JP3782707B2 - Electromagnetic coil and manufacturing method thereof - Google Patents

Electromagnetic coil and manufacturing method thereof Download PDF

Info

Publication number
JP3782707B2
JP3782707B2 JP2001327525A JP2001327525A JP3782707B2 JP 3782707 B2 JP3782707 B2 JP 3782707B2 JP 2001327525 A JP2001327525 A JP 2001327525A JP 2001327525 A JP2001327525 A JP 2001327525A JP 3782707 B2 JP3782707 B2 JP 3782707B2
Authority
JP
Japan
Prior art keywords
prepreg
winding
strand
strand conductor
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001327525A
Other languages
Japanese (ja)
Other versions
JP2003133156A (en
Inventor
喜之 斉藤
達也 黒田
秀之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001327525A priority Critical patent/JP3782707B2/en
Publication of JP2003133156A publication Critical patent/JP2003133156A/en
Application granted granted Critical
Publication of JP3782707B2 publication Critical patent/JP3782707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐放射線電磁石などに用いる電磁コイルに関わり、特に電磁コイルを構成する導体間の絶縁の構成と、それを実現する方法に関わるものである。
【0002】
【従来の技術】
電荷を帯びた素粒子やイオンを高いエネルギー状態に加速し標的に衝突させて、原子核の構造などの研究を行なうために、各種の加速器が用いられている。この装置では、素粒子もしくはイオンの加速や、方向の制御にローレンツ力を用いるので、高磁場を発生させるための電磁石を多数設置する必要がある。そして、加速器においては、粒子の加速に伴う各種放射線の発生が避けられず、用いる電磁石についても、放射線に対する対策が必要となる。
【0003】
このために、絶縁体の放射線による劣化を考慮して、MIC(Mineral Insulated Cable)と称される無機物絶縁金属被覆ケーブルを用いて電磁コイルを構成する技術が開示されている。ところで、前記の電磁石の中には、パルス磁界を発生するために、交流を用いることがあり、有機高分子化合物による絶縁が必要となる場合がある。
【0004】
つまり、交流を通電することに伴う渦電流損失を低減するために、ストランド導体を用いる必要があるが、この場合、巻線におけるストランド導体の間の絶縁を確保する必要があるのは当然のこととして、ストランド導体を構成する素線の間も絶縁することが、損失低減に寄与することとなる。
【0005】
このような要求特性を満足させるため、ホウ素を除去したガラス繊維からなるテープにポリイミド樹脂を含浸したプリプレグ(以下、プリプレグと記す)を用いて、ストランド導体に横巻、即ち、スパイラルに巻き回して絶縁処理を施した後、巻き回して巻線とし、さらに巻線の外周にプリプレグの横巻を施し、ポリイミド樹脂を含浸させた電磁コイルが開示されている。
【0006】
前記ポリイミド樹脂の含浸は、ストランド導体間の空隙、ストランド導体を構成する素線の間の空隙を、絶縁材料で充填するために行うのであるが、ポリイミド樹脂のような熱硬化型の高分子材料でも、硬化反応が完了する前は熱可塑性を有し、含浸操作後の流出のため、その効果を十分に発現できないことが多い。
【0007】
そのため、前記ポリイミド樹脂には、金属酸化物を始めとする、絶縁性を有する無機物の粉末を混合し、見掛け上の粘性係数を調整して用いることがある。即ち、適当な平均粒径の無機物粉末の適当な量をポリイミド樹脂に混合することで、ポリイミド樹脂が流動し難くなり、導体間の空隙から殆ど流出せず、絶縁材料として機能するものである。
【0008】
図4は、ストランド導体にプリプレグの横巻による絶縁を施している状態を模式的に示した図で、図4(a)は斜視図、図4(b)は断面図である。図4において、400はストランド導体、401はストランド導体を構成する銅からなる素線、402はアルミニウム製の冷却水通水用パイプ、403はプリプレグを示す。
【0009】
また、図5は、前記のプリプレグの横巻を施したストランド導体を巻き回した後、外周にプリプレグの横巻を施している状態を示す図である。図5において、501はプリプレグの横巻による絶縁処理を施したストランド導体、503はプリプレグを示す。
【0010】
しかしながら、前記のような方法で絶縁を施しても、層間の絶縁が必ずしも十分ではなく、層間絶縁破壊の虞から、電磁コイルに一定以上の電圧を負荷するのは困難であった。これは、ストランド導体にプリプレグの横巻を重ねて施しても、導体を巻き回して巻線を形成する際に、曲率半径が小さい箇所では、外周側と内周側の伸縮の差が大きく、外周側の絶縁厚さが減少すること、隣接するストランド導体が圧力の加わる方向で接する部分は、層間に挟まれたプリプレグとストランド導体を構成する素線が線接触もしくは点接触となるため、絶縁破壊が生じ易くなることなどによると推定される。
【0011】
【発明が解決しようとする課題】
従って、本発明の技術的な課題は、前記電磁コイルにおける前記の問題を解決するため、層間絶縁の信頼性向上を図り、層間絶縁破壊を生じなくする方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、前記課題の解決のため、ストランド導体への横巻以外の方法で、プリプレグを絶縁の構成要素として用いることを検討した結果なされたものである。
【0013】
即ち、本発明は、断面形状がほぼ正方形のストランド導体の、対向する側面の少なくともいずれかに、ホウ素を除去してなるガラス繊維テープにポリイミド樹脂を含浸したプリプレグを沿わせる第1の工程と、前記ストランド導体に沿わせたプリプレグとは別のプリプレグを横巻する第2の工程と、前記プリプレグを沿わせた辺を、屈曲方向と垂直に配置した状態で、屈曲方向と平行な面に層間絶縁層を挿入しながら巻き回して巻線を形成する第3の工程と、前記巻線の外周にプリプレグの横巻を施す第4の工程と、前記巻線に端末処理を施す第5の工程を含むことを特徴とする電磁コイルの製造方法である。
【0014】
また、本発明は、前記の電磁コイルの製造方法において、前記ストランド導体構成する素線は、銅もしくはアルミニウムのいずれからなることを特徴とする電磁コイルの製造方法である。
【0015】
また、本発明は、前記の電磁コイルの製造方法において、前記ストランド導体は、冷却水を通水するためのパイプを有することを特徴とする電磁コイルである。
【0016】
また、本発明は、前記の電磁コイルの製造方法において、前記巻線の外周にプリプレグの横巻を施す工程の後に、無機物の粉末を含むポリイミド樹脂をストランド導体間の空隙及びストランド導体を構成する素線間の空隙に含浸させ、硬化させることを特徴とする電磁コイルの製造方法である。
【0017】
また、本発明は、ほぼ正方形の断面形状を有するストランド導体と、前記ストランド導体からなる巻線の屈曲方向と垂直な方向の少なくともいずれかの側面に配置された、ホウ素を除去してなるガラス繊維のテープにポリイミドを含浸したプリプレグと、前記ストランド導体に横巻されたプリプレグと、前記プリプレグが横巻されたストランド導体からなる巻線の外周に横巻されたプリプレグと、前記巻線の屈曲方向と平行な面に配置された層間絶縁層と、前記ストランド導体間の空隙と前記ストランド導体を構成する素線間の空隙に充填された無機物の粉末を含むポリイミド樹脂からなることを特徴とする、前記の製造方法で製造される電磁コイルである。
【0018】
【作用】
本発明による電磁コイルにおいては、ストランド導体及びストランド導体により形成される巻線の外周にプリプレグの横巻による絶縁処理が施されている他に、層間の縦横両方向に絶縁層が装入されているので、従来の電磁コイルに比較して、高電圧での運転が可能となる。
【0019】
しかも、これらの層間絶縁層は、単に横巻するプリプレグの厚さを増加したものではなく、縦横方向とも、別個に装入するので、ストランド導体を巻き回す際の内外周の伸縮の影響が及ばないので、横播きしたプリプレグよりも、高い絶縁機能を有するものである。特に、横方向、即ち、ストランド導体を巻き回すために屈曲させる方向と平行な方向には、プリプレグなどからなるシートを、予め巻線の形状に合わせて切断して層間に装入するので、高い信頼性を発現できる。
【0020】
また、縦方向の層間絶縁層は、予めストランド導体の長さ方向にプリプレグなどからなるテープを沿わせた後に、プリプレグの横巻を施すことから、巻線作業に際し、別途に層間絶縁の配置を行わないので、位置ずれなどに配慮する必要がなく、作業性を向上することができる。
【0021】
なお、プリプレグに用いるガラス繊維テープとして、ホウ素を含まないものを用いるのは、ホウ素が熱中性子を吸収することで、周囲のガラス繊維やポリイミド樹脂に損傷を与えるからである。即ち、ホウ素には原子量が10のもの(10B)と11のもの(11B)が19.9/80.1の比率で存在するが、10Bが熱中性子を吸収すると、反跳粒子としてα線とLiが生成し、それぞれの飛程が、5μm、2μmであることから、周囲の物質に作用を及ぼすからである。
【0022】
また、前記ガラス繊維テープに含浸したり、導体間に充填したりする絶縁材料としてポリイミド樹脂を用いるのは、高分子材料の中では、ポリイミド樹脂が、放射線に曝露された場合の劣化が最も少ないからである。
【0023】
また、導体間に充填するポリイミド樹脂に混合する無機物の粉末としては、粉末状で得られるものであれば、特に限定されるものではなく、酸化マグネシウム、炭酸カルシウムなどが挙げられる。その中では、酸化ケイ素、つまりシリカが供給性、価格、化学的な安定性の点で好適である。
【0024】
そして、導体間へ充填するための適正な流動性を確保するには、ポリイミド樹脂へ混合する無機物の粉末は、平均粒径を1.5μm以下、ポリイミド樹脂に対する混合量を、5〜15重量%とする必要がある。また、一般に高分子材料に無機物もしくは有機物の繊維や粉末を混合して、機械的な強度などを向上することが行なわれているが、この場合も無機物の粉末の混合が、副次的な効果としてポリイミド樹脂のクラック発生防止などへの寄与が期待できる。
【0025】
【発明の実施の形態】
次に、本発明の実施の形態について、具体的な例を挙げ、図を参照して説明する。
【0026】
図1は、本発明による電磁コイルの一例における巻線の一部の断面を模式的に示した図である。図1において、100はストランド導体で断面がほぼ正方形となっている。また、101はストランド導体を構成する素線、102は冷却水通水用パイプ、103はストランド導体に横巻したプリプレグ、104は縦方向の層間絶縁層、105は横方向の層間絶縁層、106は巻線の外周に横巻したプリプレグである。
【0027】
また、図2は、ストランド導体プリプレグの横巻を施している状態を示す図で、図2(a)は全体の斜視図、図2(b)は断面図ある。図2では、ストランド導体の1側面に層間絶縁層としてプリプレグを沿わせながら、別のプリプレグを横巻している。図2において、200はストランド導体、201はストランド導体を構成する素線、202は冷却水通水用パイプ、203はプリプレグ、204は層間絶縁層としてのプリプレグを示す。
【0028】
本実施の形態においては、ストランド導体に図2に示したように、層間絶縁層の配置とプリプレグの横巻を施した後、図2における層間絶縁層204が内側に配置されるように、ストランド導体を巻き回して巻線を形成する。その際に、導体を屈曲させる方向と平行な面に、やはりプリプレグからなり、図1において105で示される層間絶縁層を配置する。これによって、縦方向にプリプレグの横巻とは別途に縦横両方向に層間絶縁層を配置したのとまったく同様の効果が得られる。
【0029】
このようにして形成された巻線を、平均粒径が1.2μmのシリカ粉末を10重量%混合したポリイミド樹脂を満たした密閉可能な容器に浸漬し、ポリイミドの含浸を行った。この操作は、ポリイミド樹脂が導体の間隙に十分含浸するように、前記容器を真空ポンプを用いて減圧して行った。含浸後は、さらに導体間にポリイミド樹脂が十分に浸透するように、容器内部に150kPaの圧力を加えた。その後は、高温槽を用い、ポリイミド樹脂の予備硬化、後硬化をそれぞれ120℃×6時間、150℃×4時間という条件で実施した。
【0030】
図3は、このようにして得られた巻線の外観を示した図である。その後、この巻線に通電するためにブスバーを取り付けたり、冷却水を通水するための配管用部品を取り付けたりして、電磁コイルとした。
【0031】
【発明の効果】
以上に説明したように、本発明によれば、層間絶縁層を配置することで、交流が通電され放射線に暴露される環境でも絶縁劣化が極めて少なく、しかも層間絶縁破壊や、渦電流損失に基づく損失が、極めて少ない電磁コイルが得られる。本発明による電磁コイルは、前記のような特長を具備することから、従来に比較して高電圧での運転も可能であり、きわめて有用性が高い。
【図面の簡単な説明】
【図1】本発明による電磁コイルの一例における巻線の一部の断面を模式的に示す図。
【図2】ストランド導体プリプレグの横巻を施している状態を示す図、図2(a)は全体の斜視図、図2(b)は断面図。
【図3】巻線の外観を示した図。
【図4】ストランド導体にプリプレグの横巻による絶縁を施している状態を模式的に示す図、図4(a)は斜視図、図4(b)は断面図。
【図5】プリプレグの横巻を施したストランド導体を巻き回した後、外周にプリプレグの横巻を施している状態を示す図。
【符号の説明】
100,200,400,501 ストランド導体
101,201,401 素線
102,202,402 冷却水通水用パイプ
103,106,203,403,503 プリプレグ
104,105,204 層間絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic coil used for a radiation-resistant electromagnet or the like, and more particularly to an insulation configuration between conductors constituting the electromagnetic coil and a method for realizing it.
[0002]
[Prior art]
Various accelerators are used to accelerate charged elementary particles and ions to a high energy state and collide with the target to study the structure of the nucleus. In this apparatus, Lorentz force is used for acceleration of elementary particles or ions and direction control, so it is necessary to install a large number of electromagnets for generating a high magnetic field. And in an accelerator, generation | occurrence | production of the various radiation accompanying particle acceleration is unavoidable, and the countermeasure with respect to a radiation is needed also about the electromagnet to be used.
[0003]
For this reason, in consideration of deterioration of an insulator due to radiation, a technique for configuring an electromagnetic coil using an inorganic insulating metal-coated cable called MIC (Mineral Insulated Cable) is disclosed. By the way, in order to generate a pulse magnetic field in the electromagnets described above, alternating current may be used, which may require insulation with an organic polymer compound.
[0004]
In other words, in order to reduce eddy current loss due to energization of alternating current, it is necessary to use a strand conductor, but in this case, it is natural to ensure insulation between the strand conductors in the winding. As a result, insulation between the strands constituting the strand conductor contributes to loss reduction.
[0005]
In order to satisfy such required characteristics, a tape made of glass fiber from which boron has been removed is impregnated with a polyimide resin (hereinafter referred to as prepreg), and the strand conductor is wound horizontally, that is, spirally wound. An electromagnetic coil is disclosed in which an insulation treatment is performed and then wound into a winding, and a prepreg is wound on the outer periphery of the winding and impregnated with a polyimide resin.
[0006]
The polyimide resin is impregnated in order to fill the gaps between the strand conductors and the gaps between the strands constituting the strand conductors with an insulating material, but a thermosetting polymer material such as a polyimide resin. However, it has thermoplasticity before the curing reaction is completed, and the effect is often not sufficiently exhibited due to the outflow after the impregnation operation.
[0007]
For this reason, the polyimide resin may be mixed with an inorganic powder having an insulating property such as a metal oxide to adjust the apparent viscosity coefficient. That is, by mixing an appropriate amount of an inorganic powder having an appropriate average particle diameter into the polyimide resin, the polyimide resin becomes difficult to flow and hardly flows out from the gap between the conductors, and functions as an insulating material.
[0008]
4A and 4B are diagrams schematically showing a state where the strand conductor is insulated by horizontal winding of a prepreg, FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view. In FIG. 4, 400 is a strand conductor, 401 is an element wire made of copper constituting the strand conductor, 402 is an aluminum cooling water passage pipe, and 403 is a prepreg.
[0009]
FIG. 5 is a view showing a state in which the prepreg is wound on the outer periphery after winding the strand conductor on which the prepreg is wound. In FIG. 5, reference numeral 501 denotes a strand conductor that has been subjected to insulation treatment by horizontal winding of a prepreg, and 503 denotes a prepreg.
[0010]
However, even if the insulation is performed by the method as described above, the insulation between the layers is not always sufficient, and it is difficult to load a certain voltage or more to the electromagnetic coil because of the possibility of the insulation breakdown between the layers. This is because even when the prepreg is wound on the strand conductor, the difference in expansion and contraction between the outer peripheral side and the inner peripheral side is large at the portion where the radius of curvature is small when winding the conductor to form the winding. Since the insulation thickness on the outer peripheral side decreases and the portion where the adjacent strand conductors contact in the direction of pressure is applied, the prepreg sandwiched between the layers and the strands constituting the strand conductor are in line contact or point contact. It is presumed that the destruction is likely to occur.
[0011]
[Problems to be solved by the invention]
Therefore, the technical problem of the present invention is to provide a method for improving the reliability of interlayer insulation and preventing the occurrence of interlayer dielectric breakdown in order to solve the above-mentioned problems in the electromagnetic coil.
[0012]
[Means for Solving the Problems]
The present invention has been made as a result of studying the use of a prepreg as an insulating component by a method other than horizontal winding around a strand conductor in order to solve the above problems.
[0013]
That is, the present invention includes a first step of placing a prepreg impregnated with a polyimide resin on a glass fiber tape obtained by removing boron on at least one of the opposing side surfaces of a strand conductor having a substantially square cross-sectional shape; A second step of horizontally winding a prepreg different from the prepreg along the strand conductor, and a side parallel to the prepreg arranged in a direction perpendicular to the bending direction, the layer is parallel to the plane parallel to the bending direction. A third step of forming a winding by winding while inserting an insulating layer, a fourth step of applying a prepreg horizontal winding to the outer periphery of the winding, and a fifth step of applying a terminal treatment to the winding It is the manufacturing method of the electromagnetic coil characterized by including.
[0014]
Moreover, this invention is a manufacturing method of the said electromagnetic coil, The strand which comprises the said strand conductor consists of either copper or aluminum, The manufacturing method of the electromagnetic coil characterized by the above-mentioned.
[0015]
Moreover, this invention is an electromagnetic coil characterized by the said strand conductor having a pipe for passing cooling water in the manufacturing method of the said electromagnetic coil.
[0016]
Further, according to the present invention, in the electromagnetic coil manufacturing method, the gap between the strand conductors and the strand conductors are made of polyimide resin containing inorganic powder after the step of applying the prepreg to the outer periphery of the winding. The electromagnetic coil manufacturing method is characterized by impregnating a gap between strands and curing.
[0017]
The present invention also provides a strand conductor having a substantially square cross-sectional shape, and a glass fiber formed by removing boron, disposed on at least one side surface in a direction perpendicular to the bending direction of the winding made of the strand conductor. A prepreg impregnated with polyimide on the tape, a prepreg laterally wound on the strand conductor, a prepreg laterally wound on the outer periphery of the winding made of the strand conductor laterally wound with the prepreg, and a bending direction of the winding An interlayer insulating layer disposed on a plane parallel to the surface, and a polyimide resin containing an inorganic powder filled in a gap between the strand conductors and a gap between the strands constituting the strand conductor, It is an electromagnetic coil manufactured with the said manufacturing method.
[0018]
[Action]
In the electromagnetic coil according to the present invention, the outer periphery of the winding formed by the strand conductor and the strand conductor is subjected to insulation treatment by horizontal winding of a prepreg, and insulating layers are inserted in both vertical and horizontal directions between layers. Therefore, operation at a higher voltage is possible as compared with a conventional electromagnetic coil.
[0019]
Moreover, these interlayer insulating layers are not simply increased in the thickness of the prepreg that is horizontally wound, but are separately inserted in both the longitudinal and lateral directions, so that the influence of expansion and contraction of the inner and outer circumferences when winding the strand conductor is exerted. Therefore, it has a higher insulating function than a prepreg sowed horizontally. In particular, in the lateral direction, that is, in the direction parallel to the direction of bending for winding the strand conductor, a sheet made of prepreg or the like is cut in advance according to the shape of the winding and inserted between the layers. Reliability can be expressed.
[0020]
In addition, since the interlayer insulation layer in the vertical direction is preliminarily wound with a tape made of prepreg in the length direction of the strand conductor, the prepreg is laterally wound. Since it is not performed, it is not necessary to consider misalignment, and workability can be improved.
[0021]
The reason why the glass fiber tape used for the prepreg does not contain boron is that boron absorbs thermal neutrons and damages the surrounding glass fibers and polyimide resin. That is, boron those atomic weight of 10 (10 B) and 11 ones (11 B) are present in a ratio of 19.9 / 80.1, when the 10 B absorbs thermal neutrons, as recoil This is because α rays and 7 Li are generated, and their ranges are 5 μm and 2 μm, respectively, and thus affect the surrounding substances.
[0022]
In addition, polyimide resin is used as an insulating material to be impregnated into the glass fiber tape or filled between conductors. Among polymer materials, polyimide resin is least deteriorated when exposed to radiation. Because.
[0023]
The inorganic powder to be mixed with the polyimide resin filled between the conductors is not particularly limited as long as it is obtained in a powder form, and examples thereof include magnesium oxide and calcium carbonate. Among them, silicon oxide, that is, silica is preferable from the viewpoints of availability, cost, and chemical stability.
[0024]
In order to ensure proper fluidity for filling between conductors, the inorganic powder to be mixed into the polyimide resin has an average particle size of 1.5 μm or less, and the mixing amount with respect to the polyimide resin is 5 to 15% by weight. It is necessary to. In general, inorganic materials or organic fibers and powders are mixed with polymer materials to improve mechanical strength. In this case, mixing inorganic powders is also a secondary effect. As such, it can be expected to contribute to the prevention of cracks in the polyimide resin.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings with specific examples.
[0026]
FIG. 1 is a diagram schematically showing a cross section of a part of a winding in an example of an electromagnetic coil according to the present invention. In FIG. 1, reference numeral 100 denotes a strand conductor having a substantially square cross section. Further, 101 is a strand constituting the strand conductor, 102 is a cooling water passage pipe, 103 is a prepreg wound horizontally around the strand conductor, 104 is a longitudinal interlayer insulation layer, 105 is a transverse interlayer insulation layer, 106 Is a prepreg wound horizontally on the outer periphery of the winding.
[0027]
2A and 2B are diagrams showing a state where the strand conductor prepreg is subjected to horizontal winding, in which FIG. 2A is a perspective view of the whole and FIG. 2B is a cross-sectional view. In FIG. 2, another prepreg is horizontally wound while the prepreg is placed as an interlayer insulating layer on one side surface of the strand conductor. In FIG. 2, reference numeral 200 denotes a strand conductor, 201 denotes a strand constituting the strand conductor, 202 denotes a cooling water passage pipe, 203 denotes a prepreg, and 204 denotes a prepreg as an interlayer insulating layer.
[0028]
In the present embodiment, as shown in FIG. 2, the strand conductor is arranged so that the interlayer insulation layer 204 in FIG. 2 is arranged on the inner side after the arrangement of the interlayer insulation layer and the horizontal winding of the prepreg. A conductor is wound to form a winding. At this time, an interlayer insulating layer made of prepreg and indicated by 105 in FIG. 1 is disposed on a plane parallel to the direction in which the conductor is bent. As a result, the same effect as that obtained by arranging the interlayer insulating layers in both the vertical and horizontal directions separately from the horizontal winding of the prepreg in the vertical direction can be obtained.
[0029]
The windings thus formed were immersed in a sealable container filled with a polyimide resin in which 10% by weight of silica powder having an average particle diameter of 1.2 μm was mixed, and impregnated with polyimide. This operation was performed by depressurizing the container using a vacuum pump so that the polyimide resin sufficiently impregnates the gap between the conductors. After the impregnation, a pressure of 150 kPa was applied inside the container so that the polyimide resin sufficiently penetrated between the conductors. Thereafter, using a high-temperature bath, pre-curing and post-curing of the polyimide resin were performed under the conditions of 120 ° C. × 6 hours and 150 ° C. × 4 hours, respectively.
[0030]
FIG. 3 is a view showing the appearance of the winding obtained in this way. Thereafter, a bus bar was attached to energize this winding, or a piping component for passing cooling water was attached to obtain an electromagnetic coil.
[0031]
【The invention's effect】
As described above, according to the present invention, by providing an interlayer insulating layer, insulation deterioration is extremely small even in an environment where alternating current is applied and exposed to radiation, and furthermore, based on interlayer dielectric breakdown and eddy current loss. An electromagnetic coil with very little loss can be obtained. Since the electromagnetic coil according to the present invention has the above-described features, it can be operated at a higher voltage than the conventional one and is extremely useful.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a cross section of a part of a winding in an example of an electromagnetic coil according to the present invention.
FIG. 2 is a diagram showing a state where a strand conductor prepreg is subjected to horizontal winding, FIG. 2 (a) is an overall perspective view, and FIG. 2 (b) is a cross-sectional view.
FIG. 3 is a diagram showing the appearance of a winding.
4A and 4B are diagrams schematically showing a state where a strand conductor is insulated by horizontal winding of a prepreg, FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view.
FIG. 5 is a view showing a state in which a prepreg is wound on the outer periphery after winding a strand conductor that has been wound with prepreg.
[Explanation of symbols]
100, 200, 400, 501 Strand conductors 101, 201, 401 Strands 102, 202, 402 Cooling water passage pipes 103, 106, 203, 403, 503 Prepregs 104, 105, 204 Interlayer insulation layer

Claims (5)

断面形状がほぼ正方形のストランド導体の、対向する側面の少なくともいずれかに、ホウ素を除去してなるガラス繊維テープにポリイミド樹脂を含浸したプリプレグを沿わせる第1の工程と、前記ストランド導体に沿わせたプリプレグとは別のプリプレグを横巻する第2の工程と、前記プリプレグを沿わせた辺を、屈曲方向と垂直に配置した状態で、屈曲方向と平行な面に層間絶縁層を挿入しながら巻き回して巻線を形成する第3の工程と、前記巻線の外周にプリプレグの横巻を施す第4の工程と、前記巻線に端末処理を施す第5の工程を含むことを特徴とする電磁コイルの製造方法。A first step of placing a prepreg impregnated with a polyimide resin on a glass fiber tape obtained by removing boron on at least one of the opposing side surfaces of a strand conductor having a substantially square cross-sectional shape; and along the strand conductor The second step of horizontally winding a prepreg different from the prepreg and the side along the prepreg arranged perpendicular to the bending direction while inserting an interlayer insulating layer in a plane parallel to the bending direction A third step of winding to form a winding, a fourth step of applying a prepreg horizontal winding to the outer periphery of the winding, and a fifth step of applying a terminal treatment to the winding. A method of manufacturing an electromagnetic coil. 請求項1に記載の電磁コイルの製造方法において、前記ストランド導体構成する素線は、銅もしくはアルミニウムのいずれからなることを特徴とする電磁コイルの製造方法。2. The method of manufacturing an electromagnetic coil according to claim 1, wherein the strand constituting the strand conductor is made of copper or aluminum. 請求項1もしくは請求項2のいずれかに記載の電磁コイルの製造方法において、前記ストランド導体は、冷却水を通水するためのパイプを有することを特徴とする電磁コイル。3. The electromagnetic coil manufacturing method according to claim 1, wherein the strand conductor has a pipe for passing cooling water. 4. 請求項1ないし請求項3のいずれかに記載の電磁コイルの製造方法において、前記巻線の外周にプリプレグの横巻を施す工程の後に、無機物の粉末を含むポリイミド樹脂をストランド導体間の空隙及びストランド導体を構成する素線間の空隙に含浸させ、硬化させることを特徴とする電磁コイルの製造方法。The electromagnetic coil manufacturing method according to any one of claims 1 to 3, wherein after the step of applying a prepreg to the outer periphery of the winding, a polyimide resin containing inorganic powder is added to the gap between the strand conductors and A method for producing an electromagnetic coil, comprising impregnating a gap between strands constituting a strand conductor and curing the strand. ほぼ正方形の断面形状を有するストランド導体と、前記ストランド導体からなる巻線の屈曲方向と垂直な方向の少なくともいずれかの側面に配置された、ホウ素を除去してなるガラス繊維のテープにポリイミドを含浸したプリプレグと、前記ストランド導体に横巻されたプリプレグと、前記プリプレグが横巻されたストランド導体からなる巻線の外周に横巻されたプリプレグと、前記巻線の屈曲方向と平行な面に配置された層間絶縁層と、前記ストランド導体間の空隙と前記ストランド導体を構成する素線間の空隙に充填された無機物の粉末を含むポリイミド樹脂からなることを特徴とする請求項1ないし請求項4のいずれかに記載の製造方法で製造される電磁コイル。A strand conductor having a substantially square cross-sectional shape and a glass fiber tape formed by removing boron and disposed on at least one side surface in a direction perpendicular to the bending direction of the winding made of the strand conductor is impregnated with polyimide. A prepreg laterally wound around the strand conductor, a prepreg laterally wound around the outer periphery of the winding made of the strand conductor laterally wound with the prepreg, and a plane parallel to the bending direction of the winding. 5. An interlayer insulating layer formed from a polyimide resin containing an inorganic powder filled in a gap between the strand conductors and a gap between the strands constituting the strand conductor. The electromagnetic coil manufactured with the manufacturing method in any one of.
JP2001327525A 2001-10-25 2001-10-25 Electromagnetic coil and manufacturing method thereof Expired - Lifetime JP3782707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327525A JP3782707B2 (en) 2001-10-25 2001-10-25 Electromagnetic coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327525A JP3782707B2 (en) 2001-10-25 2001-10-25 Electromagnetic coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003133156A JP2003133156A (en) 2003-05-09
JP3782707B2 true JP3782707B2 (en) 2006-06-07

Family

ID=19143744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327525A Expired - Lifetime JP3782707B2 (en) 2001-10-25 2001-10-25 Electromagnetic coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3782707B2 (en)

Also Published As

Publication number Publication date
JP2003133156A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US6103382A (en) Catalyzed mica tapes for electrical insulation
WO2013073496A1 (en) Electromagnetic coil, method for manufacturing same, and insulating tape
JP2010238920A (en) Reactor
US20150123760A1 (en) Method and design for stabilizing conductors in a coil winding
Daly et al. Improved training in paraffin-wax impregnated Nb3Sn Rutherford cables demonstrated in BOX samples
JP3782707B2 (en) Electromagnetic coil and manufacturing method thereof
EP3035351B1 (en) Method of manufacturing an amorphous magnetic core and amorphous magnetic core
JP7123828B2 (en) Superconducting coil conductor and method for manufacturing superconducting coil conductor
EP3288045B1 (en) Electromagnetic coils and methods of making same
JP3782706B2 (en) Electromagnetic coil and manufacturing method thereof
Tani et al. Design of RCS magnets for J-PARC 3-GeV synchrotron
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JPWO2019077793A1 (en) Insulating coating material for stator coil and rotating machine using the same
JP4215190B2 (en) Electromagnetic coil and manufacturing method thereof
JP6104123B2 (en) Coil manufacturing method for electrical equipment
CN1246976A (en) End plate
Hooker et al. High-temperature electrical insulation for egs downhole equipment
CN109643604B (en) High-voltage cable for winding and electromagnetic induction device comprising same
JP2003197422A (en) Electromagnetic coil and manufacturing method thereof
US10381898B2 (en) Electric machine having a stator and method thereof for producing a stator of this type
JP2009054808A (en) Coil for pulse magnetic forming and its manufacturing method
JP3568498B2 (en) Electromagnetic coil
JP2008147345A (en) Method of manufacturing reactor
EP1598497B1 (en) Use of a low-magnetism, low-conductivity construction material having improved electromagnetic wave transmittance
JP2004119811A (en) Stationary inductive electric apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Ref document number: 3782707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term