JPH06160077A - Observing optical system assembled into scanning type probe microscope - Google Patents

Observing optical system assembled into scanning type probe microscope

Info

Publication number
JPH06160077A
JPH06160077A JP31739692A JP31739692A JPH06160077A JP H06160077 A JPH06160077 A JP H06160077A JP 31739692 A JP31739692 A JP 31739692A JP 31739692 A JP31739692 A JP 31739692A JP H06160077 A JPH06160077 A JP H06160077A
Authority
JP
Japan
Prior art keywords
optical system
objective lens
cantilever
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31739692A
Other languages
Japanese (ja)
Other versions
JP3093896B2 (en
Inventor
Shuzo Mishima
周三 三島
Norio Maruyama
規夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP04317396A priority Critical patent/JP3093896B2/en
Publication of JPH06160077A publication Critical patent/JPH06160077A/en
Application granted granted Critical
Publication of JP3093896B2 publication Critical patent/JP3093896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To provide an observing optical system, which is assembled into a scanning type probe microscope and can obtain the focused observed image of the surface of a sample. CONSTITUTION:An observing optical system has an objective lens 12, an imagery lens 14 and an image sensing element 16. The objective lens 12 is arranged so that the front focal-point plane comes to the rear surface of a cantilever 18 when measurement is performed with a probe that is provided at the free end of the cantilever 18. The image sensing element 16 is arranged so that the element 16 can be moved along the optical axis at the upper side of the imagery lens 14. Half mirror 26, which casts the displacement detecting light from a displacement detector 24 on the objective lens 12, is provided between the objective lens 12 and the imagery lens 14. The displacement detector 24 forms the displacement detecting optical system together with the objective lens 12. The light is cast on the rear surface of the free end of the cantilever 18. The reflected light is received, and the displacement of the free end of the cantilever 18 is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
に組み込む観察光学系に関する。特に、カンチレバーに
支持された探針とその変位を検出する変位検出光学系と
を備えた走査型プローブ顕微鏡に組み込む観察光学系で
あって、変位検出光学系と対物レンズを共用する観察光
学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation optical system incorporated in a scanning probe microscope. In particular, the present invention relates to an observation optical system incorporated in a scanning probe microscope including a probe supported by a cantilever and a displacement detection optical system for detecting the displacement thereof, the observation optical system sharing the displacement detection optical system and the objective lens. .

【0002】[0002]

【従来の技術】走査型プローブ顕微鏡としては、走査型
トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)
や磁気力顕微鏡(MFM)などが知られている。
2. Description of the Related Art Scanning probe microscopes include scanning tunneling microscopes (STM) and atomic force microscopes (AFM).
A magnetic force microscope (MFM) and the like are known.

【0003】STMは、1nm程度の間隔で配置された
導電性の探針と試料の間に電圧を印加した際に流れ、そ
の大きさが間隔に依存して変化するトンネル電流の性質
を利用し、トンネル電流を一定に保ちながら探針を試料
表面に沿って走査したときの探針の位置情報に基づいて
試料表面の形状を計測する装置である。
The STM utilizes the property of tunnel current, which flows when a voltage is applied between a conductive probe and a sample arranged at intervals of about 1 nm, and the magnitude of which changes depending on the interval. An apparatus for measuring the shape of the sample surface based on position information of the probe when the probe is scanned along the sample surface while keeping the tunnel current constant.

【0004】一方、AFMとMFMは共に、柔軟なカン
チレバーの自由端に設けた探針を試料に近づけた際に探
針と試料の間に作用する力(AFMでは原子間力、MF
Mでは磁気力)を利用して試料の情報を得ている。つま
り、探針の受ける力に応じて生じるカンチレバーの自由
端の変位を一定に保ちながら試料の表面を走査し、その
ときの探針の位置情報から試料の情報を得ている。この
ように探針と試料の間に作用する何等かの力を利用して
試料観察を行なうこうれらの装置は総称して走査型力顕
微鏡(SFM)と呼ばれている。
On the other hand, in both AFM and MFM, the force acting between the probe and the sample when the probe provided at the free end of the flexible cantilever is brought close to the sample (atomic force, MF in AFM,
In M, the magnetic force) is used to obtain the sample information. That is, the surface of the sample is scanned while keeping the displacement of the free end of the cantilever generated according to the force received by the probe constant, and the sample information is obtained from the position information of the probe at that time. Such an apparatus for observing a sample by utilizing some force acting between the probe and the sample is generally called a scanning force microscope (SFM).

【0005】[0005]

【発明が解決しようとする課題】このような走査型プロ
ーブ顕微鏡は非常に高い分解能を有している反面、試料
の大雑把な観察には不向きである。また、探針の位置を
確認する術がないため、試料上の特定の部分を測定した
い場合、そこに探針を配置するまでに多くの時間を要す
るといった不都合があった。そこで、試料を大雑把に観
察するため、また探針の位置を確認するための観察光学
系を組み込んだものが提案され、既に実用に至ってい
る。
Although such a scanning probe microscope has a very high resolution, it is not suitable for rough observation of a sample. Further, since there is no way to confirm the position of the probe, there is a disadvantage that it takes a lot of time to dispose the probe on a specific portion of the sample to be measured. Therefore, in order to roughly observe the sample and to incorporate an observation optical system for confirming the position of the probe, it has been proposed and has already been put into practical use.

【0006】カンチレバーの自由端の変位を検出する手
段として光干渉法や光てこ法などが用いられるが、この
ような変位検出のための光学系と観察光学系とを1つの
対物レンズで共用させることもできる。このように組み
込まれる観察光学系は、SFM観察を行なう際にカンチ
レバー背面のビームスポットを観察する必要があるた
め、その焦点を変位検出光学系のそれに一致させて設計
されている。観察光学系で得られる試料表面の像は探針
の長さ分、下方にある為若干ぼけたものとなってしま
う。
As a means for detecting the displacement of the free end of the cantilever, an optical interference method, an optical lever method or the like is used. An optical system for such displacement detection and an observation optical system are shared by one objective lens. You can also Since the observation optical system incorporated in this way needs to observe the beam spot on the back surface of the cantilever when performing SFM observation, its focus is designed to match that of the displacement detection optical system. The image of the sample surface obtained by the observation optical system is slightly blurred by the length of the probe because it is below.

【0007】本発明は、変位検出系の焦点位置を保ちつ
つピントの合った試料表面の観察像を得ることのでき
る、走査型プローブ顕微鏡に組み込む観察光学系を提供
することを目的とする。
It is an object of the present invention to provide an observation optical system incorporated in a scanning probe microscope capable of obtaining an observation image of a focused sample surface while maintaining the focal position of the displacement detection system.

【0008】[0008]

【課題を解決するための手段】本発明は、カンチレバー
に支持された探針とその変位を検出する変位検出光学系
とを備えた走査型プローブ顕微鏡に組み込む観察光学系
であって、変位検出光学系と共用する対物レンズと、対
物レンズからの光を結像させる結像レンズと、結像した
像を検知する撮像素子と、結像レンズと撮像素子の間の
光学的距離を変える手段とを備えている。
SUMMARY OF THE INVENTION The present invention is an observation optical system incorporated in a scanning probe microscope equipped with a probe supported by a cantilever and a displacement detection optical system for detecting the displacement thereof. An objective lens shared with the system, an image forming lens for forming an image of light from the objective lens, an image pickup element for detecting the formed image, and a means for changing the optical distance between the image forming lens and the image pickup element. I have it.

【0009】[0009]

【作用】測定時、対物レンズはその焦点がカンチレバー
の背面に来るように配置される。結像レンズと撮像素子
は、両者間の光学的距離を変えられるように設けられて
いる。これは、結像レンズまたは撮像素子を光軸方向に
移動可能に設けることにより達成される。結像レンズと
撮像素子の間の距離を調整することにより、カンチレバ
ー背面または試料表面の像を撮像素子上に結像させるこ
とができる。
In the measurement, the objective lens is arranged so that its focal point is on the back surface of the cantilever. The imaging lens and the image pickup device are provided so that the optical distance between them can be changed. This is achieved by providing the imaging lens or the image pickup device so as to be movable in the optical axis direction. By adjusting the distance between the imaging lens and the image sensor, an image of the back surface of the cantilever or the sample surface can be formed on the image sensor.

【0010】[0010]

【実施例】次に本発明の実施例について図面を参照しな
がら説明しよう。以下の説明では、まず図1と図2を参
照しながら本実施例の基本構成について説明し、その後
で図3を参照しながら具体的な構成を説明することにす
る。
Embodiments of the present invention will now be described with reference to the drawings. In the following description, the basic configuration of the present embodiment will be described first with reference to FIGS. 1 and 2, and then the specific configuration will be described with reference to FIG.

【0011】図1において、観察光学系は対物レンズ1
2と結像レンズ14と撮像素子16を有している。対物
レンズ12は、カンチレバー18の自由端に設けた探針
による測定を行なう際、その前側焦点面がカンチレバー
18の背面に来るように配置される。図にはこのときの
位置で描かれている。結像レンズ14の上方には、撮像
素子16が光軸に沿って移動可能に配置されている。対
物レンズ12と結像レンズ14との間には、変位検出器
24からの変位検出光を対物レンズ12へ入射させるた
めのハーフミラー26が設けられている。変位検出器2
4は対物レンズ12と相俟って変位検出光学系を構成
し、カンチレバー18の自由端の背面に光を照射し、そ
の反射光を受光してカンチレバー18の自由端の変位を
検出する。
In FIG. 1, the observation optical system is an objective lens 1.
2, an imaging lens 14 and an image pickup device 16. The objective lens 12 is arranged so that the front focal plane thereof comes to the back surface of the cantilever 18 when performing measurement with a probe provided at the free end of the cantilever 18. It is drawn at the position at this time in the figure. An imaging element 16 is arranged above the imaging lens 14 so as to be movable along the optical axis. A half mirror 26 is provided between the objective lens 12 and the imaging lens 14 to allow the displacement detection light from the displacement detector 24 to enter the objective lens 12. Displacement detector 2
Reference numeral 4 constitutes a displacement detecting optical system together with the objective lens 12, irradiates the back surface of the free end of the cantilever 18 with light, and receives the reflected light to detect the displacement of the free end of the cantilever 18.

【0012】図1(A)は、撮像素子16が結像レンズ
14の後側焦点面に位置している状態を示している。こ
のとき、カンチレバー18の背面からの観察光は、図2
(A)に示すように、対物レンズ12を通過後に平行光
束となるため、結像レンズ14の後側焦点面すなわち撮
像素子16の受光面に結像する。一方、試料22の表面
からの観察光は、図2(B)に示すように、対物レンズ
12を通過後に集束性光束となるため、撮像素子16の
位置においてはデフォーカス状態にあり結像しない。
FIG. 1A shows a state in which the image pickup device 16 is located on the back focal plane of the imaging lens 14. At this time, the observation light from the back surface of the cantilever 18 is shown in FIG.
As shown in (A), since it becomes a parallel light flux after passing through the objective lens 12, it forms an image on the rear focal plane of the imaging lens 14, that is, the light receiving surface of the image sensor 16. On the other hand, since the observation light from the surface of the sample 22 becomes a converging light flux after passing through the objective lens 12 as shown in FIG. 2B, it is in a defocused state at the position of the image sensor 16 and does not form an image. .

【0013】一方、図1(B)は、撮像素子16を結像
レンズ14の後側焦点面よりも近くで、試料22の表面
からの観察光が結像する位置に配置した状態を示してい
る。このとき、カンチレバー18の背面からの観察光
は、図2(A)に示すように、対物レンズ12を通過後
に平行光束となるため、撮像素子16の位置においては
デフォーカス状態にあり結像しない。
On the other hand, FIG. 1B shows a state in which the image pickup device 16 is arranged near the rear focal plane of the imaging lens 14 and at a position where the observation light from the surface of the sample 22 forms an image. There is. At this time, since the observation light from the back surface of the cantilever 18 becomes a parallel light flux after passing through the objective lens 12 as shown in FIG. 2A, it is in a defocused state at the position of the image sensor 16 and does not form an image. .

【0014】次に本実施例のより具体的な構成について
図3を参照しながら説明しよう。図中、(A)は本実施
例の装置の縦断面、(B)は(A)のB−B線に沿った
横断面を示している。試料22は、チューブスキャナー
30により三次元方向に移動可能に支持された試料台2
8の上に載置されている。カンチレバー18の自由端の
変位を検出する変位検出光学系は変位検出器24と対物
レンズ12とで構成されている。また、試料22の表面
を観察する観察光学系は対物レンズ12と光学顕微鏡部
32とで構成されている。光学顕微鏡部32は、光顕台
アーム34の上に順に支持された落射照明装置36、可
変長鏡筒42、TVカメラアダプター62、TVカメラ
68を有している。落射照明装置36は、図示していな
い照明光源からの光を導くライトガイド38と、ライト
ガイド38からの光を対物レンズ12に向けて偏向する
と共に対物レンズ12からの光の半分を透過するハーフ
ミラー40と、ハーフミラー40の上方に配置された結
像レンズ14とを備えている。可変長鏡筒42は固定直
筒44と昇降直筒46を有し、この昇降直筒46は
(B)に示すように三本のガイドシャフト48により固
定直筒44に対して軸方向に移動可能に連結している。
固定直筒44の内部には、つまみ52により上下方向に
移動可能なスライダー54を有する昇降ステージ50が
設けられ、このスライダー54に昇降直筒46が連結ロ
ッド58を介して取り付けられている。これにより、昇
降直筒46は昇降ステージ50の操作により固定直筒4
4に対して位置調整可能に支持されている。つまり、可
変長鏡筒42はつまみ52の操作によりその全長が調整
可能である。昇降直筒46には写真接眼レンズ60が取
り付けられている。昇降直筒46の上には、レンズ64
を内蔵したTVカメラアダプター62を介して、TVカ
メラ68が取り付けられている。TVカメラ68は撮像
素子16を有しており、撮像素子16において電気信号
に変換された画像信号はケーブル70を介して、図示し
ていない画像処理部に送られ処理される。
Next, a more specific structure of this embodiment will be described with reference to FIG. In the figure, (A) shows a vertical cross section of the device of the present embodiment, and (B) shows a horizontal cross section taken along the line BB of (A). The sample 22 is a sample table 2 supported by a tube scanner 30 so as to be movable in three dimensions.
It is placed on top of 8. The displacement detection optical system for detecting the displacement of the free end of the cantilever 18 is composed of a displacement detector 24 and the objective lens 12. The observation optical system for observing the surface of the sample 22 is composed of the objective lens 12 and the optical microscope section 32. The optical microscope unit 32 includes an epi-illumination device 36, a variable length lens barrel 42, a TV camera adapter 62, and a TV camera 68 that are sequentially supported on the light microscope stage arm 34. The epi-illumination device 36 includes a light guide 38 that guides light from an illumination light source (not shown), and a half that deflects the light from the light guide 38 toward the objective lens 12 and transmits half of the light from the objective lens 12. The mirror 40 and the imaging lens 14 arranged above the half mirror 40 are provided. The variable-length lens barrel 42 has a fixed straight barrel 44 and an elevating straight barrel 46, and the elevating straight barrel 46 is connected to the fixed straight barrel 44 so as to be movable in the axial direction by three guide shafts 48 as shown in (B). ing.
An elevating stage 50 having a slider 54 that can be moved up and down by a knob 52 is provided inside the fixed straight cylinder 44, and an elevating straight cylinder 46 is attached to this slider 54 via a connecting rod 58. As a result, the elevating straight cylinder 46 is moved to the fixed straight cylinder 4 by operating the elevating stage 50.
4, the position of which is adjustable. That is, the entire length of the variable length lens barrel 42 can be adjusted by operating the knob 52. A photographic eyepiece lens 60 is attached to the elevating straight cylinder 46. A lens 64 is provided on the elevating straight cylinder 46.
A TV camera 68 is attached via a TV camera adapter 62 containing a. The TV camera 68 has the image sensor 16, and the image signal converted into an electric signal by the image sensor 16 is sent to an image processing unit (not shown) via the cable 70 and processed.

【0015】このように、可変長鏡筒42の全長はつま
み52を操作することにより変えることができ、従って
結像レンズ14から撮像素子16までの光学的距離を適
宜調整することができる。これにより、上述したよう
に、カンチレバー18の背面と試料22の表面の一方の
像を撮像素子16の受光面上に結像させることができ
る。
As described above, the total length of the variable-length lens barrel 42 can be changed by operating the knob 52, so that the optical distance from the imaging lens 14 to the image pickup device 16 can be adjusted appropriately. Thereby, as described above, one image of the back surface of the cantilever 18 and the surface of the sample 22 can be formed on the light receiving surface of the image pickup device 16.

【0016】尚、この時の結像レンズ14と撮像素子1
6との光学的距離の移動量Dは、D=f×M2 とすれば
良い。ここでfは対物レンズ焦点位置移動量であり、こ
の実施例の場合は試料22の表面とカンチレバー18の
背面との距離である。またMは観察光学系の倍率であ
る。これにより、カンチレバー18の背面の像に加え
て、ピントの合った試料22の表面の像が得られるよう
になる。
At this time, the imaging lens 14 and the image pickup device 1
The amount of movement D of the optical distance from 6 is D = f × M 2 It should be done. Here, f is the amount of movement of the focal point of the objective lens, and in the case of this embodiment, it is the distance between the surface of the sample 22 and the back surface of the cantilever 18. Further, M is the magnification of the observation optical system. As a result, an image of the surface of the sample 22 in focus can be obtained in addition to the image of the back surface of the cantilever 18.

【0017】本発明は上述の実施例に何等限定されるも
のではなく、発明の要旨を逸脱しない範囲において種々
多くの変形が可能である。例えば、実施例では撮像素子
を光軸に沿って移動可能に設けてあるが、撮像素子は固
定として、結像レンズを光軸に沿って移動可能に設けて
も一向に構わない。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention. For example, although the image pickup device is provided so as to be movable along the optical axis in the embodiment, the image pickup device may be fixed and the imaging lens may be provided so as to be movable along the optical axis.

【0018】[0018]

【発明の効果】本発明によれば、カンチレバー背面と試
料表面の像をピントが合った状態で得ることのできる、
走査型プローブ顕微鏡に組み込む観察光学系が提供され
る。
According to the present invention, an image of the back surface of the cantilever and the surface of the sample can be obtained in a focused state.
Observation optics are provided for incorporation into a scanning probe microscope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の基本的な構成を示す。FIG. 1 shows a basic configuration of an embodiment of the present invention.

【図2】図1のカンチレバーの周辺を拡大して示す。FIG. 2 is an enlarged view showing the periphery of the cantilever of FIG.

【図3】本発明の実施例の具体的な構成を示す。FIG. 3 shows a specific configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12…対物レンズ、14…結像レンズ、16…撮像素
子。
12 ... Objective lens, 14 ... Imaging lens, 16 ... Imaging element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カンチレバーに支持された探針とその変
位を検出する変位検出光学系とを備えた走査型プローブ
顕微鏡に組み込む観察光学系であって、 変位検出光学系と共用する対物レンズと、 対物レンズからの光を結像させる結像レンズと、 結像した像を検知する撮像素子と、 結像レンズと撮像素子の間の光学的距離を変える手段と
を備えている、走査型プローブ顕微鏡に組み込む観察光
学系。
1. An observation optical system incorporated in a scanning probe microscope including a probe supported by a cantilever and a displacement detection optical system for detecting the displacement thereof, the objective lens being shared with the displacement detection optical system, A scanning probe microscope including an image forming lens that forms an image of light from an objective lens, an image pickup device that detects the formed image, and a unit that changes an optical distance between the image forming lens and the image pickup device. Observation optical system to be incorporated into.
JP04317396A 1992-11-26 1992-11-26 Observation optical system incorporated in scanning probe microscope Expired - Fee Related JP3093896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04317396A JP3093896B2 (en) 1992-11-26 1992-11-26 Observation optical system incorporated in scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04317396A JP3093896B2 (en) 1992-11-26 1992-11-26 Observation optical system incorporated in scanning probe microscope

Publications (2)

Publication Number Publication Date
JPH06160077A true JPH06160077A (en) 1994-06-07
JP3093896B2 JP3093896B2 (en) 2000-10-03

Family

ID=18087784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04317396A Expired - Fee Related JP3093896B2 (en) 1992-11-26 1992-11-26 Observation optical system incorporated in scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3093896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001467A1 (en) 2009-02-04 2010-08-05 Mitutoyo Corp., Kawasaki-shi probe microscope
JP2011021902A (en) * 2009-07-13 2011-02-03 Mitsutoyo Corp Probe microscope
JP2011209294A (en) * 2011-06-20 2011-10-20 Mitsutoyo Corp Probe microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001467A1 (en) 2009-02-04 2010-08-05 Mitutoyo Corp., Kawasaki-shi probe microscope
JP2010181222A (en) * 2009-02-04 2010-08-19 Mitsutoyo Corp Probe microscope
US8108942B2 (en) 2009-02-04 2012-01-31 Mitutoyo Corporation Probe microscope
JP2011021902A (en) * 2009-07-13 2011-02-03 Mitsutoyo Corp Probe microscope
JP2011209294A (en) * 2011-06-20 2011-10-20 Mitsutoyo Corp Probe microscope

Also Published As

Publication number Publication date
JP3093896B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US5756997A (en) Scanning probe/optical microscope with modular objective/probe and drive/detector units
US5440920A (en) Scanning force microscope with beam tracking lens
JP3174465B2 (en) Atomic force microscope
EP0834758B1 (en) Continuous volume imaging system for scanning microscopy
US5874726A (en) Probe-type near-field confocal having feedback for adjusting probe distance
CN100410719C (en) Confocal micro imaging system using dummy pinhole
US5859364A (en) Scanning probe microscope
US4959552A (en) Microscope arranged for measuring microscopic structures
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
JPH08160305A (en) Laser scanning microscope
US5677525A (en) Ancillary module for making a spatially-resolved measurement of a focus volume
JP2010080144A (en) Compound microscope device and method of observing sample
JP2002131646A (en) Method and apparatus for phase compensation of position signal and detection signal in scanning microscopic method and scanning microscope
JP3093896B2 (en) Observation optical system incorporated in scanning probe microscope
JPH07333511A (en) Microscope
JP4603177B2 (en) Scanning laser microscope
US6636351B2 (en) Process for controlling a laser scanning microscope with a tiltable fine focusing stage
JP3523754B2 (en) Scanning probe microscope
JP3371135B2 (en) Fluorescence scanning probe microscope
JPS619614A (en) Microscope
JP4398183B2 (en) Confocal microscope
JP3126047B2 (en) Scanning probe microscope
JPH08285865A (en) Scanning probe microscope
CN1243268C (en) Auto-locating confocal scan microscope with optical fibre
JPH08220113A (en) Scanning proximity field optical microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees