JPH07333511A - Microscope - Google Patents

Microscope

Info

Publication number
JPH07333511A
JPH07333511A JP6148717A JP14871794A JPH07333511A JP H07333511 A JPH07333511 A JP H07333511A JP 6148717 A JP6148717 A JP 6148717A JP 14871794 A JP14871794 A JP 14871794A JP H07333511 A JPH07333511 A JP H07333511A
Authority
JP
Japan
Prior art keywords
objective lens
sample
image
focal plane
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6148717A
Other languages
Japanese (ja)
Inventor
Hisashi Okugawa
久 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6148717A priority Critical patent/JPH07333511A/en
Publication of JPH07333511A publication Critical patent/JPH07333511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To obtain the focal plane moving mechanism of a microscope which is produced at low cost and does not vibrate a specimen moving a supporting means, thereby changing a distance between an observation means and an objective lens and changing the focal plane observed by the observation means. CONSTITUTION:An imaging device 13 is fixed and held by an imaging device holding member 14 and engaged with a guide member 15. The holding member 14 slides in the guide member 15 and is moved by a rack pinion mechanism in an optical axis direction. By moving the holding member 14 supporting the imaging device 13 so as to move with respect to the objective lens 4, the distance between the imaging device 13 and the objective lens 4 is changed and the focal plane observed by the imaging device 13 is changed. Since the focal plane is moved by the movement of the imaging device 13 without depending on the movement of the objective lens 4 or a specimen stage, the specimen such as an isolation cell is prevented from being moved by the vibration caused in the case of moving the objective lens 4 or the specimen stage, and micromanipulation is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡の焦点移動機構
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus moving mechanism for a microscope.

【0002】[0002]

【従来の技術】従来の顕微鏡では、厚みの厚い標本や表
面に凹凸のある標本の深さ方向に異なる部位を観察する
場合、標本の観察しようとする部位に合わせて深さ方向
に焦点面移動をしていた。そして焦点面移動は、標本を
載置したステージと対物レンズの間隔を相対的に変更し
て行っていた。対物レンズが固定されている場合、移動
はステージを顕微鏡本体に対して上下に移動させる機構
により行われていた。又対物レンズを移動させる場合も
ほぼ同様であった。
2. Description of the Related Art In conventional microscopes, when observing different parts in the depth direction of a thick sample or a sample with uneven surface, the focal plane moves in the depth direction according to the part to be observed. I was doing The focal plane is moved by changing the distance between the stage on which the sample is placed and the objective lens. When the objective lens is fixed, the movement is performed by a mechanism that moves the stage up and down with respect to the microscope body. The same was true when the objective lens was moved.

【0003】従来の焦点面移動の機構の1例を図7によ
り説明する。顕微鏡本体1にはアーム2が設けられ、ア
ーム2に取付けられたレボルバ3に対物レンズ4が装着
されている。顕微鏡本体1の支柱5には図示されていな
いラックピニオン8機構が設けられ、粗微動ハンドル9
の回転によりステージ7は上下に移動し、ステージ7に
載置された標本10と対物レンズ4との間隔が相対的に
変更できるようになっている。アーム2には接眼レンズ
12が取り付けられて標本10の像を肉眼で観察し、又
は対物レンズ4による標本10の結像面に配置された撮
像素子13により光電変換して電気信号を出力するよう
になっている。
An example of a conventional focal plane moving mechanism will be described with reference to FIG. An arm 2 is provided in the microscope body 1, and an objective lens 4 is attached to a revolver 3 attached to the arm 2. A rack and pinion 8 mechanism (not shown) is provided on the column 5 of the microscope main body 1, and the coarse / fine adjustment handle 9 is provided.
The rotation of moves the stage 7 up and down, and the distance between the sample 10 placed on the stage 7 and the objective lens 4 can be relatively changed. An eyepiece lens 12 is attached to the arm 2 to observe the image of the sample 10 with the naked eye, or photoelectric conversion is performed by an image sensor 13 arranged on the image plane of the sample 10 by the objective lens 4 to output an electric signal. It has become.

【0004】このような焦点面移動の仕方は従来の顕微
鏡の一般的な焦点合わせの方法であり、標本をステージ
に置いた直後に焦点合わせを行なう際にはもちろんのこ
と、細胞のように厚さの厚い標本を、深さを変えて観察
するような場合、或いはシリコンウエハのレジストパタ
ーンのように凹凸のある標本の凹部や凸部を観察するよ
うな場合にはその都度ステージまたは対物レンズを粗微
動機構等で上下させて焦点面を移動していた。
Such a method of moving the focal plane is a general focusing method of a conventional microscope, and when focusing is performed immediately after the specimen is placed on the stage, it is necessary to use the same thickness as cells. When observing a thick sample at different depths, or when observing concaves and convexes of a sample having irregularities such as the resist pattern of a silicon wafer, the stage or objective lens should be changed each time. The focal plane was moved up and down by a coarse and fine adjustment mechanism.

【0005】近年はコンフォーカル顕微鏡の使用が増加
しているが、コンフォーカル顕微鏡を使用して焦点面を
移動しながら各焦点面での画像を取得し、それらの画像
をコンピュータで処理して3次元画像を再構築したりマ
ルチ焦点画像を作るような場合でも、その都度一軸粗微
動機構や圧電素子による微動Zステージを使ってステー
ジまたは対物レンズを上下させて焦点面を移動してい
た。
In recent years, the use of confocal microscopes has been increasing. However, while moving the focal planes using the confocal microscope, images at each focal plane are acquired, and these images are processed by a computer. Even when reconstructing a three-dimensional image or creating a multi-focus image, the focal plane is moved by moving the stage or the objective lens up and down using a uniaxial coarse / fine movement mechanism or a fine movement Z stage using a piezoelectric element.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述した
ステージを移動して焦点面を変える従来の方法では、例
えば細胞のように厚みのある標本を、深さを変えて観察
しながらマイクロマニピュレーションを行うような場
合、ステージを移動して焦点面を変えるとステージ移動
に伴う振動は例え僅かでも標本に伝わり、単離細胞など
が容易に移動してしまい、マイクロマニピュレーション
が非常に行いにくいという問題があった。
However, in the conventional method of moving the stage to change the focal plane, micromanipulation is performed while observing a thick sample such as a cell while changing the depth. In this case, if the stage is moved to change the focal plane, even a slight vibration due to the stage movement is transmitted to the sample, and isolated cells easily move, which makes micromanipulation extremely difficult. .

【0007】またステージでなく対物レンズを移動して
焦点面を変える場合でも、分解能を上げるために水や油
を媒介とした液浸式対物レンズを使用するときには、や
はり対物レンズを移動した際の僅かの振動が標本に伝わ
り、ステージの移動と同様の問題があった。
Even when the objective lens is moved instead of the stage to change the focal plane, when an immersion type objective lens mediated by water or oil is used to increase the resolution, the objective lens is also moved when the objective lens is moved. A slight vibration was transmitted to the sample, which caused the same problem as the movement of the stage.

【0008】またコンフォーカル顕微鏡を使って複数の
セクショニング画像を取得して3次元画像を再構築する
ような場合においては、標本に固定された細胞であって
もステージや対物レンズの送り精度や走り精度がそのま
ま3次元画像を再構築した後の再現精度となることか
ら、ステージや対物レンズの上下の送り精度や走り精度
は概ね対物レンズの分解能の半分以下の高精度なものが
必要となる。例えば、対物レンズの開口数がNA=1の
とき分解能は約0.3μmであるから、必要な送り精度
や走り精度は約0.15μm以下となり、これの製造は
容易ではなく、強いて製造しても非常に高価なものにな
るという問題があった。
Further, in the case where a plurality of sectioning images are acquired using a confocal microscope to reconstruct a three-dimensional image, even if the cells are fixed to the sample, the feeding accuracy and running of the stage and the objective lens Since the accuracy becomes the reproduction accuracy after reconstructing the three-dimensional image as it is, it is necessary that the upper and lower feeding accuracy and running accuracy of the stage and the objective lens are high accuracy which is about half or less of the resolution of the objective lens. For example, when the numerical aperture of the objective lens is NA = 1, the resolution is about 0.3 μm, so the required feed accuracy and running accuracy are about 0.15 μm or less. There was also the problem that it would be very expensive.

【0009】本発明は上記の課題に鑑み、廉価に製作可
能な、標本に振動を与えない顕微鏡の焦点面移動機構を
提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a focal plane moving mechanism of a microscope which can be manufactured at low cost and which does not give vibration to a sample.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明
は、対物レンズと、前記対物レンズにより結像した標本
の像を観測する観測手段を具備する顕微鏡において、前
記観測手段を前記対物レンズに対して移動可能に支持す
る支持手段とを有し、前記支持手段を移動させることに
より、前記観測手段と前記対物レンズとの距離を変更し
て、前記観測手段で観測する焦点面を変更するものであ
る。
According to a first aspect of the present invention, there is provided a microscope including an objective lens and an observation means for observing an image of a sample formed by the objective lens, wherein the observation means is the objective lens. And a supporting means for movably supporting the object, and by moving the supporting means, the distance between the observing means and the objective lens is changed to change the focal plane observed by the observing means. It is a thing.

【0011】そして、前記観測手段は、前記対物レンズ
により標本の像が結像して電気信号を出力する撮像素子
であることが好ましい。
It is preferable that the observing means is an image pickup device which forms an image of a sample by the objective lens and outputs an electric signal.

【0012】又、前記観測手段は、前記対物レンズによ
り結像した標本の像を拡大して観察する接眼レンズであ
ることも好ましい。
It is also preferable that the observing means is an eyepiece lens that magnifies and observes the image of the sample formed by the objective lens.

【0013】請求項4に記載の発明は、標本から出射し
た光を平行光束にする対物レンズと、前記平行光束を収
束して前記標本の像を結像する第2対物レンズと、前記
第2対物レンズにより結像した前記標本の像を観測する
観測手段とを具備する顕微鏡において、前記第2対物レ
ンズを前記対物レンズに対して移動可能に支持する支持
手段を有し、前記支持手段を移動させることにより、前
記第2対物レンズと前記観測手段との距離を変更して、
前記観測手段で観測する焦点面を変更するものである。
According to a fourth aspect of the present invention, an objective lens for converting the light emitted from the sample into a parallel light beam, a second objective lens for converging the parallel light beam to form an image of the sample, and the second objective lens A microscope comprising an observation means for observing an image of the sample formed by an objective lens, comprising a support means for movably supporting the second objective lens with respect to the objective lens, and moving the support means. By changing the distance between the second objective lens and the observation means,
The focal plane observed by the observing means is changed.

【0014】請求項5に記載の発明は、標本から出射し
た光を平行光束にする対物レンズと、前記平行光束の光
路に設けられたリレー光学系と、前記平行光束をピンホ
ール上に収束して前記標本の像を結像する集光レンズ
と、前記集光レンズにより結像された前記標本の像を観
測する観測手段とを具備するコンフォーカル型顕微鏡に
おいて、前記リレー光学系を前記対物レンズ対して移動
可能に支持する支持手段を有し、前記支持手段を移動さ
せることにより、前記リレー光学系と前記対物レンズと
の距離を変更して、前記観測手段で観測する焦点面を変
更するものである。
According to a fifth aspect of the present invention, an objective lens for converting the light emitted from the sample into a parallel light beam, a relay optical system provided in the optical path of the parallel light beam, and the parallel light beam is converged on a pinhole. In the confocal microscope, the relay optical system includes the objective lens, and a condensing lens that forms an image of the sample by using the condensing lens and an observation unit that observes the image of the sample formed by the condensing lens. A supporting means for movably supporting the moving means, and changing the distance between the relay optical system and the objective lens by moving the supporting means to change the focal plane observed by the observing means. Is.

【0015】[0015]

【作用】請求項1に記載の発明では、顕微鏡の観測手段
が支持手段に支持されていて、支持手段が対物レンズに
対して移動すると、観測手段と対物レンズとの距離が変
更し、観測手段で観測する焦点面が変更される。
According to the invention described in claim 1, the observation means of the microscope is supported by the support means, and when the support means moves with respect to the objective lens, the distance between the observation means and the objective lens is changed, and the observation means. The focal plane to be observed at is changed.

【0016】請求項4に記載の発明では、第2対物レン
ズが支持手段に支持されていて、支持手段が対物レンズ
に対して移動すると、第2対物レンズと観測手段との距
離が変更し、観測手段で観測する焦点面が変更される。
In a fourth aspect of the invention, the second objective lens is supported by the supporting means, and when the supporting means moves with respect to the objective lens, the distance between the second objective lens and the observing means changes, The focal plane observed by the observation means is changed.

【0017】請求項5に記載の発明では、リレー光学系
が支持手段に支持されていて、支持手段が対物レンズに
対して移動すると、リレー光学系と対物レンズとの距離
が変更し、観測手段で観測する焦点面が変更される。
According to the invention described in claim 5, the relay optical system is supported by the supporting means, and when the supporting means moves with respect to the objective lens, the distance between the relay optical system and the objective lens is changed, and the observing means. The focal plane to be observed at is changed.

【0018】[0018]

【実施例】本発明の第1の実施例を図1〜図2により説
明する。図1は本実施例を装着した顕微鏡の断面図、図
2は本実施例の光学系を示す概念図である。顕微鏡本体
1にはアーム2が設けられ、アーム2に取付けられたレ
ボルバ3に対物レンズ4が装着されている。顕微鏡本体
1の支柱5にはステージ7が移動可能に設けられ、標本
10がステー載置されている。アーム2には接眼レンズ
12が取り付けられて標本10の像を肉眼で観察し、又
は対物レンズ4による標本10の結像面に配置された撮
像素子13により光電変換して電気信号を出力するよう
になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a microscope equipped with this embodiment, and FIG. 2 is a conceptual diagram showing an optical system of this embodiment. An arm 2 is provided in the microscope body 1, and an objective lens 4 is attached to a revolver 3 attached to the arm 2. A stage 7 is movably provided on a column 5 of the microscope body 1, and a sample 10 is mounted on the stay. An eyepiece lens 12 is attached to the arm 2 to observe the image of the sample 10 with the naked eye, or photoelectric conversion is performed by an image sensor 13 arranged on the image plane of the sample 10 by the objective lens 4 to output an electric signal. It has become.

【0019】撮像素子13は撮像素子保持部材14に固
定して保持され、ガイド部材15と係合している。撮像
素子保持部材14は、ガイド部材15内を摺動して光軸
方向に、公知の機構、例えばラックピニョン機構により
移動可能である。
The image pickup device 13 is fixedly held by the image pickup device holding member 14 and engaged with the guide member 15. The image sensor holding member 14 is slidable in the guide member 15 and is movable in the optical axis direction by a known mechanism such as a rack and pinion mechanism.

【0020】次に動作について説明する。図2(a)に
示すような位置にある細胞16の一部位16aを観察す
る時、部位16aの物体面17は対物レンズ4による結
像面18と共役の関係にあり、部位16aの像は結像面
18にある撮像素子13の撮像面13aに結像する。次
に細胞16の他の部位16bを観察するために、図2
(b)に示すように撮像素子13を対物レンズ4に対し
て移動させる。物体面19と結像面20とは共役の関係
にあり、細胞16の部位16bの像は撮像面13bに結
像する。
Next, the operation will be described. When observing one part 16a of the cell 16 at a position as shown in FIG. 2A, the object plane 17 of the part 16a has a conjugate relationship with the image plane 18 formed by the objective lens 4, and the image of the part 16a is An image is formed on the image pickup surface 13a of the image pickup device 13 on the image pickup surface 18. Next, in order to observe the other part 16b of the cell 16, FIG.
As shown in (b), the image sensor 13 is moved with respect to the objective lens 4. The object plane 19 and the imaging plane 20 have a conjugate relationship, and the image of the portion 16b of the cell 16 is imaged on the imaging plane 13b.

【0021】このように、対物レンズ4と撮像素子13
の距離を変えることにより鏡筒長を変える場合、物体面
17と物体面19との距離d1及び結像面18と結像面
20との距離d2との間には、対物レンズ4の倍率をM
とすると、次の関係が成立している。 d1=d2/M2 ・・・・(1) 例えば40倍の対物レンズを使用する場合、撮像素子1
3を16mm光軸に沿ってに移動すると細胞16の内部
で10μm移動した部位の焦点面が観察できることにな
る。40倍の対物レンズを使用し、撮像素子13を56
mm移動すると物体面上で40μm程度の焦点面移動が
行われ、普通の大きさの細胞であれば、殆どの深さに焦
点を合わせることができる。結像面を20mm〜30m
m移動しても結像した像の性能は、実際上ほとんど低下
しない。
In this way, the objective lens 4 and the image pickup device 13 are
When the lens barrel length is changed by changing the distance between the object planes 17, the magnification of the objective lens 4 is set between the distance d1 between the object planes 17 and 19 and the distance d2 between the image planes 18 and 20. M
Then, the following relationship is established. d1 = d2 / M 2 (1) For example, when using a 40 × objective lens, the image sensor 1
When 3 is moved along the optical axis of 16 mm, the focal plane of the portion moved by 10 μm inside the cell 16 can be observed. A 40 × objective lens is used, and the image sensor 13 is
When it moves by mm, the focal plane moves by about 40 μm on the object surface, and if the cell has an ordinary size, it can focus on almost all the depth. 20 mm to 30 m on the image plane
Even if it is moved by m, the performance of the formed image is practically not deteriorated.

【0022】本発明では焦点面を撮像素子の移動により
移動させ、対物レンズや標本用ステージの移動によらな
いので、対物レンズや標本用ステージを動かした際に発
生する振動で単離細胞などの標本が動いてしまうという
問題がなく、マイクロマニピュレーションなどが容易に
行える。
In the present invention, the focal plane is moved by the movement of the image pickup device and not by the movement of the objective lens or the sample stage. Therefore, the vibration generated when the objective lens or the sample stage is moved causes the isolated cells and the like to move. There is no problem that the sample moves, and micromanipulation etc. can be easily performed.

【0023】又撮像素子の走り精度は顕微鏡の横倍率に
比例するので、対物レンズ(NA=1,40倍)の分解
能が0.3μmのとき要求される走り精度は6μmとな
り撮像素子の走り機構は容易に廉価に製造できる。
Further, since the running accuracy of the image pickup device is proportional to the lateral magnification of the microscope, the running accuracy required when the resolution of the objective lens (NA = 1, 40 times) is 0.3 μm is 6 μm and the running mechanism of the image pickup device. Is easy and cheap to manufacture.

【0024】次に第2の実施例につき図3により説明す
る。本実施例は上述した一実施例における撮像素子の代
わりに接眼レンズを動かして鏡筒長を変え焦点面を移動
するものであり、同一又は類似の点の説明の詳述は省略
する。対物レンズ4により結像した標本10の像を観察
者が接眼レンズ12により目視で観察する。接眼レンズ
12はガイド部材15に支持され、対物レンズ4に対し
て上下に移動可能である。接眼レンズ12を対物レンズ
4に対して上方に移動させると、標本10の浅い位置に
ある部分に焦点面が移動する。
Next, a second embodiment will be described with reference to FIG. In the present embodiment, instead of the image pickup device in the above-described embodiment, the eyepiece lens is moved to change the lens barrel length to move the focal plane, and the detailed description of the same or similar points will be omitted. An observer visually observes the image of the sample 10 formed by the objective lens 4 through the eyepiece lens 12. The eyepiece lens 12 is supported by the guide member 15 and is movable up and down with respect to the objective lens 4. When the eyepiece lens 12 is moved upward with respect to the objective lens 4, the focal plane moves to the shallow portion of the sample 10.

【0025】次に第3の実施例につき図4により説明す
る。本実施例は鏡筒長を変えないで焦点面を移動するも
のであり、上述した各実施例と同一又は類似の点の説明
の詳述は省略する。標本10からの光は対物レンズ4に
より平行光束となり、第2対物レンズ21を介し結像し
た像は撮像素子13で観測する。第2対物レンズ21は
ガイド部材15に支持され、対物レンズ4に対して上下
に移動可能である。第2対物レンズ21を対物レンズ4
に対して上方に移動させると、標本10の浅い位置にあ
る部分に焦点面が移動する。結像面を20mm〜30m
m移動しても結像した像の性能は、実際上ほとんど低下
しない。
Next, a third embodiment will be described with reference to FIG. In this embodiment, the focal plane is moved without changing the lens barrel length, and the detailed description of the same or similar points as the above-mentioned embodiments will be omitted. The light from the sample 10 becomes a parallel light flux by the objective lens 4, and the image formed through the second objective lens 21 is observed by the image sensor 13. The second objective lens 21 is supported by the guide member 15 and is movable up and down with respect to the objective lens 4. The second objective lens 21 is replaced with the objective lens 4
When moved upward with respect to, the focal plane moves to a portion of the sample 10 at a shallow position. 20 mm to 30 m on the image plane
Even if it is moved by m, the performance of the formed image is practically not deteriorated.

【0026】撮像素子の走り精度は顕微鏡の横倍率に比
例するので、対物レンズ(NA=1,40倍)の分解能
が0.3μmのとき要求される走り精度は6μmとなり
撮像素子の走り機構は容易に廉価に製造できる。
Since the running accuracy of the image sensor is proportional to the lateral magnification of the microscope, the running accuracy required when the resolution of the objective lens (NA = 1, 40 times) is 0.3 μm is 6 μm, and the running mechanism of the image sensor is Easy to manufacture at low cost.

【0027】本実施例により対物レンズや標本用ステー
ジを動かすことなく第2対物レンズを動かすことによっ
て観察する焦点面を移動させ、標本が振動によって動く
ことはない。
According to the present embodiment, the focal plane to be observed is moved by moving the second objective lens without moving the objective lens or the sample stage, and the sample does not move due to vibration.

【0028】次に第4の実施例につき図5により説明す
る。本実施例は前実施例と同様に鏡筒長を変えないで焦
点面を移動するものである。上述した各実施例と同一又
は類似の点の説明の詳述は省略する。標本10からの光
は対物レンズ4により平行光束となり、焦点合わせレン
ズ22を介して撮像素子13に結像する。焦点合わせレ
ンズ22は複数の単位レンズ22a、22bから形成さ
れ、相互間の間隔を変更し、標本10の深さ方向に焦点
面を移動させる。
Next, a fourth embodiment will be described with reference to FIG. In this embodiment, as in the previous embodiment, the focal plane is moved without changing the lens barrel length. Detailed description of the same or similar points as those of the above-described embodiments will be omitted. The light from the sample 10 becomes a parallel light flux by the objective lens 4, and forms an image on the image sensor 13 via the focusing lens 22. The focusing lens 22 is formed of a plurality of unit lenses 22a and 22b, and changes the interval between them to move the focal plane in the depth direction of the sample 10.

【0029】次に第5の実施例につき図6により説明す
る。本実施例はレーザ走査型コンフォーカル顕微鏡にか
かるものである。上述した各実施例と同一又は類似の点
の説明の詳述は省略する。レーザ25から出射したレー
ザ光はビームスプリッタ26で反射し、走査ユニット2
7で走査され、第2のリレーレンズ28及び第1のリレ
ーレンズ29によりリレーされてから、対物レンズ4に
より収束されて標本10を照射する。標本10から出射
した蛍光は逆進し、対物レンズ4、第1のリレーレンズ
29、第2のリレーレンズ28、走査ユニット27を介
し、ビームスプリッタ26を透過して、集光レンズ30
で集光され、ピンホールディテクタ31で検出される。
Next, a fifth embodiment will be described with reference to FIG. This embodiment relates to a laser scanning confocal microscope. Detailed description of the same or similar points as those of the above-described embodiments will be omitted. The laser light emitted from the laser 25 is reflected by the beam splitter 26, and the scanning unit 2
7 is scanned, relayed by the second relay lens 28 and the first relay lens 29, and then converged by the objective lens 4 to irradiate the sample 10. The fluorescence emitted from the sample 10 travels backward, passes through the objective lens 4, the first relay lens 29, the second relay lens 28, and the scanning unit 27, passes through the beam splitter 26, and the condenser lens 30.
Are collected by the pinhole detector 31 and detected by the pinhole detector 31.

【0030】リレーレンズ28、29の少なくとも一方
は複数の単位レンズから形成され、複数の単位レンズの
相互間の間隔を変更することができる。複数の単位レン
ズの相互間の間隔を変更し、標本10の深さ方向に焦点
面を移動させる。リレーレンズ28、29の少なくとも
一方を対物レンズ4に対して移動可能に構成しても良
い。結像面を20mm〜30mm移動しても結像した像
の性能は、実際上ほとんど低下しない。
At least one of the relay lenses 28 and 29 is formed of a plurality of unit lenses, and the distance between the plurality of unit lenses can be changed. The interval between the plurality of unit lenses is changed to move the focal plane in the depth direction of the sample 10. At least one of the relay lenses 28 and 29 may be movable with respect to the objective lens 4. Even if the image plane is moved by 20 mm to 30 mm, the performance of the image formed is practically not deteriorated.

【0031】本実施例により対物レンズや標本用ステー
ジを動かすことなくリレーレンズを動かすことによって
観察する焦点面を移動させ、標本が振動によって動くこ
とはない。電気生理学やパッチクランプなどのマイクロ
マニピュレーションなどが容易に行える。又更に精度の
高い3次元画像が得られる。
According to this embodiment, the focal plane to be observed is moved by moving the relay lens without moving the objective lens or the sample stage, and the sample does not move due to vibration. Micromanipulation such as electrophysiology and patch clamp can be performed easily. Further, a highly accurate three-dimensional image can be obtained.

【0032】3次元画像を忠実に再現するために必要な
リレーレンズの送り精度は顕微鏡の縦倍率即ち横倍率の
二乗に比例するのでそのような用途でよく使用する40
倍の対物レンズでは縦倍率が1600倍となり、要求さ
れる精度は0.25mm程度と非常に緩くリレーレンズ
の送り機構は廉価に製造できる。
Since the feed accuracy of the relay lens required to faithfully reproduce a three-dimensional image is proportional to the square of the vertical magnification of the microscope, that is, the horizontal magnification, it is often used in such applications.
With a double objective lens, the vertical magnification becomes 1600 times, and the required accuracy is very low, about 0.25 mm, and the relay lens feed mechanism can be manufactured at low cost.

【0033】[0033]

【発明の効果】請求項1に記載の発明では、顕微鏡の観
測手段が支持手段に支持されていて、支持手段が対物レ
ンズに対して移動すると、観測手段と対物レンズとの距
離が変更し、観測手段で観測する焦点面が変更されるか
ら、廉価な移動機構により、標本に振動を与えないで顕
微鏡の焦点面移動が行われる。
According to the invention described in claim 1, when the observation means of the microscope is supported by the support means and the support means moves with respect to the objective lens, the distance between the observation means and the objective lens changes, Since the focal plane observed by the observation means is changed, the focal plane of the microscope is moved by the inexpensive moving mechanism without vibrating the sample.

【0034】請求項4に記載の発明では、第2対物レン
ズが支持手段に支持されていて、支持手段が対物レンズ
に対して移動すると、第2対物レンズと観測手段との距
離が変更し、観測手段で観測する焦点面が変更されるか
ら、廉価な移動機構により、標本に振動を与えないで顕
微鏡の焦点面移動が行われる。
In the invention according to claim 4, the second objective lens is supported by the supporting means, and when the supporting means moves with respect to the objective lens, the distance between the second objective lens and the observing means changes, Since the focal plane observed by the observation means is changed, the focal plane of the microscope is moved by the inexpensive moving mechanism without vibrating the sample.

【0035】請求項5に記載の発明では、リレー光学系
が支持手段に支持されていて、支持手段が対物レンズに
対して移動すると、リレー光学系と対物レンズとの距離
が変更し、観測手段で観測する焦点面が変更されから、
廉価な移動機構により、標本に振動を与えないで顕微鏡
の焦点面移動が行われる。
According to a fifth aspect of the present invention, the relay optical system is supported by the supporting means, and when the supporting means moves with respect to the objective lens, the distance between the relay optical system and the objective lens changes, and the observing means. Since the focal plane to be observed at is changed,
An inexpensive moving mechanism moves the focal plane of the microscope without applying vibration to the specimen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概念的側面図。FIG. 1 is a conceptual side view of an embodiment of the present invention.

【図2】本発明の一実施例の光路を示す図。FIG. 2 is a diagram showing an optical path of an embodiment of the present invention.

【図3】本発明の第2の実施例の光路を示す図。FIG. 3 is a diagram showing an optical path of a second embodiment of the present invention.

【図4】本発明の第3の実施例の概念的側面図。FIG. 4 is a conceptual side view of the third embodiment of the present invention.

【図5】本発明の第4の実施例の光路を示す図。FIG. 5 is a diagram showing an optical path according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例の光路を示す図。FIG. 6 is a diagram showing an optical path according to a fifth embodiment of the present invention.

【図7】従来例の概念的側面図。FIG. 7 is a conceptual side view of a conventional example.

【符号の説明】[Explanation of symbols]

1・・・・顕微鏡本体 4・・・・対物レンズ 10・・・・標本 12・・・・接眼レンズ 13・・・・撮像素子 14・・・・撮像素子保持部材 15・・・・ガイド部材 16・・・・細胞 17、19・・・・物体面 18、20・・・・結像面 21・・・・第2対物レンズ 22・・・・焦点合わせレンズ 25・・・・レーザ 26・・・・ビームスプリッタ 27・・・・走査ユニット 28、29・・・・リレーレンズ 30・・・・集光レンズ 31・・・・ピンホールディテクタ 1 ... Microscope body 4 ... Objective lens 10 ... Specimen 12 ... Eyepiece 13 ... Image pickup element 14 ... Image pickup element holding member 15 ... Guide member 16 ... Cell 17 ... 19 Object plane 18 20 ... Image plane 21 ... Second objective lens 22 ... Focusing lens 25 ... Laser 26 ... ... Beam splitter 27 ... Scanning unit 28, 29 ... Relay lens 30 ... Condensing lens 31 ... Pinhole detector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】対物レンズと、前記対物レンズにより結像
した標本の像を観測する観測手段とを具備する顕微鏡に
おいて、前記観測手段を前記対物レンズに対して移動可
能に支持する支持手段を有し、前記支持手段を移動させ
ることにより、前記観測手段と前記対物レンズとの距離
を変更して、前記観測手段で観測する焦点面を変更する
ことを特徴とする顕微鏡。
1. A microscope comprising an objective lens and an observation means for observing an image of a sample formed by the objective lens, comprising a supporting means for movably supporting the observation means with respect to the objective lens. Then, the microscope is characterized in that by moving the supporting means, the distance between the observing means and the objective lens is changed to change the focal plane observed by the observing means.
【請求項2】前記観測手段は、前記対物レンズにより標
本の像が結像して電気信号を出力する撮像素子であるこ
とを特徴とする請求項1に記載の顕微鏡。
2. The microscope according to claim 1, wherein the observing means is an image pickup device which forms an image of a sample by the objective lens and outputs an electric signal.
【請求項3】前記観測手段は、前記対物レンズにより結
像した標本の像を拡大して観察する接眼レンズであるこ
とを特徴とする請求項1に記載の顕微鏡。
3. The microscope according to claim 1, wherein the observing means is an eyepiece lens which magnifies and observes an image of the sample formed by the objective lens.
【請求項4】標本から出射した光を平行光束にする対物
レンズと、前記平行光束を収束して前記標本の像を結像
する第2対物レンズと、前記第2対物レンズにより結像
した前記標本の像を観測する観測手段とを具備する顕微
鏡において、前記第2対物レンズを前記対物レンズに対
して移動可能に支持する支持手段を有し、前記支持手段
を移動させることにより、前記第2対物レンズと前記観
測手段との距離を変更して、前記観測手段で観測する焦
点面を変更することを特徴とする顕微鏡。
4. An objective lens for converting light emitted from a sample into a parallel light beam, a second objective lens for converging the parallel light beam to form an image of the sample, and the above-mentioned image formed by the second objective lens. In a microscope including an observation means for observing an image of a sample, there is provided a support means for movably supporting the second objective lens with respect to the objective lens, and the second means is provided by moving the support means. A microscope characterized in that a focal plane observed by the observation means is changed by changing a distance between an objective lens and the observation means.
【請求項5】標本から出射した光を平行光束にする対物
レンズと、前記平行光束の光路に設けられたリレー光学
系と、前記平行光束をピンホール上に収束して前記標本
の像を結像する集光レンズと、前記集光レンズにより結
像された前記標本の像を観測する観測手段とを具備する
コンフォーカル型顕微鏡において、前記リレー光学系を
前記対物レンズ対して移動可能に支持する支持手段を有
し、前記支持手段を移動させることにより、前記リレー
光学系と前記対物レンズとの距離を変更して、前記観測
手段で観測する焦点面を変更することを特徴とする顕微
鏡。
5. An objective lens for converting light emitted from a sample into a parallel light beam, a relay optical system provided in an optical path of the parallel light beam, and the parallel light beam being converged on a pinhole to form an image of the sample. In a confocal type microscope including a condensing lens for imaging and an observing means for observing the image of the sample formed by the condensing lens, the relay optical system is movably supported with respect to the objective lens. A microscope having a supporting means, wherein the distance between the relay optical system and the objective lens is changed by moving the supporting means to change a focal plane observed by the observing means.
JP6148717A 1994-06-08 1994-06-08 Microscope Pending JPH07333511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148717A JPH07333511A (en) 1994-06-08 1994-06-08 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148717A JPH07333511A (en) 1994-06-08 1994-06-08 Microscope

Publications (1)

Publication Number Publication Date
JPH07333511A true JPH07333511A (en) 1995-12-22

Family

ID=15459028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148717A Pending JPH07333511A (en) 1994-06-08 1994-06-08 Microscope

Country Status (1)

Country Link
JP (1) JPH07333511A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265043A (en) * 1996-03-29 1997-10-07 Yokogawa Electric Corp Confocal microscope
JPH10206742A (en) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd Laser scanning microscope
JPH10206745A (en) * 1997-01-22 1998-08-07 Olympus Optical Co Ltd Scanning optical microscope
JP2005070477A (en) * 2003-08-26 2005-03-17 Yokogawa Electric Corp Focus moving mechanism and optical microscope using it
JP2005326494A (en) * 2004-05-12 2005-11-24 Olympus Corp Image microscope
JP2007286310A (en) * 2006-04-17 2007-11-01 Tohoku Univ Optical device and image forming method
JP2010513968A (en) * 2006-12-22 2010-04-30 アイシス イノベイシヨン リミテツド Focus adjustment device and focus adjustment method
JP2010224231A (en) * 2009-03-24 2010-10-07 Olympus Corp Microscopic imaging apparatus for capturing image of faint light and high-intensity light
JP2018151598A (en) * 2017-03-15 2018-09-27 国立研究開発法人産業技術総合研究所 Sensor device, confocal microscope, and method for detecting fluorescence from diamond with nv center
WO2018190132A1 (en) * 2017-04-13 2018-10-18 横河電機株式会社 Microscope system, microscope, processing device, and camera for microscopes
JP2019204027A (en) * 2018-05-24 2019-11-28 横河電機株式会社 Optical system for microscope and processing device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265043A (en) * 1996-03-29 1997-10-07 Yokogawa Electric Corp Confocal microscope
JPH10206742A (en) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd Laser scanning microscope
JPH10206745A (en) * 1997-01-22 1998-08-07 Olympus Optical Co Ltd Scanning optical microscope
JP2005070477A (en) * 2003-08-26 2005-03-17 Yokogawa Electric Corp Focus moving mechanism and optical microscope using it
JP2005326494A (en) * 2004-05-12 2005-11-24 Olympus Corp Image microscope
JP4555796B2 (en) * 2006-04-17 2010-10-06 株式会社ジーオングストローム Optical apparatus and imaging method
JP2007286310A (en) * 2006-04-17 2007-11-01 Tohoku Univ Optical device and image forming method
US9638909B2 (en) 2006-12-22 2017-05-02 Isis Innovation Limited Focusing apparatus and method
JP2013061688A (en) * 2006-12-22 2013-04-04 Isis Innovation Ltd Focus adjustment device and focus adjustment method
US8498048B2 (en) 2006-12-22 2013-07-30 Isis Innovations Limited Focusing apparatus and method
JP2014095908A (en) * 2006-12-22 2014-05-22 Isis Innovation Ltd Focus adjustment device and focus adjustment method
JP2010513968A (en) * 2006-12-22 2010-04-30 アイシス イノベイシヨン リミテツド Focus adjustment device and focus adjustment method
JP2010224231A (en) * 2009-03-24 2010-10-07 Olympus Corp Microscopic imaging apparatus for capturing image of faint light and high-intensity light
JP2018151598A (en) * 2017-03-15 2018-09-27 国立研究開発法人産業技術総合研究所 Sensor device, confocal microscope, and method for detecting fluorescence from diamond with nv center
WO2018190132A1 (en) * 2017-04-13 2018-10-18 横河電機株式会社 Microscope system, microscope, processing device, and camera for microscopes
JP2018180296A (en) * 2017-04-13 2018-11-15 横河電機株式会社 Microscope system, microscope, processing device and camera for microscope
CN110494787A (en) * 2017-04-13 2019-11-22 横河电机株式会社 Microscopic system, microscope, processing unit and microscope camera
JP2019204027A (en) * 2018-05-24 2019-11-28 横河電機株式会社 Optical system for microscope and processing device

Similar Documents

Publication Publication Date Title
EP2095167B1 (en) Focusing apparatus and method
CA1321498C (en) Objective lens positioning system for confocal tandem scanning reflected light microscope
US5616916A (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
JP6241858B2 (en) Confocal microscope
JP2006084794A (en) Observation device with focal position control mechanism
JP6173154B2 (en) Microscope system
GB2215837A (en) Microscope arranged for measuring microscopic structures
JPH07333511A (en) Microscope
US11940609B2 (en) Image conversion module with a microelectromechanical optical system and method for applying the same
US10459209B2 (en) Method and microscope for examining a sample
US20190043687A1 (en) System and method for axial scanning based on static phase masks
JP2005010516A (en) Microscope
JPH07111505B2 (en) Photoelectric microscope
JP2005345761A (en) Scanning optical microscopic device and method for restoring object image from the scanning optical microscopic image
US4413889A (en) Focusing device for microscopes
JP4528023B2 (en) Laser focusing optical system
JPH04213404A (en) Light irradiating device
JPH0618412A (en) Scanning refractive index microscope
US20230350180A1 (en) Automatic correction of spherical aberration in selective plane illumination microscopy
JP2613130B2 (en) Confocal scanning phase contrast microscope
JP2013054102A (en) Microscope device
JP2009186679A (en) Observation device
JP3033663B2 (en) Multidimensional ultra-small displacement measurement method and device
JP2003255234A (en) Microscope and imaging method
JP2002311335A (en) Grating illumination microscope