JPH05157554A - Probe microscope incorporated with optical micsroscope - Google Patents

Probe microscope incorporated with optical micsroscope

Info

Publication number
JPH05157554A
JPH05157554A JP32467391A JP32467391A JPH05157554A JP H05157554 A JPH05157554 A JP H05157554A JP 32467391 A JP32467391 A JP 32467391A JP 32467391 A JP32467391 A JP 32467391A JP H05157554 A JPH05157554 A JP H05157554A
Authority
JP
Japan
Prior art keywords
probe
sample
optical system
piezoelectric element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32467391A
Other languages
Japanese (ja)
Inventor
Yasushi Miyamoto
裕史 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP32467391A priority Critical patent/JPH05157554A/en
Publication of JPH05157554A publication Critical patent/JPH05157554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a probe microscope, which can obtain the accurate image of the surface shape of a sample. CONSTITUTION:On a supporting stage 1, an optical-system supporting stage 12, which can be moved up and down (direction (z)) with a coarse micrometer 3 for the optical-system supporting stage, is provided. An object lens 7, a displacement measuring optical system 6 and an observing optical system 4 are attached to the optical-system supporting stage 2. A (z)-scanner supporting stage 15, which can be moved up and down with a coarse micrometer 14 for the (z) scanner supporting stage, is provided on the optical-system supporting stage 2. A cylindrical piezoelectric element 8 for finely moving a (z)-direction probe is fixed to the (z)-scanner supporting stage 15. A probe supporting ring 9 is provided at the lower end of the element 8. The ring 9 is arranged so that a probe 10 at the free end of a cantilever 31 is located at the center of the opening of the ring. Meanwhile, the lower end of a cylindrical piezoelectric element 13 for scanning the sample in the directions of (x) and (y) is fixed to the lower part of the supporting stage 1. A sample stage 12 for mounting the sample 11 is provided at the upper end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学顕微鏡組込型プロ
ーブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe microscope incorporating an optical microscope.

【0002】[0002]

【従来の技術】試料の表面を原子単位で観察することが
できる走査型トンネル顕微鏡(STM)が1982年に
開発されて以来、その技術を生かして原子間力顕微鏡
(AFM)等の様々な走査型プローブ顕微鏡(Scanning
Probe Microscope)が開発されている。走査型プロー
ブ顕微鏡は、探針と試料との間に流れるトンネル電流
や、探針先端の構成原子と試料表面の構成原子との間に
生じる原子間力などを利用して、例えばz方向サーボ動
作により探針と試料の間隔を一定に保ちながら探針を試
料表面(xy方向)に沿って走査することにより、試料
表面の微細形状を探針の動きとして読み取るものであ
る。
2. Description of the Related Art Since a scanning tunneling microscope (STM) capable of observing the surface of a sample in atomic units was developed in 1982, various techniques such as an atomic force microscope (AFM) can be utilized by utilizing the technology. Type probe microscope (Scanning
Probe Microscope) has been developed. The scanning probe microscope uses, for example, a z-direction servo operation by utilizing a tunnel current flowing between the probe and the sample, an atomic force generated between a constituent atom at the tip of the probe and a constituent atom on the surface of the sample. By scanning the probe along the sample surface (xy directions) while keeping the interval between the probe and the sample constant, the fine shape of the sample surface is read as the motion of the probe.

【0003】一般に、探針は圧電体で作られた三次元方
向に変位可能な圧電素子に取り付けられ、この圧電素子
によって上述のサーボ動作と走査とが行なわれる。この
ようなサーボ動作を行なうための圧電素子の駆動方法と
しては、探針のz方向の変位を司る圧電体への印加電圧
を、トンネル電流や原子間力などの変化から得られるz
方向サーボ信号により直接変化させる一般的な電圧制御
方式が知られている。
Generally, the probe is attached to a piezoelectric element made of a piezoelectric material and capable of being displaced in three dimensions, and the piezoelectric element performs the above-described servo operation and scanning. As a method of driving the piezoelectric element for performing such a servo operation, a voltage applied to the piezoelectric body that controls the displacement of the probe in the z direction can be obtained from a change in tunnel current or atomic force.
A general voltage control method in which the direction servo signal is used to directly change the voltage is known.

【0004】このような三次元方向に変位可能な圧電素
子としては例えば円筒型圧電素子が知られている。円筒
型圧電素子は、図8に示すように、中空の円筒形状の圧
電駆動体111と、その外側面に設けた四枚の電極11
2a〜112dと、その内側面に設けた共通電極113
とで構成されている。円筒型圧電素子はその上端が固定
され、探針115は圧電駆動体111の下端に設けた固
定円盤114の中心に取り付けられる。この円筒型圧電
素子に対して、高圧増幅器などを用いて共通電極113
と外周面の各電極112a〜112dとの間に電圧を選
択的に印加すると、電圧の印加された電極部分の圧電駆
動体111の変形に応じて、その自由端(下端)が移動
する。従って、電極に印加する電圧を制御することによ
り探針115が走査される。
A cylindrical piezoelectric element is known as such a piezoelectric element that can be displaced in three-dimensional directions. As shown in FIG. 8, the cylindrical piezoelectric element includes a hollow cylindrical piezoelectric driving body 111 and four electrodes 11 provided on the outer surface thereof.
2a to 112d and a common electrode 113 provided on the inner side surface thereof
It consists of and. The cylindrical piezoelectric element has its upper end fixed, and the probe 115 is attached to the center of a fixed disk 114 provided at the lower end of the piezoelectric driver 111. For this cylindrical piezoelectric element, a common electrode 113 is formed by using a high voltage amplifier or the like.
When a voltage is selectively applied between the electrode and the electrodes 112a to 112d on the outer peripheral surface, the free end (lower end) of the piezoelectric driver 111 moves in accordance with the deformation of the piezoelectric driver 111 in the electrode portion to which the voltage is applied. Therefore, the probe 115 is scanned by controlling the voltage applied to the electrodes.

【0005】[0005]

【発明が解決しようとする課題】STMやAFMにおい
ては、試料表面と探針先端の間隔を一定に保つように探
針のz位置を制御しながら、探針と試料を相対的に移動
させて探針を試料表面に沿って走査する。その間、圧電
素子に印加した電圧を探針のz位置を示す信号として、
すなわち試料表面の凹凸信号として取り出し、この信号
を試料表面上の位置信号と同期させて処理して試料表面
の画像を得る。ところで、圧電素子の変位は印加電圧に
対して線形でない。このため、得られた画像は厳密な意
味で試料の表面形状を正確に表現していない。
In STM and AFM, the probe and the sample are moved relative to each other while controlling the z position of the probe so as to keep a constant distance between the sample surface and the tip of the probe. The probe is scanned along the surface of the sample. Meanwhile, the voltage applied to the piezoelectric element is used as a signal indicating the z position of the probe,
That is, it is taken out as an uneven signal of the sample surface, and this signal is processed in synchronization with the position signal on the sample surface to obtain an image of the sample surface. By the way, the displacement of the piezoelectric element is not linear with respect to the applied voltage. Therefore, the obtained image does not accurately represent the surface shape of the sample in a strict sense.

【0006】本発明は、試料の表面形状を正確に反映し
た像を得られるプローブ顕微鏡の提供を目的とする。
It is an object of the present invention to provide a probe microscope capable of obtaining an image that accurately reflects the surface shape of a sample.

【0007】[0007]

【課題を解決するための手段】本発明は、試料の表面を
光学的に観察するための観察光学系を備えている光学顕
微鏡組込型プローブ顕微鏡であって、自由端に探針を有
するカンチレバーと、開口内にカンチレバーを支持し、
試料表面に垂直な方向にカンチレバーを移動させる円筒
型圧電素子と、カンチレバーの変位を計測する変位計測
光学系と、試料を載せる試料台を有し、試料をその表面
に平行な方向に移動させる圧電素子とを備えている。
DISCLOSURE OF THE INVENTION The present invention is an optical microscope built-in probe microscope having an observation optical system for optically observing the surface of a sample, the cantilever having a probe at its free end. And supporting the cantilever in the opening,
A piezoelectric device that moves the sample in a direction parallel to the surface of the sample.It has a cylindrical piezoelectric element that moves the cantilever in a direction perpendicular to the sample surface, a displacement measurement optical system that measures the displacement of the cantilever, and a sample table on which the sample is placed. And an element.

【0008】[0008]

【作用】本発明では、探針を走査する際、探針と試料と
の間隔を一定に保ちながら、探針は円筒型圧電素子によ
り試料表面に垂直な方向に移動され、試料は圧電素子に
より試料表面に平行な方向に移動される。好適には観察
光学系と変位計測光学系とが一つの対物レンズを共有
し、この対物レンズは円筒型圧電素子の内側に配置され
る。変位計測光学系は、試料表面に垂直な方向における
カンチレバーの自由端すなわち探針の位置を計測する手
段を含んでいる。試料の観察像は、この試料表面に垂直
な方向の探針の位置と試料表面に平行な方向の探針位置
とに基づいて得られる。
According to the present invention, when scanning the probe, the probe is moved in the direction perpendicular to the sample surface by the cylindrical piezoelectric element while keeping the interval between the probe and the sample constant, and the sample is moved by the piezoelectric element. It is moved in a direction parallel to the sample surface. Preferably, the observation optical system and the displacement measuring optical system share one objective lens, and this objective lens is arranged inside the cylindrical piezoelectric element. The displacement measuring optical system includes means for measuring the free end of the cantilever, that is, the position of the probe in the direction perpendicular to the sample surface. The observed image of the sample is obtained based on the position of the probe in the direction perpendicular to the sample surface and the position of the probe in the direction parallel to the sample surface.

【0009】[0009]

【実施例】本発明の第一の実施例について、図1を参照
して説明する。
EXAMPLE A first example of the present invention will be described with reference to FIG.

【0010】支持台1には、リニアガイドを介して光学
系支持台2が上下(z方向)に移動可能に設けられてい
る。その光学系支持台2には対物レンズ7や変位計測光
学系6や観察光学系4が取り付けられており、光学系支
持台粗動マイクロメーター3を調整することによりこれ
らが一体的に上下に移動される。また、光学系支持台2
には、リニアガイドを介してzスキャナー支持台15が
上下に移動可能に設けられている。zスキャナー支持台
15にはz方向探針微動用円筒型圧電素子8が固定され
ており、その下端には探針支持リング9が設けてあり、
その開口の中央にカンチレバー31の自由端にある探針
10が来るように配置されている。このzスキャナー支
持台15は、zスキャナー支持台粗動マイクロメーター
14を調整することにより光学系支持台2に対して上下
に移動される。一方、支持台1の下部にはxy方向試料
走査用円筒型圧電素子13の下端が固定されている。そ
の上端には試料台12が設けてあり、その上に試料11
が載置される。
An optical system support base 2 is provided on the support base 1 so as to be movable in the vertical direction (z direction) via a linear guide. An objective lens 7, a displacement measuring optical system 6 and an observing optical system 4 are attached to the optical system support 2, and these are integrally moved up and down by adjusting an optical system support coarse movement micrometer 3. To be done. In addition, the optical system support 2
A z-scanner support base 15 is provided in the above so as to be vertically movable via a linear guide. A z-direction probe fine movement cylindrical piezoelectric element 8 is fixed to the z-scanner support base 15, and a probe support ring 9 is provided at the lower end thereof.
The probe 10 at the free end of the cantilever 31 is arranged in the center of the opening. The z scanner support base 15 is moved up and down with respect to the optical system support base 2 by adjusting the z scanner support base coarse movement micrometer 14. On the other hand, the lower end of the xy-direction sample scanning cylindrical piezoelectric element 13 is fixed to the lower portion of the support 1. A sample table 12 is provided at the upper end of the sample table 11 and
Is placed.

【0011】次に観察光学系4および変位計測光学系6
について図4を参照して説明する。
Next, the observation optical system 4 and the displacement measuring optical system 6
Will be described with reference to FIG.

【0012】レーザーダイオード87から射出されるレ
ーザー光は、コリメートレンズ90によって平行光に整
形され、偏光ビームスプリッター86に入射される。偏
光ビームスプリッター86で反射されたレーザー光は、
さらにハーフミラー85で反射され、1/4波長板84
に入射する。
The laser light emitted from the laser diode 87 is shaped into parallel light by the collimator lens 90 and is incident on the polarization beam splitter 86. The laser light reflected by the polarization beam splitter 86 is
Further, it is reflected by the half mirror 85, and the quarter wavelength plate 84
Incident on.

【0013】一方、観察照明装置16の光源96から射
出される照明光はレンズ97で平行光にされ、ハーフミ
ラー92で反射される。ハーフミラー92で反射される
照明光は、フィルター91およびハーフミラー85を透
過し、1/4波長板84に入射する。
On the other hand, the illumination light emitted from the light source 96 of the observation illumination device 16 is collimated by the lens 97 and reflected by the half mirror 92. The illumination light reflected by the half mirror 92 passes through the filter 91 and the half mirror 85, and enters the quarter wavelength plate 84.

【0014】1/4波長板84を通過するレーザー光お
よび照明光は、それぞれ異なる主光線を有して対物レン
ズ83に入射する。1/4波長板84を通過する際、レ
ーザー光は直線偏光から円偏光に変換され、対物レンズ
83によって探針10の上面に集光される。一方、照明
光は探針10の先端付近に集光され、視野全体を照明す
る。
The laser light and the illumination light passing through the quarter-wave plate 84 have different chief rays and enter the objective lens 83. When passing through the quarter-wave plate 84, the laser light is converted from linearly polarized light into circularly polarized light and is condensed on the upper surface of the probe 10 by the objective lens 83. On the other hand, the illumination light is condensed near the tip of the probe 10 and illuminates the entire field of view.

【0015】試料11から反射される照明光は、対物レ
ンズ83、1/4波長板、ハーフミラー85、フィルタ
ー94、及びハーフミラー92を通過し、結像レンズ9
3により結像され、プリズム94に入射される。プリズ
ム94に入射される光の一部は、プリズム94の界面で
反射され、接眼レンズ95に達する。プリズム94を通
過する光は、CCD影像素子等を備えるビデオカメラ1
7に入射され、影像信号に変換され、ビデオモニター1
8に送られて表示される。1/4波長板84は、照明光
の反射光が直接観察光学系に入射しないように、光軸K
に対して僅かに傾けて配置され、フレアのない鮮明な視
野観察像を提供する。
The illumination light reflected from the sample 11 passes through the objective lens 83, the quarter-wave plate, the half mirror 85, the filter 94, and the half mirror 92, and the imaging lens 9
An image is formed by 3 and enters the prism 94. Part of the light incident on the prism 94 is reflected by the interface of the prism 94 and reaches the eyepiece lens 95. The light passing through the prism 94 is the video camera 1 including a CCD image element and the like.
It is incident on 7, converted into an image signal, and video monitor 1
It is sent to 8 and displayed. The quarter-wave plate 84 prevents the reflected light of the illumination light from directly entering the observation optical system.
It is arranged at a slight angle with respect to, and provides a clear visual field observation image without flare.

【0016】探針10の上面で反射されるレーザー光
は、対物レンズ7および1/4波長板を通過し、ハーフ
ミラー85で反射され、偏光ビームスプリッター86に
導かれる。1/4波長板84を通過する際、レーザー光
は入射時に対して振動面が90゜回転した直線偏光に変
換される。ビームスプリッター86に入射するレーザー
光は二分され、一方は第1の臨界角プリズム88aを介
して第1の2分割受光素子89aに照射され、他方は第
2の臨界角プリズム88bを介して第2の2分割受光素
子89bに照射される。
The laser light reflected on the upper surface of the probe 10 passes through the objective lens 7 and the quarter-wave plate, is reflected by the half mirror 85, and is guided to the polarization beam splitter 86. When passing through the quarter-wave plate 84, the laser light is converted into linearly polarized light whose vibrating surface is rotated by 90 ° with respect to the time of incidence. The laser light incident on the beam splitter 86 is divided into two, one of which is radiated to the first two-divided light receiving element 89a through the first critical angle prism 88a, and the other of which is second light through the second critical angle prism 88b. The two-divided light receiving element 89b is irradiated.

【0017】探針10の位置検出には臨界角法が使用さ
れる。臨界角法の原理を図5および図6を参照して簡単
に説明する。
The critical angle method is used to detect the position of the probe 10. The principle of the critical angle method will be briefly described with reference to FIGS.

【0018】臨界角法において、臨界角プリズムcは、
レンズbから平行光束が入射される際に、平行光束とプ
リズムの反射面のなる角が臨界角になるように配置され
る。
In the critical angle method, the critical angle prism c is
When the parallel light flux is incident from the lens b, the angle formed by the parallel light flux and the reflecting surface of the prism is arranged to be a critical angle.

【0019】反射面aが対物レンズbの焦点位置(実線
Bで示される位置)にあるとき、すなわちビームが合焦
状態にあるとき、反射面aからの反射光は、レンズbで
平行光束にされて臨界角プリズムcに入射される。この
とき、光束はすべてプリズムの反射面で全反射され、2
分割受光素子の各フォトダイオードに等量の光が供給さ
れる。
When the reflecting surface a is at the focal position of the objective lens b (the position shown by the solid line B), that is, when the beam is in focus, the reflected light from the reflecting surface a is collimated by the lens b. It is incident on the critical angle prism c. At this time, all the light flux is totally reflected by the reflecting surface of the prism, and 2
An equal amount of light is supplied to each photodiode of the divided light receiving element.

【0020】一方、反射面aがレンズbの焦点より近い
位置(点線Cで示される位置)にある場合、レンズbを
透過する光は発散光束となり、臨界角プリズムcに入射
する。逆に反射面aがレンズbの焦点より遠い位置(点
線Aで示される位置)にある場合、レンズbを透過する
光は集束光束となり、臨界角プリズムcに入射する。い
ずれの場合も非平行光束が臨界角プリズムcに入射され
る。これらの場合、中心光線のみが臨界角で入射され、
中心から一方にある光束の入射角は臨界角よりも小さく
なるので、光の一部は屈折プリズム外に射出されて残り
の光だけが反射される。逆に中心の反対側にある光束
は、入射角が臨界角よりも大きくなるので全反射され
る。この結果、2分割受光素子に入射される光量が左右
のフォトダイオードで異なり、光量の差に対応した信号
が差動アンプeを介して出力端子fから出力される。す
なわち、反射面aの位置は、2分割受光素子dの検出面
の光量差として検出される。
On the other hand, when the reflecting surface a is located closer to the focal point of the lens b (the position shown by the dotted line C), the light passing through the lens b becomes a divergent light beam and enters the critical angle prism c. On the contrary, when the reflecting surface a is at a position far from the focal point of the lens b (position shown by the dotted line A), the light passing through the lens b becomes a focused light flux and enters the critical angle prism c. In either case, the non-parallel light flux is incident on the critical angle prism c. In these cases, only the central ray is incident at the critical angle,
Since the incident angle of the light beam on one side from the center is smaller than the critical angle, part of the light is emitted outside the refraction prism and only the remaining light is reflected. On the contrary, the light beam on the opposite side of the center is totally reflected because the incident angle becomes larger than the critical angle. As a result, the amount of light incident on the two-divided light receiving element differs between the left and right photodiodes, and a signal corresponding to the difference in light amount is output from the output terminal f via the differential amplifier e. That is, the position of the reflection surface a is detected as the light amount difference on the detection surface of the two-divided light receiving element d.

【0021】このように、臨界角より小さい角度で入射
された光は、反射面に当たるたびに光の一部が臨界角プ
リズムの外に射出されるので、屈折成分の光量が著しく
減少する。このため、臨界角より小さい角度で入射する
光と、臨界角より大きい角度で入射する光の光量の差が
大きく拡大される。従って、測定精度を向上させるた
め、臨界角プリズム内において数回の反射が繰り返され
るのが望ましい。この実施例では、臨界角プリズム内に
おいて検出光は2回反射される。第1の2分割受光素子
のフォトダイオードPD1の出力は、比較器102の反
転入力端子に入力され、またフォトダイオードPD2の
出力は、比較器102の非反転入力端子に入力され、フ
ォトダイオードPD1とフォトダイオードPD2の出力
の差が比較器102から出力される。一方、第2の2分
割受光素子のフォトダイオードPD3の出力は、比較器
104の反転入力端子に入力され、フォトダイオードP
D4の出力は、比較器104の非反転入力端子に入力さ
れ、フォトダイオードPD1とフォトダイオードPD2
の出力の差が比較器104から出力される。比較器10
2と比較器104の出力は、加算されて比較器106の
一端子に入力され、基準値と比較された結果が出力され
る。従って、2分割受光素子に照射されるビームスポッ
トの中心線を境に2分される領域の光量の差、すなわち
探針10の位置を示す信号が端子108から出力され
る。
As described above, since the light incident at an angle smaller than the critical angle is partially emitted to the outside of the critical angle prism every time it hits the reflecting surface, the light amount of the refraction component is significantly reduced. Therefore, the difference in the amount of light between the light incident at an angle smaller than the critical angle and the light incident at the angle larger than the critical angle is greatly expanded. Therefore, in order to improve the measurement accuracy, it is desirable that the reflection be repeated several times in the critical angle prism. In this embodiment, the detection light is reflected twice in the critical angle prism. The output of the photodiode PD1 of the first two-divided light receiving element is input to the inverting input terminal of the comparator 102, and the output of the photodiode PD2 is input to the non-inverting input terminal of the comparator 102, and is connected to the photodiode PD1. The difference between the outputs of the photodiode PD2 is output from the comparator 102. On the other hand, the output of the photodiode PD3 of the second two-divided light receiving element is input to the inverting input terminal of the comparator 104, and the photodiode P3
The output of D4 is input to the non-inverting input terminal of the comparator 104, and the photodiode PD1 and the photodiode PD2 are input.
The difference in the outputs of the above is output from the comparator 104. Comparator 10
2 and the output of the comparator 104 are added and input to one terminal of the comparator 106, and the result of comparison with the reference value is output. Therefore, a signal indicating the difference in the amount of light in a region divided into two with the center line of the beam spot applied to the two-divided light receiving element as a boundary, that is, the position of the probe 10, is output from the terminal 108.

【0022】続いて試料の観察手順について説明する。
まず、zスキャナー支持台粗動マイクロメーター14を
調整してzスキャナー支持台15を上下に動かし、変位
計測光学系6の計測ビームの焦点がカンチレバー31の
自由端すなわち探針10の上面に合わせる。次に、探針
10の先端から試料台12に載せた試料11の表面まで
の距離が、STMではトンネル電流が流れる距離になる
まで、AFMでは原子間力が作用する距離になるまで、
光学系支持台粗動マイクロメーター3を操作して光学系
支持台2を下げ、探針10を試料11に近づける。この
とき、図2に示すように、観察光学系4の観察光の焦点
は試料11の表面に合い、ビデオモニター18で試料1
1の表面を光学観察しながら探針10の位置検出が可能
となる。続いて、xy方向試料走査用円筒型圧電素子1
8にxy走査電圧を供給し、図3に示すように、試料1
1を水平方向に移動させる。その間、トンネル電流また
は原子間力を一定に保つように、すなわち探針10の先
端と試料11の表面の間隔を一定に保つようにz方向探
針微動用円筒型圧電素子8をフィードバック制御する。
従って、試料11の表面の凹凸に合わせてz方向探針微
動用円筒型圧電素子8が伸縮し、試料表面から一定の距
離をおいて探針10が上下に移動する。このとき探針1
0のz位置が変位計測光学系6によって検出され、その
z位置信号とxy走査信号とを同期させて処理すること
により試料11の表面形状の像を得る。
Next, the procedure for observing the sample will be described.
First, the coarse movement micrometer 14 of the z scanner support base is adjusted to move the z scanner support base 15 up and down so that the measurement beam of the displacement measurement optical system 6 is focused on the free end of the cantilever 31, that is, the upper surface of the probe 10. Next, until the distance from the tip of the probe 10 to the surface of the sample 11 placed on the sample table 12 becomes the distance at which the tunnel current flows in the STM, and the distance at which the atomic force acts in the AFM.
The optical system support base 2 is lowered by operating the coarse movement micrometer 3 of the optical system support base to bring the probe 10 close to the sample 11. At this time, the observation light of the observation optical system 4 is focused on the surface of the sample 11 as shown in FIG.
It is possible to detect the position of the probe 10 while optically observing the surface of the probe 1. Then, the cylindrical piezoelectric element 1 for xy-direction sample scanning
8 is supplied with an xy scanning voltage, and as shown in FIG.
Move 1 horizontally. During that period, the cylindrical piezoelectric element 8 for fine movement of the z-direction probe is feedback-controlled so that the tunnel current or the atomic force is kept constant, that is, the gap between the tip of the probe 10 and the surface of the sample 11 is kept constant.
Therefore, the cylindrical piezoelectric element 8 for fine movement of the z-direction probe expands and contracts according to the unevenness of the surface of the sample 11, and the probe 10 moves up and down with a certain distance from the surface of the sample. At this time, probe 1
The z position of 0 is detected by the displacement measuring optical system 6, and the z position signal and the xy scanning signal are processed in synchronization to obtain an image of the surface shape of the sample 11.

【0023】本発明の第二の実施例について図7を参照
して説明する。本実施例はSTMとAFMの両方の機能
を備えたプローブ顕微鏡で、その装置構成は図1の顕微
鏡装置と同じである。
A second embodiment of the present invention will be described with reference to FIG. The present embodiment is a probe microscope having both STM and AFM functions, and its device configuration is the same as that of the microscope device of FIG.

【0024】図7に示すように、変位計測光学系6は、
カンチレバー31の自由端のz位置を計測する自由端変
位計測光学系6aと、カンチレバー31の固定端のz位
置を計測する固定端変位計測光学系6bとを備えてい
る。信号処理回路41と42は、変位計測光学系6aと
6bの出力をそれぞれ自由端位置信号S1と固定端位置
信号S2に変換する。これらの信号S1とS2は差動増
幅回路43で差動増幅され、差動増幅器43からはカン
チレバー31の変位に相当するカンチレバー変位信号S
3が出力される。このカンチレバー変位信号S3はスイ
ッチ48を介してz制御回路46に入力される。
As shown in FIG. 7, the displacement measuring optical system 6 includes
A free end displacement measuring optical system 6a for measuring the z position of the free end of the cantilever 31 and a fixed end displacement measuring optical system 6b for measuring the z position of the fixed end of the cantilever 31 are provided. The signal processing circuits 41 and 42 convert the outputs of the displacement measuring optical systems 6a and 6b into a free end position signal S1 and a fixed end position signal S2, respectively. These signals S1 and S2 are differentially amplified by the differential amplifier circuit 43, and the differential amplifier 43 outputs a cantilever displacement signal S corresponding to the displacement of the cantilever 31.
3 is output. The cantilever displacement signal S3 is input to the z control circuit 46 via the switch 48.

【0025】一方、探針10はカンチレバー31と探針
支持リング9を介してトンネル電流検出回路44に電気
的に接続されている。トンネル電流検出回路44は探針
10と試料11との間に流れるトンネル電流を検出しト
ンネル電流信号S4を出力する。トンネル電流信号S4
はスイッチ48を介してz制御回路46に入力される。
On the other hand, the probe 10 is electrically connected to the tunnel current detection circuit 44 via the cantilever 31 and the probe support ring 9. The tunnel current detection circuit 44 detects a tunnel current flowing between the probe 10 and the sample 11 and outputs a tunnel current signal S4. Tunnel current signal S4
Is input to the z control circuit 46 via the switch 48.

【0026】スイッチ48はz制御回路46に入力する
信号を選択する。つまり、AFM測定を行なう際にはカ
ンチレバー変位信号S3を、STM測定を行なう際には
トンネル電流信号S4をz制御回路46に入力させる。
z制御回路46は、カンチレバー変位信号S3あるいは
トンネル電流信号S4を一定に保つように、すなわち探
針10と試料11との間隔を一定に保つようにz方向探
針微動用円筒型圧電素子8をフィードバック制御する。
この状態で走査回路50からxy走査電圧S6をxy方
向試料走査用円筒型圧電素子18に供給して試料11を
水平方向に移動させると、試料11の表面の凹凸に合わ
せてz方向探針微動用円筒型圧電素子8が伸縮する。こ
のとき、探針10のz位置が変位計測光学系6によって
検出され、そのz位置信号とxy走査信号とを同期させ
て処理することにより試料11の表面形状の像を得る。
固定端変位計測光学系6bから出力されるカンチレバー
固定端位置信号S2と走査回路50から出力されるxy
走査信号S6とは画像表示系47に取り込まれ、画像表
示系47はこれらの信号S2とS6に基づいて試料11
の表面形状の画像を構成し表示する。
The switch 48 selects a signal input to the z control circuit 46. That is, the cantilever displacement signal S3 is input to the z control circuit 46 when the AFM measurement is performed, and the tunnel current signal S4 is input to the z control circuit 46 when the STM measurement is performed.
The z control circuit 46 operates the cylindrical piezoelectric element 8 for fine movement of the z-direction probe so that the cantilever displacement signal S3 or the tunnel current signal S4 is kept constant, that is, the space between the probe 10 and the sample 11 is kept constant. Feedback control.
In this state, when the xy scanning voltage S6 is supplied from the scanning circuit 50 to the xy-direction sample scanning cylindrical piezoelectric element 18 to move the sample 11 in the horizontal direction, the z-direction fine movement of the probe along the unevenness of the surface of the sample 11 is performed. The cylindrical piezoelectric element 8 expands and contracts. At this time, the z position of the probe 10 is detected by the displacement measuring optical system 6, and the z position signal and the xy scanning signal are processed in synchronization to obtain an image of the surface shape of the sample 11.
Cantilever fixed end position signal S2 output from fixed end displacement measurement optical system 6b and xy output from scanning circuit 50
The scanning signal S6 is taken into the image display system 47, and the image display system 47 receives the sample 11 based on these signals S2 and S6.
An image of the surface shape of is constructed and displayed.

【0027】[0027]

【発明の効果】本発明によれば、探針の位置を変位計測
光学系を用いて計測しているので、圧電素子の非線形性
による誤差のない、試料表面の形状を正確に示す像が得
られる。また、探針と試料とを別々の圧電素子を用いて
移動させるので、広い走査範囲を得ることができる。さ
らに、円筒型圧電素子は、試料表面に垂直な方向に探針
を移動させるためだけに用いるので、固有振動数の高い
小型のものが使用できるようになり、従って振動の影響
を受け難いプローブ顕微鏡が提供される。
According to the present invention, since the position of the probe is measured by using the displacement measuring optical system, an image accurately showing the shape of the sample surface without any error due to the nonlinearity of the piezoelectric element can be obtained. Be done. Moreover, since the probe and the sample are moved by using different piezoelectric elements, a wide scanning range can be obtained. Furthermore, since the cylindrical piezoelectric element is used only to move the probe in the direction perpendicular to the sample surface, it becomes possible to use a small one with a high natural frequency, and thus a probe microscope that is not easily affected by vibration. Will be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例のプローブ顕微鏡を示
す。
FIG. 1 shows a probe microscope according to a first embodiment of the present invention.

【図2】観察光学系の観察光と変位計測光学系の計測光
の位置関係を示す。
FIG. 2 shows a positional relationship between observation light of an observation optical system and measurement light of a displacement measuring optical system.

【図3】走査時における探針と試料の移動の様子を示
す。
FIG. 3 shows how the probe and sample move during scanning.

【図4】図1のプローブ顕微鏡の観察光学系と変位計測
光学系とを示す。
4 shows an observation optical system and a displacement measuring optical system of the probe microscope of FIG.

【図5】臨界角法の原理を説明するための図である。FIG. 5 is a diagram for explaining the principle of the critical angle method.

【図6】臨界角法を図4の光学系に適用した際の信号出
力回路を示す。
FIG. 6 shows a signal output circuit when the critical angle method is applied to the optical system of FIG.

【図7】本発明の第二の実施例のプローブ顕微鏡を示
す。
FIG. 7 shows a probe microscope according to a second embodiment of the present invention.

【図8】円筒型圧電素子の構成を示す。FIG. 8 shows a structure of a cylindrical piezoelectric element.

【符号の説明】[Explanation of symbols]

6…変位計測光学系、8…z方向探針微動用円筒型圧電
素子、10…探針、12…試料台、13…xy方向試料
走査用円筒型圧電素子、16…観察光学系、31…カン
チレバー。
6 ... Displacement measuring optical system, 8 ... Cylindrical piezoelectric element for fine movement of z-direction probe, 10 ... Probe, 12 ... Sample stage, 13 ... Cylindrical piezoelectric element for xy-direction sample scanning, 16 ... Observation optical system, 31 ... Cantilever.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料の表面を光学的に観察するための観
察光学系を備えている光学顕微鏡組込型プローブ顕微鏡
であって、 自由端に探針を有するカンチレバーと、 開口内にカンチレバーを支持し、試料表面に垂直な方向
にカンチレバーを移動させる円筒型圧電素子と、 カンチレバーの変位を計測する変位計測光学系と、 試料を載せる試料台を有し、試料をその表面に平行な方
向に移動させる圧電素子とを備えている光学顕微鏡組込
型プローブ顕微鏡。
1. A probe microscope incorporating an optical microscope, comprising an observation optical system for optically observing the surface of a sample, comprising: a cantilever having a probe at a free end, and a cantilever supported in an opening. Then, it has a cylindrical piezoelectric element that moves the cantilever in a direction perpendicular to the sample surface, a displacement measurement optical system that measures the displacement of the cantilever, and a sample table on which the sample is placed, and moves the sample in the direction parallel to the surface. An optical microscope built-in type probe microscope having a piezoelectric element for making it.
JP32467391A 1991-12-09 1991-12-09 Probe microscope incorporated with optical micsroscope Pending JPH05157554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32467391A JPH05157554A (en) 1991-12-09 1991-12-09 Probe microscope incorporated with optical micsroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32467391A JPH05157554A (en) 1991-12-09 1991-12-09 Probe microscope incorporated with optical micsroscope

Publications (1)

Publication Number Publication Date
JPH05157554A true JPH05157554A (en) 1993-06-22

Family

ID=18168457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32467391A Pending JPH05157554A (en) 1991-12-09 1991-12-09 Probe microscope incorporated with optical micsroscope

Country Status (1)

Country Link
JP (1) JPH05157554A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190753A (en) * 1993-12-27 1995-07-28 Olympus Optical Co Ltd Scanning type probe microscope
US6621065B1 (en) 1999-11-30 2003-09-16 Mitutoyo Corporation Imaging probe
JP2006071530A (en) * 2004-09-03 2006-03-16 Keyence Corp Table movement mechanism and probe-scanning apparatus
JP2006098794A (en) * 2004-09-29 2006-04-13 Olympus Corp Compound microscope and measuring method of compound microscope
WO2006069560A1 (en) * 2004-12-28 2006-07-06 Georg-August-Universität Göttingen Stiftung des öffentlichen Rechts (Bereich Humanmedizin) Positioning apparatus
WO2006090593A1 (en) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. Displacement detection mechanism for scanning probe microscope and scanning probe microscope
JP2006343595A (en) * 2005-06-09 2006-12-21 Sumitomo Osaka Cement Co Ltd Confocal inspection device
JP2007218752A (en) * 2006-02-17 2007-08-30 Jeol Ltd Scanning probe microscope
JP2016183869A (en) * 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス Scan probe microscope
US10175264B2 (en) 2014-11-21 2019-01-08 Shimadzu Corporation Data display processing device, data display processing method and control program for scanning probe microscope
KR20210022917A (en) * 2019-08-21 2021-03-04 경북대학교 산학협력단 High-speed atomic force microscope

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190753A (en) * 1993-12-27 1995-07-28 Olympus Optical Co Ltd Scanning type probe microscope
US6621065B1 (en) 1999-11-30 2003-09-16 Mitutoyo Corporation Imaging probe
JP2006071530A (en) * 2004-09-03 2006-03-16 Keyence Corp Table movement mechanism and probe-scanning apparatus
JP2006098794A (en) * 2004-09-29 2006-04-13 Olympus Corp Compound microscope and measuring method of compound microscope
WO2006069560A1 (en) * 2004-12-28 2006-07-06 Georg-August-Universität Göttingen Stiftung des öffentlichen Rechts (Bereich Humanmedizin) Positioning apparatus
JP5305650B2 (en) * 2005-02-24 2013-10-02 株式会社日立ハイテクサイエンス Displacement detection mechanism for scanning probe microscope and scanning probe microscope using the same
US7614287B2 (en) 2005-02-24 2009-11-10 Sii Nanotechnology Inc. Scanning probe microscope displacement detecting mechanism and scanning probe microscope using same
WO2006090593A1 (en) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. Displacement detection mechanism for scanning probe microscope and scanning probe microscope
JP2006343595A (en) * 2005-06-09 2006-12-21 Sumitomo Osaka Cement Co Ltd Confocal inspection device
JP2007218752A (en) * 2006-02-17 2007-08-30 Jeol Ltd Scanning probe microscope
US10175264B2 (en) 2014-11-21 2019-01-08 Shimadzu Corporation Data display processing device, data display processing method and control program for scanning probe microscope
JP2016183869A (en) * 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス Scan probe microscope
KR20210022917A (en) * 2019-08-21 2021-03-04 경북대학교 산학협력단 High-speed atomic force microscope

Similar Documents

Publication Publication Date Title
US5172002A (en) Optical position sensor for scanning probe microscopes
US5196713A (en) Optical position sensor with corner-cube and servo-feedback for scanning microscopes
US6127681A (en) Scanning tunnel microscope
US5408094A (en) Atomic force microscope with light beam emission at predetermined angle
KR100192097B1 (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
JPH05256641A (en) Cantilever displacement detector
JPH05157554A (en) Probe microscope incorporated with optical micsroscope
JP3323572B2 (en) EO probe positioning method for voltage measurement device
US6437343B1 (en) Scanner system and piezoelectric micro-inching mechansim used in scanning probe microscope
JPS63131116A (en) Confocal microscope
JP2791121B2 (en) Micro surface shape measuring device
JPH06229753A (en) Scanner system
JPH07244058A (en) Surface shape measuring device
JP3250788B2 (en) Scanning probe microscope
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
JPH05312561A (en) Interatomic force microscope
JP3333111B2 (en) Scanning probe microscope and unit used for scanning probe microscope
JP2568385B2 (en) Scanning probe microscope
JPH1054834A (en) Measuring method of scan probe microscope
JPH08220114A (en) Displacement detector for scanning force microscope
JP2004333441A (en) Scanner system, and scanning type probe microscope using the same
JPH09229943A (en) Scanning-type probe microscope
JPH02281103A (en) Interatomic force microscope
JPH0626853A (en) Interatomic force microscope
JPH06281445A (en) Scanner system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000328