JP2003042927A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003042927A
JP2003042927A JP2001226954A JP2001226954A JP2003042927A JP 2003042927 A JP2003042927 A JP 2003042927A JP 2001226954 A JP2001226954 A JP 2001226954A JP 2001226954 A JP2001226954 A JP 2001226954A JP 2003042927 A JP2003042927 A JP 2003042927A
Authority
JP
Japan
Prior art keywords
sample
optical element
observation
scanning probe
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001226954A
Other languages
Japanese (ja)
Inventor
Hideo Nakajima
秀郎 中島
Kazu Morioka
和 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001226954A priority Critical patent/JP2003042927A/en
Publication of JP2003042927A publication Critical patent/JP2003042927A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent lowering in lightness and contrast of a sample, generated by an optical element, when the sample is observed in prior art, and change in color information therein to shorten a measuring time. SOLUTION: The optical element OD is moved from an observation optical path L, when the sample is observed, and light from the sample 6 is made to reach an observation point VP without passing through the optical element OD. Disturbance to observation light is not generated thereby by the optical element OD in the observation, to prevent the lowering in the lightness and contrast of the sample 6, and changes in of the color information therein.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、試料表面をプロー
ブで走査し、その表面情報を拡大表示する走査型プロー
ブ顕微鏡に関する。 【0002】 【従来の技術】従来より走査型プローブ顕微鏡は微細な
表面形状の分析を行う装置として使用されている。走査
型プローブ顕微鏡にはプローブと試料表面との間に流れ
るトンネル電流を用いる走査型トンネル顕微鏡やプロー
ブと試料表面間に働く原子間力を用いる原子間力顕微鏡
などがあるが、何れも試料表面の微細な凹凸などに対応
してプローブに作用する微細なトンネル電流変化または
原子間力変化を補償するような位置変化をスキャナで発
生させ、前記位置変化を検出し表示している。なお、前
記位置変化は試料表面の凹凸に加えて試料表面の物理特
性の変化にも依存するが、本明細書では以下、試料表面
の凹凸と試料表面の物理特性の変化を併せて凹凸などと
呼ぶ。プローブに作用する微細なトンネル電流変化また
は原子間力変化の検出には、主にレーザ光による光学的
検出機構が使用される。 【0003】以下、図3によって光学的検出機構を重点
に従来の走査型プローブ顕微鏡の基本構成を説明する。
レーザ1から出射されたレーザ光は、ビームスプリッタ
3で直角方向に反射され、プローブ5の先端付近にあら
かじめ設けられている光学反射面(図示せず)で反射さ
れ、さらにミラー4で反射され、検出器8でプローブ5
の位置信号出力に変換される。 【0004】試料6はスキャナ7に載上され、スキャナ
7の三次元駆動機構により、三次元方向に移動する。な
お、三次元駆動機構は、圧電素子等を利用した公知の構
造が普及しているので、図示および詳細な説明を省略す
る。測定準備としてはまず試料6を観察光路Lに沿って
観察点VPから観察しながら試料6を三次元方向に粗動
し概略の試料位置を定め、またスキャナ7を図のz方向
に微動しプローブ5と試料6の間隔を適切な位置に調整
する。したがって観察点VPにおける試料6の観察はビ
ームスプリッタ3およびフィルタ2から構成される光学
素子ODを通過した光によって行われる。フィルタ2
は、プローブ5もしくは試料6で散乱されるレーザ光を
観察点VP前で遮断する機能を有する。 【0005】測定時はスキャナ7により試料6をx、y
方向に走査するとともに検出器8の位置信号出力をスキ
ャナ7に帰還し、前記出力を測定中常に一定に保つよう
に、すなわちプローブ5の位置が常に一定に保たれるよ
うにスキャナ7により試料6を図のz方向に微動させ
る。スキャナ7からの試料位置の三次元位置情報によ
り、適切な表示装置(図示せず)に試料6の表面の凹凸
などの表示が行われる。 【0006】 【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡の構造は以上のとおりであるが、従来の技術では
試料6の観察は前記のようにビームスプリッタ3および
フィルタ2からなる光学素子ODを通過した光によって
行われる。このため試料6の明度およびコントラストは
著しく低下し、色情報も変化し色の識別、区別が困難に
なるため、測定上問題を生じていた。本発明はこのよう
な問題点を解決する走査型プローブ顕微鏡を提供せんと
するものである。 【0007】 【課題を解決するための手段】本発明が提供する走査型
プローブ顕微鏡は、上記の課題を解決するために、プロ
ーブの位置を検出する試料観察光路の途中に挿入された
フィルタ、ビームスプリッタからなる光学素子を進退さ
せる移動機構を設けたものである。したがって試料の観
察時に前記光学素子を移動して試料からの光が光学素子
を透過することなく直接観察できる。 【0008】 【発明の実施の形態】以下本発明を図示実施例にしたが
って説明する。図1は本発明が提供する走査型プローブ
顕微鏡の構成を示す断面図、図2は光学素子ODの移動
構造の一例を示す斜視図である。なお、図1および図2
において、図3に示す符号と同一の符号で示される部品
は図3に示す部品と同一であり、これらの機能について
の詳細な説明は省略する。 【0009】図1において、フィルタ2およびビームス
ピリッタ3から構成される光学素子ODは移動構造を有
する。図2は具体的な移動構造の一例で直接観察系によ
る観察時を示している。図2において、光学素子ODは
移動可能な光学素子台Mに設置される。同時に光学素子
台Mは車輪Sを介してレールR上に載架されておりワイ
ヤWとプーリP1、P2からなる駆動系で移動される。
すなわちプーリP1にはパルスモータPMが直結されて
いて切換の信号が入力されるとパルスモータPMの駆動
により光学素子台Mが移動方向Dの方向に移動する。そ
して光学素子ODは観察光路L外に移動され貫通の観察
孔Hを通して図1の試料6の観察を直接に行うことがで
きる。前記試料6の凹凸などの測定時は光学素子台Mを
レールRの方向に移動方向Dに沿って移動させ、光学素
子ODを観察光路L内に戻す。 【0010】なお、図2の構造は一例を示したものであ
って、本発明はこの移動の構造ならびに移動の方向に限
定されるものではない。すなわちたとえばねじ送り機構
を採用してねじ棒の回転をモータ等で行わせて自動的に
移動させるような手段を設けることもできる。また観察
点VPにおける試料6の観察方法は目視のほか、光ファ
イバや拡大レンズ系、CCD(電荷結合素子)を使用し
た方法など、必要に応じて補助装置を利用する場合があ
るが、本発明はこれらの観察方法をすべて包含する。 【0011】 【発明の効果】本発明は以上詳述したとおりであるか
ら、試料からの光が光学素子を通過することなく観察点
に到達するため、試料の観察段階において光学素子によ
る観察光への障害は発生せず、観察時の試料の明度およ
びコントラストの低下、色情報の変化が防止され観察が
高感度で行われ、試料の位置決めを正確に精度良く行う
ことができ、測定準備時間を含み測定時間が短縮され
る。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a scanning probe microscope which scans a sample surface with a probe and enlarges and displays the surface information. 2. Description of the Related Art Conventionally, a scanning probe microscope has been used as an apparatus for analyzing a fine surface shape. Scanning probe microscopes include a scanning tunneling microscope that uses a tunnel current flowing between the probe and the sample surface and an atomic force microscope that uses an atomic force acting between the probe and the sample surface. The scanner generates a position change that compensates for a fine tunnel current change or an atomic force change that acts on the probe in response to fine irregularities or the like, and detects and displays the position change. In addition, although the said position change also depends on the change of the physical property of the sample surface in addition to the unevenness of the sample surface, hereinafter, in the present specification, the unevenness of the sample surface and the change of the physical property of the sample surface are referred to as unevenness. Call. An optical detection mechanism mainly using laser light is used for detecting a minute change in tunnel current or a change in atomic force acting on the probe. The basic configuration of a conventional scanning probe microscope will be described below with reference to FIG. 3, focusing on an optical detection mechanism.
The laser light emitted from the laser 1 is reflected at right angles by the beam splitter 3, reflected by an optical reflection surface (not shown) provided in advance near the tip of the probe 5, and further reflected by the mirror 4. Probe 5 with detector 8
Is converted to a position signal output. The sample 6 is placed on a scanner 7 and moved in a three-dimensional direction by a three-dimensional driving mechanism of the scanner 7. In the three-dimensional drive mechanism, a known structure using a piezoelectric element or the like has been widely used, and thus illustration and detailed description thereof are omitted. In preparation for the measurement, first, the sample 6 is roughly moved in the three-dimensional direction while observing the sample 6 from the observation point VP along the observation optical path L to roughly determine the sample position, and the scanner 7 is finely moved in the z direction in FIG. Adjust the distance between 5 and sample 6 to an appropriate position. Therefore, the observation of the sample 6 at the observation point VP is performed by the light passing through the optical element OD including the beam splitter 3 and the filter 2. Filter 2
Has a function of blocking laser light scattered by the probe 5 or the sample 6 before the observation point VP. At the time of measurement, the sample 6 is moved by the scanner 7 to x, y
In the scanning direction, the position signal output of the detector 8 is fed back to the scanner 7, and the sample 6 is controlled by the scanner 7 so that the output is always kept constant during measurement, that is, the position of the probe 5 is always kept constant. Is slightly moved in the z direction in the figure. In accordance with the three-dimensional position information of the sample position from the scanner 7, a display such as unevenness on the surface of the sample 6 is displayed on an appropriate display device (not shown). [0006] The structure of the conventional scanning probe microscope is as described above. In the prior art, the observation of the sample 6 is performed by the optical system including the beam splitter 3 and the filter 2 as described above. This is performed by light passing through the element OD. For this reason, the brightness and contrast of the sample 6 are remarkably reduced, the color information is changed, and it is difficult to discriminate and distinguish the colors, thus causing a problem in measurement. An object of the present invention is to provide a scanning probe microscope that solves such a problem. In order to solve the above-mentioned problems, a scanning probe microscope provided by the present invention provides a filter and a beam inserted in the middle of a sample observation optical path for detecting the position of a probe. A moving mechanism for moving an optical element including a splitter forward and backward is provided. Therefore, when the sample is observed, the optical element is moved and light from the sample can be directly observed without passing through the optical element. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a sectional view showing a configuration of a scanning probe microscope provided by the present invention, and FIG. 2 is a perspective view showing an example of a moving structure of an optical element OD. 1 and 2
In FIG. 7, components denoted by the same reference numerals as those shown in FIG. 3 are the same as the components shown in FIG. 3, and a detailed description of these functions will be omitted. In FIG. 1, an optical element OD comprising a filter 2 and a beam spiriter 3 has a moving structure. FIG. 2 shows an example of a specific moving structure at the time of observation by a direct observation system. In FIG. 2, the optical element OD is set on a movable optical element table M. At the same time, the optical element table M is mounted on a rail R via wheels S, and is moved by a drive system including a wire W and pulleys P1, P2.
That is, the pulse motor PM is directly connected to the pulley P1, and when a switching signal is input, the optical element table M moves in the moving direction D by driving the pulse motor PM. Then, the optical element OD is moved outside the observation optical path L, and the observation of the sample 6 in FIG. When measuring the irregularities of the sample 6, the optical element table M is moved along the moving direction D in the direction of the rail R, and the optical element OD is returned into the observation optical path L. The structure shown in FIG. 2 is an example, and the present invention is not limited to the structure and the direction of the movement. That is, for example, means for adopting a screw feed mechanism and rotating the screw rod by a motor or the like and automatically moving the same may be provided. In addition, the method of observing the sample 6 at the observation point VP is not limited to visual observation, and an auxiliary device may be used as necessary, such as a method using an optical fiber, a magnifying lens system, or a CCD (charge coupled device). Encompasses all of these observation methods. Since the present invention has been described in detail above, the light from the sample reaches the observation point without passing through the optical element. No obstruction occurs, the brightness and contrast of the sample at the time of observation are prevented from lowering, color information is prevented from changing, observation is performed with high sensitivity, sample positioning can be performed accurately and accurately, and measurement preparation time is reduced. Including measurement time is reduced.

【図面の簡単な説明】 【図1】 本発明による走査型プローブ顕微鏡の構成を
示す断面図である。 【図2】 本発明による走査型プローブ顕微鏡の光学素
子移動機構の一例を示す斜視図である。 【図3】 従来技術における走査型プローブ顕微鏡の構
造を示す断面図である。 【符号の説明】 1…レーザ 2…フィルタ 3…ビームスプリッタ 5…プローブ 6…試料 7…スキャナ OD…光学素子 L…観察光路 VP…観察点
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a configuration of a scanning probe microscope according to the present invention. FIG. 2 is a perspective view showing an example of an optical element moving mechanism of the scanning probe microscope according to the present invention. FIG. 3 is a cross-sectional view showing a structure of a scanning probe microscope according to the related art. [Explanation of Symbols] 1 laser 2 filter 3 beam splitter 5 probe 6 sample 7 scanner OD optical element L observation optical path VP observation point

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA49 AA53 DD05 FF01 FF67 GG07 HH04 HH12 JJ02 JJ25 KK02 LL02 LL04 LL12 LL46 MM03 PP12 PP22 PP24 UU07 2F069 AA60 AA66 GG04 GG06 GG07 GG52 GG62 HH05 HH09 HH30 JJ15 MM00    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 2F065 AA49 AA53 DD05 FF01 FF67                       GG07 HH04 HH12 JJ02 JJ25                       KK02 LL02 LL04 LL12 LL46                       MM03 PP12 PP22 PP24 UU07                 2F069 AA60 AA66 GG04 GG06 GG07                       GG52 GG62 HH05 HH09 HH30                       JJ15 MM00

Claims (1)

【特許請求の範囲】 【請求項1】試料の表面に近接して配設されたプローブ
とプローブの位置検出のための光学系を備え試料表面を
分析する走査型プローブ顕微鏡において、プローブの位
置を検出する試料観察光路の途中に挿入されたフィル
タ、ビームスプリッタからなる光学素子を進退させる移
動機構を設け、試料の観察時に前記光学素子を移動して
試料からの光が光学素子を透過することなく直接観察で
きるようにしたことを特徴とする走査型プローブ顕微
鏡。
Claims: 1. A scanning probe microscope for analyzing a sample surface, comprising: a probe disposed close to the surface of the sample and an optical system for detecting the position of the probe. A filter inserted in the middle of the sample observation optical path to be detected, a moving mechanism for moving the optical element consisting of a beam splitter is provided, and the light from the sample moves without moving the optical element when observing the sample by moving the optical element. A scanning probe microscope characterized by enabling direct observation.
JP2001226954A 2001-07-27 2001-07-27 Scanning probe microscope Pending JP2003042927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226954A JP2003042927A (en) 2001-07-27 2001-07-27 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226954A JP2003042927A (en) 2001-07-27 2001-07-27 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JP2003042927A true JP2003042927A (en) 2003-02-13

Family

ID=19059681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226954A Pending JP2003042927A (en) 2001-07-27 2001-07-27 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP2003042927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966589A (en) * 2016-10-19 2018-04-27 株式会社岛津制作所 Scanning type probe microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966589A (en) * 2016-10-19 2018-04-27 株式会社岛津制作所 Scanning type probe microscope

Similar Documents

Publication Publication Date Title
US5376790A (en) Scanning probe microscope
US7355710B2 (en) Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent pigments
US5448399A (en) Optical system for scanning microscope
US5874726A (en) Probe-type near-field confocal having feedback for adjusting probe distance
KR102615578B1 (en) Characterizing a height profile of a sample by side view imaging
WO1993018525A1 (en) Scanning probe microscope
EP3324194B1 (en) Imaging a gap between sample and probe of a scanning probe microscope in substantially horizontal side view
JP3861000B2 (en) Scanning laser microscope
JPH08248322A (en) Attachment module for focus measurement
JP3323572B2 (en) EO probe positioning method for voltage measurement device
JP2003042927A (en) Scanning probe microscope
CN1146724C (en) Small light spot detector for CD driver objective
JP2003014611A (en) Scanning type probe microscope
JP3523754B2 (en) Scanning probe microscope
JP2006317798A (en) Microscope apparatus
US7283297B2 (en) Scanning microscope having a mirror for coupling-in a manipulating light beam
JP2001124688A (en) Scanning probe microscope and observation method of optical image in scanning probe microscope
JP2006510932A (en) Coherence microscope
JP4128256B2 (en) Scanning laser microscope
JP2005043892A (en) Confocal raster microscope
JPH0371001A (en) Fine surface shape measuring instrument
JPH06160077A (en) Observing optical system assembled into scanning type probe microscope
JPH07198730A (en) Scanning probe microscope
JPH06180228A (en) Surface observation apparatus
JPH09304403A (en) Scanning probe microscope