JPH06180228A - Surface observation apparatus - Google Patents

Surface observation apparatus

Info

Publication number
JPH06180228A
JPH06180228A JP35295292A JP35295292A JPH06180228A JP H06180228 A JPH06180228 A JP H06180228A JP 35295292 A JP35295292 A JP 35295292A JP 35295292 A JP35295292 A JP 35295292A JP H06180228 A JPH06180228 A JP H06180228A
Authority
JP
Japan
Prior art keywords
sample
actuator
illumination
observation
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35295292A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
泰 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP35295292A priority Critical patent/JPH06180228A/en
Publication of JPH06180228A publication Critical patent/JPH06180228A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus wherein it can perform the transmitted illumination of a sample without lowering its measuring accuracy and it is suitable for the observation of a living thing by a method wherein an actuator is formed to be a hollow shape and an illumination system is arranged in its hollow part. CONSTITUTION:A probe 2 is arranged so as to face a sample 4, and a physical quantity such as an interatomic force or the like is made to act between both by bringing both close to each other or by bringing both into contact with each other. A hollow actuator 5 scans the face of the sample 4 three-dimensionally. At this time, the physical quantity is monitored on a display device 3, and the face shape of the sample 4 can be measured. An observation optical system 1 is constituted in such a way that it can observe the surface of the sample 4 optically and that it can align the probe 2 with a measuring position on the sample 4. A transparent member 7 is attached directly to the actuator 5, and the actuator 5 is bonded and fixed integrally to the base of an illumination device 6 for the transmitted illumination of the sample 4. As a result, the structure of the actuator is resistant to a vibration. In addition, since the transparent member 7 is held by the actuator 5, the member is not supported unilaterally from the viewpoint of its structure and it is resistant to a vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡(以下
AFMと略称する),磁気力顕微鏡等の試料面に探針を
近づけて試料から受ける物理量より試料の表面を観察す
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for observing the surface of a sample, such as an atomic force microscope (hereinafter abbreviated as AFM) or a magnetic force microscope, by bringing a probe close to the sample surface and observing the physical quantity received from the sample.

【0002】[0002]

【従来の技術】従来、光学的観察を行う試料表面の観察
装置として、例えば特開平3−71001号公報記載の
発明がある。上記発明は、落射照明を用いたものであ
り、図9を用いて以下に述べる。
2. Description of the Related Art Conventionally, as an apparatus for observing a sample surface for optical observation, there is an invention described in Japanese Patent Laid-Open No. 3-71001, for example. The above invention uses the epi-illumination, which will be described below with reference to FIG.

【0003】検出部54からの出射光はハーフミラー5
5およびレンズ52を通りカンチレバー53で反射す
る。反射光は同一光路を戻り検出部54にもどる。この
一連の動作により検出部54はカンチレバー53の変位
を検出する機能を持ち、カンチレバー53と試料50と
の間に働く力を検出する。
Light emitted from the detector 54 is emitted from the half mirror 5.
5 and the lens 52, and is reflected by the cantilever 53. The reflected light returns along the same optical path to the detection unit 54. Through this series of operations, the detection unit 54 has a function of detecting the displacement of the cantilever 53, and detects the force acting between the cantilever 53 and the sample 50.

【0004】検出された力は、試料50表面の凹凸に対
応している為、これを表示することにより表面観察がで
きる。また、観察位置をあらかじめ特定する必要から光
学的観察手段を用いて試料50表面とカンチレバー53
の位置を観察する。
Since the detected force corresponds to the unevenness on the surface of the sample 50, the surface can be observed by displaying it. In addition, since it is necessary to specify the observation position in advance, the surface of the sample 50 and the cantilever 53 are measured by using an optical observation means.
Observe the position of.

【0005】従来例では、光源58から射出される照明
光をレンズ57で平行光にし、ハーフミラー56で反射
される。ハーフミラー56で反射された照明光は、ハー
フミラー55を透過してレンズ52に入射し、さらにカ
ンチレバー53および試料50を照明する。試料50か
らの反射された照明光は、レンズ52,ハーフミラー5
5およびハーフミラー56を通過し、レンズ59により
ビデオカメラ60に結像させて試料50表面およびカン
チレバー53を観察する。
In the conventional example, the illumination light emitted from the light source 58 is collimated by the lens 57 and reflected by the half mirror 56. The illumination light reflected by the half mirror 56 passes through the half mirror 55, enters the lens 52, and further illuminates the cantilever 53 and the sample 50. The illumination light reflected from the sample 50 is reflected by the lens 52 and the half mirror 5.
After passing through 5 and the half mirror 56, a lens 59 forms an image on the video camera 60 to observe the surface of the sample 50 and the cantilever 53.

【0006】[0006]

【発明が解決しようとする課題】前記従来技術において
は、透明な試料の観察に際し、光学的観察照明が落射照
明であるため、試料からの反射光がほとんど無く、観察
部位の特定ができなくなるので生物観察には適さない。
このため、透明な試料表面の凹凸を分子レベルで観察す
ることはできない。
In the above prior art, when observing a transparent sample, since the optical observation illumination is epi-illumination, there is almost no reflected light from the sample and the observation site cannot be specified. Not suitable for organism observation.
Therefore, it is not possible to observe the unevenness of the transparent sample surface at the molecular level.

【0007】従って、試料の下方より照射する透過照明
にて観察部位を特定できる様に、従来周知の顕微鏡用透
過照明を単に組み込んだだけでは、透明試料を載置した
X・Yテーブルからなる試料保持部の振動が問題となっ
て、試料表面の分子レベルでの測定精度が得られなかっ
た。すなちわ、透明試料を載置してこれを下方から照明
するように貫通孔を穿設したX・Yテーブルを顕微鏡用
ベースへ摺動自在に支持するに際し、X・Yテーブルと
前記ベースのガイド面とは摺動面を形成するが、摺動自
在であるためにX・Yテーブルがベースのガイド面に対
して動きやすく(ベースを伝わってくる外部振動によ
り、X・Yテーブルがベースとは別に動いて振動す
る)、試料が振動して分子レベルの測定精度が得られな
かった。
Therefore, in order to identify the observation site by the transmitted illumination irradiated from the lower side of the sample, simply incorporating the conventionally known transmitted illumination for microscopes is a sample consisting of an X / Y table on which a transparent sample is placed. The vibration of the holding part became a problem, and the measurement accuracy at the molecular level on the sample surface could not be obtained. In other words, when a transparent sample is placed and an X / Y table having a through hole so that it is illuminated from below, is slidably supported on a microscope base, the X / Y table and the base Although it forms a sliding surface with the guide surface of, the XY table is easy to move with respect to the guide surface of the base because it is slidable (the XY table can be moved by the external vibration transmitted through the base. However, the sample vibrates and the measurement accuracy at the molecular level was not obtained.

【0008】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、測定精度を落とさずに
試料の透過照明ができ、生物観察に適した表面観察装置
の提供を目的とする。
Therefore, the present invention was developed in view of the above problems in the prior art, and an object of the present invention is to provide a surface observation apparatus suitable for biological observation, capable of transmitting and illuminating a sample without lowering measurement accuracy. And

【0009】[0009]

【課題を解決するための手段】本発明は、試料面と、こ
の試料面に対向して配置される探触針と、該探触針を試
料面に接近あるいは接触させて試料面を走査させるアク
チュエータと、前記探触針または試料の変位量から試料
の表面形状を表示する表示装置と、前記試料面を光学的
に観察する観察光学系とを有する表面観察装置におい
て、前記アクチュエータを中空形状に形成し、該アクチ
ュエータの中空部に前記試料面を照明する照明系を配置
するとともに、アクチュエータの上端部へ前記試料を載
置する透明部材を設けて構成したものである。
SUMMARY OF THE INVENTION According to the present invention, a sample surface, a probe needle arranged to face the sample surface, and a probe surface which is brought into contact with or brought into contact with the sample surface to scan the sample surface. In a surface observation device having an actuator, a display device for displaying the surface shape of a sample from the displacement of the probe or the sample, and an observation optical system for optically observing the sample surface, the actuator has a hollow shape. An illumination system for illuminating the sample surface is formed in the hollow portion of the actuator, and a transparent member for mounting the sample is provided on the upper end portion of the actuator.

【0010】図1は本発明を示す概念図である。図に示
す通りこの装置では、探触針2を試料4に対向して配置
し、接近或いは接触させることにより両者の間に物理量
を作用させる。この物理量は、具体的には、STMでは
トンネル電流、AFMでは原子間力、磁気力顕微鏡では
磁気力として作用する。
FIG. 1 is a conceptual diagram showing the present invention. As shown in the figure, in this device, the probe needle 2 is arranged so as to face the sample 4, and a physical quantity is exerted between them by approaching or contacting them. Specifically, this physical quantity acts as a tunnel current in the STM, an atomic force in the AFM, and a magnetic force in the magnetic force microscope.

【0011】中空型アクチュエータ5は試料4面を3次
元的に走査を行う。この時、前記物理量を表示装置3で
モニタする事により試料4の面形状を測定できる。観察
光学系1は、試料4の表面を光学的に観察でき、探触針
2と試料4上の測定位置との位置合わせを行うために構
成する。中空型アクチュエータ5の下端部は、中空型ア
クチュエータ5の中空部を通り試料4を透過照明する照
明装置6のベースへ一体的に接着固定され、その上端部
には一体的に透明部材7が設けられている。
The hollow actuator 5 three-dimensionally scans the surface of the sample 4. At this time, the surface shape of the sample 4 can be measured by monitoring the physical quantity with the display device 3. The observation optical system 1 is configured to optically observe the surface of the sample 4 and align the probe 2 with the measurement position on the sample 4. The lower end of the hollow actuator 5 is integrally bonded and fixed to the base of an illuminating device 6 which transmits and illuminates the sample 4 through the hollow portion of the hollow actuator 5, and a transparent member 7 is integrally provided on the upper end thereof. Has been.

【0012】[0012]

【作用】本発明では、透明部材7を中空型アクチュエー
タ5に直接取り付けられるとともに、中空型アクチュエ
ータ5は照明装置6のベースに一体的に接着固定されて
いるので振動に強い構造となる。さらに、透明部材7を
中空型アクチュエータ5で保持しているので、構造上片
持ちとならず、振動に強い。
In the present invention, since the transparent member 7 is directly attached to the hollow actuator 5 and the hollow actuator 5 is integrally bonded and fixed to the base of the lighting device 6, the structure has a strong vibration resistance. Furthermore, since the transparent member 7 is held by the hollow actuator 5, the structure does not become a cantilever and is strong against vibration.

【0013】[0013]

【実施例1】図2〜図6は本実施例を示し、図2は概略
構成図、図3は円筒アクチュエータの斜視図、図4は同
横断面図、図5および図6は円筒アクチュエータの動作
を示す斜視図である。
Embodiment 1 FIGS. 2 to 6 show the present embodiment, FIG. 2 is a schematic configuration diagram, FIG. 3 is a perspective view of a cylindrical actuator, FIG. 4 is a cross-sectional view of the same, and FIGS. 5 and 6 show a cylindrical actuator. It is a perspective view which shows operation.

【0014】図2において、2はタングステン等の金属
線の先端を機械研磨または電解研磨してなる探触針で、
試料4表面に近接する位置へガラス15により支持され
ている。ガラス15は支柱25で保持される。試料4は
探触針2に対向して配置され、上端にガラス16を保持
した円筒アクチュエータ5により支持されている。円筒
アクチュエータ5は支柱25に接着固定されている。
In FIG. 2, reference numeral 2 denotes a probe needle formed by mechanically polishing or electrolytically polishing the tip of a metal wire such as tungsten.
It is supported by the glass 15 at a position close to the surface of the sample 4. The glass 15 is held by the columns 25. The sample 4 is arranged so as to face the probe 2, and is supported by a cylindrical actuator 5 that holds a glass 16 at the upper end. The cylindrical actuator 5 is adhesively fixed to the column 25.

【0015】円筒アクチュエータ5はX・Y・Zの直交
3方向へ動作可能な微動機構で、以下の様に形成されて
いる。まず、圧電材料を中空円筒形状に加工(焼結)す
る。その外周面に、長さ方向へは全面な4つの+x極,
−x極,+y極,−y極からなるAg電極を等間隔で、
かつ+x極と−x極,+y極と−y極とがそれぞれ対向
する様に設ける。その内周面にはAg電極(z極)が全
面に設けられている。
The cylindrical actuator 5 is a fine movement mechanism that can move in three orthogonal directions of X, Y and Z, and is formed as follows. First, the piezoelectric material is processed (sintered) into a hollow cylindrical shape. On its outer surface, four + x poles, which are the entire surface in the length direction,
Ag electrodes composed of −x pole, + y pole, and −y pole are equally spaced,
Moreover, the + x pole and the −x pole and the + y pole and the −y pole are provided so as to face each other. An Ag electrode (z pole) is provided on the entire inner peripheral surface.

【0016】一方、トンネル電流検出制御器7は、試料
4にバイアス電圧を印加し、探触針2との間にトンネル
電流を電流/電圧変換するI/V変換回路およびログア
ンプで構成する。走査信号発生器8は、高圧アンプおよ
びノコギリ波形発生回路等で構成され、円筒アクチュエ
ータ5を駆動する。形状表示器9は、トンネル電流値と
走査信号発生器8の駆動信号を入力するコンピュータ等
で構成されている。
On the other hand, the tunnel current detection controller 7 is composed of an I / V conversion circuit for applying a bias voltage to the sample 4 and converting the tunnel current between the probe 4 and the probe 2, and a log amp. The scanning signal generator 8 is composed of a high voltage amplifier, a sawtooth waveform generating circuit, and the like, and drives the cylindrical actuator 5. The shape display 9 is composed of a computer or the like for inputting the tunnel current value and the drive signal of the scanning signal generator 8.

【0017】光源13は、タングステンランプ等で構成
し電源14と接続されている。光源13から出た光は市
販の赤外線カットフィルタであるコールドフィルタ17
を透過し、レンズ11,ミラー12,レンズ10およひ
ガラス16を通り試料4の表面を照明する。これら各部
品は、一般的照明法であるケラー照明法で配置する。観
察光学系1は、通常の顕微鏡光学系であり、対物レンズ
および接眼レンズで構成する。
The light source 13 is composed of a tungsten lamp or the like and is connected to a power source 14. The light emitted from the light source 13 is a cold filter 17 which is a commercially available infrared cut filter.
Through the lens 11, the mirror 12, the lens 10 and the glass 16 to illuminate the surface of the sample 4. Each of these parts is arranged by the Keller illumination method which is a general illumination method. The observation optical system 1 is a normal microscope optical system, and includes an objective lens and an eyepiece lens.

【0018】以上の構成から成る表面観察装置は、走査
信号発生器8により円筒アクチュエータ5を微動して試
料面4を走査する。円筒アクチュエータ5の微動は、X
軸方向へは、±y極と内側のz極とを一定にし、+x極
に+200Vを−x極に−200Vを印加すると、電歪
効果によりその上端が−x極方向(図5中、左方向)へ
数10μm動く。また、+x極に−200Vを−x極に
+200Vを印加した場合、+x極方向(逆方向)に動
く(図5参照)。Y軸方向へは、±x極およびz極を一
定にし、±y極に±200V印加することによりY軸方
向に動作する。Z軸方向へは、内側のz極に電圧を印加
するとZ軸方向(上下方向)へ動作する(図6参照)。
In the surface observing apparatus having the above structure, the scanning signal generator 8 finely moves the cylindrical actuator 5 to scan the sample surface 4. The fine movement of the cylindrical actuator 5 is X
In the axial direction, if the ± y pole and the inner z pole are made constant and +200 V is applied to the + x pole and −200 V is applied to the −x pole, the upper end thereof is in the −x pole direction due to the electrostriction effect (in FIG. 5, left side). Direction) for several tens of μm. Further, when -200 V is applied to the + x pole and +200 V is applied to the -x pole, it moves in the + x pole direction (reverse direction) (see FIG. 5). In the Y-axis direction, the ± x pole and the z-pole are kept constant, and ± 200 V is applied to the ± y pole to operate in the Y-axis direction. In the Z-axis direction, when a voltage is applied to the inner z-pole, it operates in the Z-axis direction (vertical direction) (see FIG. 6).

【0019】この時、前記バイアス電圧を印加している
ため、探触針2と試料4間とにトンネル電流が流れ、こ
の値を形状表示器9に取り込み、走査信号発生器8の駆
動信号と同期させて試料4の形状を表示することによ
り、試料4面の状態を観察できる。同時に、試料4面の
光学的観察を行う為に光源13および11,12,10
のリレー光学系で試料4を透過照明し、この照明光を観
察光学系1に結像させる。コールドフィルタ17は照明
系の発熱を防ぐための物である。
At this time, since the bias voltage is applied, a tunnel current flows between the probe 2 and the sample 4, and this value is taken into the shape display 9 and used as a drive signal for the scanning signal generator 8. By displaying the shape of the sample 4 in synchronism, the state of the surface of the sample 4 can be observed. At the same time, the light sources 13 and 11, 12, 10 are used for optical observation of the surface of the sample 4.
The sample 4 is transmitted and illuminated by the relay optical system, and the illumination light is focused on the observation optical system 1. The cold filter 17 is for preventing heat generation of the illumination system.

【0020】本実施例によれば、円筒アクチュエータと
照明レンズとが分離されているため、円筒アクチュエー
タの固有振動数が上がり制御特性が向上する。
According to this embodiment, since the cylindrical actuator and the illumination lens are separated, the natural frequency of the cylindrical actuator is increased and the control characteristics are improved.

【0021】[0021]

【実施例2】図7は本実施例を示す概略構成図である。
本実施例は、前記実施例1におけるレンズ10およびガ
ラス16を廃止し、代わりにレンズ18で構成した。レ
ンズ18は円筒アクチュエータ5の上端に保持され、試
料4を支持する。また、前記実施例1におけるレンズ1
1,ミラー12,光源13およびコールドフィルタ17
を廃止し、代わりにファイバー光源19とこれに接続し
た光ファイバー20とで構成した。光ファイバー20の
一端面はレンズ18により観察光学系1の入射瞳に結像
する様に配置する。ファイバー光源19はタングステン
ランプおよび簡単な光学部品で構成し、光ファイバー2
0の他端面を照明する。以下、前記実施例1と同様な構
成であり、同一番号を付して構成の説明を省略する。
Second Embodiment FIG. 7 is a schematic configuration diagram showing this embodiment.
In this example, the lens 10 and the glass 16 in Example 1 were eliminated, and a lens 18 was used instead. The lens 18 is held on the upper end of the cylindrical actuator 5 and supports the sample 4. Further, the lens 1 in the first embodiment
1, mirror 12, light source 13 and cold filter 17
Was abolished and replaced by a fiber light source 19 and an optical fiber 20 connected thereto. One end surface of the optical fiber 20 is arranged so that an image is formed on the entrance pupil of the observation optical system 1 by the lens 18. The fiber light source 19 consists of a tungsten lamp and simple optical parts, and
The other end surface of 0 is illuminated. Hereinafter, the configuration is the same as that of the first embodiment, the same reference numerals are given, and the description of the configuration is omitted.

【0022】ファイバー光源19からの光を円筒アクチ
ュエータ5に導くための光ファイバー20を用いる。レ
ンズ18は光ファイバー20からの光で試料4表面を均
一に照明する。以下、前記実施例1と同様な作用であ
り、作用の説明を省略する。
An optical fiber 20 for guiding the light from the fiber light source 19 to the cylindrical actuator 5 is used. The lens 18 uniformly illuminates the surface of the sample 4 with the light from the optical fiber 20. Hereinafter, the operation is similar to that of the first embodiment, and the description of the operation is omitted.

【0023】本実施例によれば、試料に接するガラス板
と照明レンズを共通化したため、構成が簡単になる。さ
らに、光ファィバーで光源の光を導くため、光源からの
発熱で支柱が温度ドリフトせず、安定した表面観察像が
得られる。
According to this embodiment, since the glass plate contacting the sample and the illumination lens are made common, the structure is simplified. Furthermore, since the light from the light source is guided by the optical fiber, the pillar does not drift due to heat generated from the light source, and a stable surface observation image can be obtained.

【0024】[0024]

【実施例3】図8は本実施例を示す概略構成図である。
本実施例においては、前記実施例2と同一な構成部分に
は同一番号を付してその説明を省略する。支柱25に一
端を固定したカンチレバー24の先端に探触針2を配置
する。カンチレバー24としては充分に薄い燐青銅の箔
片または半導体作製技術による箔を用いる。
Third Embodiment FIG. 8 is a schematic configuration diagram showing the present embodiment.
In the present embodiment, the same components as those in the second embodiment are designated by the same reference numerals and the description thereof will be omitted. The probe needle 2 is arranged at the tip of the cantilever 24 whose one end is fixed to the column 25. As the cantilever 24, a sufficiently thin phosphor bronze foil piece or a foil manufactured by a semiconductor manufacturing technique is used.

【0025】試料4に対向してレンズ27を配置し、カ
ンチレバー24と観察光学系のレンズ26との間にダイ
クロックミラー28を置き、ダイクロックミラー28の
反射光を検出できる位置に検出器29を配置する。ダイ
クロックミラー28は検出器29で使用される光波長を
選択的に反射する様に製作されたダイクロックミラーで
構成する。
A lens 27 is arranged so as to face the sample 4, a dichroic mirror 28 is placed between the cantilever 24 and the lens 26 of the observation optical system, and a detector 29 is provided at a position where the reflected light of the dichroic mirror 28 can be detected. To place. The dichroic mirror 28 is composed of a dichroic mirror manufactured to selectively reflect the light wavelength used in the detector 29.

【0026】検出器29としては三角測量法,非点収差
法および臨界角法等の光学式センサを用いる。検出され
た信号は制御回路23に入力される。制御回路23は一
般的なPID(比例,積分,微分)制御回路で構成さ
れ、円筒アクチュエータ5に入力する。制御回路23の
制御量は形状表示器9に入力される。透明試料台20
は、円筒アクチュエータ5と分離出来るように構成して
取り外し可能とし、試料4を保持する。
As the detector 29, an optical sensor such as a triangulation method, an astigmatism method and a critical angle method is used. The detected signal is input to the control circuit 23. The control circuit 23 is composed of a general PID (proportional, integral, derivative) control circuit, and inputs it to the cylindrical actuator 5. The control amount of the control circuit 23 is input to the shape display 9. Transparent sample table 20
Holds the sample 4 by making it detachable from the cylindrical actuator 5.

【0027】レンズ27は簡単な結像光学系で構成さ
れ、支柱25で保持される。レンズ30は透明試料台2
0の下部に配置し、支柱25で保持する。フィルタ21
はファイバー光源19から出射される光を遮光する位置
に配置し、前記ダイクロックミラー28で反射する波長
を選択的に遮光する様に構成され、市販の光学フィルタ
や干渉フィルタで構成する。以下、前記実施例2と同様
な構成であり、構成の説明を省略する。
The lens 27 is composed of a simple image forming optical system, and is held by the column 25. The lens 30 is the transparent sample table 2
It is arranged at the lower part of 0 and is held by the column 25. Filter 21
Is arranged at a position for blocking the light emitted from the fiber light source 19, and is configured to selectively block the wavelength reflected by the dichroic mirror 28, and is constituted by a commercially available optical filter or interference filter. Hereinafter, the configuration is the same as that of the second embodiment, and the description of the configuration is omitted.

【0028】なお、検出器として本実施例では光学式を
挙げたが、STM,静電容量センサ等を用いて構成する
事は容易に実現できる。また、透明試料台20をフィル
タ21の材料で構成することにより、フィルタ21を削
除して同様の効果を実現できる。
Although the optical type is used as the detector in this embodiment, it can be easily realized by using the STM, the capacitance sensor or the like. Further, by configuring the transparent sample table 20 with the material of the filter 21, the filter 21 can be eliminated and the same effect can be realized.

【0029】以上の構成から成る表面観察装置は、ダイ
クロックミラー28およびレンズ27を介して検出器2
9がカンチレバー24の変位量を検出する。そして、制
御回路23で予め定めた変位量で一定となるように円筒
アクチュエータ5を制御する。この時、走査信号発生器
8で試料4表面を走査し、走査信号と前記制御量とから
表面形状を形状表示器9に表示する。
The surface observing apparatus having the above-mentioned structure is provided with the detector 2 via the dichroic mirror 28 and the lens 27.
9 detects the amount of displacement of the cantilever 24. Then, the control circuit 23 controls the cylindrical actuator 5 so that the displacement becomes constant at a predetermined displacement amount. At this time, the scanning signal generator 8 scans the surface of the sample 4, and the surface shape is displayed on the shape display 9 based on the scanning signal and the control amount.

【0030】フィルタ21およびダイクロックミラー2
8は、ファイバー光源19の光が検出器29に入射しな
いように構成されており、ファイバー光源19から出射
される波長の中で、ダイクロックミラー28て反射出来
る波長を選択的に排除し、それ以外の光により試料4を
照明し、レンズ27およびレンズ26で試料4面の光学
的観察を行う。
Filter 21 and dichroic mirror 2
8 is configured so that the light of the fiber light source 19 does not enter the detector 29, and selectively excludes the wavelengths emitted from the fiber light source 19 that can be reflected by the dichroic mirror 28. The sample 4 is illuminated with light other than the above, and the surface of the sample 4 is optically observed with the lenses 27 and 26.

【0031】本実施例によれば、照明光による外乱が検
出器に入らないため、照明を点灯したままで高精度な表
面形状測定ができる。
According to this embodiment, since the disturbance due to the illumination light does not enter the detector, the surface shape can be measured with high accuracy while the illumination is on.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る表面
観察装置によれば、円筒アクチュエータと透過照明系と
を一体化することにより、装置の剛性低下を防ぎつつ透
過照明ができ、高精度な表面観察が行える。
As described above, according to the surface observation apparatus of the present invention, by integrating the cylindrical actuator and the transillumination system, it is possible to perform transillumination while preventing the rigidity of the apparatus from decreasing, and to achieve high accuracy. You can observe various surfaces.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】実施例1を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a first embodiment.

【図3】実施例1における円筒アクチュエータの斜視図
である。
FIG. 3 is a perspective view of a cylindrical actuator according to the first embodiment.

【図4】実施例1における円筒アクチュエータの横断面
図である。
FIG. 4 is a cross-sectional view of the cylindrical actuator according to the first embodiment.

【図5】実施例1における円筒アクチュエータの動作を
示す斜視図である。
FIG. 5 is a perspective view showing the operation of the cylindrical actuator in the first embodiment.

【図6】実施例1における円筒アクチュエータの動作を
示す斜視図である。
FIG. 6 is a perspective view showing the operation of the cylindrical actuator according to the first embodiment.

【図7】実施例2を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a second embodiment.

【図8】実施例3を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a third embodiment.

【図9】従来例を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 観察光学系 2 探触針 3 表示装置 4 試料 5 中空型アクチュエータ 6 照明装置 7 透明部材 1 Observation Optical System 2 Probe 3 Display Device 4 Sample 5 Hollow Actuator 6 Illumination Device 7 Transparent Member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料面と、この試料面に対向して配置さ
れる探触針と、該探触針を試料面に接近あるいは接触さ
せて試料面を走査させるアクチュエータと、前記探触針
または試料の変位量から試料の表面形状を表示する表示
装置と、前記試料面を光学的に観察する観察光学系とを
有する表面観察装置において、前記アクチュエータを中
空形状に形成し、該アクチュエータの中空部に前記試料
面を照明する照明系を配置するとともに、アクチュエー
タの上端部へ前記試料を載置する透明部材を設けて構成
したことを特徴とする表面観察装置。
1. A sample surface, a probe needle arranged to face the sample surface, an actuator for scanning the sample surface by bringing the probe needle close to or in contact with the sample surface, and the probe needle or In a surface observation device having a display device for displaying the surface shape of a sample from the displacement amount of the sample and an observation optical system for optically observing the sample surface, the actuator is formed in a hollow shape, and a hollow portion of the actuator is formed. A surface observing apparatus comprising: an illumination system for illuminating the sample surface, and a transparent member for mounting the sample on an upper end of an actuator.
JP35295292A 1992-12-11 1992-12-11 Surface observation apparatus Withdrawn JPH06180228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35295292A JPH06180228A (en) 1992-12-11 1992-12-11 Surface observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35295292A JPH06180228A (en) 1992-12-11 1992-12-11 Surface observation apparatus

Publications (1)

Publication Number Publication Date
JPH06180228A true JPH06180228A (en) 1994-06-28

Family

ID=18427580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35295292A Withdrawn JPH06180228A (en) 1992-12-11 1992-12-11 Surface observation apparatus

Country Status (1)

Country Link
JP (1) JPH06180228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477037A1 (en) * 2011-01-12 2012-07-18 Institut Curie Optical component for integrating the optical microscopy into the atomic force microscopy maintaining maximal performance of the atomic force microscopy.
CN103389044A (en) * 2013-08-09 2013-11-13 昆山允可精密工业技术有限公司 Manual single-measure-head contact-type measuring method for veneer board thickness
CN108414404A (en) * 2018-01-24 2018-08-17 常德力元新材料有限责任公司 The detection determination method of porous metal material wellability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477037A1 (en) * 2011-01-12 2012-07-18 Institut Curie Optical component for integrating the optical microscopy into the atomic force microscopy maintaining maximal performance of the atomic force microscopy.
CN103389044A (en) * 2013-08-09 2013-11-13 昆山允可精密工业技术有限公司 Manual single-measure-head contact-type measuring method for veneer board thickness
CN108414404A (en) * 2018-01-24 2018-08-17 常德力元新材料有限责任公司 The detection determination method of porous metal material wellability

Similar Documents

Publication Publication Date Title
DE69817239T2 (en) Optical near-field scanning microscope
US5496999A (en) Scanning probe microscope
US5448399A (en) Optical system for scanning microscope
EP0406413A1 (en) Scanning type tunnel microscope
JPH03205502A (en) Scanning type tunnel microscope
EP0746857A1 (en) Scanning probe microscope
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
EP1653478B1 (en) Surface texture measuring probe and microscope utilizing the same
US7047796B2 (en) Multiple plate tip or sample scanning reconfigurable scanned probe microscope with transparent interfacing of far-field optical microscopes
JPH08248322A (en) Attachment module for focus measurement
JP3323572B2 (en) EO probe positioning method for voltage measurement device
JP2007132761A (en) Confocal type signal light detection device and method
JP4044241B2 (en) Probe microscope
JPH05157554A (en) Probe microscope incorporated with optical micsroscope
JPH06180228A (en) Surface observation apparatus
JP3021872B2 (en) Cantilever, atomic force microscope
KR920005446B1 (en) Telescope apparatus
JP2791121B2 (en) Micro surface shape measuring device
JP6543849B2 (en) Observation device
JPH07174767A (en) Scanning type probe microscope
JPH07198730A (en) Scanning probe microscope
JP4162508B2 (en) Scanning mechanism for scanning probe microscope and scanning probe microscope
JPH0612907U (en) Scanning tunneling microscope and its sample stage
JP2005188967A (en) Scanning probe microscope
JP2003042927A (en) Scanning probe microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307