JP3651441B2 - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP3651441B2
JP3651441B2 JP2002024189A JP2002024189A JP3651441B2 JP 3651441 B2 JP3651441 B2 JP 3651441B2 JP 2002024189 A JP2002024189 A JP 2002024189A JP 2002024189 A JP2002024189 A JP 2002024189A JP 3651441 B2 JP3651441 B2 JP 3651441B2
Authority
JP
Japan
Prior art keywords
casting
width
mold
coil
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024189A
Other languages
Japanese (ja)
Other versions
JP2003225745A (en
Inventor
久生 山崎
健二 大島
俊生 藤村
寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002024189A priority Critical patent/JP3651441B2/en
Publication of JP2003225745A publication Critical patent/JP2003225745A/en
Application granted granted Critical
Publication of JP3651441B2 publication Critical patent/JP3651441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造方法に関し、詳しくは、デッケルを発生させずに広幅低速で鋳造することを可能とした鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
鋼の連続鋳造において、2孔ノズルを用いて、鋳込み幅1600mm以上、鋳込み速度1.0m/min以下の広幅低速鋳造を行うと、例えば図3に示すように、メニスカス(溶鋼湯面)部のノズル周りは、ノズル(浸漬ノズル)の吐出口から吐出された溶鋼が到達しにくくて、熱供給がされにくいことから、ノズル周りの溶鋼が凝固して形成される所謂デッケル(不沈塊)が発生する。なお、従来実績から得られたデッケル発生域(デッケルが発生する鋳込み幅及び鋳込み速度の範囲)を図4に示す。デッケルが発生すると、次のような製品欠陥や操業トラブルの発生頻度が増大する。
▲1▼メニスカス上のモールドパウダを引き込み、製品のUT欠陥を招く。
▲2▼ノズル周囲部の凝固収縮が大となり、縦割れが発生しやすくなる。
▲3▼ノズル詰まり防止のためにノズル上部から吹き込まれたArガスの気泡がメニスカス上方の大気へ抜けにくくなり、表面に捕捉されて製品のブローホール欠陥を招く。
▲4▼操業面では、ノズル周りへの熱供給不足によりモールドパウダの溶融速度が下がり、パウダ溶融厚が薄くなって、モールドパウダの流入不足によるブレークアウトに至る。
【0003】
上記のような不具合の原因となるノズル周りへの熱供給不足を解消するために、従来、ノズルの浸漬深さを浅くしたり、吐出する角度を上向きにする等の改善策がとられていたが、これらの改善策では、モールドパウダの巻き込みが誘発されやすいという問題があった。
一方、特開平4−26835 号公報では、モールドパウダの溶融層内に電極を挿入して通電し、パウダ内に発生するジュール熱でメニスカス部を加熱するという方法が示されている。また、近年では電磁力を用いて縦割れを防止する方法が主流となっているようで、例えば、特開平8−229652号公報では、対向する長辺側にリニアモータを設置し、その対向したリニアモータコイルの重なり長さを1200mm以下にする方法が示されており、また、特公平4−61743 号公報では、炭素濃度0.1 〜0.18%の中炭素鋼を鋳込み速度1.0m/min以上で鋳込むときに、メニスカス直下から200mm の領域で凝固シェル内周面に沿って溶鋼を40〜120cm/s の速度で流動させる方法が示されている。
【0004】
【発明が解決しようとする課題】
しかし、前記特開平4−26835 号公報に示された方法では、電極が消耗し、その高さコントロールが難しいばかりか、電極の補充や通電用電力等にかかるランニングコストが多大である。また、前記電磁力を用いる二公報所載の方法については、鋳込み幅1600mm以上、鋳込み速度1.0m/min以下の広幅低速鋳造の場合、特開平8−229652号公報所載の方法では鋳型短辺近傍にも電磁力による流動が生じ、また、特公平4−61743 号公報所載の方法ではメニスカス近傍で電磁攪拌することにより熱供給は可能であっても流速が大きすぎ、いずれの方法によってもモールドパウダの巻き込みを誘発してしまう問題を生じた。
【0005】
そこで、本発明は、広幅低速鋳造時にメニスカス部のノズル周りへ、モールドパウダ巻き込みを伴わず低ランニングコストで制御容易に、デッケル発生を防止しうるに十分な熱量が供給されるようにした鋼の連続鋳造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
発明者らは、広幅低速鋳造時の最適な電磁力印加条件を導くために、低融点金属(鉛)を用いてモデル実験を行った。このモデル実験では、実機の1/5 サイズに製作したモデル装置の鋳型内に低融点合金の湯を注入しつつ凝固させた。このとき、鋳型上方から鋳型内に低融点金属との比重差が実機での溶鋼とモールドパウダとの比重差に等しい液体を添加し、この液体で鋳型内の低融点金属のメニスカスを覆うようにした。電磁力は、鋳型長辺方向(幅方向)に配置した電磁攪拌用コイルに通電し発生させた移動磁界を介して鋳型内の湯を水平旋回させるように印加した。その際、実験条件として、電磁攪拌用コイルのコイル幅(鋳型長辺方向の配置長さ)および高さ(配置高さ位置)を種々変え、各条件につき、メニスカス部の温度分布を測定するとともに、鋳型内の1/4 幅部(かつ1/2 厚部)のメニスカス流速を測定した。凝固後、低融点合金を削り出し、模擬パウダの混入率を測定した。
【0007】
その結果、以下のことが判明した。
(1) ノズル周りのメニスカス温度を確保するとともに、鋳片(凝固シェル)幅中央部の表層に捕捉されるパウダ(モールドパウダ)量(パウダ巻き込み量=前記模擬パウダの混入率)を低減するためには、図1に示すように、1/4 幅部におけるメニスカス流速を20〜40cm/sにすることが重要である。
【0008】
(2) 湯を鋳型短辺近傍まで旋回させると、鋳型内面コーナ部で湯面が乱れることが明瞭に認められた。そこで、コイル幅(対鋳込み幅)とコーナ部でのパウダ巻き込み量の関係を調査し、図2に示す結果を得た。同図より、コイル幅の対鋳込み幅比率が71%を超えると、コーナ部の湯面が乱れ、その部位でのパウダ巻き込み量が増加する。また一方、コイル幅の対鋳込み幅比率が32%に満たないと、1/4 幅部での旋回流速が20cm/sを下回り(この点については図示省略した。)、ノズル周りの温度降下量が増大する。
【0009】
また、別途、コイル幅が鋳込み幅の20〜25%に相当する電磁攪拌用コイルを用いて1/4 幅部のメニスカス流速を20〜40cm/sの範囲に制御することを検討し、その結果、前記制御を実施するためには移動磁界のさらなるパワーアップが必要で、そのアップ代を満足しうるコイル構造は、鋳型長辺壁体内に収納不可能なものであるという結論を得ている。
【0010】
本発明は、これらの知見に基づいてなされたところの、2孔ノズルを用いて、鋳込み幅1600mm以上、鋳込み速度1.0m/min以下の広幅低速鋳造を行う鋼の連続鋳造方法において、鋳込み幅の3271%のコイル幅として鋳型長辺壁体内に設置した電磁攪拌用コイルを用いて鋳型内溶鋼を水平旋回させ、1/4 幅部のメニスカス流速を20〜40cm/sに制御することを特徴とする鋼の連続鋳造方法である。
【0011】
【発明の実施の形態】
本発明では、適用範囲は鋳込み幅1600mm以上、鋳込み速度1.0m/min以下の広幅低速鋳造に限られる。この広幅低速鋳造範囲以外での連続鋳造操業では、図4に示したように従来でもデッケルないし縦割れが発生せず、本発明の効果が確認できない。
【0012】
また、本発明では、用いる電磁攪拌用コイルのコイル幅(鋳型長辺方向の配置長さ)は鋳込み幅の3271%の範囲に限られる。コイル幅をこの範囲に設定することにより、図2に示したように、ノズル周りの温度降下とコーナ部でのパウダ巻き込みとを同時に防止することができる。電磁攪拌用コイルを鋳型長辺壁体内に設置するとしたのは、コイルを鋳型内溶鋼に極力近づけて電磁攪拌用電力利用効率を高くし、ランニングコストを低減するためである。なお、本発明の目的からして、鋳込み幅方向のコイル幅中心位置はノズル中心位置に極力一致させるのが好ましく、また、鋳込み方向のコイル設置範囲はメニスカス近傍とするのが好ましい。
【0013】
また、本発明では、電磁攪拌用コイルへの通電は、該通電により発生する移動磁界によって鋳型内溶鋼にこれをメニスカス流速20〜40cm/sの範囲で水平旋回させうる電磁力が印加されるように行うものとする。メニスカス流速をこの範囲に制御することにより、図1に示したように、ノズル周りの温度降下と幅中央部でのパウダ巻き込みとを同時に防止することができる。
【0014】
【実施例】
(1)本発明例1として、実生産に供される垂直曲げ型連続鋳造機を用いて、低炭素Alキルド鋼(C:0.04〜0.06%、Mn:0.2 〜0.4 %、Al:0.025〜0.034 %)を鋳込み速度0.4 〜0.6 m/minで2400mm幅に鋳造するにあたり、鋳型長辺壁体内に、コイル幅1000mmの電磁攪拌用コイルを、そのコイル幅中心位置をノズル中心位置に合わせて設置し、該コイルに通電して発生させた移動磁界からの電磁力によりメニスカス部の溶鋼を水平旋回させながら、約1000ton のスラブを鋳造した。なお、コイルへの通電電流値は、1/4 幅部のメニスカス流速を測定し、この測定値が20〜40cm/sの範囲に入るように制御した。また、比較例1として、本発明例1において前記コイルへの通電を行わずにスラブを鋳造した。
【0015】
これらについてデッケル発生率および冷延板欠陥混入率を調査した。デッケル発生率は、鋳造中にノズル周りのデッケル発生有無を10分おきに目視検査し、発生有りの回数の対検査回数百分率で評価した。冷延板欠陥混入率は、スラブを熱間圧延しさらに冷間圧延して得られた冷延板コイルについて、リコイルラインで検出された線状疵の長さを測定し、該線状疵長さの対検査コイル長さ百分率で評価した。
【0016】
その結果、表1に示すように、本発明例1ではノズル周りのデッケルは皆無となり、冷延板の線状疵も大幅に低減した。
【0017】
【表1】

Figure 0003651441
【0018】
(2) 本発明例2として、実生産に供される垂直曲げ型連続鋳造機を用いて中炭素Alキルド鋼(C:0.09〜0.13%、Si:0.15〜0.22%、Mn:0.90〜1.10%、Al:0.020 〜0.033 %)を鋳込み速度0.90〜0.95m/minで1600mm幅に鋳造するにあたり、本発明例1と同様の仕方でメニスカス部の溶鋼を水平旋回させながら約1000ton のスラブを鋳造した。また、比較例2として、本発明例2において前記コイルへの通電を行わずに約1000ton のスラブを鋳造した。また比較例3として、本発明例2において、コイル幅を1600mmに変更し、幅方向全域に移動磁界を印加して約1000ton のスラブを鋳造した。
【0019】
これらについて鋳片縦割れ発生率および厚板UT欠陥発生率を調査した。鋳片縦割れ発生率は、鋳造後のスラブを全長目視検査し、検出された縦割れの個数対検査長さの比(百分率)で評価した。厚板UT欠陥発生率は、前記検査後のスラブを厚板圧延により板厚15〜30mmの厚板とした後、全面UT検査を行ない、検出されたUT欠陥の個数対検査長さの比(百分率)で評価した。
【0020】
その結果、表2に示すように、本発明例2および比較例3では、縦割れの発生しやすい幅中央部にかけた移動磁界により溶鋼が水平旋回し、メニスカス温度確保等による凝固の均一性が保たれて、縦割れの発生は皆無であった。しかしながら、全幅にわたって移動磁界をかけた比較例3では、コーナ部の溶鋼も攪拌されたので、厚板の鋳片コーナ部相当部位でUT不良が発生して、高いUT欠陥発生率を示した。UT検査後に欠陥部を分析したところ、モールドパウダが検出された。
【0021】
【表2】
Figure 0003651441
【0022】
【発明の効果】
本発明によれば、広幅低速鋳造において幅中央部のデッケルおよびコーナ部のパウダ巻き込みを同時に防止することができ、鋳片縦割れや圧延後のUT欠陥を生じない健全な広幅連続鋳造鋼鋳片が得られるという優れた効果を奏する。
【図面の簡単な説明】
【図1】 1/4 幅部のメニスカス流速とノズル周りのメニスカス温度降下量及び幅中央部のパウダ巻き込み量との関係を示すグラフである。
【図2】コイル幅の対鋳込み幅比率とコーナ部表層のパウダ巻き込み量及びノズル周りのメニスカス温度降下量との関係を示すグラフである。
【図3】広幅低速鋳造でのノズル周りへの熱供給不足状態を示す説明図である。
【図4】従来の連続鋳造におけるデッケル発生域を示す図である。
【符号の説明】
1 鋳型(鋳型短辺壁)
2 ノズル(浸漬ノズル)
3 モールドパウダ
4 熱い湯の供給不足部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method of steel, and more particularly to a continuous casting method of steel that enables casting at a wide and low speed without generating deckle.
[0002]
[Prior art]
In continuous casting of steel, using a two-hole nozzle and performing a wide low-speed casting with a casting width of 1600 mm or more and a casting speed of 1.0 m / min or less, for example, as shown in FIG. 3, the nozzle of the meniscus (molten steel surface) part Around the nozzle, the molten steel discharged from the nozzle (immersion nozzle) is difficult to reach and it is difficult to supply heat, so a so-called deckle (non-settling mass) formed by solidification of the molten steel around the nozzle occurs. To do. FIG. 4 shows the deckle generation area (the range of casting width and casting speed in which deckle is generated) obtained from the past results. When deckle occurs, the frequency of occurrence of the following product defects and operational troubles increases.
(1) The mold powder on the meniscus is pulled in, leading to UT defects in the product.
(2) Solidification shrinkage around the nozzle becomes large, and vertical cracks are likely to occur.
(3) Ar gas bubbles blown from the upper part of the nozzle to prevent nozzle clogging are difficult to escape to the atmosphere above the meniscus and are trapped on the surface, leading to blowhole defects in the product.
{Circle around (4)} In terms of operation, the melting speed of the mold powder decreases due to insufficient heat supply around the nozzle, and the powder melt thickness decreases, leading to a breakout due to insufficient inflow of the mold powder.
[0003]
In order to eliminate the shortage of heat supply around the nozzle, which causes the above-mentioned problems, conventionally, improvement measures have been taken such as reducing the nozzle immersion depth or increasing the discharge angle upward. However, in these improvement measures, there was a problem that entrainment of the mold powder is easily induced.
On the other hand, Japanese Patent Laid-Open No. 4-26835 discloses a method in which an electrode is inserted into a molten layer of a mold powder and energized, and a meniscus portion is heated by Joule heat generated in the powder. Further, in recent years, it seems that a method of preventing vertical cracking using electromagnetic force has become mainstream. For example, in Japanese Patent Application Laid-Open No. 8-229652, a linear motor is installed on the opposite long side, and the opposite A method for reducing the overlap length of linear motor coils to 1200 mm or less is shown, and Japanese Patent Publication No. 4-61743 discloses medium carbon steel with a carbon concentration of 0.1 to 0.18% at a casting speed of 1.0 m / min or more. The method of flowing molten steel at a speed of 40 to 120 cm / s along the inner peripheral surface of the solidified shell in the region of 200 mm from directly below the meniscus is shown.
[0004]
[Problems to be solved by the invention]
However, in the method disclosed in Japanese Patent Application Laid-Open No. 4-26835, the electrodes are consumed and it is difficult to control the height thereof, and the running cost for replenishing the electrodes, energizing power, etc. is great. As for the method described in the two gazettes using the electromagnetic force, in the case of wide low speed casting with a casting width of 1600 mm or more and a casting speed of 1.0 m / min or less, the method described in JP-A-8-229652 discloses Flow by electromagnetic force is also generated in the vicinity, and in the method described in Japanese Examined Patent Publication No. 4-61743, even if heat can be supplied by electromagnetic stirring in the vicinity of the meniscus, the flow rate is too high. There was a problem inducing the entrainment of mold powder.
[0005]
Accordingly, the present invention provides a steel that is supplied with a sufficient amount of heat to prevent the occurrence of deckle easily at a low running cost without entrainment of mold powder around the nozzle of the meniscus portion at the time of wide and low speed casting. An object is to provide a continuous casting method.
[0006]
[Means for Solving the Problems]
The inventors conducted a model experiment using a low-melting-point metal (lead) in order to derive an optimum electromagnetic force application condition at the time of wide and low-speed casting. In this model experiment, low-melting-point alloy hot water was poured into a mold of a model device manufactured to 1/5 size of the actual machine and solidified. At this time, a liquid in which the specific gravity difference between the low melting point metal and the low melting point metal is equal to the specific gravity difference between the molten steel and the mold powder in the actual machine is added from above the mold so that the meniscus of the low melting point metal in the mold is covered with this liquid. did. The electromagnetic force was applied so that the hot water in the mold was swirled horizontally through a moving magnetic field generated by energizing an electromagnetic stirring coil arranged in the long side direction (width direction) of the mold. At that time, as experimental conditions, the coil width (arrangement length in the mold long side direction) and height (arrangement height position) of the electromagnetic stirring coil were variously changed, and the temperature distribution of the meniscus portion was measured for each condition. The meniscus flow velocity of the 1/4 width portion (and 1/2 thickness portion) in the mold was measured. After solidification, the low melting point alloy was cut out and the mixing rate of the simulated powder was measured.
[0007]
As a result, the following was found.
(1) To ensure the meniscus temperature around the nozzle and reduce the amount of powder (mold powder) trapped in the surface layer at the center of the slab (solidified shell) width (powder entrainment amount = mixing rate of the simulated powder) For this purpose, as shown in FIG. 1, it is important that the meniscus flow velocity in the 1/4 width portion is 20 to 40 cm / s.
[0008]
(2) When the hot water was swung to the vicinity of the mold short side, it was clearly recognized that the molten metal surface was disturbed at the inner corner of the mold. Therefore, the relationship between the coil width (vs. casting width) and the amount of powder entrapped at the corner was investigated, and the result shown in FIG. 2 was obtained. From the figure, when the ratio of the coil width to the casting width exceeds 71 %, the molten metal surface of the corner portion is disturbed, and the amount of powder entrained at that portion increases. On the other hand, if the ratio of the coil width to the casting width is less than 32 %, the swirling flow velocity at the 1/4 width portion is less than 20 cm / s (this is not shown), and the temperature drop around the nozzle Increase.
[0009]
Separately, we investigated the control of the meniscus flow rate in the 1/4 width part to the range of 20-40cm / s using the coil for electromagnetic stirring whose coil width corresponds to 20-25% of the casting width. In order to carry out the above control, it is necessary to further increase the power of the moving magnetic field, and it has been concluded that a coil structure that can satisfy the increase allowance cannot be stored in the long side wall of the mold.
[0010]
The present invention is based on these findings, and is a continuous casting method of steel that performs a wide-speed low-speed casting with a casting width of 1600 mm or more and a casting speed of 1.0 m / min or less using a two-hole nozzle . Using a coil for electromagnetic stirring installed in the long side wall of the mold with a coil width of 32 to 71 %, the molten steel in the mold is horizontally swirled, and the meniscus flow rate at the 1/4 width portion is controlled to 20 to 40 cm / s. This is a continuous casting method for steel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the applicable range is limited to wide-width low speed casting with a casting width of 1600 mm or more and a casting speed of 1.0 m / min or less. In the continuous casting operation outside this wide and low speed casting range, as shown in FIG. 4, no deckle or vertical crack is generated, and the effect of the present invention cannot be confirmed.
[0012]
In the present invention, the coil width (arrangement length in the mold long side direction) of the electromagnetic stirring coil to be used is limited to a range of 32 to 71 % of the casting width. By setting the coil width within this range, as shown in FIG. 2, it is possible to simultaneously prevent a temperature drop around the nozzle and powder entrainment at the corner. The reason why the electromagnetic stirring coil is installed in the long side wall of the mold is to make the coil as close as possible to the molten steel in the mold to increase the power utilization efficiency of the electromagnetic stirring and reduce the running cost. For the purpose of the present invention, the coil width center position in the casting width direction is preferably matched with the nozzle center position as much as possible, and the coil installation range in the casting direction is preferably in the vicinity of the meniscus.
[0013]
In the present invention, the electromagnetic stirring coil is energized by applying an electromagnetic force capable of horizontally swirling the molten steel in the mold in the range of the meniscus flow rate of 20 to 40 cm / s by the moving magnetic field generated by the energization. Shall be performed. By controlling the meniscus flow rate within this range, as shown in FIG. 1, it is possible to simultaneously prevent a temperature drop around the nozzle and a powder entrainment at the central portion of the width.
[0014]
【Example】
(1) As Example 1 of the present invention, using a vertical bending type continuous casting machine provided for actual production, low carbon Al killed steel (C: 0.04 to 0.06%, Mn: 0.2 to 0.4%, Al: 0.025 to 0.034) %) Is cast at a casting speed of 0.4 to 0.6 m / min to a width of 2400 mm, an electromagnetic stirring coil with a coil width of 1000 mm is installed in the long side wall of the mold, with the coil width center position aligned with the nozzle center position. A slab of about 1000 tons was cast while the molten steel in the meniscus portion was horizontally swirled by electromagnetic force from a moving magnetic field generated by energizing the coil. The energization current value to the coil was controlled by measuring the meniscus flow velocity in the 1/4 width portion and entering the measured value in the range of 20 to 40 cm / s. Further, as Comparative Example 1, a slab was cast in Example 1 of the present invention without energizing the coil.
[0015]
About these, the deckle generation rate and the cold rolled sheet defect mixing rate were investigated. The deckle generation rate was evaluated by visually inspecting the occurrence of deckle around the nozzles every 10 minutes during casting and by the percentage of the number of occurrences with respect to the number of occurrences. The cold-rolled sheet defect contamination rate is determined by measuring the length of the linear wrinkle detected in the recoil line for the cold-rolled sheet coil obtained by hot rolling the slab and further cold rolling. It was evaluated as a percentage of the test coil length.
[0016]
As a result, as shown in Table 1, in Example 1 of the present invention, there was no deckle around the nozzle, and the linear wrinkles of the cold-rolled plate were greatly reduced.
[0017]
[Table 1]
Figure 0003651441
[0018]
(2) As Example 2 of the present invention, using a vertical bending type continuous casting machine provided for actual production, medium carbon Al killed steel (C: 0.09 to 0.13%, Si: 0.15 to 0.22%, Mn: 0.90 to 1.10%) , Al: 0.020-0.033%) at a casting speed of 0.90-0.95 m / min to a width of 1600 mm, about 1000 tons of slab was cast while horizontally swirling the molten steel in the meniscus portion in the same manner as in Example 1 of the present invention. . As Comparative Example 2, a slab of about 1000 tons was cast in Example 2 of the present invention without energizing the coil. As Comparative Example 3, in Example 2 of the present invention, the coil width was changed to 1600 mm, and a moving magnetic field was applied to the entire width direction to cast a slab of about 1000 tons.
[0019]
About these, the slab vertical crack incidence and the thick plate UT defect incidence were investigated. The occurrence rate of slab vertical cracks was evaluated by the ratio of the number of detected vertical cracks to the inspection length (percentage) by visual inspection of the slab after casting. Thick plate UT defect occurrence rate is the ratio of the number of detected UT defects to the inspection length after the slab after inspection is made into a thick plate with a thickness of 15-30 mm by thick plate rolling, and the entire surface UT inspection is performed ( (Percentage).
[0020]
As a result, as shown in Table 2, in the present invention example 2 and comparative example 3, the molten steel is swirled horizontally by the moving magnetic field applied to the central portion of the width where vertical cracks are likely to occur, and the solidification uniformity due to securing the meniscus temperature, etc. There was no occurrence of vertical cracks. However, in Comparative Example 3 in which a moving magnetic field was applied over the entire width, the molten steel in the corner portion was also agitated, so that a UT defect occurred in a portion corresponding to the slab corner portion of the thick plate, and a high UT defect occurrence rate was shown. When the defective portion was analyzed after the UT inspection, mold powder was detected.
[0021]
[Table 2]
Figure 0003651441
[0022]
【The invention's effect】
According to the present invention, a wide continuous casting steel slab that can simultaneously prevent deckle at the center of the width and powder entrainment at the corner in wide and low speed casting and does not cause slab vertical cracking or UT defects after rolling. There is an excellent effect that can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a meniscus flow velocity at a 1/4 width portion, a meniscus temperature drop amount around a nozzle, and a powder entrainment amount at a width central portion.
FIG. 2 is a graph showing the relationship between the ratio of the coil width to the casting width, the amount of powder entrained in the corner surface layer, and the amount of meniscus temperature drop around the nozzle.
FIG. 3 is an explanatory diagram showing a state of insufficient heat supply around the nozzles in wide and low speed casting.
FIG. 4 is a diagram showing a deckle generation region in conventional continuous casting.
[Explanation of symbols]
1 Mold (mold short side wall)
2 nozzle (immersion nozzle)
3 Mold powder 4 Hot water supply shortage

Claims (1)

2孔ノズルを用いて、鋳込み幅1600mm以上、鋳込み速度1.0m/min以下の広幅低速鋳造を行う鋼の連続鋳造方法において、鋳込み幅の3271%のコイル幅として鋳型長辺壁体内に設置した電磁攪拌用コイルを用いて鋳型内溶鋼を水平旋回させ、1/4 幅部のメニスカス流速を20〜40cm/sに制御することを特徴とする鋼の連続鋳造方法。 In a continuous casting method of steel that uses a two-hole nozzle to perform a wide low-speed casting with a casting width of 1600 mm or more and a casting speed of 1.0 m / min or less, it is installed in the long side wall of the mold as a coil width of 32 to 71 % of the casting width. A method for continuously casting steel, characterized in that the molten steel in the mold is horizontally swirled using the electromagnetic stirring coil, and the meniscus flow velocity at the 1/4 width portion is controlled to 20 to 40 cm / s.
JP2002024189A 2002-01-31 2002-01-31 Continuous casting method of steel Expired - Fee Related JP3651441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024189A JP3651441B2 (en) 2002-01-31 2002-01-31 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024189A JP3651441B2 (en) 2002-01-31 2002-01-31 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JP2003225745A JP2003225745A (en) 2003-08-12
JP3651441B2 true JP3651441B2 (en) 2005-05-25

Family

ID=27746700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024189A Expired - Fee Related JP3651441B2 (en) 2002-01-31 2002-01-31 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JP3651441B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410204B (en) * 2006-04-25 2011-03-02 Abb公司 Device for continuous or semi-continuous casting metal
JP2011218435A (en) * 2010-04-14 2011-11-04 Nippon Steel Corp Continuous casting method
CN105945250B (en) * 2016-05-30 2018-09-04 内蒙古包钢钢联股份有限公司 Improve the method for high-alloy billet internal soundness

Also Published As

Publication number Publication date
JP2003225745A (en) 2003-08-12

Similar Documents

Publication Publication Date Title
EP2500120B1 (en) Method of continuous casting of steel
EP2500121B1 (en) Method of continuous casting of steel
CN105397045B (en) The casting and rolling device and casting-rolling method of a kind of aluminum alloy slab
JP3651441B2 (en) Continuous casting method of steel
KR20120120410A (en) Method for continuously casting steel and process for producing steel sheet
JP2011189356A (en) Method and apparatus for twin-roll casting
JP5151462B2 (en) Continuous casting method of aluminum killed steel
CN102974794B (en) Device and method for reducing superheat degree of molten steel of continuous casting ladle or intermediate ladle
Nakashima et al. Improvement of continuously cast slabs by decreasing nonmetallic inclusions
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JP4407260B2 (en) Steel continuous casting method
JP2010264485A (en) Tundish for continuous casting, and method for continuous casting
JP2006255759A (en) Method for continuously casting steel
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JP3806364B2 (en) Mold powder for continuous casting of steel and continuous casting method
KR0123141Y1 (en) Anti-scaling device for twin roll strip coating apparatus
JP3849471B2 (en) Uniform heating method for molten steel in tundish
Gobidass et al. Improvement on Net Recovery of Slabs for Aluminium 5052 and 8150 Alloys.
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
Bhattacharya et al. Root cause analysis of surface defects in coils produced through thin slab route
JPH11179498A (en) Continuous casting method
JP2002103009A (en) Continuous casting method
JP3039821B2 (en) Immersion nozzle for continuous casting and method of pouring molten steel
JP2010099697A (en) Continuous casting method for molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Ref document number: 3651441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees