼注入孔(ガスシ−ルパイプにより構成されてい
る)、3はタンディッシュ、4はプラズマト−チ、5は
溶鋼、6はタンディッシュから鋳型への溶鋼吐出孔(浸
漬ノズルにより構成されている)、7は溶鋼を凝固させ
るための鋳型をそれぞれ示している。また、図中のaは
取鍋からタンディッシュへの溶鋼注入孔2とタンディッ
シュから鋳型への溶鋼吐出孔6との水平距離であり、b
はプラズマト−チによる加熱位置での溶鋼深さを示して
いる。ここで、溶鋼深さbは、プラズマト−チ直下の溶
鋼表面からタンディッシュ底の耐火物までの距離とし、
プラズマト−チが双型ト−チであれば何れか深い方の値
とする。そして、図中のcは、取鍋からタンディッシュ
への溶鋼注入孔2からプラズマト−チ4の片側までの水
平距離てあり、dはト−チ間の距離を示している。
FIG. 2 is a schematic explanatory view of the test apparatus of the present invention. Reference numeral 1 is a ladle, 2 is a molten steel injection hole from the ladle to the tundish (composed of a gas seal pipe), and 3 is. Tundish, 4 is a plasma torch, 5 is molten steel, 6 is a molten steel discharge hole from the tundish to the mold (comprising an immersion nozzle), and 7 is a mold for solidifying the molten steel. Further, a in the figure is a horizontal distance between the molten steel injection hole 2 from the ladle to the tundish and the molten steel discharge hole 6 from the tundish to the mold, and b
Indicates the molten steel depth at the heating position by the plasma torch. Here, the molten steel depth b is the distance from the molten steel surface directly under the plasma torch to the refractory at the tundish bottom,
If the plasma torch is a dual-type torch, the deeper value is used. Further, c in the figure is the horizontal distance from the molten steel injection hole 2 from the ladle to the tundish to one side of the plasma torch 4, and d is the distance between the torches.

【0014】この図2に示す装置において、取鍋1から
溶鋼注入孔2を通してタンディッシュ3に溜められた溶
鋼5は、プラズマト−チ4から発生するプラズマア−ク
によって加熱され、溶鋼吐出孔6(浸漬ノズル)を通し
て鋳型7内に注入され、凝固して鋳片となる。
In the apparatus shown in FIG. 2, the molten steel 5 stored in the tundish 3 from the ladle 1 through the molten steel injection hole 2 is heated by the plasma arc generated from the plasma torch 4, and the molten steel discharge hole is formed. It is injected into the mold 7 through 6 (immersion nozzle) and solidifies to form a slab.

【0015】なお、この試験装置はタンディッシュへの
溶鋼注入孔,タンディッシュから鋳型への溶鋼吐出孔が
それぞれ一か所の1ストランド形態のものであるが、タ
ンディッシュへの溶鋼注入孔が一か所のみでタンディッ
シュから鋳型への溶鋼吐出孔が複数設けられた多ストラ
ンドマシンの場合にも同様の結果が得られる。
In this test apparatus, the molten steel injection hole to the tundish and the molten steel discharge hole from the tundish to the mold are each in one strand form, but the molten steel injection hole to the tundish is one. Similar results are obtained in the case of a multi-strand machine in which a plurality of molten steel discharge holes are provided from the tundish to the mold only at one place.

【0016】さて、図2に示す装置を用い、かつ下記表
1に示す鋳造条件にて、溶鋼流に対して平行にプラズマ
ト−チを配置した場合と垂直に配置した場合とで鋳込み
を実施し、ト−チ配置の違いによるタンディッシュ内溶
鋼の温度分布,着熱効率,耐火物の局所溶損を調査し
た。
Now, casting is carried out using the apparatus shown in FIG. 2 and under the casting conditions shown in Table 1 below, with the plasma torch arranged parallel to the molten steel flow and with the plasma torch arranged vertically. Then, the temperature distribution of the molten steel in the tundish, the heat deposition efficiency, and the local melting loss of the refractory due to the difference in the torch arrangement were investigated.

【0017】[0017]

【表1】 [Table 1]

【0018】ここで、「タンディッシュ内溶鋼の温度分
布」は、タンディッシュの浸漬ノズル(溶鋼吐出孔)直
上における溶鋼表面からの深さ100mm,300mm,5
00mm,700mmの4点でスポット測温を実施し、その
最大及び最小値の温度差によって評価した。また、「着
熱効率」は、“取鍋からタンディッシュへの溶鋼注入孔
2近傍の浴深さ500mm位置の温度”と“前述した浸漬
ノズル直上の4点で測定した温度の平均値”からタンデ
ィッシュ内の溶鋼温度上昇ΔTを算出し、このΔTを用
いて下記式により計算した。 着熱効率η=(スル−プット×溶鋼比熱×ΔT)/(プ
ラズマ出力)
Here, the "temperature distribution of molten steel in the tundish" means the depth 100 mm, 300 mm, 5 from the surface of the molten steel directly above the immersion nozzle (molten steel discharge hole) of the tundish.
Spot temperature measurement was performed at four points of 00 mm and 700 mm, and evaluation was made by the temperature difference between the maximum and minimum values. The "heat deposition efficiency" is calculated from the "temperature at the bath depth 500 mm near the molten steel injection hole 2 from the ladle to the tundish" and the "average temperature measured at the four points just above the immersion nozzle". The molten steel temperature rise ΔT in the dish was calculated, and this ΔT was used to calculate by the following formula. Heat transfer efficiency η = (sput-put x specific heat of molten steel x ΔT) / (plasma output)

【0019】一方、「耐火物の局所溶損」とは、プラズ
マ加熱が溶鋼に対して均一に行われずに設備の耐火物が
特定の位置で溶損されてその厚みが変化することを意味
するが、ここでは溶損の最も大きい部位の変化量(mm)を
プラズマ加熱時間(min) で除した値を“耐火物の局所溶
損量”として定義する。
On the other hand, "local melting loss of refractory material" means that plasma heating is not performed uniformly on the molten steel and the refractory material of the equipment is melted at a specific position and its thickness changes. However, here, the value obtained by dividing the amount of change (mm) at the portion with the largest amount of melting loss by the plasma heating time (min) is defined as the "local amount of melting of refractory material".

【0020】まず、プラズマト−チの配置状態による
「タンディッシュ内溶鋼の温度分布」並びに「着熱効
率」の調査結果を対比して図3に示す。この図3から
も、溶鋼流に対して平行にト−チを配置した場合の方が
垂直に配置した場合と比較して温度分布のバラツキが小
さく、着熱効率が上昇していることが分かる。
First, FIG. 3 shows a comparison of the investigation results of "temperature distribution of molten steel in tundish" and "heat deposition efficiency" depending on the arrangement of plasma torches. From FIG. 3 as well, it is understood that the temperature distribution in the case where the torch is arranged in parallel to the molten steel flow is smaller than that in the case where the torch is arranged vertically, and the heat deposition efficiency is increased.

【0021】次に、プラズマト−チの配置状態による
「耐火物の局所溶損量」の調査結果を図4に示す。この
図4からも、溶鋼流に対して平行にト−チを配置した場
合の方が垂直に配置した場合と比較して耐火物の局所溶
損量が少ないことが分かる。
Next, FIG. 4 shows the results of the investigation of the "local erosion amount of the refractory material" depending on the arrangement state of the plasma torch. From FIG. 4 as well, it can be seen that the amount of local melting loss of the refractory is smaller when the torch is arranged parallel to the molten steel flow than when it is arranged vertically.

【0022】上述した試験結果は、“カソ−ド及びアノ
−ドのト−チ先端を結ぶ線”が“取鍋からの溶鋼注入孔
と鋳型への溶鋼吐出口とを結ぶ線”に対して平行となる
ようにプラズマト−チを配置することが、タンディッシ
ュ内溶鋼の均一加熱において非常に重要な要件であるこ
とを明らかに示している。
The above test results show that the "line connecting the torch tips of the cathode and the anode" is "the line connecting the molten steel injection hole from the ladle and the molten steel discharge port to the mold". It is clearly shown that the parallel arrangement of the plasma torches is a very important requirement for the uniform heating of the molten steel in the tundish.

【0023】また、本発明に係るタンディッシュ内溶鋼
の均一加熱方法においては、使用するタンディッシュの
形状も重要であって、図2に示すプラズマト−チによる
加熱位置での溶鋼深さbが1m以下となり、溶鋼注入孔
2から溶鋼吐出孔6までの水平距離aが前記加熱位置で
の溶鋼深さbの4倍以上となるタンディッシュ形状を確
保する必要がある。
Further, in the method for uniformly heating molten steel in a tundish according to the present invention, the shape of the tundish used is also important, and the molten steel depth b at the heating position by the plasma torch shown in FIG. It is necessary to secure a tundish shape in which the horizontal distance a from the molten steel injection hole 2 to the molten steel discharge hole 6 is 4 m or more and 4 times or more the molten steel depth b at the heating position.

【0024】即ち、本発明者等は、溶鋼注入孔2から溶
鋼吐出孔6に至る溶鋼流と平行にカソ−ド,アノ−ドの
対から成るプラズマト−チ4を配置した上で、“溶鋼注
入孔2から溶鋼吐出孔6までの水平距離a”と“プラズ
マト−チによる加熱位置での溶鋼深さb”とを変化させ
た場合の前記「タンディッシュ内溶鋼の温度分布(温度
差)」並びに「着熱効率」について調査した。この時の
鋳造条件は表2に示す通りであり、この表2に示す種々
の水平距離aと溶鋼深さbを組み合わせて鋳込みを行っ
た。
That is, the present inventors have arranged a plasma torch 4 consisting of a pair of cathode and anode in parallel with the molten steel flow from the molten steel injection hole 2 to the molten steel discharge hole 6 and then " When the horizontal distance a "from the molten steel injection hole 2 to the molten steel discharge hole 6 and the" molten steel depth b at the heating position by the plasma torch "are changed, the" temperature distribution of molten steel in the tundish (temperature difference ) ”And“ heat deposition efficiency ”. The casting conditions at this time are as shown in Table 2, and various horizontal distances a and molten steel depth b shown in Table 2 were combined for casting.

【0025】[0025]

【表2】 [Table 2]

【0026】図5は、“加熱位置における溶鋼深さb”
と“溶鋼注入孔から溶鋼吐出孔までの水平距離a”によ
る「溶鋼の温度差」の調査結果を整理して示したグラフ
である。この図5からは、加熱位置における溶鋼深さが
1m以下でかつa/b≧4であるならば、溶鋼の温度差
は5℃以内となり、溶鋼が均一に混合されることを確認
できる。更に、図5は、加熱位置における溶鋼深さが1
m以下であってもa/b<4の時には混合に必要な水平
距離が確保できず、溶鋼の温度差は5℃以上となり、そ
してa/b≧4であっても位置における溶鋼深さが1m
を超える場合には温度のバラツキが大きくなることも示
している。
FIG. 5 shows "molten steel depth b at heating position".
3 is a graph showing the results of an investigation of “temperature difference of molten steel” according to “horizontal distance a from molten steel injection hole to molten steel discharge hole”. From FIG. 5, it can be confirmed that if the molten steel depth at the heating position is 1 m or less and a / b ≧ 4, the temperature difference of the molten steel is within 5 ° C. and the molten steel is uniformly mixed. Further, FIG. 5 shows that the molten steel depth at the heating position is 1
Even if m / m is less than a / b <4, the horizontal distance required for mixing cannot be secured, the temperature difference of molten steel is 5 ° C. or more, and even if a / b ≧ 4, the molten steel depth at the position is 1m
It also shows that the temperature variation becomes large when the value exceeds.

【0027】また、図6は、調査した「溶鋼の温度差」
と「着熱効率」及び「耐火物の局所溶損量」との関係を
示すグラフであるが、この図6からは溶鋼の温度差が5
℃以上になると着熱効率並びに耐火物の局所溶損量が著
しく上昇することが分かる。
FIG. 6 shows the "temperature difference of molten steel" investigated.
Fig. 7 is a graph showing the relationship between "heat deposition efficiency" and "local melting loss of refractory material". From Fig. 6, the temperature difference of molten steel is 5
It can be seen that the heat treatment efficiency and the amount of local erosion of the refractory material remarkably increase when the temperature exceeds ℃.

【0028】これらの結果は、図2に示す“溶鋼注入孔
から溶鋼吐出孔までの水平距離a”と“加熱位置におけ
る溶鋼深さb”について、「a/b≧4」及び「b≦1
m」の条件を満足させることによりタンディッシュ内溶
鋼の均一な加熱が確保でき、着熱効率の向上と耐火物溶
損の減少が達成できることを示すものである。
These results show that “a / b ≧ 4” and “b ≦ 1” for “horizontal distance a from molten steel injection hole to molten steel discharge hole” and “molten steel depth b at heating position” shown in FIG.
By satisfying the condition of "m", it is possible to secure uniform heating of the molten steel in the tundish, improve the heat deposition efficiency and reduce the melting loss of the refractory.

【0029】ところで、本発明に係るタンディッシュ内
溶鋼の均一加熱方法を実施するに当っては、プラズマト
−チのト−チ間距離を700〜1300mmとし、かつプ
ラズマト−チの配置位置を溶鋼注入孔位置から1000
mm以上離間させて加熱するのが良い。これは次の理由に
よる。即ち、前記図2に示すプラズマト−チのト−チ間
距離dは、700mm未満ではト−チ間通電 (ショ−ト)
を生じる危険が高く、一方、1300mmを超えると加熱
部分の分散による着熱効率の低下が顕著になる。また、
図2に示す溶鋼注入孔2からプラズマト−チ4までの水
平距離cが1000mmよりも小さいと溶鋼注入孔2の耐
火物製ガスシ−ルパイプの局所溶損を生じがちとなる。
By the way, in carrying out the method for uniformly heating molten steel in a tundish according to the present invention, the distance between the torches of the plasma torch is set to 700 to 1300 mm, and the position of the plasma torch is set. 1000 from the molten steel injection hole position
It is better to heat them apart from each other by mm or more. This is for the following reason. That is, when the torch distance d of the plasma torch shown in FIG.
However, if it exceeds 1300 mm, the heat transfer efficiency will be significantly reduced due to the dispersion of the heated portion. Also,
If the horizontal distance c from the molten steel injection hole 2 to the plasma torch 4 shown in FIG. 2 is smaller than 1000 mm, local melting damage of the refractory gas seal pipe in the molten steel injection hole 2 tends to occur.

【0030】本発明者等は、プラズマト−チのト−チ間
距離dの影響について調査すべく、溶鋼注入孔2から溶
鋼吐出孔6に至る溶鋼流と平行にカソ−ド,アノ−ドの
対から成るプラズマト−チ4を配置した図2に示す装置
を用い、表3に示す鋳造条件(ト−チ間距離dを種々に
変えた条件)で鋳造試験を行った。
In order to investigate the influence of the torch distance d of the plasma torch, the inventors of the present invention parallel to the molten steel flow from the molten steel injection hole 2 to the molten steel discharge hole 6 in order to investigate the influence of the torch distance d. A casting test was conducted under the casting conditions shown in Table 3 (conditions in which the distance d between the torches was variously changed) using the apparatus shown in FIG.

【0031】[0031]

【表3】 [Table 3]

【0032】この鋳造試験結果を表4に示す。The results of this casting test are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】表4に示す結果から明らかなように、プラ
ズマト−チのト−チ間距離dを広げると着熱効率が低下
し、また近付け過ぎるとト−チ間で放電が発生しするた
め安定した加熱が不可能となる。従って、ト−チ間距離
dは700〜1300mmに設定し、安定した加熱操業下
で80%以上の着熱効率を確保するのが望ましい。
As is clear from the results shown in Table 4, when the distance d between the torches of the plasma torch is widened, the heat deposition efficiency is lowered, and when they are too close to each other, a discharge is generated between the torches, which is stable. The heating becomes impossible. Therefore, it is desirable that the torch distance d is set to 700 to 1300 mm to ensure a heat-transfer efficiency of 80% or more under stable heating operation.

【0035】次に、溶鋼注入孔2からプラズマト−チ4
までの水平距離cの影響を調査するため、表5に示す鋳
造条件(水平距離cを種々に変えた条件)で鋳造試験を
行った。
Next, from the molten steel injection hole 2 to the plasma torch 4
In order to investigate the influence of the horizontal distance c up to, the casting test was conducted under the casting conditions shown in Table 5 (conditions in which the horizontal distance c was variously changed).

【0036】[0036]

【表5】 [Table 5]

【0037】この鋳造試験結果を図7に示す。図7に示
される結果からも分かるように、溶鋼注入孔位置からプ
ラズマト−チまでの水平距離cが700mm未満になると
急激に溶鋼注入管の局所溶損量が増加している。従っ
て、前記水平距離cは1000mm以上とすることが望ま
れる。
The results of this casting test are shown in FIG. As can be seen from the results shown in FIG. 7, when the horizontal distance c from the molten steel injection hole position to the plasma torch is less than 700 mm, the amount of local erosion of the molten steel injection pipe increases rapidly. Therefore, it is desired that the horizontal distance c be 1000 mm or more.

【0038】[0038]

【発明の効果】以上に説明した如く、この発明によれ
ば、プラズマア−クにてタンディッシュ内の溶鋼を格別
な装置を用いることなく高着熱効率で均一加熱すること
ができるようになり、従ってタンディッシュ耐火物の局
所的な溶損が防止されて耐火物コストの低い安定した連
続鋳造操業が可能になるなるなど、産業上有用な効果が
もたらされる。
As described above, according to the present invention, the molten steel in the tundish can be uniformly heated by the plasma arc with high heat deposition efficiency without using a special device. Therefore, local melting damage of the tundish refractory is prevented, and stable continuous casting operation with a low refractory cost can be realized, which brings industrially useful effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】タンディッシュ内の溶鋼流とプラズマト−チの
配置に係る説明図である。
FIG. 1 is an explanatory diagram related to the arrangement of a molten steel flow and a plasma torch in a tundish.

【図2】本発明の試験装置に係る概要説明図である。FIG. 2 is a schematic explanatory diagram relating to the test apparatus of the present invention.

【図3】プラズマト−チの配置状態と「タンディッシュ
内溶鋼の温度分布(温度差)」並びに「溶鋼の着熱効
率」との関係に係る調査結果を対比して示したグラフで
ある。
FIG. 3 is a graph showing, in comparison, investigation results relating to the relationship between the arrangement of plasma torches, “temperature distribution (temperature difference) of molten steel in the tundish” and “heat deposition efficiency of molten steel”.

【図4】プラズマト−チの配置状態と「耐火物の局所溶
損量」との関係に係る調査結果を示したグラフである。
FIG. 4 is a graph showing a result of an examination related to a relationship between an arrangement state of plasma torches and “amount of local erosion of refractory”.

【図5】“加熱位置における溶鋼深さb”と“溶鋼注入
孔から溶鋼吐出孔までの水平距離a”による「溶鋼の温
度差」の調査結果を整理して示したグラフである。
FIG. 5 is a graph showing the results of an investigation of “temperature difference of molten steel” according to “molten steel depth b at heating position” and “horizontal distance a from molten steel injection hole to molten steel discharge hole”.

【図6】「溶鋼の温度差」と「着熱効率」及び「耐火物
の局所溶損量」との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between “temperature difference of molten steel” and “heat deposition efficiency” and “local melting loss of refractory”.

【図7】溶鋼注入孔からプラズマト−チまでの水平距離
と溶鋼注入管の局所溶損量との調査結果を示すグラフで
ある。
FIG. 7 is a graph showing the results of investigation of the horizontal distance from the molten steel injection hole to the plasma torch and the amount of local erosion damage in the molten steel injection pipe.

【符号の説明】[Explanation of symbols]

1 取鍋 2 取鍋からタンディッシュへの溶鋼注入孔 3 タンディッシュ 4 プラズマト−チ 5 溶鋼 6 タンディッシュから鋳型への溶鋼吐出孔 7 鋳型 1 ladle 2 Molten steel injection hole from ladle to tundish 3 tundish 4 Plasma torch 5 Molten steel 6 Molten steel discharge holes from tundish to mold 7 Mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用タンディッシュ内の溶鋼をプ
ラズマア−クにより加熱する方法において、プラズマト
−チによる加熱位置での溶鋼深さが1m以下で、溶鋼注
入孔から溶鋼吐出孔までの水平距離が前記加熱位置での
溶鋼深さの4倍以上となるタンディッシュを使用すると
共に、タンディッシュの溶鋼注入孔から溶鋼吐出孔に至
る溶鋼流と平行にカソ−ド,アノ−ドの対から成るプラ
ズマト−チを配置して加熱することを特徴とする、タン
ディッシュ内溶鋼の均一加熱方法。
1. A method of heating molten steel in a tundish for continuous casting by a plasma arc, wherein the molten steel depth at a heating position by a plasma torch is 1 m or less, and the molten steel injection hole to the molten steel discharge hole. A tundish whose horizontal distance is at least four times the molten steel depth at the heating position is used, and the pair of cathode and anode is parallel to the molten steel flow from the molten steel injection hole to the molten steel discharge hole of the tundish. A method for uniformly heating molten steel in a tundish, which comprises arranging and heating a plasma torch comprising
【請求項2】 プラズマト−チの配置位置を溶鋼注入孔
位置から1000mm以上離間させ、かつト−チ間距離を
700〜1300mmとして加熱することを特徴とする、
請求項1記載のタンディッシュ内溶鋼の均一加熱方法。
2. A plasma torch is arranged at a distance of 1000 mm or more from a molten steel injection hole position, and heating is performed with a torch distance of 700 to 1300 mm.
The method for uniformly heating molten steel in a tundish according to claim 1.
JP2001234892A 2001-08-02 2001-08-02 Uniform heating method for molten steel in tundish Expired - Fee Related JP3849471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234892A JP3849471B2 (en) 2001-08-02 2001-08-02 Uniform heating method for molten steel in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234892A JP3849471B2 (en) 2001-08-02 2001-08-02 Uniform heating method for molten steel in tundish

Publications (2)

Publication Number Publication Date
JP2003048045A true JP2003048045A (en) 2003-02-18
JP3849471B2 JP3849471B2 (en) 2006-11-22

Family

ID=19066425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234892A Expired - Fee Related JP3849471B2 (en) 2001-08-02 2001-08-02 Uniform heating method for molten steel in tundish

Country Status (1)

Country Link
JP (1) JP3849471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136253B (en) * 2020-01-13 2021-01-08 北京科技大学 Plasma heating method and plasma heating system for tundish molten steel

Also Published As

Publication number Publication date
JP3849471B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP6855806B2 (en) Continuous casting method and continuous casting equipment for multi-layer slabs
CN101652206B (en) Continuous casting device of slab and its continuous casting method
JP2008087046A (en) Continuous casting method for medium-carbon steel
JP2017080788A (en) Method and device for continuously casting double-layered cast slab
JP6515286B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP2003048045A (en) Method for uniformly heating molten steel in tundish
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP2006231397A (en) Continuous casting method for aluminum-killed steel
CA2868147C (en) Continuous casting process of metal
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
JP7047647B2 (en) Continuous casting method for thin slabs
JP2002210546A (en) Method for producing continuously cast product
CN110605371B (en) Device and method for controlling negative segregation defect of solute under continuous casting magnetic stirring
JP3651441B2 (en) Continuous casting method of steel
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
RU2741876C1 (en) Method for continuous casting of slab bills
JP2011194420A (en) Method of producing high cleanliness steel
JP2002205152A (en) Method for producing continuously cast product
US20120199308A1 (en) Stirrer
JP2002283016A (en) Device for heating molten steel in tundish using plasma torch
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
KR101526453B1 (en) Nozzle and casting method using the same
JPH0714547B2 (en) Continuous casting method for molten steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Ref document number: 3849471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees