JP7047647B2 - Continuous casting method for thin slabs - Google Patents

Continuous casting method for thin slabs Download PDF

Info

Publication number
JP7047647B2
JP7047647B2 JP2018137398A JP2018137398A JP7047647B2 JP 7047647 B2 JP7047647 B2 JP 7047647B2 JP 2018137398 A JP2018137398 A JP 2018137398A JP 2018137398 A JP2018137398 A JP 2018137398A JP 7047647 B2 JP7047647 B2 JP 7047647B2
Authority
JP
Japan
Prior art keywords
molten steel
tundish
component
continuous casting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018137398A
Other languages
Japanese (ja)
Other versions
JP2020015047A (en
Inventor
悠衣 伊藤
寛 原田
圭太 池田
真士 阪本
拓也 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018137398A priority Critical patent/JP7047647B2/en
Publication of JP2020015047A publication Critical patent/JP2020015047A/en
Application granted granted Critical
Publication of JP7047647B2 publication Critical patent/JP7047647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、薄スラブの連続鋳造方法に関し、特に薄スラブ連続鋳造プロセスと熱延を直結したプロセスを前提とし、小ロット材を効率よく製造するための薄スラブの連続鋳造方法に関する。 The present invention relates to a thin slab continuous casting method, and more particularly to a thin slab continuous casting method for efficiently producing a small lot material on the premise of a process in which a thin slab continuous casting process and hot rolling are directly connected.

スラブ厚が150mm以下、さらには40~100mmの薄スラブ(薄鋳片)を鋳造する薄スラブ連続鋳造方法が知られている。鋳造された薄スラブは、トンネル炉に挿入され加熱された後、4段から7段程度の小規模な圧延機で圧延されるCSP(Compact strip production)方式や、連鋳機と熱延プロセスが直結された、完全連続熱間圧延方式であるESP(Endless strip production)方式など様々なプロセスが提案され、稼働している。薄スラブ鋳造に用いる連続鋳造鋳型としては、漏斗状鋳型を用いる方法と矩形の平行鋳型を用いる方法が採用されている。薄スラブの連続鋳造では、高速鋳造によって生産性を確保することが必要であり、工業的には5~6m/分、最高では10m/分の高速鋳造が可能となっている(非特許文献1参照)。本発明は、ESP方式のような連鋳機と熱延プロセスが完全に連続化された薄スラブ連続鋳造を対象とする。 A thin slab continuous casting method for casting a thin slab (thin slab) having a slab thickness of 150 mm or less and further 40 to 100 mm is known. The cast thin slab is inserted into a tunnel furnace, heated, and then rolled by a small-scale rolling mill with 4 to 7 steps, or a CSP (Compact strip production) method, or a continuous casting machine and a hot rolling process. Various processes such as the ESP (Endless strip production) method, which is a directly connected complete continuous hot rolling method, have been proposed and are in operation. As the continuous casting mold used for thin slab casting, a method using a funnel-shaped mold and a method using a rectangular parallel mold are adopted. In continuous casting of thin slabs, it is necessary to secure productivity by high-speed casting, and industrially, high-speed casting of 5 to 6 m / min and a maximum of 10 m / min is possible (Non-Patent Document 1). reference). The present invention is directed to a continuous casting machine such as the ESP method and thin slab continuous casting in which the hot rolling process is completely continuous.

鋼の連続鋳造法は通常、取鍋からタンディッシュ、タンディッシュから浸漬ノズルを介して鋳型に注入される。この際、溶鋼は同一成分のものを続けることが一般的である。一方で近年、鋼の用途が多様化する中で、製鋼工程に要求されるロットサイズ、溶鋼の種類も多様化が進んでいる。従来は種類の異なる溶鋼を製造する場合、取鍋までの間で溶製する方法が採られ、連続鋳造においても、鋳造中の成分変更は取鍋単位で行われる。従って、小容量の溶鋼、すなわち小ロット材を溶製する場合は、極力余材が生じないよう工程を調整されるものの、調整がつかず取鍋1杯分の注文がまとまらない場合は、取鍋1杯分を先行出鋼して鋳造し、注文対応分以外は余材として在庫することとなり、倉庫能力を逼迫させる要因となってきた。 The continuous casting method of steel is usually poured from a ladle into a tundish and from a tundish into a mold via a dipping nozzle. At this time, it is general that the molten steel continues to have the same composition. On the other hand, in recent years, as the applications of steel have diversified, the lot size and the type of molten steel required for the steelmaking process have also diversified. Conventionally, when manufacturing different types of molten steel, a method of melting up to the ladle is adopted, and even in continuous casting, the component change during casting is performed for each ladle. Therefore, when melting small capacity molten steel, that is, small lot material, the process is adjusted so that there is as little surplus material as possible, but if adjustment is not possible and the order for one ladle is not completed, take it. One cup of ladle is cast in advance and cast, and the portion other than the one that corresponds to the order is stocked as surplus material, which has become a factor that tightens the warehouse capacity.

加えて、同一鋼種の連々鋳のみでは連続鋳造設備の生産性が向上しないことから、成分が異なる鋼種同士であっても連続鋳造する「異鋼種連々鋳」が行われている。取鍋単位で溶鋼成分を変更し、先行チャージの溶鋼がタンディッシュに残存した状態で、成分が異なる次チャージの溶鋼の注湯を開始する。そのため、タンディッシュ内で前チャージ成分と後チャージ成分とが混合する。さらに、タンディッシュから鋳型内に注入された溶鋼は、吐出流として未凝固溶鋼の深い範囲まで入れ替わるため、鋳造した鋳片中に長い範囲で前チャージと後チャージの成分混合部が存在する。この継目部分は鋼材材質が一定ではなく、品質の保証ができないためスクラップ処理される。取鍋単位の成分変更とタンディッシュ交換を同時に行う場合には、タンディッシュ交換時に、鋳造中の鋳型内未凝固溶鋼中に鉄板を挿入し、鋳型内未凝固溶鋼中での成分の混合を防止する方法が採用されている(非特許文献2)。この方法では、鉄板挿入時に鋳造速度を大幅に低減することが必要となる。 In addition, since the productivity of the continuous casting equipment is not improved only by continuous casting of the same steel type, "continuous casting of different steel types" is performed in which continuous casting is performed even between steel types having different components. The molten steel composition is changed for each ladle, and with the molten steel of the preceding charge remaining in the tundish, pouring of the molten steel of the next charge with a different composition is started. Therefore, the pre-charge component and the post-charge component are mixed in the tundish. Further, since the molten steel injected into the mold from the tundish is replaced as a discharge flow to a deep range of the unsolidified molten steel, a pre-charged and post-charged component mixing portion exists in the cast slab over a long range. This seam is scrapped because the steel material is not constant and the quality cannot be guaranteed. When changing the components of the ladle unit and replacing the tundish at the same time, insert an iron plate into the unsolidified molten steel in the mold during casting to prevent mixing of the components in the unsolidified molten steel in the mold. (Non-Patent Document 2). In this method, it is necessary to significantly reduce the casting speed when inserting the iron plate.

従来の連続鋳造プロセスでは、異鋼種連々鋳の継ぎ目部におけるスクラップの発生を低減させるため、異鋼種連々鋳を行う場合では混合域を極力小さくするべく、鋳造速度を大幅に低下させることや、先行チャージと後行チャージで濃度が近いものを製造するよう、工程を調整する努力がなされてきた。 In the conventional continuous casting process, in order to reduce the generation of scrap at the seams of continuous casting of different steel types, in order to make the mixing area as small as possible when performing continuous casting of different steel types, the casting speed is significantly reduced or preceded. Efforts have been made to adjust the process so that the charge and the subsequent charge produce products with similar concentrations.

従来技術の中でも、小ロット材を製造する方法として、タンディッシュ内での成分調整(タンディッシュアロイング)を行う方法が多く報告されている。
特許文献1においては、タンディッシュ内を上流側の精錬室と下流側の鋳造室に分割し、仕切り部には閉鎖装置を設け、鋳造中において成分変更時期に仕切り部を閉鎖して精錬室内に合金を添加して成分調整を行い、予めダミーバーが挿入されて鋳造準備が完了した鋳型に、成分調整した溶鋼を鋳造する方法が開示されている。成分変更時にダミーバーを挿入するため、その時点で連続鋳造が途切れる方法である。
特許文献2には、タンディッシュ内溶鋼または専用タンディッシュに排出した溶鋼に成分調整を施した後、造塊用鋳型に注湯して小ロット鋼片を製造する方法が開示されている。連続鋳造を継続しつつ成分を変更する方法には該当しない。
Among the prior arts, many methods of adjusting the components in the tundish (tandish aloing) have been reported as a method of manufacturing a small lot material.
In Patent Document 1, the inside of the tundish is divided into an upstream refining chamber and a downstream casting chamber, a closing device is provided in the partition portion, and the partition portion is closed at the time of component change during casting to enter the refining chamber. A method of casting a molten steel whose composition has been adjusted is disclosed in a mold in which an alloy is added to adjust the composition and a dummy bar is inserted in advance and preparation for casting is completed. Since a dummy bar is inserted when the composition is changed, continuous casting is interrupted at that point.
Patent Document 2 discloses a method of producing small lot steel pieces by adjusting the composition of molten steel in a tundish or molten steel discharged into a dedicated tundish and then pouring it into a mold for ingot formation. It does not correspond to the method of changing the composition while continuing continuous casting.

特開平9-239501号公報Japanese Unexamined Patent Publication No. 9-239501 特開2001-162352号公報Japanese Unexamined Patent Publication No. 2001-162352

第5版鉄鋼便覧 第1巻製銑・製鋼 第454~456頁5th Edition Steel Handbook Volume 1 Pig Iron / Steelmaking pp. 454-456 第3版鉄鋼便覧 II 製銑・製鋼 第644頁3rd Edition Steel Handbook II Ironmaking / Steelmaking Page 644 E.Takeuchi, M.Zeze, H.Tanaka, H.Harada and S.Mizoguchi: Ironmaking and Steelmaking, 24(1997),257.E.Takeuchi, M.Zeze, H.Tanaka, H.Harada and S.Mizoguchi: Ironmaking and Steelmaking, 24 (1997), 257. M.Zeze, H.Harada and E.Takeuchi: ISIJ-International, 39(1999), pp.563.M.Zeze, H.Harada and E.Takeuchi: ISIJ-International, 39 (1999), pp.563.

一方で本発明で対象とする薄スラブ連続プロセスでは、鋳造から熱延、巻き取りまで連続したプロセスであることから、鋳造速度の低下は生産性低下に直結するとともに、鋼板の材質ばらつきを招く。また薄スラブ連続プロセスは、従来プロセスで製造できないような、薄鋼板の製造に適したプロセスであるため、薄手化を求められる鋼種のすべてがターゲットであり、一つのミルで広い鋼種(建材~高張力鋼)を製造することが求められる。 On the other hand, in the thin slab continuous process targeted by the present invention, since it is a continuous process from casting to hot rolling and winding, a decrease in casting speed directly leads to a decrease in productivity and causes variations in the material of the steel sheet. In addition, since the thin slab continuous process is a process suitable for manufacturing thin steel sheets that cannot be manufactured by conventional processes, all steel grades that require thinning are targeted, and a wide range of steel grades (building materials to high) can be achieved with one mill. It is required to manufacture high-strength steel).

よって従来プロセスに比べて先行チャージと後行チャージで大きな濃度差を有する鋼種の製造もおこなう可能性があり、従来のような取鍋までの間での成分調整では、小ロット材の製造の観点からは現実的ではなく、タンディッシュ内での成分調整(タンディッシュアロイング)が望ましいと考えられる。しかし、特許文献1や特許文献2に記載のタンディッシュアロイング法は、今回のような連続プロセスを指向していないバッチ鋳造を前提とした技術であり、連続プロセスには適用できない。 Therefore, there is a possibility of manufacturing steel grades that have a large concentration difference between the pre-charge and the post-charge compared to the conventional process. Therefore, it is not realistic, and it is considered desirable to adjust the components within the tundish (tandish aloing). However, the tundish allowing method described in Patent Document 1 and Patent Document 2 is a technique premised on batch casting that is not oriented toward a continuous process as in this case, and cannot be applied to a continuous process.

本発明では薄スラブ連続プロセスを前提とし、連続鋳造を継続しつつ、高効率・高歩留りで小ロット材を造り分けることのできる薄スラブの連続鋳造方法を提供することを目的とする。 The present invention is premised on a continuous thin slab process, and an object of the present invention is to provide a continuous casting method of thin slabs capable of producing small lot materials with high efficiency and high yield while continuing continuous casting.

即ち、本発明の要旨とするところは以下のとおりである。
[1]取鍋に収容した溶鋼をタンディッシュに移注し、タンディッシュの底部に設けた浸漬ノズルから溶鋼を連続鋳造鋳型に注入する薄スラブの連続鋳造方法であって、
取鍋からの溶鋼移注部と浸漬ノズルとの間にタンディッシュ堰を設置し、前記タンディッシュ堰は溶鋼通過部を有し、前記タンディッシュ内のタンディッシュ堰にて区分された取鍋溶鋼移注側を上流領域、その反対側を下流領域とし、前記下流領域側のタンディッシュ内溶鋼を加熱する加熱手段を有し、
鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記浸漬ノズルから上側溶鋼プールに溶鋼を供給し、
連続鋳造中において、下流領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金の連続的添加を開始しあるいは添加量を変更することによって、先に鋳造した鋳片と後に鋳造した鋳片の間で異なる成分組成の鋳片を鋳造し、成分組成とタンディッシュ内溶鋼温度T(℃)から下記(1)式で計算される溶鋼密度ρ(kg/m3)において、後から鋳造した鋳片に対応する溶鋼密度は、先に鋳造した鋳片に対応する溶鋼密度よりも低く、溶鋼密度差が30kg/m3以上であることを特徴とする、薄スラブの連続鋳造方法。
ρ=7000-8.0(T-1823)-80.0[C]-83.0[Si]-21.2[Mn]-67.1[P]-84.0[S]-113.0[Al]-29.0[Ti]+5.4[Nb]-14.6[Cr]+4.8[Ni]+3.6[Cu]+23.0[Mo]-46.3[V] (1)
上記(1)式において、元素記号は各元素の含有量(質量%)を意味する。
[2]前記下流領域側のタンディッシュ内溶鋼を加熱する手段としてプラズマ加熱を用い、かつ下流領域のタンディッシュ底部からガス吹き込みを行いつつ、前記所定の元素あるいはその合金の連続的添加を行うことを特徴とする[1]に記載の薄スラブの連続鋳造方法。
That is, the gist of the present invention is as follows.
[1] A thin slab continuous casting method in which molten steel contained in a ladle is transferred to a tundish and molten steel is injected into a continuous casting mold from a dipping nozzle provided at the bottom of the tundish.
A tundish weir is installed between the molten steel transfer part from the ladle and the immersion nozzle, and the tundish weir has a molten steel passage part, and the ladle molten steel separated by the tundish weir in the tundish. It has a heating means for heating the molten steel in the tundish on the downstream region side, with the transfer side as the upstream region and the opposite side as the downstream region.
A DC magnetic field generator that applies a DC magnetic field in the thickness direction over the entire width of the mold is arranged, and the upper part of the strand sandwiching the DC magnetic field band formed by the DC magnetic field generator is the upper molten steel pool and the lower part is the lower molten steel pool. Then, the molten steel is supplied from the immersion nozzle to the upper molten steel pool.
During continuous casting, by starting continuous addition of a predetermined element or its alloy to the molten steel in the tundish on the downstream region side or by changing the addition amount, the slab cast first and the slab cast later. Shards with different composition compositions were cast between the two, and later cast at the molten steel density ρ (kg / m 3 ) calculated by the following equation (1) from the composition and the molten steel temperature T (° C.) in the tundish. A method for continuous casting of thin slabs, wherein the molten steel density corresponding to the slab is lower than the molten steel density corresponding to the previously cast slab, and the molten steel density difference is 30 kg / m 3 or more.
ρ = 7000-8.0 (T-1823) -80.0 [C] -83.0 [Si] -21.2 [Mn] -67.1 [P] -84.0 [S] -113.0 [Al] -29.0 [Ti] +5.4 [Nb] ] -14.6 [Cr] +4.8 [Ni] +3.6 [Cu] +23.0 [Mo] -46.3 [V] (1)
In the above equation (1), the element symbol means the content (mass%) of each element.
[2] Plasma heating is used as a means for heating the molten steel in the tundish on the downstream region side, and the predetermined element or its alloy is continuously added while gas is blown from the bottom of the tundish in the downstream region. The method for continuously casting a thin slab according to [1].

本発明により、薄スラブの連続鋳造において、連続鋳造を継続しつつ、高効率・高歩留りで小ロット材を造り分け、成分変更部の成分混合領域を低減することができる。 INDUSTRIAL APPLICABILITY In the continuous casting of thin slabs, according to the present invention, it is possible to produce small lot materials with high efficiency and high yield while continuing continuous casting, and to reduce the component mixing region of the component changing portion.

本発明の薄スラブの連続鋳造状況を示す部分図であり、タンディッシュ内成分添加前の状況を示す。It is a partial figure which shows the continuous casting state of the thin slab of this invention, and shows the state before the addition of the component in a tundish. 本発明の薄スラブの連続鋳造状況を示す部分図であり、タンディッシュ内成分添加開始直後の状況を示す。It is a partial figure which shows the continuous casting state of the thin slab of this invention, and shows the situation immediately after the start of addition of the component in a tundish. 本発明の薄スラブの連続鋳造状況を示す部分図であり、タンディッシュ内成分添加開始後の状況を示す。It is a partial figure which shows the continuous casting state of the thin slab of this invention, and shows the state after the start of addition of the component in a tundish. タンディシュ堰の形状を示す図である。It is a figure which shows the shape of a Tandish weir. 前成分と後成分の溶鋼密度差と、成分混合部の長さとの関係を示す図である。It is a figure which shows the relationship between the density difference of molten steel of the front component and the back component, and the length of a component mixing part.

図1~図5に基づいて本発明の説明を行う。
本発明は、取鍋1に収容した溶鋼をタンディッシュ2に移注し、タンディッシュ2の底部に設けた浸漬ノズル3から溶鋼を連続鋳造鋳型4に注入する薄スラブの連続鋳造方法を対象とする。薄スラブの連続鋳造とは、鋳造スラブ厚みが150mm以下となる連続鋳造を意味する。
The present invention will be described with reference to FIGS. 1 to 5.
The present invention is intended for a continuous casting method of a thin slab in which molten steel contained in a ladle 1 is transferred to a tundish 2 and molten steel is injected into a continuous casting mold 4 from a dipping nozzle 3 provided at the bottom of the tundish 2. do. Continuous casting of thin slabs means continuous casting in which the thickness of the cast slab is 150 mm or less.

連続鋳造中において、鋳造する鋳片の成分組成を変更しようとするとき、最も一般的に行われているのは、取鍋単位に溶鋼の成分を変更する方法である。この方法では、1杯の取鍋溶鋼量については同じ成分組成が継続されることとなる。これに対して本発明では、同一取鍋の溶鋼の鋳造を継続中において、タンディッシュ内溶鋼に対して所定の元素あるいはその合金の連続的添加を行って溶鋼成分を変更する。これにより、取鍋溶鋼量よりも少ない溶鋼量単位で成分変更を行い、異鋼種連々鋳において、小ロット材を連続プロセスで効率よく製造する。 When trying to change the composition of the slab to be cast during continuous casting, the most commonly used method is to change the composition of molten steel in units of ladle. In this method, the same composition is continued for the amount of molten steel in one ladle. On the other hand, in the present invention, while the casting of molten steel in the same ladle is being continued, the molten steel component is changed by continuously adding a predetermined element or an alloy thereof to the molten steel in the tundish. As a result, the composition is changed in units of molten steel that is smaller than the amount of molten steel in the ladle, and small lot materials can be efficiently manufactured in a continuous process in continuous casting of different steel types.

異鋼種連々鋳の継ぎ目部鋳片において、成分変更前(前成分)と成分変更後(後成分)の成分混合部の長さを極力短縮することが必要である。前成分と後成分とが混合する場所は、タンディッシュ内と鋳型内の未凝固溶鋼中の2箇所となる。以下、それぞれの場所における成分混合低減方法について説明する。 It is necessary to shorten the length of the component mixing part before the component change (pre-component) and after the component change (post-component) as much as possible in the seam slab of different steel grade continuous casting. There are two places where the pre-component and the post-component are mixed, in the tundish and in the unsolidified molten steel in the mold. Hereinafter, a method for reducing component mixing at each location will be described.

タンディッシュ2内での成分混合領域低減対策として、本発明では、取鍋1からの溶鋼移注部21と浸漬ノズル3との間にタンディッシュ堰5を設置する(図1参照)。タンディッシュ堰5は溶鋼通過部6を有する。タンディッシュ2内のタンディッシュ堰5にて区分された取鍋溶鋼移注部21側を上流領域22、その反対側を下流領域23とする。上流領域22で取鍋1から移注された溶鋼は、タンディッシュ堰5の溶鋼通過部6を通過して下流領域23に移動し、さらに浸漬ノズル3を経由して鋳型4内に注入される。タンディッシュ堰5を設けているため、タンディッシュ内溶鋼は、上流領域22から溶鋼通過部6を通って下流領域23に向かう一方通行の流れとなり、下流領域23から上流領域22への溶鋼の移動を防止することができる。 In the present invention, as a measure for reducing the component mixing region in the tundish 2, a tundish weir 5 is installed between the molten steel transfer portion 21 from the ladle 1 and the immersion nozzle 3 (see FIG. 1). The tundish weir 5 has a molten steel passage portion 6. The ladle molten steel transfer portion 21 side divided by the tundish weir 5 in the tundish 2 is referred to as an upstream region 22, and the opposite side thereof is referred to as a downstream region 23. The molten steel transferred from the ladle 1 in the upstream region 22 passes through the molten steel passing portion 6 of the tundish weir 5, moves to the downstream region 23, and is further injected into the mold 4 via the immersion nozzle 3. .. Since the tundish weir 5 is provided, the molten steel in the tundish becomes a one-way flow from the upstream region 22 through the molten steel passing portion 6 toward the downstream region 23, and the molten steel moves from the downstream region 23 to the upstream region 22. Can be prevented.

本発明では、タンディッシュ内の下流領域23にあるタンディッシュ内溶鋼に対して所定の元素あるいはその合金の連続的添加を行う。添加した成分は、下流領域23の溶鋼中で混合するのみであり、上流領域22の溶鋼には広がらない。その結果として、前成分と後成分の混合部の長さを低減することができる。下流領域23の溶鋼容量を少なくするほど、タンディッシュ内における前成分と後成分の混合部を低減することができる。下流領域23への元素あるいは合金の添加は、成分添加装置8によって所定の元素あるいは合金をワイヤー等によって連続的に添加することによって行うことができる。 In the present invention, a predetermined element or an alloy thereof is continuously added to the molten steel in the tundish in the downstream region 23 in the tundish. The added component is only mixed in the molten steel in the downstream region 23 and does not spread to the molten steel in the upstream region 22. As a result, the length of the mixed portion of the front component and the rear component can be reduced. As the molten steel capacity of the downstream region 23 is reduced, the mixing portion of the front component and the rear component in the tundish can be reduced. The addition of the element or alloy to the downstream region 23 can be performed by continuously adding a predetermined element or alloy to the downstream region 23 with a wire or the like by the component adding device 8.

次に、鋳型内の未凝固溶鋼中において、前成分と後成分との混合領域を低減するため、直流磁場発生装置9の設置と、前成分と後成分との溶鋼密度差の形成という2つの方法を適用した。以下、順に説明する。 Next, in order to reduce the mixed region of the pre-component and the post-component in the unsolidified molten steel in the mold, the DC magnetic field generator 9 is installed and the molten steel density difference between the pre-component and the post-component is formed. The method was applied. Hereinafter, they will be described in order.

浸漬ノズル3には溶鋼の吐出孔が設けられ、タンディッシュ内溶鋼は浸漬ノズルの吐出孔を経由して鋳型内の未凝固溶鋼中に吐出される。吐出孔を浸漬ノズルの対向する2箇所に設け、図1にあるように、鋳片の幅方向両側に流れる吐出流27を形成することが一般的に行われている。浸漬ノズル3から吐出した吐出流27は、短辺凝固シェルに衝突し、上昇流28と下降流29に分かれる。通常の連続鋳造であれば、下降流29は未凝固溶鋼プールの深い位置まで到達する。そのため、後成分の注入を開始した直後、後成分の溶鋼が下降流29によって未凝固溶鋼プールの下流側まで運ばれ、結果として前成分と後成分が混合した鋳片長さを増大することとなる。 The immersion nozzle 3 is provided with a molten steel discharge hole, and the molten steel in the tundish is discharged into the unsolidified molten steel in the mold via the discharge hole of the immersion nozzle. As shown in FIG. 1, it is common practice to provide discharge holes at two positions facing each other of the immersion nozzle to form discharge flows 27 flowing on both sides in the width direction of the slab. The discharge flow 27 discharged from the immersion nozzle 3 collides with the short-side solidification shell and is divided into an ascending flow 28 and a descending flow 29. In normal continuous casting, the downflow 29 reaches a deep position in the unsolidified molten steel pool. Therefore, immediately after the injection of the post-component is started, the molten steel of the post-component is carried to the downstream side of the unsolidified molten steel pool by the downward flow 29, and as a result, the length of the slab in which the pre-component and the post-component are mixed is increased. ..

本発明では、鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置9を配置し、直流磁場発生装置9によって形成される直流磁場帯26をはさんだストランドの上部を上側溶鋼プール24、下部を下側溶鋼プール25とし、浸漬ノズル3から上側溶鋼プール24に溶鋼を供給する。直流磁場帯26においては、磁力線が鋳片の厚み方向に向かう直流磁場を印加し、磁束密度は鋳型幅方向にほぼ均一とする。このような直流磁場帯26を形成することにより、直流磁場帯26を通過しようとする溶鋼には電磁ブレーキがかかる。浸漬ノズル3からの吐出流が下降流29を形成したとしても、直流磁場帯26において流動が阻止され、図1に示すように、上側溶鋼プール内の流れに限定される。その結果、浸漬ノズル3の吐出流に起因する下降流によって後成分溶鋼が深い位置まで運ばれることを防止することができる。上側溶鋼プール24には溶鋼が継続して供給されるので、上側溶鋼プール24の溶鋼は、定常下降流33として直流磁場帯26を通過して下側溶鋼プール25へと移動する。直流磁場帯26を通過する際の定常下降流33の流速は、通常であれば鋳造速度に近似した流速となる。ここで直流磁場帯26とは直流磁場発生装置9のコア高さと同じ範囲とする。理由はこの範囲内であれば均一な磁束密度の直流磁場が印加される。直流磁場帯26の磁束密度が0.3T(テスラ)以上であれば、十分に下降流29を抑止することができる。この点は、非特許文献3にも記載のとおりである。
磁束密度の上限は高いほど好ましいが、超電導磁石によらず直流磁場を形成するうえではおよそ1.0Tが上限となる。鋳造条件に応じて0.3T~1Tの範囲内で適正な磁束密度の磁場を印加すればよい。
In the present invention, a DC magnetic field generator 9 that applies a DC magnetic field in the thickness direction over the entire width in the mold width direction is arranged, and the upper part of the strand sandwiching the DC magnetic field band 26 formed by the DC magnetic field generator 9 is the upper molten steel pool 24. The lower part is the lower molten steel pool 25, and the molten steel is supplied from the immersion nozzle 3 to the upper molten steel pool 24. In the DC magnetic field band 26, a DC magnetic field is applied in which the magnetic field lines are directed in the thickness direction of the slab, and the magnetic flux density is made substantially uniform in the mold width direction. By forming such a DC magnetic field band 26, an electromagnetic brake is applied to the molten steel that is about to pass through the DC magnetic field band 26. Even if the discharge flow from the immersion nozzle 3 forms a downward flow 29, the flow is blocked in the DC magnetic field band 26 and is limited to the flow in the upper molten steel pool as shown in FIG. As a result, it is possible to prevent the back component molten steel from being carried to a deep position due to the downward flow caused by the discharge flow of the immersion nozzle 3. Since the molten steel is continuously supplied to the upper molten steel pool 24, the molten steel in the upper molten steel pool 24 passes through the DC magnetic field band 26 as a steady downward flow 33 and moves to the lower molten steel pool 25. The flow velocity of the steady downward flow 33 when passing through the DC magnetic field band 26 is usually a flow velocity close to the casting speed. Here, the DC magnetic field band 26 is in the same range as the core height of the DC magnetic field generator 9. The reason is that a DC magnetic field with a uniform magnetic flux density is applied within this range. If the magnetic flux density of the DC magnetic field band 26 is 0.3 T (tesla) or more, the downward flow 29 can be sufficiently suppressed. This point is also described in Non-Patent Document 3.
The higher the upper limit of the magnetic flux density is, the more preferable it is, but about 1.0 T is the upper limit for forming a DC magnetic field regardless of the superconducting magnet. A magnetic field having an appropriate magnetic flux density may be applied within the range of 0.3T to 1T depending on the casting conditions.

図1は、成分添加装置8による成分添加を開始する前(成分添加量の変更を行う前を含む)の状況を示している。タンディッシュ内の上流領域22、下流領域23、未凝固溶鋼の上側溶鋼プール24、下側溶鋼プール25のいずれも、溶鋼成分は前成分である(前成分領域31)。図2は、成分添加装置8による成分添加を開始した直後(成分添加量の変更を行った直後を含む)の状況を示している。溶鋼成分が後成分となった領域(後成分領域32)をドットハッチングしている。タンディッシュ内の下流領域23の溶鋼は後成分に変化し、鋳型内の上側溶鋼プール24内溶鋼も後成分に変化している。直流磁場帯26を形成しているので、直流磁場帯26よりも下方の下側溶鋼プール25には後成分の溶鋼は混合していない。 FIG. 1 shows a situation before starting component addition by the component addition device 8 (including before changing the component addition amount). The molten steel component is a pre-component in all of the upstream region 22, the downstream region 23, the upper molten steel pool 24 of the unsolidified molten steel, and the lower molten steel pool 25 in the tundish (pre-component region 31). FIG. 2 shows the situation immediately after the component addition by the component addition device 8 is started (including immediately after the component addition amount is changed). The region where the molten steel component is the rear component (post-component region 32) is dot-hatched. The molten steel in the downstream region 23 in the tundish has changed to a posterior component, and the molten steel in the upper molten steel pool 24 in the mold has also changed to a posterior component. Since the DC magnetic field band 26 is formed, the molten steel of the rear component is not mixed in the lower molten steel pool 25 below the DC magnetic field band 26.

図3は、成分添加装置8による成分添加の開始(成分添加量の変更)を行ってから所定時間経過後の状況を示す。タンディッシュ2から鋳型4内への溶鋼供給の継続により、前成分領域31と後成分領域32との境界(成分境界部30)は、直流磁場帯26よりも下方の下側溶鋼プール25内まで移動(下降)している。凝固シェルで囲まれた未凝固溶鋼部には、自然対流を含めて溶鋼が流動する状況にある。図3の状態において、成分境界部30には直流磁場帯26が配置されていないので、溶鋼の流動があれば、成分境界部30の下側(前成分領域31)と上側(後成分領域32)との入れ替わりが発生し得る。その結果として、前成分と後成分との混合領域が増大することになる。 FIG. 3 shows a situation after a predetermined time has elapsed from the start of component addition (change of component addition amount) by the component addition device 8. Due to the continuation of molten steel supply from the tundish 2 into the mold 4, the boundary between the front component region 31 and the rear component region 32 (component boundary portion 30) extends to the lower molten steel pool 25 below the DC magnetic field band 26. It is moving (descending). The unsolidified molten steel part surrounded by the solidified shell is in a state where molten steel flows including natural convection. In the state of FIG. 3, since the DC magnetic field band 26 is not arranged at the component boundary portion 30, if there is a flow of molten steel, the lower side (front component region 31) and the upper side (rear component region 32) of the component boundary portion 30 are present. ) May occur. As a result, the mixed region of the pre-component and the post-component is increased.

本発明においては、後から鋳造した鋳片(後成分)に対応する溶鋼密度は、先に鋳造した鋳片(前成分)に対応する溶鋼密度よりも低く、溶鋼密度差が30kg/m3以上であることを特徴とする。成分境界部30の上方に位置する後成分の溶鋼が、成分境界部30の下方に位置する前成分の溶鋼よりも密度が低いので、密度差により、成分境界部30をはさんだ上方と下方との間の溶鋼の混合を阻止することができる。溶鋼密度については、成分組成とタンディッシュ内溶鋼温度T(℃)から下記(1)式で計算される溶鋼密度ρ(kg/m3)を用いて算出することができる(非特許文献4参照)。
ρ=7000-8.0(T-1823)-80.0[C]-83.0[Si]-21.2[Mn]-67.1[P]-84.0[S]-113.0[Al]-29.0[Ti]+5.4[Nb]-14.6[Cr]+4.8[Ni]+3.6[Cu]+23.0[Mo]-46.3[V] (1)
上記(1)式において、元素記号は各元素の含有量(質量%)を意味する。上記(1)式を適用できる成分範囲は、表1に示すとおりである。
In the present invention, the molten steel density corresponding to the slab (post-component) cast later is lower than the molten steel density corresponding to the slab (pre-component) cast earlier, and the molten steel density difference is 30 kg / m 3 or more. It is characterized by being. Since the density of the molten steel of the rear component located above the component boundary 30 is lower than that of the molten steel of the front component located below the component boundary 30, the density difference causes the upper and lower parts of the component boundary 30 to be sandwiched between them. Mixing of molten steel between can be prevented. The molten steel density can be calculated from the component composition and the molten steel temperature T (° C.) in the tundish using the molten steel density ρ (kg / m 3 ) calculated by the following equation (1) (see Non-Patent Document 4). ).
ρ = 7000-8.0 (T-1823) -80.0 [C] -83.0 [Si] -21.2 [Mn] -67.1 [P] -84.0 [S] -113.0 [Al] -29.0 [Ti] +5.4 [Nb] ] -14.6 [Cr] +4.8 [Ni] +3.6 [Cu] +23.0 [Mo] -46.3 [V] (1)
In the above equation (1), the element symbol means the content (mass%) of each element. The component range to which the above formula (1) can be applied is as shown in Table 1.

Figure 0007047647000001
Figure 0007047647000001

ラボ試験により、溶鋼密度差の影響、および電磁ブレーキとの関係を調査し、先行チャージおよび後続チャージの溶鋼密度差が-30kg/m3以上である場合、より顕著に混合域低減の効果があることを試験連鋳機による試験により明らかにした。上記溶鋼密度の推定式としては上記(1)式を用いた。 The effect of the molten steel density difference and the relationship with the electromagnetic brake were investigated by a laboratory test, and when the molten steel density difference between the preceding charge and the succeeding charge was -30 kg / m 3 or more, the effect of reducing the mixing range was more remarkable. This was clarified by a test using a test continuous casting machine. The above formula (1) was used as the above formula for estimating the molten steel density.

試験では取鍋溶鋼量が8トン規模の試験連続鋳造機を用いた。タンディッシュ容量は5トン、図1、図4(A)に示すタンディッシュ堰を用い、下流領域23の容量は0.89トンである。鋳型断面サイズ100(厚)mm×800(幅)mm、鋳造速度5.0m/minでの実験を実施した。直流磁場発生装置9をメニスカス34から600mm下方に設け、電磁ブレーキを作動させた。電磁ブレーキは0.5Tの直流磁場を幅方向均一に印加した条件とした。 In the test, a test continuous casting machine with a ladle molten steel amount of 8 tons was used. The tundish capacity is 5 tons, and the capacity of the downstream region 23 is 0.89 tons using the tundish weir shown in FIGS. 1 and 4 (A). An experiment was carried out at a mold cross-sectional size of 100 (thickness) mm × 800 (width) mm and a casting speed of 5.0 m / min. The DC magnetic field generator 9 was provided 600 mm below the meniscus 34, and the electromagnetic brake was operated. The electromagnetic brake was set under the condition that a DC magnetic field of 0.5 T was applied uniformly in the width direction.

成分系としては0.05%C-0.1%Si-0.1%Mnの低炭素鋼をベース組成(前成分)とし、取鍋1からタンディッシュ2内の上流領域22に供給した。取鍋内の残溶鋼が5トンとなった時点で、タンディッシュ内の下流領域23に炭素の添加を開始した。炭素添加は、炭素を鉄で被覆したワイヤを連続的に供給することによって行った。ワイヤ添加速度の調整により、炭素濃度増加量を変化させて後成分とし、後成分の密度が前成分の密度に対して-10、-30、-50kg/m3と密度を変化させた条件の試験を実施した。加えて、モリブデンを添加し、溶鋼密度を+10kg/m3変化させた条件で試験を行った。 As a component system, low carbon steel of 0.05% C-0.1% Si-0.1% Mn was used as a base composition (pre-component) and supplied from the ladle 1 to the upstream region 22 in the tundish 2. When the amount of residual molten steel in the ladle reached 5 tons, carbon was started to be added to the downstream region 23 in the tundish. The carbon addition was carried out by continuously supplying a wire coated with carbon with iron. By adjusting the wire addition rate, the amount of increase in carbon concentration was changed to make the back component, and the density of the back component was changed to -10, -30, -50 kg / m 3 with respect to the density of the front component. A test was conducted. In addition, the test was conducted under the condition that molybdenum was added and the molten steel density was changed by +10 kg / m 3 .

ワイヤ添加開始直後、溶鋼成分が前成分から後成分まで上昇するための時間が必要となる。タンディッシュ内の下流領域23の容量が小さいほど、また鋳型内の上側溶鋼プール24の容量が小さいほど、溶鋼成分の変化に要する時間が短くなる。今回のラボ試験では、試験条件に関わらず、各成分系におけるタンディッシュアロイング時間(ワイヤ添加開始から溶鋼成分が目標成分に到達する時間)は、ほぼ20秒で一定であった。 Immediately after the start of wire addition, it takes time for the molten steel component to rise from the pre-component to the post-component. The smaller the capacity of the downstream region 23 in the tundish and the smaller the capacity of the upper molten steel pool 24 in the mold, the shorter the time required for the change of the molten steel component. In this laboratory test, the tundish arranging time (time for the molten steel component to reach the target component from the start of wire addition) in each component system was constant at about 20 seconds regardless of the test conditions.

ラボ試験において、前成分と後成分との密度差が、異鋼種継ぎ目部の成分混合長に及ぼす影響を比較した結果を図5に示す。縦軸のCNは、変化させた成分(炭素、モリブデン)の濃度を分析した結果を用い、(2)式で規格化した濃度である。Cは分析結果であり、C1およびC2はそれぞれ、先行チャージの溶鋼濃度(前成分)、後続チャージの溶鋼濃度(後成分)である。なお、測定位置は鋳片幅中央部の厚み中心50mm位置である。
N=(C-C1)/(C2-C1) (2)
FIG. 5 shows the results of comparing the effects of the density difference between the front component and the rear component on the component mixing length of the different steel grade seam in the laboratory test. CN on the vertical axis is the concentration standardized by Eq. (2) using the result of analyzing the concentration of the changed components (carbon, molybdenum ). C is the analysis result, and C 1 and C 2 are the molten steel concentration (pre-component) of the preceding charge and the molten steel concentration (post-component) of the subsequent charge, respectively. The measurement position is 50 mm at the center of the thickness at the center of the width of the slab.
CN = (C - C 1 ) / (C 2 -C 1 ) (2)

図5に各密度差条件における混合長の変化を示す。規格化したCNの値が0.1~0.9の領域を混合領域と定義し、図5中にハッチングして示す。溶鋼密度差(Δρ)を-30kg/m3以上と後成分を軽くすることで、混合領域の顕著な低減が確認でき、成分混合長さが前後溶鋼の密度差によって大きく変化することを明らかにした。 FIG. 5 shows the change in the mixing length under each density difference condition. A region having a normalized CN value of 0.1 to 0.9 is defined as a mixed region and is shown by hatching in FIG. By reducing the post-component density to -30 kg / m 3 or more for the molten steel density difference (Δρ), a significant reduction in the mixed region can be confirmed, and it is clear that the component mixed length changes significantly depending on the density difference between the front and rear molten steel. bottom.

本発明では、タンディッシュ堰5によって区画した下流領域23内に、成分添加装置8とともに、タンディッシュ内溶鋼を加熱する加熱手段7を設ける。加熱手段7としては、プラズマ加熱、誘導加熱などから選択することができる。溶鋼の上部にプラズマ加熱装置11を設置すると好ましい。プラズマ加熱により溶鋼上部を加熱し、加熱された領域内に所望の添加元素(合金)をワイヤとして添加することで、タンディッシュ堰5で仕切られた下流領域23内の溶鋼濃度を変化させることが可能である。薄スラブ鋳造では通常の連続鋳造装置に比べてタンディッシュ容量が小さい。これにより溶鋼中にワイヤを添加するだけではタンディッシュ内溶鋼温度が低下してしまい、追加した合金元素の溶け残りが生じる可能性があるだけでなく、ノズル閉塞など生産性に悪影響を及ぼす可能性がある。そのため、加熱手段7を設けることとした。加熱手段7としてプラズマ加熱装置11を設置すると好ましい。また、プラズマ加熱を行うことにより、必要に応じて、ワイヤ添加装置を複数個設置して、所望の鋼材を小ロットで製造することが可能である。 In the present invention, in the downstream region 23 partitioned by the tundish weir 5, a heating means 7 for heating the molten steel in the tundish is provided together with the component adding device 8. The heating means 7 can be selected from plasma heating, induction heating and the like. It is preferable to install the plasma heating device 11 on the molten steel. By heating the upper part of the molten steel by plasma heating and adding a desired additive element (alloy) as a wire to the heated region, the concentration of the molten steel in the downstream region 23 partitioned by the tundish weir 5 can be changed. It is possible. Thin slab casting has a smaller tundish capacity than ordinary continuous casting equipment. As a result, simply adding a wire to the molten steel will lower the temperature of the molten steel in the tundish, which may cause undissolved residue of the added alloying elements and adversely affect productivity such as nozzle blockage. There is. Therefore, it was decided to provide the heating means 7. It is preferable to install the plasma heating device 11 as the heating means 7. Further, by performing plasma heating, it is possible to install a plurality of wire addition devices as needed to manufacture a desired steel material in a small lot.

本発明の効果を検討するに当たり、鋳型内の自然対流について考える必要がある。鋳型内の自然対流は密度差を駆動力として発生する。密度差を生む要因としては、上記のような含有成分濃度差に加えて、温度差も影響する。タンディッシュの下流領域で成分を添加することによって溶鋼温度が低下するので、このままでは、成分境界部の上方の溶鋼の温度が低下し、溶鋼密度が増大する原因となるので、自然対流を誘発し、成分境界部上下での成分混合の原因となり得る。それに対して、プラズマ加熱を加味することにより、プラズマ加熱による昇温とワイヤ添加による温度低下が相殺され、大きな温度変化は生じない。よって、温度差による密度変化は小さくなるので好ましい。 In examining the effect of the present invention, it is necessary to consider the natural convection in the mold. Natural convection in the mold is generated by the density difference as the driving force. In addition to the above-mentioned difference in the concentration of contained components, the difference in temperature also has an effect as a factor that causes the difference in density. Since the molten steel temperature is lowered by adding the component in the downstream region of the tundish, the temperature of the molten steel above the component boundary is lowered and the molten steel density is increased, which induces natural convection. , Can cause component mixing above and below the component boundary. On the other hand, by adding plasma heating, the temperature rise due to plasma heating and the temperature decrease due to wire addition are offset, and a large temperature change does not occur. Therefore, the density change due to the temperature difference is small, which is preferable.

加熱手段7としてのプラズマ加熱装置11については、図1に示すように下流領域23の溶鋼表面、のぞましくは添加するワイヤーをプラズマ加熱することで添加物の溶融促進をはかる。図1はトーチ12をカソードとし、アノード電極13として鉄板をタンディッシュ耐火物内に埋め込み、その表面が溶鋼と接触するように配置している。トーチ12は把持装置を介して、アノード電極13と直流電源(図1には図示していない)と接続する。直流電源の出力はプラズマ加熱を行う通常の装置の電源として使用されるものでよく、2MW程度でよい。なお、ここで加熱手段7としてプラズマ加熱を用いるのは、元素添加を行う湯面近傍に加熱ができること、さらにプラズマ加熱の輻射熱を利用することで溶鋼温度よりも融点の高い金属の溶融促進を図ることができるためである。また、図1にはシングルトーチの例を示したが、トーチを2本併設するツイントーチ方式でもよい。 As for the plasma heating device 11 as the heating means 7, as shown in FIG. 1, the molten steel surface of the downstream region 23, preferably the wire to be added, is plasma-heated to promote the melting of the additive. In FIG. 1, the torch 12 is used as a cathode, and an iron plate is embedded in a tundish refractory as an anode electrode 13, and the surface thereof is arranged so as to be in contact with molten steel. The torch 12 is connected to the anode electrode 13 and a DC power supply (not shown in FIG. 1) via a gripping device. The output of the DC power supply may be used as a power supply for a normal device that heats plasma, and may be about 2 MW. Here, plasma heating is used as the heating means 7 to promote melting of a metal having a melting point higher than the molten steel temperature by being able to heat near the surface of the molten metal to which an element is added and by using the radiant heat of plasma heating. Because it can be done. Further, although an example of a single torch is shown in FIG. 1, a twin torch system in which two torches are provided side by side may be used.

プラズマにて加熱された溶鋼(ワイヤ添加位置)では局所的に溶鋼温度が高く、高温の溶鋼は上部に滞留する傾向がある。よって、添加した合金元素の効率的な混合を図るため、図1に示すように、タンディッシュ底部のガス吹き込み手段10からガス吹き込みを行うと好ましい。ガス吹き込みによって溶鋼の撹拌を促すことで成分および温度が効率よく均一となる。ガス種としてはArガスが好ましい。ガス吹込み量は添加濃度に応じて調整すればよく、1NL/分から10NL/分の範囲で適宜選択すればよい。 In the molten steel heated by plasma (wire addition position), the molten steel temperature is locally high, and the high temperature molten steel tends to stay in the upper part. Therefore, in order to efficiently mix the added alloying elements, it is preferable to blow gas from the gas blowing means 10 at the bottom of the tundish as shown in FIG. By promoting the stirring of the molten steel by blowing gas, the composition and temperature become uniform efficiently. Ar gas is preferable as the gas type. The amount of gas blown may be adjusted according to the addition concentration, and may be appropriately selected in the range of 1 NL / min to 10 NL / min.

上記のような装置・方法を用いて1つのタンディッシュで一部成分を変更した溶鋼を製造することで小ロット材の製造を可能とする。特に本発明による製造方法では所望の成分に到達する前の繋部(混合領域)が小さく、合金ワイヤを変更することで溶鋼成分を変更可能なことから、スクラップとなる領域を最小限にすることができるとともに、大きな設備変更もいらず高効率に小ロット材をつくり分けることが可能である。 It is possible to manufacture small lot materials by manufacturing molten steel with some components changed in one tundish using the above equipment and method. In particular, in the manufacturing method according to the present invention, the connecting portion (mixed region) before reaching the desired component is small, and the molten steel component can be changed by changing the alloy wire. At the same time, it is possible to produce small lot materials with high efficiency without the need for major equipment changes.

タンディッシュ堰5の形状について説明する。図4において、ドットハッチング部分がタンディッシュ堰5の溶鋼浸漬部分のうちの堰存在部分であり、ドットハッチング部以外の空白部分が溶鋼通過部6を示している。溶鋼通過部6の設け方としては、図4(A)に示すように上堰5aと下堰5bとの組み合わせとすると好ましい。また、タンディッシュ堰5の上堰5aと下堰5bは、図1に示すように同一の垂直断面内に配置することが好ましいが、図4(E)に示すように異なった垂直断面内に配置することとしても良い。さらには、タンディッシュ堰5を1枚の板で形成し、図4(B)に示すようにタンディッシュ堰5の一部を開口して溶鋼通過部6とし、図4(C)に示すようにタンディッシュ堰5を下堰5bのみとしてタンディッシュ堰5の上端と湯面35の間を溶鋼通過部6とし、図4(D)に示すようにタンディッシュ堰5を上堰5aのみとしてタンディッシュ堰5の下方を溶鋼通過部6としてもよい。いずれの形状においても、溶鋼通過部6の大きさを大きくするほど溶鋼は通りやすいが成分混合が発生しやすくなり、溶鋼通過部6の大きさを小さくするほど溶鋼は通りにくくなるが成分混合は発生しやすくなるので、溶鋼通過部6の好適な大きさを適宜決定することができる。連続鋳造完了時に上流領域22側に溶鋼が残存するのを防止するため、図4(C)に示すように、タンディッシュ堰の下端付近に逃げ孔14を設けても良い。 The shape of the tundish weir 5 will be described. In FIG. 4, the dot hatched portion is the weir-existing portion of the molten steel immersion portion of the tundish weir 5, and the blank portion other than the dot hatched portion indicates the molten steel passing portion 6. As a method of providing the molten steel passing portion 6, it is preferable to use a combination of the upper weir 5a and the lower weir 5b as shown in FIG. 4 (A). Further, the upper weir 5a and the lower weir 5b of the tundish weir 5 are preferably arranged in the same vertical cross section as shown in FIG. 1, but are arranged in different vertical cross sections as shown in FIG. 4 (E). It may be arranged. Further, the tundish weir 5 is formed of one plate, and a part of the tundish weir 5 is opened as shown in FIG. 4 (B) to form a molten steel passing portion 6, as shown in FIG. 4 (C). The tundish weir 5 is used as the lower weir 5b only, the molten steel passage portion 6 is formed between the upper end of the tundish weir 5 and the molten metal surface 35, and the tundish weir 5 is used as the upper weir 5a only as shown in FIG. 4D. The lower part of the dish weir 5 may be the molten steel passing portion 6. In any shape, the larger the size of the molten steel passing portion 6, the easier it is for molten steel to pass through, but the more easily component mixing occurs, and the smaller the size of the molten steel passing portion 6, the more difficult it is for molten steel to pass through. Since it is likely to occur, a suitable size of the molten steel passing portion 6 can be appropriately determined. As shown in FIG. 4C, a relief hole 14 may be provided near the lower end of the tundish weir in order to prevent the molten steel from remaining on the upstream region 22 side when the continuous casting is completed.

本発明の効果を検証するため、鋳造試験を行った。本試験では予備試験と同様のラボ鋳造設備を用いた。取鍋1の溶鋼容量は8トンである。タンディッシュ2容量は5トン、図1、図4(A)に示すタンディッシュ堰5を用い、下流領域23の容量は0.89トンである。タンディッシュ堰5は浸漬ノズル3から230mm位置に設置した。タンディッシュ内の下流領域23の溶鋼をプラズマ加熱によって加熱し、Arガス吹き込みを行っている。後続チャージの成分調整は、ワイヤ添加により実施している。鋳込み温度は初期溶鋼組成の液相線温度+50℃とし、600kWの電力を印加して、プラズマ加熱によりタンディッシュ内の下流領域23の温度を一定となるように制御した。加熱された領域に13mmの合金をワイヤとして添加しており、比較条件として、プラズマ加熱を用いない試験も実施した。ワイヤの送り速度は添加量に応じて350m/minを上限速度とし、必要に応じてワイヤ送り装置を複数個用い、複数のワイヤを添加した。 A casting test was conducted to verify the effect of the present invention. In this test, the same laboratory casting equipment as in the preliminary test was used. The molten steel capacity of the ladle 1 is 8 tons. The capacity of the tundish 2 is 5 tons, the capacity of the downstream region 23 is 0.89 tons using the tundish weir 5 shown in FIGS. 1 and 4 (A). The tundish weir 5 was installed at a position 230 mm from the immersion nozzle 3. The molten steel in the downstream region 23 in the tundish is heated by plasma heating, and Ar gas is blown into it. The component of the subsequent charge is adjusted by adding a wire. The casting temperature was the liquidus temperature of the initial molten steel composition + 50 ° C., and an electric power of 600 kW was applied to control the temperature of the downstream region 23 in the tundish to be constant by plasma heating. A 13 mm alloy was added as a wire to the heated region, and a test without plasma heating was also performed as a comparative condition. The upper limit of the wire feeding speed was 350 m / min depending on the amount of addition, and a plurality of wire feeding devices were used as needed to add a plurality of wires.

鋳片サイズは厚み100mm×幅800mm、鋳造速度は5.0m/minとして鋳込み試験を行った。メニスカス34から600mm下方に直流磁場発生装置9を配置して電磁ブレーキを作動させた。電磁ブレーキはいずれの条件においても0.5Tとした。 The casting test was performed with a slab size of 100 mm in thickness × 800 mm in width and a casting speed of 5.0 m / min. The DC magnetic field generator 9 was arranged 600 mm below the meniscus 34 to operate the electromagnetic brake. The electromagnetic brake was set to 0.5T under all conditions.

表2において、先行チャージの溶鋼成分(前成分)分析結果を上段に記載し、後続チャージ(後成分)の結果を下段に示す。表1において、“-”や記載されていないFe以外の元素は積極的に添加していないことを示す。 In Table 2, the analysis results of the molten steel component (pre-component) of the preceding charge are shown in the upper row, and the results of the succeeding charge (post-component) are shown in the lower row. In Table 1, it is shown that elements other than “-” and Fe which are not described are not positively added.

本発明例、および比較例とも評価方法としては、歩留り改善率として整理した。鋳片の成分測定方法としては、前述の評価方法と同様に、ワイヤを添加開始した位置を原点とし、鋳造方向に0.2m毎に厚み中心部(表層より50mm位置)より成分分析用のサンプルを採取し、それぞれ所望の添加元素濃度に至るまでの混合域長さ(A)を測定した。一方、従来手法として、2つの取鍋を用意し、先行取鍋内溶鋼を先行チャージの溶鋼成分、後行取鍋内溶鋼を後行チャージの溶鋼成分に調整された溶鋼を用いて、先行チャージのタンディッシュ内残溶鋼が2トンにとなった時点で後続チャージの溶鋼をタンディッシュ内に注入する、異鋼種連々鋳を実施した。そして、この場合の混合域長さ(B)を評価した。その上で、上記混合域長さ(A)と混合域長さ(B)を用い、(B―A)/B×100(%)とすることで改善率を算出した。 As an evaluation method for both the examples of the present invention and the comparative examples, the yield improvement rate was arranged. As a method for measuring the component of the slab, as in the above-mentioned evaluation method, the starting point is the position where the wire is added, and the sample for component analysis is taken from the center of the thickness (50 mm from the surface layer) every 0.2 m in the casting direction. Was collected, and the length of the mixed region (A) up to the desired concentration of the added element was measured. On the other hand, as a conventional method, two ladles are prepared, and the molten steel in the preceding ladles is adjusted to the molten steel component of the preceding charge, and the molten steel in the following ladles is adjusted to the molten steel component of the following charge. When the residual molten steel in the tundish became 2 tons, the molten steel of the subsequent charge was injected into the tundish, and the different steel grades were continuously cast. Then, the mixed region length (B) in this case was evaluated. Then, using the mixed region length (A) and the mixed region length (B), the improvement rate was calculated by setting (BA) / B × 100 (%).

総合評価として、30%以上の歩留り改善効果があり、かつ安定的に操業できた条件において、総合評価を○とした。ノズル閉塞などにより操業が安定化しなかった条件については、歩留り改善効果があったものでも評価を×とした。 As a comprehensive evaluation, the comprehensive evaluation was marked as ◯ under the conditions that the yield improvement effect was 30% or more and the operation was stable. For conditions where the operation was not stabilized due to nozzle blockage, etc., the evaluation was marked as x even if the yield was improved.

Figure 0007047647000002
Figure 0007047647000002

本発明例1~4では異鋼種連々鋳でも、鋳造速度を落とすことなく製造できており、スクラップとなる領域が小さく、歩留り改善効果を確認した。またノズル閉塞等もなく、安定した操業が可能であった。 In Examples 1 to 4 of the present invention, even in continuous casting of different steel grades, it was possible to manufacture without slowing down the casting speed, the area of scrap was small, and the effect of improving the yield was confirmed. In addition, stable operation was possible without nozzle blockage.

表2の比較例において、本発明範囲かは外れる項目に下線を付している。比較例1では溶鋼密度差による改善効果はやや見られたものの、電磁ブレーキを利用しなかったため、混合域の低減効果が十分ではなかった。また比較例2および3では、溶鋼密度差が十分ではなく、ストランド内での溶鋼の混合抑制が十分ではなく、所望の混合域低減につながらなかった。比較例4では加熱手段を用いず、合金ワイヤを添加したことにより、溶鋼温度が低下し、最終的に試験中にノズル閉塞を生じたため評価、安定操業の観点から評価として×とした。 In the comparative examples in Table 2, items outside the scope of the present invention are underlined. In Comparative Example 1, although the improvement effect due to the difference in molten steel density was slightly observed, the effect of reducing the mixing region was not sufficient because the electromagnetic brake was not used. Further, in Comparative Examples 2 and 3, the difference in the density of the molten steel was not sufficient, the mixing suppression of the molten steel in the strand was not sufficient, and the desired reduction of the mixing region was not achieved. In Comparative Example 4, the molten steel temperature dropped due to the addition of the alloy wire without using the heating means, and the nozzle was finally blocked during the test. Therefore, the evaluation was evaluated as x from the viewpoint of stable operation.

1 取鍋
2 タンディッシュ
3 浸漬ノズル
4 鋳型
5 タンディッシュ堰
5a 上堰
5b 下堰
6 溶鋼通過部
7 加熱手段
8 成分添加装置
9 直流磁場発生装置
10 ガス吹き込み手段
11 プラズマ加熱装置
12 トーチ
13 アノード電極
14 逃げ孔
21 溶鋼移注部
22 上流領域
23 下流領域
24 上側溶鋼プール
25 下側溶鋼プール
26 直流磁場帯
27 吐出流
28 上昇流
29 下降流
30 成分境界部
31 前成分領域
32 後成分領域
33 定常下降流
34 メニスカス
35 湯面
1 Ladle 2 Tandish 3 Immersion nozzle 4 Mold 5 Tandish weir 5a Upper weir 5b Lower weir 6 Molten steel passage 7 Heating means 8 Component addition device 9 DC magnetic field generator 10 Gas blowing means 11 Plasma heating device 12 Torch 13 Anode electrode 14 Relief hole 21 Molten steel transfer part 22 Upstream region 23 Downstream region 24 Upper molten steel pool 25 Lower molten steel pool 26 DC magnetic field band 27 Discharge flow 28 Upflow 29 Downflow 30 Component boundary 31 Front component region 32 Post component region 33 Steady Downflow 34 Meniscus 35 Hot water surface

Claims (2)

取鍋に収容した溶鋼をタンディッシュに移注し、タンディッシュの底部に設けた浸漬ノズルから溶鋼を連続鋳造鋳型に注入する薄スラブの連続鋳造方法であって、
取鍋からの溶鋼移注部と浸漬ノズルとの間にタンディッシュ堰を設置し、前記タンディッシュ堰は溶鋼通過部を有し、前記タンディッシュ内のタンディッシュ堰にて区分された取鍋溶鋼移注側を上流領域、その反対側を下流領域とし、前記下流領域側のタンディッシュ内溶鋼を加熱する加熱手段を有し、
鋳型幅方向全幅にわたって厚み方向に直流磁場を印加する直流磁場発生装置を配置し、当該直流磁場発生装置によって形成される直流磁場帯をはさんだストランドの上部を上側溶鋼プール、下部を下側溶鋼プールとし、前記浸漬ノズルから上側溶鋼プールに溶鋼を供給し、
連続鋳造中において、下流領域側のタンディッシュ内溶鋼に対して所定の元素あるいはその合金の連続的添加を開始しあるいは添加量を変更することによって、先に鋳造した鋳片と後に鋳造した鋳片の間で異なる成分組成の鋳片を鋳造し、成分組成とタンディッシュ内溶鋼温度T(℃)から下記(1)式で計算される溶鋼密度ρ(kg/m3)において、後から鋳造した鋳片に対応する溶鋼密度は、先に鋳造した鋳片に対応する溶鋼密度よりも低く、溶鋼密度差が30kg/m3以上であることを特徴とする、薄スラブの連続鋳造方法。
ρ=7000-8.0(T-1823)-80.0[C]-83.0[Si]-21.2[Mn]-67.1[P]-84.0[S]-113.0[Al]-29.0[Ti]+5.4[Nb]-14.6[Cr]+4.8[Ni]+3.6[Cu]+23.0[Mo]-46.3[V] (1)
上記(1)式において、元素記号は各元素の含有量(質量%)を意味する。
It is a continuous casting method of thin slabs in which molten steel contained in a ladle is transferred to a tundish and molten steel is injected into a continuous casting mold from a dipping nozzle provided at the bottom of the tundish.
A tundish weir is installed between the molten steel transfer part from the ladle and the immersion nozzle, and the tundish weir has a molten steel passage part, and the ladle molten steel separated by the tundish weir in the tundish. It has a heating means for heating the molten steel in the tundish on the downstream region side, with the transfer side as the upstream region and the opposite side as the downstream region.
A DC magnetic field generator that applies a DC magnetic field in the thickness direction over the entire width of the mold is arranged, and the upper part of the strand sandwiching the DC magnetic field band formed by the DC magnetic field generator is the upper molten steel pool and the lower part is the lower molten steel pool. Then, the molten steel is supplied from the immersion nozzle to the upper molten steel pool.
During continuous casting, by starting continuous addition of a predetermined element or its alloy to the molten steel in the tundish on the downstream region side or by changing the addition amount, the slab cast first and the slab cast later. Shards with different composition compositions were cast between the two, and later cast at the molten steel density ρ (kg / m 3 ) calculated by the following equation (1) from the composition and the molten steel temperature T (° C.) in the tundish. A method for continuous casting of thin slabs, wherein the molten steel density corresponding to the slab is lower than the molten steel density corresponding to the previously cast slab, and the molten steel density difference is 30 kg / m 3 or more.
ρ = 7000-8.0 (T-1823) -80.0 [C] -83.0 [Si] -21.2 [Mn] -67.1 [P] -84.0 [S] -113.0 [Al] -29.0 [Ti] +5.4 [Nb] ] -14.6 [Cr] +4.8 [Ni] +3.6 [Cu] +23.0 [Mo] -46.3 [V] (1)
In the above equation (1), the element symbol means the content (mass%) of each element.
前記下流領域側のタンディッシュ内溶鋼を加熱する手段としてプラズマ加熱を用い、かつ下流領域のタンディッシュ底部からガス吹き込みを行いつつ、前記所定の元素あるいはその合金の連続的添加を行うことを特徴とする請求項1に記載の薄スラブの連続鋳造方法。 It is characterized in that plasma heating is used as a means for heating the molten steel in the tundish on the downstream region side, and the predetermined element or its alloy is continuously added while gas is blown from the bottom of the tundish in the downstream region. The method for continuously casting a thin slab according to claim 1.
JP2018137398A 2018-07-23 2018-07-23 Continuous casting method for thin slabs Active JP7047647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018137398A JP7047647B2 (en) 2018-07-23 2018-07-23 Continuous casting method for thin slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018137398A JP7047647B2 (en) 2018-07-23 2018-07-23 Continuous casting method for thin slabs

Publications (2)

Publication Number Publication Date
JP2020015047A JP2020015047A (en) 2020-01-30
JP7047647B2 true JP7047647B2 (en) 2022-04-05

Family

ID=69581050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018137398A Active JP7047647B2 (en) 2018-07-23 2018-07-23 Continuous casting method for thin slabs

Country Status (1)

Country Link
JP (1) JP7047647B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080788A (en) 2015-10-30 2017-05-18 新日鐵住金株式会社 Method and device for continuously casting double-layered cast slab

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138046U (en) * 1989-04-19 1990-11-19
JP2969579B2 (en) * 1991-10-22 1999-11-02 新日本製鐵株式会社 Steel continuous casting method
JP3426383B2 (en) * 1995-02-23 2003-07-14 新日本製鐵株式会社 Steel continuous casting method
JPH09239501A (en) * 1996-03-06 1997-09-16 Nkk Corp Method for refining molten steel in tundish

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080788A (en) 2015-10-30 2017-05-18 新日鐵住金株式会社 Method and device for continuously casting double-layered cast slab

Also Published As

Publication number Publication date
JP2020015047A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US8409375B2 (en) Method of producing a copper alloy wire rod and copper alloy wire rod
CN105397045B (en) The casting and rolling device and casting-rolling method of a kind of aluminum alloy slab
CN105018761B (en) Continuous casting method for high-manganese and high-aluminum type austenite low-magnetic steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
CN104894471A (en) High-manganese high-aluminum vanadium-containing non-magnetic steel plate and manufacturing method thereof
JP6631162B2 (en) Continuous casting method and continuous casting apparatus for multilayer slab
JP6855806B2 (en) Continuous casting method and continuous casting equipment for multi-layer slabs
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP7047647B2 (en) Continuous casting method for thin slabs
KR20120120410A (en) Method for continuously casting steel and process for producing steel sheet
US3822735A (en) Process for casting molten silicon-aluminum killed steel continuously
AU2019253975B2 (en) A process for producing a superalloy and superalloy obtained by said process
KR0184240B1 (en) Process of continuously casting steel using electromagnetic field
CN109794589A (en) A kind of process control method preventing CSP continuous casting billet lobe defect
CN105568166B (en) The 34CrMo pipes steel billet and its casting method of 350 ㎜ diameters
CN104846234B (en) Cu-Zr-Ag alloy crystallizer copper plate and preparation process thereof
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
CN105603302A (en) Phi350mm 34CrMo circular tube steel blank and smelting method thereof
CN109913755B (en) Peritectic steel and preparation method thereof
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP2017196626A (en) Continuous casting method for molten steel
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
CN117187581A (en) Consumable electrode preparation method and electroslag remelting method
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
JPH0760408A (en) Production of steel plate for thin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151