JP2003045716A - Electromagnetic coil - Google Patents

Electromagnetic coil

Info

Publication number
JP2003045716A
JP2003045716A JP2001233634A JP2001233634A JP2003045716A JP 2003045716 A JP2003045716 A JP 2003045716A JP 2001233634 A JP2001233634 A JP 2001233634A JP 2001233634 A JP2001233634 A JP 2001233634A JP 2003045716 A JP2003045716 A JP 2003045716A
Authority
JP
Japan
Prior art keywords
electromagnetic coil
conductor
sheath
mic
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001233634A
Other languages
Japanese (ja)
Other versions
JP3568498B2 (en
Inventor
Hideyuki Tanaka
秀之 田中
Tetsuo Yokoi
哲夫 横井
Kazuo Kato
一夫 嘉藤
Tatsuya Kuroda
達也 黒田
Yoshiyuki Saito
喜之 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKIN MACHINERY KK
Tokin Corp
Original Assignee
TOKIN MACHINERY KK
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKIN MACHINERY KK, NEC Tokin Corp filed Critical TOKIN MACHINERY KK
Priority to JP2001233634A priority Critical patent/JP3568498B2/en
Publication of JP2003045716A publication Critical patent/JP2003045716A/en
Application granted granted Critical
Publication of JP3568498B2 publication Critical patent/JP3568498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To protect an electromagnetic coil against a dielectric breakdowns caused by a sheath being brought into contact with a conductor, due to the occurrence of wrinkles produced in the inside of the sheath at its curved part in a coiling operation, where the electromagnetic coil is formed by coiling a three-layered inorganic material insulated metal sheathed cable which is composed of a conductor, an inorganic insulator covering the conductor, and a metal sheath covering the insulator and superior in radiation resistance. SOLUTION: The inner curvature radius of the curved part of an inorganic material insulated metal sheathed cable is set 2.5 times or larger than the diameter of the inorganic material insulated metal sheathed cable. With this setup, the inner sheath of a curved part is less deformed, so that the electromagnetic coil can be protected against dielectric breakdowns caused by the above phenomenon.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、放射線に曝される
場所などに用いられる、無機物絶縁金属被覆ケーブル
(Mineral Insulated Cable:以下、MICと称す
る)を用いた電磁コイルに関し、特に巻線の構造に関す
るものである。 【0002】 【従来の技術】電荷を帯びた素粒子やイオンを高いエネ
ルギー状態に加速し標的に衝突させて、原子核の構造な
どの研究を行なうために、各種の加速器が用いられてい
る。この装置では、素粒子もしくはイオンの加速や、方
向の制御にローレンツ力を用いるので、高磁場を発生さ
せるための電磁石を多数設置する必要がある。そして、
加速器においては、粒子の加速に伴う各種放射線の発生
が避けられず、用いる電磁石についても、放射線に対す
る対策が必要となる。 【0003】従来、加速器に用いる電磁石の電磁コイル
は、放射線量が10Gy(グレイ)ないし10Gy
の環境で使用され、放射線による電磁コイルの絶縁劣化
の対策として、放射線量が10Gy以下のレベルで
は、耐放射線特性の高い有機物の絶縁体が用いられ、放
射線量が10Gy以上のレベルでは、無機物の絶縁体
が用いられている。放射線量が10Gy以上で、特に
高いレベルでは、絶縁体を無機物だけで構成することが
必要となる。 【0004】また、一般に、このような電磁コイルにお
いては、通電に伴う発熱による障害を防止するために、
巻線に中空の導体を用いたり、別途に通水用パイプを導
体に沿わせたりすることで、中空部に冷却水を通水しな
がら運転する必要がある。 【0005】図2は、このような用途に用いるMICの
例の断面図で、図2(a)は冷却水を通水するための中
空部を設けていない例を示す図、図2(b)は冷却水を
通水するための中空部を設けた例を示す図である。 【0006】図2において、201は無酸素銅からなる
導体、202は酸化マグネシウムからなる絶縁体、20
3は銅からなるシース、204は通水用の中空部であ
る。通電による発熱で温度が過度に上昇しないようにす
るには、導体の絶縁にも熱伝導率の高い材料を用いる必
要があるが、酸化マグネシウムは酸化物の中で酸化ベリ
リウムに次いで高い熱伝導率を具備していて比較的低価
格であり、しかも当然のことながら無機物であることか
ら、十分な耐放射線特性を有し、このような用途に適し
ている。 【0007】しかし、酸化マグネシウムは、それ自体の
みでは機械的な強度が十分確保できず、空気中の炭酸ガ
スや水と化学反応を起こすので、MICにおいては酸化
マグネシウムの絶縁層を金属のシースで保護している。
このために、MICは図2に示したような多層構造とな
る。 【0008】そして、導体をコイルとするには、巻線作
業に伴う曲げ加工が必須であり、MICの多層構造が巻
線作業の障害となる。即ち、棒状の物体に曲げ変形を加
えると、内側には圧縮変形、外側には引張変形が生じ、
棒状物体の断面積が大きいほど、変形の程度が大きくな
る。具体的にMICにおいては、曲げ加工を施した部分
の内側でシースに皺が生じ、それが甚だしくなると、皺
の凹みの部分が導体と接触、もしくはそれに近い状態と
なり、絶縁破壊を起こす虞がある。 【0009】図3は、皺発生によって絶縁破壊を起こし
た状態を、模式的に示したものである。図3に示したよ
うに、曲げ加工部の内側、即ち、図における左下側のシ
ース303には皺が発生し、絶縁体302を破砕した状
態で、導体301と接触、もしくは接触に近い状態とな
っている。 【0010】 【発明が解決しようとする課題】従って、本発明の技術
的な課題は、MICを用いた電磁コイルを製作する際
の、MICの曲げ加工に伴う絶縁破壊を防止し、十分な
信頼性を備え、優れた耐放射線特性を有する電磁コイル
を得るための構造を提供することにある。 【0011】 【課題を解決するための手段】本発明は、前記の問題を
解決するため、MICに曲げ加工を施す際の、MICの
曲率半径と絶縁破壊の頻度について検討した結果なされ
たものである。 【0012】即ち、本発明は、導体、導体を被覆する無
機物の絶縁体、絶縁体を被覆する金属のシースからなる
無機物絶縁金属被覆ケーブルを巻き回してなる電磁コイ
ルにおいて、前記無機物絶縁金属被覆ケーブルの曲げ加
工を施された部分の内側の曲率半径が、前記無機物絶縁
金属被覆ケーブルの曲げ加工を施された部分における、
曲率中心からの外側までの距離と、曲率中心からの内側
までの距離との差の2.5倍以上であることを特徴とす
る電磁コイルである。 【0013】 【作用】本発明によるMICを用いた電磁コイルにおい
ては、MICの曲げ加工を一定の曲率半径以上で行なっ
ているので、曲げ加工を施された部分のシースの内側に
皺が生じても、著しい変形とはならないため、シースと
導体の接触による絶縁破壊が起こることがない。 【0014】 【発明の実施の形態】次に、図を参照して、本発明の実
施の形態について説明する。 【0015】図1は、MICの曲げ加工の状態を示す図
で、図1(a)はMICの長手方向に垂直な断面を示
し、図1(b)はMICの長手方向に平行な断面を示
す。図1において、101は無酸素銅からなる導体で、
断面の形状は1辺が12mmの正方形である。102は
酸化マグネシウムからなる絶縁体である。103は厚さ
が1mmの銅からなるシースで、断面の内側の形状は1
辺が18mmの正方形である。 【0016】つまり、このMICの図1(b)における
Dの部分の寸法は20mmである。そして、ここでは、
MICの曲率半径、即ち、図2(b)におけるR1が6
0mmとなるように、型枠にMICを沿わせて曲げ加工
を施した。従って、R1/D=3である。その結果、図
2(b)に示したように、曲げ加工箇所のシース103
の内側、即ち、図2(b)の左下側には皺が生じたもの
の、導体101に接触するには至らず、絶縁が確保され
ている。 【0017】一方、前記の図3に示した例は、図1に示
した例と同じMICを用い、MICの曲率半径、即ち、
図3におけるR0を35mmとしたものである。この場
合もDは20mmであるから、R0/D=1.75であ
る、そして、この場合では、シース303の圧縮による
変形が大きく、曲げ加工箇所のシースの内側、即ち、図
3における左下側では、シース303が導体301に接
触して絶縁破壊を起こしている。 【0018】次に、MICの曲率半径と前記破壊の頻度
を検証するために、同一のMICに様々な曲率半径で曲
げ加工を施した場合について、曲率半径(R)とMIC
の径(D)の比(R/D:以下曲率半径比と記す。)と
絶縁破壊の発生率を検討した。この場合Dは、MICの
断面がなす正方形の1辺とした。 【0019】そして、図4には、前記曲率半径比と絶縁
破壊発生率の関係を示した。この図から明らかなよう
に、曲率半径比が1付近の領域では、殆どが絶縁破壊を
起こし、曲率半径比の増加に伴う絶縁破壊発生率の低下
が認められ、曲率半径比が2.5以上の領域では、絶縁
破壊発生率が0となる。従って、MICを用いた電磁コ
イルにおいては、曲率半径比を一定以上とすることで、
巻線作業の際の絶縁破壊をなくすことができる。 【0020】また、図5は、このようにして得られる電
磁コイルに必要な部材を取り付けた状態の外観図であ
る。図5に示したように、ここでは冷却水の通水用パイ
プ502をMIC501に沿わせて巻き回し、電磁コイ
ルとケース504の間には、スズ503を充填して冷却
効率の向上を図っている。そして、MICの端末には、
通電するためのブスバー505と、シースと導体との間
の絶縁を確保するための、セラミックからなる絶縁端末
506が取り付けられている。 【0021】 【発明の効果】以上に説明したように、本発明によれ
ば、MICを用いた耐放射線特性に優れる電磁コイル
を、巻線工程における絶縁破壊を起こすことなく得るこ
とができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an inorganic insulated metal-cable cable (hereinafter referred to as MIC) used in a place exposed to radiation. In particular, the present invention relates to a structure of a winding. 2. Description of the Related Art Various accelerators have been used to accelerate charged elementary particles and ions to a high energy state and collide them with a target to study the structure of atomic nuclei. In this device, since Lorentz force is used for accelerating elementary particles or ions and controlling the direction, it is necessary to provide a large number of electromagnets for generating a high magnetic field. And
In an accelerator, generation of various radiations due to acceleration of particles is inevitable, and a countermeasure against the radiation is necessary for an electromagnet to be used. Conventionally, an electromagnetic coil of an electromagnet used for an accelerator has a radiation dose of 10 6 Gy (gray) to 10 8 Gy.
When the radiation dose is 10 8 Gy or less, an organic insulator with high radiation resistance is used, and the radiation dose is 10 8 Gy or more. Uses an inorganic insulator. When the radiation dose is 10 8 Gy or more, particularly at a high level, the insulator needs to be composed of only an inorganic substance. In general, in such an electromagnetic coil, in order to prevent a trouble due to heat generation due to energization,
It is necessary to use a hollow conductor for the winding or to separately run a water pipe along the conductor, so that it is necessary to operate while passing cooling water through the hollow portion. FIG. 2 is a cross-sectional view of an example of an MIC used for such an application. FIG. 2A shows an example in which a hollow portion for passing cooling water is not provided, and FIG. () Is a diagram showing an example in which a hollow portion for passing cooling water is provided. In FIG. 2, reference numeral 201 denotes a conductor made of oxygen-free copper; 202, an insulator made of magnesium oxide;
Reference numeral 3 denotes a sheath made of copper, and reference numeral 204 denotes a hollow portion for water passage. In order to prevent the temperature from excessively rising due to heat generated by energization, it is necessary to use a material with high thermal conductivity for insulating the conductor, but magnesium oxide has the highest thermal conductivity next to beryllium oxide among oxides. , Which are relatively inexpensive and, of course, are inorganic, so that they have sufficient radiation resistance and are suitable for such applications. However, magnesium oxide alone cannot secure sufficient mechanical strength and causes a chemical reaction with carbon dioxide or water in the air. Therefore, in MIC, an insulating layer of magnesium oxide is covered with a metal sheath. Protecting.
For this reason, the MIC has a multilayer structure as shown in FIG. [0008] In order to use a coil as a conductor, it is necessary to perform a bending process accompanying the winding operation, and the multilayer structure of the MIC is an obstacle to the winding operation. That is, when bending deformation is applied to a rod-shaped object, compression deformation occurs on the inside and tensile deformation occurs on the outside,
The larger the cross-sectional area of the rod-shaped object, the greater the degree of deformation. Specifically, in the MIC, wrinkles are formed in the sheath inside the bent portion, and when the wrinkles become severe, the dent portion of the wrinkles comes into contact with or close to the conductor, which may cause dielectric breakdown. . FIG. 3 schematically shows a state in which dielectric breakdown has occurred due to the generation of wrinkles. As shown in FIG. 3, the inside of the bent portion, that is, the sheath 303 on the lower left side in the figure is wrinkled, and the insulator 302 is crushed, and the conductor 301 comes into contact with or close to the contact. Has become. [0010] Therefore, a technical object of the present invention is to prevent dielectric breakdown caused by bending of an MIC when manufacturing an electromagnetic coil using the MIC, and to provide a sufficient reliability. It is an object of the present invention to provide a structure for obtaining an electromagnetic coil having high radiation resistance and excellent radiation resistance. SUMMARY OF THE INVENTION In order to solve the above problems, the present invention has been made as a result of examining the radius of curvature of the MIC and the frequency of dielectric breakdown when bending the MIC. is there. That is, the present invention relates to an electromagnetic coil formed by winding an inorganic insulating metal-coated cable comprising a conductor, an inorganic insulator covering the conductor, and a metal sheath coating the insulator. The radius of curvature inside the bent portion of the bent portion of the inorganic insulated metal-coated cable,
An electromagnetic coil characterized in that the difference between the distance from the center of curvature to the outside and the distance from the center of curvature to the inside is 2.5 times or more. In the electromagnetic coil using the MIC according to the present invention, since the bending of the MIC is performed with a certain radius of curvature or more, wrinkles are generated inside the sheath of the bent portion. However, since no significant deformation occurs, dielectric breakdown due to contact between the sheath and the conductor does not occur. Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a state of bending of the MIC. FIG. 1A shows a cross section perpendicular to the longitudinal direction of the MIC, and FIG. 1B shows a cross section parallel to the longitudinal direction of the MIC. Show. In FIG. 1, reference numeral 101 denotes a conductor made of oxygen-free copper,
The cross-sectional shape is a square having one side of 12 mm. Reference numeral 102 denotes an insulator made of magnesium oxide. 103 is a sheath made of copper having a thickness of 1 mm, and the inner shape of the cross section is 1
It is a square with sides of 18 mm. That is, the dimension of the portion D in FIG. 1B of the MIC is 20 mm. And here,
The radius of curvature of the MIC, that is, R1 in FIG.
The MIC was bent along the mold so as to be 0 mm. Therefore, R1 / D = 3. As a result, as shown in FIG.
2B, that is, wrinkles are formed on the lower left side of FIG. 2B, but do not come into contact with the conductor 101, and insulation is secured. On the other hand, the example shown in FIG. 3 uses the same MIC as the example shown in FIG.
R0 in FIG. 3 is 35 mm. Also in this case, D is 20 mm, so that R0 / D = 1.75. In this case, the deformation due to the compression of the sheath 303 is large, and the inside of the sheath at the bent portion, that is, the lower left side in FIG. In this case, the sheath 303 comes into contact with the conductor 301 and causes dielectric breakdown. Next, in order to verify the radius of curvature of the MIC and the frequency of the destruction, the radius of curvature (R) and the radius of curvature of the MIC are examined in the case where the same MIC is bent at various radii of curvature.
The ratio of the diameter (D) (R / D: hereinafter referred to as the radius of curvature) and the rate of occurrence of dielectric breakdown were examined. In this case, D is one side of a square formed by the cross section of the MIC. FIG. 4 shows the relationship between the curvature radius ratio and the rate of occurrence of dielectric breakdown. As is clear from this figure, in the region where the radius of curvature ratio is close to 1, almost all of the dielectric breakdown occurs, and the rate of occurrence of dielectric breakdown decreases as the radius of curvature ratio increases, and the radius of curvature ratio is 2.5 or more. In the region, the breakdown rate becomes zero. Therefore, in the electromagnetic coil using the MIC, by setting the curvature radius ratio to a certain value or more,
Insulation breakdown during winding work can be eliminated. FIG. 5 is an external view of a state in which necessary members are attached to the thus obtained electromagnetic coil. As shown in FIG. 5, here, a cooling water flow pipe 502 is wound along the MIC 501, and tin 503 is filled between the electromagnetic coil and the case 504 to improve cooling efficiency. I have. And the MIC terminal:
A bus bar 505 for supplying current and an insulating terminal 506 made of ceramic for securing insulation between the sheath and the conductor are attached. As described above, according to the present invention, an electromagnetic coil using the MIC and having excellent radiation resistance can be obtained without causing dielectric breakdown in the winding step.

【図面の簡単な説明】 【図1】本発明のコイルにおけるMICの曲げ加工の状
態を示す図で、図1(a)はMICの長手方向に垂直な
断面、図1(b)はMICの長手方向に平行な断面を示
す。 【図2】MICの断面図で、図2(a)は冷却水を通水
するための中空部を設けていない例を示す図、図2
(b)は冷却水を通水するための中空部を設けた例を示
す図。 【図3】シースの皺発生によって絶縁破壊を起こした状
態を模式的に示した図。 【図4】曲率半径比と絶縁破壊発生率の関係を示す図。 【図5】電磁コイルに必要な部材を取り付けた状態の外
観図。 【符号の説明】 101,201,301 導体 102,202,302 絶縁体 103,203,303 シース 204 中空部 501 MIC 502 通水用パイプ 503 スズ 504 ケース 505 ブスバー 506 絶縁端末
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a state of bending of an MIC in a coil of the present invention. FIG. 1 (a) is a cross section perpendicular to the longitudinal direction of the MIC, and FIG. 3 shows a cross section parallel to the longitudinal direction. FIG. 2A is a cross-sectional view of the MIC, and FIG. 2A is a diagram illustrating an example in which a hollow portion for passing cooling water is not provided.
(B) is a diagram showing an example in which a hollow portion for passing cooling water is provided. FIG. 3 is a diagram schematically showing a state in which insulation breakdown has occurred due to the occurrence of wrinkles in a sheath. FIG. 4 is a diagram showing a relationship between a radius of curvature ratio and a dielectric breakdown occurrence rate. FIG. 5 is an external view of a state where necessary members are attached to the electromagnetic coil. [Description of Signs] 101, 201, 301 Conductors 102, 202, 302 Insulators 103, 203, 303 Sheath 204 Hollow portion 501 MIC 502 Water passage pipe 503 Tin 504 Case 505 Bus bar 506 Insulated terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嘉藤 一夫 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (72)発明者 黒田 達也 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (72)発明者 斎藤 喜之 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 Fターム(参考) 2G085 BA12 BB07 BC04 BE07 EA01 EA04 5E048 CB07    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kazuo Kato             6-7-1, Koriyama, Taihaku-ku, Sendai-shi, Miyagi             Tokin Co., Ltd. (72) Inventor Tatsuya Kuroda             6-7-1, Koriyama, Taihaku-ku, Sendai-shi, Miyagi             Tokin Co., Ltd. (72) Inventor Yoshiyuki Saito             6-7-1, Koriyama, Taihaku-ku, Sendai-shi, Miyagi             Tokin Co., Ltd. F term (reference) 2G085 BA12 BB07 BC04 BE07 EA01                       EA04                 5E048 CB07

Claims (1)

【特許請求の範囲】 【請求項1】 導体、導体を被覆する無機物の絶縁体、
絶縁体を被覆する金属のシースからなる無機物絶縁金属
被覆ケーブルを巻き回してなる電磁コイルにおいて、前
記無機物絶縁金属被覆ケーブルの曲げ加工を施された部
分の内側の曲率半径が、前記無機物絶縁金属被覆ケーブ
ルの曲げ加工を施された部分における、曲率中心から外
側までの距離と、曲率中心から内側までの距離との差の
2.5倍以上であることを特徴とする電磁コイル。
Claims: 1. A conductor, an inorganic insulator covering the conductor,
In an electromagnetic coil formed by winding an inorganic insulating metal-coated cable made of a metal sheath covering an insulator, a radius of curvature inside a bent portion of the inorganic insulating metal-coated cable is equal to the inorganic insulating metal coating. An electromagnetic coil, wherein the difference between the distance from the center of curvature to the outside and the distance from the center of curvature to the inside in the bent portion of the cable is 2.5 times or more.
JP2001233634A 2001-08-01 2001-08-01 Electromagnetic coil Expired - Lifetime JP3568498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233634A JP3568498B2 (en) 2001-08-01 2001-08-01 Electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233634A JP3568498B2 (en) 2001-08-01 2001-08-01 Electromagnetic coil

Publications (2)

Publication Number Publication Date
JP2003045716A true JP2003045716A (en) 2003-02-14
JP3568498B2 JP3568498B2 (en) 2004-09-22

Family

ID=19065390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233634A Expired - Lifetime JP3568498B2 (en) 2001-08-01 2001-08-01 Electromagnetic coil

Country Status (1)

Country Link
JP (1) JP3568498B2 (en)

Also Published As

Publication number Publication date
JP3568498B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP5097397B2 (en) Plasma processing apparatus and method for magnetically improving mechanical confinement of plasma
US5536914A (en) Device for exciting a plasma to electron cyclotron resonance by means of a wire applicator of a static magnetic field and of a microwave field
JP2008506221A (en) Superconducting cable and manufacturing method thereof
GB2525546A (en) Method for using copper and aluminium alloy in cooperation
JP3568498B2 (en) Electromagnetic coil
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JP2007275909A (en) Electromagnetic forming coil
US3272911A (en) Shielded cable construction
US3580637A (en) Method of destroying ferroconcrete, rock or the like
JP4454207B2 (en) Electromagnetic expansion coil
WO2010104201A1 (en) Coaxial cable
JP2022165804A (en) Insulation coating conductor wire
JP3782707B2 (en) Electromagnetic coil and manufacturing method thereof
JP2003017311A (en) Electro-magnetic coil and method of fabricating the coil
JP2003100150A (en) Molded stranded wire conductor and coil using it
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
US3110843A (en) Helical path plasma
JP2001284100A (en) Ac electromagnet
JP3124408B2 (en) Lightning-resistant overhead ground wire
JP3954489B2 (en) Electric wire and electric wire manufacturing method
JP2960251B2 (en) Method of forming helical coil conductor
JP4550866B2 (en) AC electromagnet
CN106847400A (en) Copper sheath fire prevention cable
JP2588316B2 (en) Method of manufacturing helical coil
JP2002299019A (en) Heating element heat-retaining type induction heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3568498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term