JPH05256641A - Cantilever displacement detector - Google Patents

Cantilever displacement detector

Info

Publication number
JPH05256641A
JPH05256641A JP4052615A JP5261592A JPH05256641A JP H05256641 A JPH05256641 A JP H05256641A JP 4052615 A JP4052615 A JP 4052615A JP 5261592 A JP5261592 A JP 5261592A JP H05256641 A JPH05256641 A JP H05256641A
Authority
JP
Japan
Prior art keywords
cantilever
light
optical
mirror
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4052615A
Other languages
Japanese (ja)
Inventor
Hiroshi Kajimura
宏 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4052615A priority Critical patent/JPH05256641A/en
Priority to US08/026,989 priority patent/US5294804A/en
Publication of JPH05256641A publication Critical patent/JPH05256641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/863Atomic force probe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/868Scanning probe structure with optical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/868Scanning probe structure with optical means
    • Y10S977/87Optical lever arm for reflecting light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/873Tip holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/954Of radiant energy

Abstract

PURPOSE:To provide a highly sensitive and small cantilever displacement detector by means of an optical lever process, to be installed in an interatomic force microscope with a built-in optical microscope. CONSTITUTION:A cantilever displacement detector has a laser diode 14 emitting a laser beam or detection light of an optical process and a half-split light receiver 20 equipped with two light receiving areas 20a, 20b outputting each signal conformed to light receiving intensity. The laser diode 14 and the half-split light receiver 20 are set up so as to make the laser beam be incident aslant into a mirror installed in a free end of a cantilever 16 via an objective lens 12 and also the laser beam reflected by the mirror into the half-split light receiver 20 via the lens 12, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡におい
てカンチレバーの変位を検出するカンチレバー変位検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cantilever displacement detecting device for detecting the displacement of a cantilever in an atomic force microscope.

【0002】[0002]

【従来の技術】原子間力顕微鏡のカンチレバーの変位検
出系には、カンチレバーの自由端部で探針の反対側の面
に設けてあるミラーにレーザービームを照射し、カンチ
レバーの変位により生じる反射光の強度変化を干渉計を
用いて検出する干渉法や、カンチレバーの変位により生
じるミラーに対するレーザービームの入射角の変化を光
テコの原理によりビーム受光器面でのビームの変位拡大
として検出する光テコ法がある。
2. Description of the Related Art A cantilever displacement detection system for an atomic force microscope uses a laser beam to irradiate a laser beam on a mirror provided on the surface of the cantilever opposite to the probe at the free end of the cantilever, and the reflected light generated by the displacement of the cantilever is detected. Interferometer that detects changes in the intensity of the beam using an interferometer, and optical levers that detect changes in the angle of incidence of the laser beam on the mirror caused by displacement of the cantilever as the displacement expansion of the beam on the beam receiver surface by the principle of optical lever. There is a law.

【0003】光テコ法のカンチレバー変位検出装置の従
来例を図4に示す。筐体110に支持されているカンチ
レバー112は、自由端部に探針114を有し、その反
対側にミラー116を有している。試料台120に載置
された試料118は、探針114の近傍に対向して配置
され、XY方向すなわち試料表面に沿って移動される。
筐体110の内部には、ミラー116に向けてレーザー
ビームを射出するレーザーダイオード122と、ミラー
116からレーザービームを受ける二分割受光器124
とが設けられている。二分割受光器124は、二つの受
光領域124aと124bを有し、カンチレバー112
が測定時の基準状態(図では水平な状態)にあるときの
ミラー116からのレーザービームの中心が二つの受光
領域124aと124bの境界に照射されるように配置
される。二つの受光領域124aと124bは受光した
光の強度に応じた電圧信号を出力し、その出力差を調べ
ることにより、ミラー116の傾きすなわちカンチレバ
ー112の変位を測定できる。
FIG. 4 shows a conventional example of a cantilever displacement detecting device of the optical lever method. The cantilever 112 supported by the housing 110 has a probe 114 at its free end and a mirror 116 on the opposite side. The sample 118 placed on the sample table 120 is arranged to face the vicinity of the probe 114 and is moved in the XY directions, that is, along the sample surface.
Inside the housing 110, a laser diode 122 that emits a laser beam toward the mirror 116 and a two-divided photodetector 124 that receives the laser beam from the mirror 116.
And are provided. The two-divided light receiver 124 has two light receiving regions 124 a and 124 b,
Is arranged so that the center of the laser beam from the mirror 116 when it is in the reference state (horizontal state in the drawing) at the time of measurement is irradiated to the boundary between the two light receiving regions 124a and 124b. The two light receiving regions 124a and 124b output a voltage signal according to the intensity of the received light, and by checking the output difference, the tilt of the mirror 116, that is, the displacement of the cantilever 112 can be measured.

【0004】光テコ法の検出感度Sは、二分割受光器1
24の受光面でのビームの変位をD、カンチレバー11
2の長さ(通常100〜200μm)をl、反射ビーム
の光路(ミラー116から二分割受光器124までの距
離)をL、探針114の変位量をΔとすると、 S=D/Δ=2L/l となる。L=100mm、l=200μmとすると、 S=200/(200×10-3)=103 となる。このように光テコ法によれば、構成が簡単でし
かも感度の高い変位検出系が得られる。
The detection sensitivity S of the optical lever method is as follows:
The displacement of the beam on the light receiving surface of 24 is D, and the cantilever 11
2 length (usually 100-200 μm) 1, reflected beam
Optical path (distance from the mirror 116 to the two-divided photodetector 124)
S) is L and the displacement of the probe 114 is Δ, S = D / Δ = 2L / l. If L = 100 mm and l = 200 μm, then S = 200 / (200 × 10-3) = 103  Becomes In this way, the optical lever method is easy to configure.
A highly sensitive displacement detection system can be obtained.

【0005】[0005]

【発明が解決しようとする課題】走査型トンネル顕微鏡
(STM)や原子間力顕微鏡(AFM)は、光学顕微鏡
のサブミクロン分解能をはるかに越えた10nm〜0.
1nmの分解能を持ち、生体の細胞構造DNAや分子・
原子の配置を実像として提供できる。
A scanning tunneling microscope (STM) and an atomic force microscope (AFM) have a resolution of 10 nm to 0.
It has a resolution of 1 nm, and it is a cell structure DNA and molecule of living body.
The arrangement of atoms can be provided as a real image.

【0006】STMやAFMが利用できるようになった
初期の頃、原子配列の整った結晶体を試料に用いていた
ため、試料のどの部分であれ単に探針を近づければ良か
った。しかし、整った原子配列に上部のパターンを有す
るクラスターやDNAや生体細胞膜に対してはこのよう
なわけにはいかない。しかしながら多くの場合は、光学
顕微鏡で構造は分解できないが、ほぼその存在が推定で
きることが多い。従って、STMやAFMでの測定位置
を大雑把に特定するために、STMやAFMに光学顕微
鏡を組込むことは非常に有意義である。
In the early days when STM and AFM became available, a crystal body with a well-arranged atomic arrangement was used for the sample, so it was sufficient to simply bring the probe closer to any part of the sample. However, this is not the case for clusters, DNA, and biological cell membranes that have a patterned atomic arrangement with an upper pattern. However, in many cases, although the structure cannot be resolved by an optical microscope, its existence can often be estimated. Therefore, it is very meaningful to incorporate an optical microscope into the STM or AFM in order to roughly specify the measurement position in the STM or AFM.

【0007】STMにおいて、探針のみを光学系光路と
共存させることは既に国際公開No. W089/016
03号公報に開示されている。同様にAFMにおいても
特開平2−281103号公報に開示されている。この
装置では、カンチレバーの変位検出には、光学系に一体
に組合わされた臨界角合焦状態検出法を用いている。し
かし、この臨界角法は光テコ法に比べて感度が劣る。
In STM, coexistence of only the probe with the optical path of the optical system has already been disclosed in International Publication No. W089 / 016.
No. 03 publication. Similarly, the AFM is also disclosed in JP-A-2-281103. In this device, the detection of the displacement of the cantilever uses the critical angle focused state detection method integrally combined with the optical system. However, this critical angle method is inferior in sensitivity to the optical lever method.

【0008】このように、AFMのカンチレバーの変位
検出系に光テコ法を適用することが好ましい。しかし、
光テコ法では図4に示したようにレーザーダイオードと
二分割受光器をカンチレバーの上方に配置し、しかもカ
ンチレバーに入射するレーザービームの角度はあまり大
きくできない。このため、カンチレバー変位検出に光テ
コ法を適用しているAFMに対して、観察光学系を組み
込む場合、その光路を確保することが難しい。言い換え
れば、観察光学系を組み込んだAFMに対して光テコ法
によるカンチレバー変位検出系を設ける場合、変位検出
系の光路が観察光学系の対物レンズなどにより制約を受
けるため、最適な条件で組み込むことができないなどと
いう不都合が生じる。本発明は、光学顕微鏡を組み込ん
だ原子間力顕微鏡に適用する、光テコ法を利用した高感
度かつ小型なカンチレバー変位検出系を提供することを
目的とする。
As described above, it is preferable to apply the optical lever method to the displacement detection system of the cantilever of the AFM. But,
In the optical lever method, the laser diode and the two-divided photodetector are arranged above the cantilever as shown in FIG. 4, and the angle of the laser beam incident on the cantilever cannot be made very large. For this reason, when an observation optical system is incorporated in an AFM in which the optical lever method is applied to the cantilever displacement detection, it is difficult to secure the optical path. In other words, when the cantilever displacement detection system by the optical lever method is provided for the AFM incorporating the observation optical system, the optical path of the displacement detection system is restricted by the objective lens of the observation optical system, so it should be incorporated under optimum conditions. There is an inconvenience that it is not possible. It is an object of the present invention to provide a highly sensitive and compact cantilever displacement detection system using an optical lever method, which is applied to an atomic force microscope incorporating an optical microscope.

【0009】[0009]

【課題を解決するための手段】本発明のカンチレバー変
位検出装置は、光ビームを射出する光源と、受ける光の
強度に応じた信号を出力する二つの受光領域を備えてい
る二分割受光器とを有し、この光源と二分割受光器は、
光ビームが観察光学系の対物レンズを介してカンチレバ
ーの自由端部に設けたミラーに斜めに入射し、その反射
ビームが対物レンズを介して二分割受光器に入射するよ
うに配置されている。
A cantilever displacement detecting device of the present invention includes a light source for emitting a light beam, and a two-divided light receiving device having two light receiving regions for outputting a signal according to the intensity of the received light. The light source and the two-divided receiver have
The light beam is obliquely incident on the mirror provided at the free end of the cantilever via the objective lens of the observation optical system, and the reflected beam is incident on the two-divided photodetector via the objective lens.

【0010】[0010]

【作用】光源から射出された光ビームは観察光学系の対
物レンズに入射し偏向され、カンチレバーの自由端部に
設けてあるミラーに斜めに入射する。ミラーで反射され
た光ビームは対物レンズに入射し偏向され、二分割受光
器に入射する。このとき光ビームと二分割受光器の位置
関係は、カンチレバーが基準となる状態にあるときに、
光ビームの中心が二つの受光領域の境界に来るように予
め設定しておく。カンチレバーが上下方向に変位する
と、光ビームの中心が二つの受光領域の境界からずれ、
二つの受光領域からの出力が等しくなくなる。二つの受
光領域からの出力の差を検出することにより、カンチレ
バーの変位を検出する。
The light beam emitted from the light source enters the objective lens of the observation optical system, is deflected, and obliquely enters the mirror provided at the free end of the cantilever. The light beam reflected by the mirror enters the objective lens, is deflected, and enters the two-divided photodetector. At this time, the positional relationship between the light beam and the two-divided light receiver is as follows when the cantilever is in the reference state.
It is set in advance so that the center of the light beam comes to the boundary between the two light receiving regions. When the cantilever is vertically displaced, the center of the light beam shifts from the boundary between the two light receiving regions,
The outputs from the two light receiving areas are not equal. The displacement of the cantilever is detected by detecting the difference between the outputs from the two light receiving regions.

【0011】[0011]

【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0012】図1は本発明の基本的な構成を模式的に示
す。無限焦点(アフォーカル)光学系の観察光学系に対
して本発明を適用したものを図1(A)に示す。この光
学系では、平行光束である観察光が対物レンズ12に入
射し、焦点Fに集光される。この焦点Fは測定時には試
料表面に合わせられる。焦点Fからの光は対物レンズ1
2に入射し平行光束となり、このままでは結像しない。
結像観察光学像は、図の上方において結像レンズを設
け、この平行光束を結像させることにより得られる。
FIG. 1 schematically shows the basic structure of the present invention. FIG. 1A shows an application of the present invention to an observation optical system of an afocal optical system. In this optical system, the observation light, which is a parallel light beam, enters the objective lens 12 and is focused on the focal point F. This focus F is adjusted to the sample surface during measurement. The light from the focus F is the objective lens 1
It is incident on 2 and becomes a parallel light flux, and no image is formed as it is.
The imaging observation optical image is obtained by providing an imaging lens in the upper part of the figure and imaging the parallel light flux.

【0013】レーザーダイオード14は、そこから射出
される検出光ビームが光軸に対して角α(2〜3°)を
もって対物レンズ12の左側に入射するように配置され
る。対物レンズ12に入射した検出光ビームはそこで屈
折された後、カンチレバー16の自由端部の上面に設け
たミラーに入射し反射される。カンチレバー16のミラ
ーで反射された検出光ビームは対物レンズ12の右側に
入射して偏向され、二分割検出器20に入射する。二分
割受光器20は二つの受光領域20aと20bを有し、
各受光領域20aと20bは入射した光の強度に比例し
た信号を出力する。カンチレバー16が実線で示す位置
にあるとき、検出光ビームは二分割検出器20の一方の
受光領域20aに多く入射し、逆にカンチレバー16が
破線で示す位置にあるとき、検出光ビームは二分割検出
器20の他方の検出領域20bに多く入射する。このよ
うに、カンチレバー16の位置によって二つの受光領域
20aと20bに入射する検出光ビームの割合が変化す
るので、二つの受光領域20aと20bから出力される
信号の差を調べることによりカンチレバー16の位置
(変位)を検出することができる。
The laser diode 14 is arranged so that the detection light beam emitted therefrom enters the left side of the objective lens 12 at an angle α (2 to 3 °) with respect to the optical axis. The detection light beam that has entered the objective lens 12 is refracted there, and then enters and is reflected by a mirror provided on the upper surface of the free end of the cantilever 16. The detection light beam reflected by the mirror of the cantilever 16 is incident on the right side of the objective lens 12, is deflected, and is incident on the two-divided detector 20. The two-divided light receiver 20 has two light receiving regions 20a and 20b,
Each of the light receiving regions 20a and 20b outputs a signal proportional to the intensity of incident light. When the cantilever 16 is in the position indicated by the solid line, the detection light beam is incident on one of the light receiving regions 20a of the two-divided detector 20 in large quantities, and when the cantilever 16 is in the position indicated by the broken line, the detection light beam is divided into two. A large amount of light is incident on the other detection region 20b of the detector 20. In this way, the ratio of the detection light beams incident on the two light receiving regions 20a and 20b changes depending on the position of the cantilever 16, and therefore the difference between the signals output from the two light receiving regions 20a and 20b is checked to determine the The position (displacement) can be detected.

【0014】観察光学系はアフォーカル光学系である場
合、焦点Fからの観察光である平行光束はどの部分も試
料表面の光学情報を含んでいるので、レーザーダイオー
ド14や二分割受光器20で一部が遮られても、試料の
光学的観察像は若干暗くなることを除けば何ら問題はな
い。
When the observation optical system is an afocal optical system, the parallel light flux as the observation light from the focal point F contains optical information of the sample surface at every portion, so that the laser diode 14 and the two-divided photodetector 20 are used. Even if a part is blocked, there is no problem except that the optically observed image of the sample becomes slightly dark.

【0015】図1(B)は有限遠焦点光学系の観察光学
系に本発明を適用した例を示す。この例では、カンチレ
バー16は試料面に対して傾けて配置されている。有限
遠焦点光学系であるため、焦点F(試料表面)からの観
察光はそのまま点Oに結像されるため、観察光の光束を
遮らないようにレーザーダイオード14と二分割受光器
20はその外側に配置されている。
FIG. 1B shows an example in which the present invention is applied to an observation optical system of a finite far focus optical system. In this example, the cantilever 16 is tilted with respect to the sample surface. Since it is a finite focus optical system, the observation light from the focus F (sample surface) is imaged at the point O as it is, so that the laser diode 14 and the two-divided photodetector 20 do not block the light flux of the observation light. It is located outside.

【0016】図1(C)はアフォーカル光学系の観察光
学系に本発明を適用した例を示す。レーザーダイオード
14は、射出される検出光ビームが光軸に平行に対物レ
ンズ12に入射するように配置されている。また、対物
レンズ12から二分割受光器20に至る光路の途中に、
非平行に配置した二枚のミラー22と24が設けてあ
る。カンチレバー16で反射された後、対物レンズ12
で偏向された検出光ビームは、二枚のミラー22と24
で二回づつ反射された後、二分割受光器20に入射す
る。この構成によれば、二枚のミラー22と24で反射
される際にカンチレバー16の変位によるビームのずれ
が増幅されるため、二分割受光器を直接配置した場合に
比べて検出感度が高くなる。
FIG. 1C shows an example in which the present invention is applied to an observation optical system of an afocal optical system. The laser diode 14 is arranged so that the emitted detection light beam enters the objective lens 12 in parallel with the optical axis. Further, in the middle of the optical path from the objective lens 12 to the two-divided photodetector 20,
Two mirrors 22 and 24 arranged non-parallel are provided. After being reflected by the cantilever 16, the objective lens 12
The detection light beam deflected by is reflected by the two mirrors 22 and 24.
After being reflected twice by, the light enters the two-divided photodetector 20. According to this configuration, since the beam shift due to the displacement of the cantilever 16 is amplified when reflected by the two mirrors 22 and 24, the detection sensitivity becomes higher than that in the case where the two-divided optical receiver is directly arranged. ..

【0017】続いて本発明のカンチレバー変位検出装置
のより具体的な実施例を図2に示す。図2(A)に示す
ように、対物レンズ12は鏡筒26に支持されている。
対物レンズ12の上方にはハーフミラー28が観察光学
系の光軸に対して45°の角度で設けられている。観察
光学系はアフォーカル光学系で、観察光の平行光束はハ
ーフミラー28を透過して対物レンズ12に入射し、試
料ステージ32に載置されている試料30の表面に集光
される。試料表面で反射された観察光は対物レンズ12
に入射して平行光束になり、ハーフミラー28を通過し
たのち結像される。
Next, a more specific embodiment of the cantilever displacement detecting device of the present invention is shown in FIG. As shown in FIG. 2A, the objective lens 12 is supported by the lens barrel 26.
A half mirror 28 is provided above the objective lens 12 at an angle of 45 ° with respect to the optical axis of the observation optical system. The observation optical system is an afocal optical system, and the parallel light flux of the observation light is transmitted through the half mirror 28, enters the objective lens 12, and is condensed on the surface of the sample 30 mounted on the sample stage 32. The observation light reflected on the sample surface is the objective lens 12
To form a parallel light beam, which passes through the half mirror 28 to form an image.

【0018】鏡筒26は光学筐体34に一体に取り付け
られていて、この光学筐体34の内部に光テコ法の変位
検出光学系の各光学要素が配置されている。光学筐体3
4の下部には、検出光ビームであるレーザービームが上
方に射出されるようにレーザーダイオード14が設けら
れている。レーザーダイオードから射出されたレーザー
ビームはその上方に配置されているプリズム36に入射
して左方に偏向される。プリズム36を出たレーザービ
ームはハーフミラー28で反射され、対物レンズ12の
左側の部分に入射して偏向され、光学筐体34に取り付
けられたカンチレバー16の自由端部の上面(探針17
の反対側)に設けてあるミラー18に入射する。ミラー
18は試料30の表面に対して10°程度傾いているた
め、ミラー18で反射されたレーザービームは対物レン
ズ12の中央よりに入射する。対物レンズ12に入射し
たレーザービームはそこで偏向された後、ハーフミラー
28で反射され、光学筐体34の右方下部に設けた回転
自在鏡38に入射する。回転自在鏡38は、球面状の側
面が光学筐体34に摺動可能に設けられていて、レバー
40を操作することにより反射面の方向を自由に変えら
れる。回転自在鏡38で反射されたレーザービームは、
光学筐体34の上を摺動可能に設けられた支持体42に
取り付けられた二分割受光器20に入射する。二分割受
光器20は二つの受光領域20aと20bを有し、上述
したように二つの受光領域からの出力の差を調べること
のよりカンチレバー16の変位が検出できる。
The lens barrel 26 is integrally attached to the optical housing 34, and the optical elements of the displacement detection optical system of the optical lever method are arranged inside the optical housing 34. Optical housing 3
A laser diode 14 is provided at the bottom of 4 so that a laser beam as a detection light beam is emitted upward. The laser beam emitted from the laser diode enters a prism 36 arranged above it and is deflected to the left. The laser beam emitted from the prism 36 is reflected by the half mirror 28, is incident on the left side portion of the objective lens 12 and is deflected, and the upper surface of the free end portion of the cantilever 16 attached to the optical housing 34 (the probe 17).
The light enters the mirror 18 provided on the opposite side). Since the mirror 18 is tilted about 10 ° with respect to the surface of the sample 30, the laser beam reflected by the mirror 18 enters from the center of the objective lens 12. The laser beam incident on the objective lens 12 is deflected there, reflected by the half mirror 28, and then incident on a rotatable mirror 38 provided on the lower right side of the optical housing 34. The rotatable mirror 38 has a spherical side surface slidably provided on the optical housing 34, and the direction of the reflecting surface can be freely changed by operating the lever 40. The laser beam reflected by the rotatable mirror 38 is
The light is incident on the two-divided photodetector 20 attached to a support body 42 slidably provided on the optical housing 34. The two-divided optical receiver 20 has two light receiving regions 20a and 20b, and the displacement of the cantilever 16 can be detected by examining the difference between the outputs from the two light receiving regions as described above.

【0019】ところで、AFM測定に前に、カンチレバ
ー16が基準位置にあるときにレーザービームを垂直に
上方に反射するように回転自在鏡38の反射面の向きが
調整され、さらに反射されたレーザービームが二分割受
光器20の二つの受光領域の境界に入射するように二分
割受光器20の位置が予め調整される。次にこの調整に
ついて説明する。回転自在鏡38の調整は、図2(B)
に示すように、45°傾いたミラー46を内部に備える
ミラー箱44を光学筐体34の上に摺動可能に配置す
る。回転自在鏡38からのレーザービームはミラー46
で反射され、ミラー箱44の左側に設けた摺ガラス48
に投影される。これを見ながらレバー40を操作して、
レーザービームの投影像が中央に来るように調整する。
レーザービームが中央に来れば、回転自在鏡38で反射
されたレーザービームは垂直に上方に向かう。次に、ミ
ラー箱44を取り除いた後、図2(A)に示すように、
二分割受光器20を備えている支持体42を光学筐体3
4の上に配置し、二分割受光器20の二つの受光領域2
0aと20bの出力が等しくなるように支持体42の位
置を調整する。二つの受光領域20aと20bの出力が
等しくなったとき、レーザービームの中心が二つの受光
領域20aと20bの境界に位置し、調整は終了する。
Before the AFM measurement, the direction of the reflecting surface of the rotatable mirror 38 is adjusted so that the laser beam is reflected vertically upward when the cantilever 16 is at the reference position, and the reflected laser beam is also reflected. The position of the two-divided photodetector 20 is adjusted in advance so that is incident on the boundary between the two light-receiving regions of the two-divided photodetector 20. Next, this adjustment will be described. Adjustment of the rotatable mirror 38 is shown in FIG.
As shown in FIG. 3, a mirror box 44 having a mirror 46 inclined at 45 ° inside is slidably arranged on the optical housing 34. The laser beam from the rotatable mirror 38 is reflected by the mirror 46.
And a glass slide 48 provided on the left side of the mirror box 44.
Projected on. While watching this, operate lever 40,
Adjust so that the projected image of the laser beam is centered.
When the laser beam reaches the center, the laser beam reflected by the rotatable mirror 38 goes vertically upward. Next, after removing the mirror box 44, as shown in FIG.
The support 42 including the two-divided photodetector 20 is attached to the optical housing 3
The two light receiving regions 2 of the two-divided light receiver 20 are arranged on
The position of the support 42 is adjusted so that the outputs of 0a and 20b are equal. When the outputs of the two light receiving regions 20a and 20b become equal, the center of the laser beam is located at the boundary between the two light receiving regions 20a and 20b, and the adjustment is completed.

【0020】別の実施例を図3に示す。本実施例の装置
では、レーザーダイオード14から垂直に射出されたレ
ーザービームを水平に偏向する反射面52とカンチレバ
ー16からの戻りレーザービームを二分割受光器20に
導く反射面54を備えているミラー体56が光学筐体3
4の内部に設けられている。ところで、対物レンズ12
を異なる倍率のものに交換した際、ハーフミラー28を
介して試料30を観察光学系で観察できるように同焦点
を得るため、対物レンズの配置位置は倍率に応じて変え
られる。例えば、高倍率のものに交換した際は、対物レ
ンズは図中の破線で示す位置に配置される。また、対物
レンズ12の倍率を変えると、これに応じてカンチレバ
ー16に対するレーザービームの入射角度が変化する。
レーザービームの入射角度を最適な値に保つことができ
るように、レーザーダイオード14を取り付けた取付台
50は水平方向に移動可能に光学筐体34に設けられて
いる。つまり、レーザービームがカンチレバー16に最
適な角度で入射するように、対物レンズ12の倍率に応
じてレーザーダイオード14の位置が調整される。
Another embodiment is shown in FIG. In the apparatus of this embodiment, a mirror having a reflecting surface 52 for horizontally deflecting the laser beam emitted vertically from the laser diode 14 and a reflecting surface 54 for guiding the return laser beam from the cantilever 16 to the two-divided photodetector 20. Body 56 is optical housing 3
It is provided inside 4. By the way, the objective lens 12
When the lens is replaced with one having a different magnification, the arrangement position of the objective lens can be changed according to the magnification in order to obtain the same focal point so that the sample 30 can be observed by the observation optical system through the half mirror 28. For example, when the objective lens is replaced with a high-magnification one, the objective lens is arranged at the position shown by the broken line in the figure. When the magnification of the objective lens 12 is changed, the incident angle of the laser beam on the cantilever 16 changes accordingly.
In order to keep the incident angle of the laser beam at an optimum value, the mounting base 50 on which the laser diode 14 is mounted is provided in the optical housing 34 so as to be movable in the horizontal direction. That is, the position of the laser diode 14 is adjusted according to the magnification of the objective lens 12 so that the laser beam is incident on the cantilever 16 at an optimum angle.

【0021】[0021]

【発明の効果】本発明のカンチレバー変位検出装置は観
察光学系の対物レンズを光学要素に含んでいるため、観
察光学系を有する原子間力顕微鏡に対しても容易に取り
付けることができる。従って、光テコ法による簡単な構
成かつ高感度なカンチレバー変位検出系を備えた光学顕
微鏡一体型原子間力顕微鏡が提供されるようになる。
Since the cantilever displacement detection device of the present invention includes the objective lens of the observation optical system as an optical element, it can be easily attached to an atomic force microscope having an observation optical system. Therefore, an atomic force microscope integrated with an optical microscope can be provided which has a simple structure by the optical lever method and a highly sensitive cantilever displacement detection system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のカンチレバー変位検出装置の基本的構
成を模式的に示す。
FIG. 1 schematically shows a basic configuration of a cantilever displacement detection device of the present invention.

【図2】本発明のカンチレバー変位検出装置の具体的な
実施例を示す。
FIG. 2 shows a concrete example of the cantilever displacement detection device of the present invention.

【図3】本発明のカンチレバー変位検出装置の別の実施
例を示す。
FIG. 3 shows another embodiment of the cantilever displacement detection device of the present invention.

【図4】光テコ法によるカンチレバー変位検出装置の基
本的な構成を示す。
FIG. 4 shows a basic configuration of a cantilever displacement detection device by an optical lever method.

【符号の説明】[Explanation of symbols]

12…対物レンズ、14…レーザーダイオード、16…
カンチレバー、20…二分割受光器。
12 ... Objective lens, 14 ... Laser diode, 16 ...
Cantilever, 20 ... Divided light receiver.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 観察光学系を備えている原子間力顕微鏡
のカンチレバー変位検出装置であって、光ビームを射出
する光源と、受ける光の強度に応じた信号を出力する二
つの受光領域を備えている二分割受光器とを有し、この
光源と二分割受光器は、光ビームが観察光学系の対物レ
ンズを介してカンチレバーの自由端部に設けたミラーに
斜めに入射し、その反射ビームが対物レンズを介して二
分割受光器に入射するように配置されているカンチレバ
ー変位検出装置。
1. A cantilever displacement detector for an atomic force microscope equipped with an observation optical system, comprising a light source for emitting a light beam and two light receiving regions for outputting a signal according to the intensity of the received light. The light source and the two-divided light receiver have a light beam that is obliquely incident on a mirror provided at the free end of the cantilever through the objective lens of the observation optical system, and its reflected beam. Is a cantilever displacement detection device arranged so that the light enters the two-divided photodetector through the objective lens.
JP4052615A 1992-03-11 1992-03-11 Cantilever displacement detector Pending JPH05256641A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4052615A JPH05256641A (en) 1992-03-11 1992-03-11 Cantilever displacement detector
US08/026,989 US5294804A (en) 1992-03-11 1993-03-05 Cantilever displacement detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052615A JPH05256641A (en) 1992-03-11 1992-03-11 Cantilever displacement detector

Publications (1)

Publication Number Publication Date
JPH05256641A true JPH05256641A (en) 1993-10-05

Family

ID=12919708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052615A Pending JPH05256641A (en) 1992-03-11 1992-03-11 Cantilever displacement detector

Country Status (2)

Country Link
US (1) US5294804A (en)
JP (1) JPH05256641A (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157251A (en) * 1991-03-13 1992-10-20 Park Scientific Instruments Scanning force microscope having aligning and adjusting means
US5155361A (en) * 1991-07-26 1992-10-13 The Arizona Board Of Regents, A Body Corporate Acting For And On Behalf Of Arizona State University Potentiostatic preparation of molecular adsorbates for scanning probe microscopy
JPH0540034A (en) * 1991-08-08 1993-02-19 Nikon Corp Compound microscope
US5408094A (en) * 1992-05-07 1995-04-18 Olympus Optical Co., Ltd. Atomic force microscope with light beam emission at predetermined angle
DE4310349C2 (en) * 1993-03-30 2000-11-16 Inst Mikrotechnik Mainz Gmbh Sensor head and method for its production
US5416327A (en) * 1993-10-29 1995-05-16 Regents Of The University Of California Ultrafast scanning probe microscopy
JP3513936B2 (en) * 1993-12-22 2004-03-31 松下電工株式会社 Optical scanning displacement measuring device
US5440920A (en) * 1994-02-03 1995-08-15 Molecular Imaging Systems Scanning force microscope with beam tracking lens
US5515719A (en) * 1994-05-19 1996-05-14 Molecular Imaging Corporation Controlled force microscope for operation in liquids
US5866805A (en) * 1994-05-19 1999-02-02 Molecular Imaging Corporation Arizona Board Of Regents Cantilevers for a magnetically driven atomic force microscope
US5513518A (en) * 1994-05-19 1996-05-07 Molecular Imaging Corporation Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5753814A (en) * 1994-05-19 1998-05-19 Molecular Imaging Corporation Magnetically-oscillated probe microscope for operation in liquids
JP3523688B2 (en) 1994-07-06 2004-04-26 オリンパス株式会社 Probe device for sample measurement
JP2936311B2 (en) * 1994-09-09 1999-08-23 セイコーインスツルメンツ株式会社 Scanning near-field atomic force microscope with in-liquid observation function
US5489774A (en) * 1994-09-20 1996-02-06 The Board Of Trustees Of The Leland Stanford University Combined atomic force and near field scanning optical microscope with photosensitive cantilever
JP3174465B2 (en) * 1994-11-28 2001-06-11 松下電器産業株式会社 Atomic force microscope
US5675154A (en) * 1995-02-10 1997-10-07 Molecular Imaging Corporation Scanning probe microscope
US5621210A (en) * 1995-02-10 1997-04-15 Molecular Imaging Corporation Microscope for force and tunneling microscopy in liquids
US5750989A (en) * 1995-02-10 1998-05-12 Molecular Imaging Corporation Scanning probe microscope for use in fluids
US5859364A (en) * 1995-06-05 1999-01-12 Olympus Optical Co., Ltd. Scanning probe microscope
US5811802A (en) * 1995-08-18 1998-09-22 Gamble; Ronald C. Scanning probe microscope with hollow pivot assembly
US5949070A (en) * 1995-08-18 1999-09-07 Gamble; Ronald C. Scanning force microscope with integral laser-scanner-cantilever and independent stationary detector
US5874668A (en) * 1995-10-24 1999-02-23 Arch Development Corporation Atomic force microscope for biological specimens
US5821545A (en) * 1995-11-07 1998-10-13 Molecular Imaging Corporation Heated stage for a scanning probe microscope
US5654546A (en) * 1995-11-07 1997-08-05 Molecular Imaging Corporation Variable temperature scanning probe microscope based on a peltier device
JP3175913B2 (en) * 1995-12-08 2001-06-11 セイコーインスツルメンツ株式会社 Control method of probe microscope
US5812266A (en) * 1995-12-15 1998-09-22 Hewlett-Packard Company Non-contact position sensor
US5886787A (en) * 1995-12-15 1999-03-23 Hewlett-Packard Company Displacement sensor and method for producing target feature thereof
US5831153A (en) * 1997-02-14 1998-11-03 International Business Machines Corporation Investigation and/or manipulation device for a sample in fluid
US6459492B1 (en) 1997-03-14 2002-10-01 Agilent Technologies, Inc. Non-contact position sensor
JP3497734B2 (en) * 1997-07-24 2004-02-16 オリンパス株式会社 Scanning probe microscope
US6642517B1 (en) 2000-01-25 2003-11-04 Veeco Instruments, Inc. Method and apparatus for atomic force microscopy
GB0007747D0 (en) * 2000-03-30 2000-05-17 Univ Bristol Methods and apparatus for atomic force microscopy
JP4076792B2 (en) * 2001-06-19 2008-04-16 独立行政法人科学技術振興機構 Cantilever array, manufacturing method and apparatus
US20030233870A1 (en) * 2001-07-18 2003-12-25 Xidex Corporation Multidimensional sensing system for atomic force microscopy
JP2003202284A (en) * 2002-01-09 2003-07-18 Hitachi Ltd Scanning probe microscope, and sample observing method and method of manufacturing device by using the same
US20040152211A1 (en) * 2002-11-15 2004-08-05 The Regents Of The University Of California System and method for multiplexed biomolecular analysis
US7344678B2 (en) * 2002-11-15 2008-03-18 The Regents Of The University Of California Composite sensor membrane
WO2004081549A1 (en) * 2003-03-11 2004-09-23 Koninklijke Philips Electronics N.V. Spectroscopic analysis apparatus and method with excitation system and focus monitoring system
JP2005037205A (en) * 2003-07-18 2005-02-10 Hitachi Kenki Fine Tech Co Ltd Scanning probe microscope and measuring method of the same
US20050255448A1 (en) * 2004-05-13 2005-11-17 Arun Majumdar System for amplifying optical detection of cantilever deflection
US7759631B2 (en) * 2008-01-22 2010-07-20 Nanosurf Ag Raster scanning microscope having transparent optical element with inner curved surface
WO2009093284A1 (en) * 2008-01-24 2009-07-30 Shimadzu Corporation Scanning type probe microscope
KR101198178B1 (en) * 2010-06-14 2012-11-12 삼성전자주식회사 High-Speed and High-Resolution Atomic Force Microscope
EP3074777B1 (en) * 2013-11-25 2024-02-28 Technion - Research & Development Foundation Ltd Optical knife-edge detector with large dynamic range
CN111257532A (en) * 2020-03-30 2020-06-09 郑州轻工业大学 Information processing platform for information measurement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33387E (en) * 1985-11-26 1990-10-16 International Business Machines Corporation Atomic force microscope and method for imaging surfaces with atomic resolution
US4914293A (en) * 1988-03-04 1990-04-03 Kabushiki Kaisha Toshiba Microscope apparatus
JPH02281103A (en) * 1989-04-24 1990-11-16 Olympus Optical Co Ltd Interatomic force microscope
US5237859A (en) * 1989-12-08 1993-08-24 Digital Instruments, Inc. Atomic force microscope
US5144128A (en) * 1990-02-05 1992-09-01 Hitachi, Ltd. Surface microscope and surface microscopy
JP2679339B2 (en) * 1990-03-07 1997-11-19 松下電器産業株式会社 Micro displacement detector
JPH0758193B2 (en) * 1990-09-14 1995-06-21 三菱電機株式会社 Fine motion scanning mechanism of atomic force microscope
US5157251A (en) * 1991-03-13 1992-10-20 Park Scientific Instruments Scanning force microscope having aligning and adjusting means

Also Published As

Publication number Publication date
US5294804A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JPH05256641A (en) Cantilever displacement detector
US5408094A (en) Atomic force microscope with light beam emission at predetermined angle
US5650614A (en) Optical scanning system utilizing an atomic force microscope and an optical microscope
KR100192097B1 (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
EP0665417A2 (en) Atomic force microscope combined with optical microscope
US20060090550A1 (en) Surface texture measuring probe and microscope utilizing the same
EP0627610B1 (en) Two-stage detection noncontact positioning apparatus
US20090168073A1 (en) Cantilever sensor system and profilers and biosensors using the same
KR960013676B1 (en) Method of measuring a minute displacement
EP0846932B1 (en) Scanning near-field optic/atomic force microscope
US8477319B2 (en) Measuring apparatus
JPH05157554A (en) Probe microscope incorporated with optical micsroscope
JP2791121B2 (en) Micro surface shape measuring device
JPH05312561A (en) Interatomic force microscope
JP2001153785A (en) Scanning type near-field optical microscope
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope
JP3188024B2 (en) Scanning probe microscope
KR101120527B1 (en) Interferometer System using Point Source and Measurement Method thereof
JPH08220114A (en) Displacement detector for scanning force microscope
JP4898097B2 (en) Mechanical sensor and analysis system using the same
JP2625331B2 (en) Pinhole diameter control method for confocal optical system and its control device
JPH05340718A (en) Cantilever displacement detector
JPH0972924A (en) Scanning type probe microscope
JPH06307848A (en) Probe displacement sensing device of microscope
JPH04299210A (en) Apparatus for detecting displacement of probe of interatomic force microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000801