JP2003042721A - Method and apparatus for measurement of film thickness of thin film as well as method of manufacturing device by using the same - Google Patents

Method and apparatus for measurement of film thickness of thin film as well as method of manufacturing device by using the same

Info

Publication number
JP2003042721A
JP2003042721A JP2001226984A JP2001226984A JP2003042721A JP 2003042721 A JP2003042721 A JP 2003042721A JP 2001226984 A JP2001226984 A JP 2001226984A JP 2001226984 A JP2001226984 A JP 2001226984A JP 2003042721 A JP2003042721 A JP 2003042721A
Authority
JP
Japan
Prior art keywords
reflected light
film thickness
detected
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001226984A
Other languages
Japanese (ja)
Other versions
JP3932836B2 (en
Inventor
Mineo Nomoto
峰生 野本
Takeshi Hirose
丈師 廣瀬
Keiya Saitou
啓谷 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001226984A priority Critical patent/JP3932836B2/en
Priority to US10/082,520 priority patent/US7057744B2/en
Priority to US10/082,430 priority patent/US7119908B2/en
Publication of JP2003042721A publication Critical patent/JP2003042721A/en
Application granted granted Critical
Publication of JP3932836B2 publication Critical patent/JP3932836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus of manufacturing a high-accuracy thin-film device wherein the film thickness of a transparent film being worked and the distribution of the film thickness are measured with high accuracy, the film thickness on the outermost surface is measured with high accuracy during a CMP working operation, without being influenced by the distribution of the film thickness in an LSI region generated in the CMP working operation or inside a semiconductor wafer face, and the film thickness can be controlled with high accuracy. SOLUTION: A visual field and a measuring position which are used to measure the film thickness of the transparent film being worked are measured by an area which is not influenced by the distribution of the film thickness of an CMP-worked actual device pattern. A comparatively flat region is specified on the basis of the reflected light intensity, the frequency spectrum intensity or the like in a feature amount of spectral reflected light from the transparent film, the film thickness is measured, and the film thickness is controlled with high accuracy. Consequently, a flattening working operation in a CMP working process based on the distribution of the film thickness can be optimized, a film formation condition to a film formation process and a working condition in an etching process can be optimized, and the semiconductor device is manufactured with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は透明な膜の厚さおよ
び厚さ分布の計測および膜厚を管理して、半導体デバイ
スを製造する方法に関し、例えばシリコンウェハ上に半
導体デバイスを製造する製造ラインで、成膜後表面の平
坦化処理工程において、ウエハの最表面膜厚を計測する
方法、および膜厚を計測することにより、平坦化処理工
程を管理して半導体デバイスを製造する。透明膜の例と
しては、上記の他DVD,TFT,LSIレチクル等の薄膜デバ
イスの製造工程におけるレジスト膜や絶縁膜等も含まれ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device by measuring the thickness and thickness distribution of a transparent film and controlling the film thickness. For example, a manufacturing line for manufacturing a semiconductor device on a silicon wafer. Then, in the flattening treatment step of the surface after film formation, the method of measuring the outermost surface film thickness of the wafer, and by measuring the film thickness, the flattening treatment step is managed to manufacture the semiconductor device. In addition to the above, examples of the transparent film include a resist film and an insulating film in the manufacturing process of thin film devices such as DVD, TFT, and LSI reticle.

【0002】[0002]

【従来の技術】例えば、半導体デバイスは成膜,露光お
よびエッチングにより、デバイスおよび配線パターンを
シリコンウエーハ上に形成することにより製造される。
近年、高精度化・高密度化を実現するために微細化・多
層化の方向に進んでいる。このことによってウエーハ表
面の凹凸が増大している。このようなウエーハ上の凹凸
は配線等の形成に不可欠な露光を困難とするため、ウエ
ーハ表面の平坦化が行われる。
2. Description of the Related Art For example, a semiconductor device is manufactured by forming a device and a wiring pattern on a silicon wafer by film formation, exposure and etching.
In recent years, in order to realize high precision and high density, the trend toward miniaturization and multi-layering has been advanced. As a result, the unevenness of the wafer surface is increased. Since such unevenness on the wafer makes it difficult to expose the wafer, which is indispensable for forming wiring and the like, the surface of the wafer is flattened.

【0003】この平坦化プロセスとして、化学的および
物理的作用により表面を研磨して平坦化を実現する方法
(CMP:Chemical Mechanical Polishing)が用いられ
る。CMPは当該技術分野において既知の加工方法であ
る。
As this flattening process, a method (CMP: Chemical Mechanical Polishing) of polishing the surface by chemical and physical actions to realize flattening is used. CMP is a processing method known in the art.

【0004】CMP加工において重要な課題として、膜厚
管理が挙げられる。特にCMP加工中の膜厚を計測して
in−situ計測システムをCMP加工システムに組
み込んで、所定の膜厚に加工された時点で加工を終了し
て高精度な平坦性と膜厚ばらつきを低減することが必要
である。このため、in−situ計測技術として種々
の方法が提案されている。特開平6−252113号公
報や特開平9−7985号公報では、実際のデバイスパ
ターン(実際の製品の微細な回路パターン)上の膜厚の
計測が可能なin−situ計測システムの開示がなさ
れている。特開平6−252113号公報では実際のデ
バイスパターン上の膜厚計測に白色光の膜による干渉光
の分光分布を周波数解析し、分光分布波形の持つ周波数
成分と膜厚との関係に着目し膜厚の絶対値を算出する。
一方、特開平10−83977号公報ではレーザー(単
波長)光の透明膜による干渉光強度の加工時間による変
化を検出し、その波形の持つ周波数成分から膜厚の算出
を行うものである。
An important issue in CMP processing is film thickness control. In particular, by measuring the film thickness during CMP processing and incorporating an in-situ measurement system into the CMP processing system, the processing is terminated when the film is processed to a predetermined film thickness, and highly accurate flatness and film thickness variation are reduced. It is necessary to. Therefore, various methods have been proposed as in-situ measurement techniques. JP-A-6-252113 and JP-A-9-7985 disclose an in-situ measurement system capable of measuring the film thickness on an actual device pattern (a fine circuit pattern of an actual product). There is. In Japanese Laid-Open Patent Publication No. 6-252113, the spectral distribution of the interference light due to the white light film is frequency analyzed to measure the film thickness on the actual device pattern, and attention is paid to the relationship between the frequency component of the spectral distribution waveform and the film thickness. Calculate the absolute thickness.
On the other hand, in Japanese Unexamined Patent Publication No. 10-83977, a change in the interference light intensity of laser (single wavelength) light due to a transparent film due to processing time is detected, and the film thickness is calculated from the frequency component of the waveform.

【0005】また、特開平10−294297号公報や
特開2000−77371号公報には計測位置を特定し
てin−situ計測する技術が開示されている。特開
平10−294297号公報は回路パターンの画像の特
徴を抽出又は回折格子をパターンのスクライブエリアに
形成して計測位置を特定している。特開2000−77
371号公報では分光波形の極大値や極小値に着目し
て、既測定した分光波形の極大値、極小値と比較処理等
から計測位置を特定して加工中の膜厚を計測するもので
ある。
Further, Japanese Unexamined Patent Publication No. 10-294297 and Japanese Unexamined Patent Publication No. 2000-77371 disclose techniques for specifying a measurement position and performing in-situ measurement. Japanese Unexamined Patent Publication No. 10-294297 discloses extracting a characteristic of an image of a circuit pattern or forming a diffraction grating in a scribe area of the pattern to specify a measurement position. JP-A-2000-77
In Japanese Patent Laid-Open No. 371, paying attention to the maximum value and the minimum value of the spectral waveform, the measurement position is specified from the maximum value and the minimum value of the already measured spectral waveform and the comparison process, and the film thickness during processing is measured. .

【0006】[0006]

【発明が解決しようとする課題】一般にCMPの加工時
間による膜厚管理では、単位時間あたりの研磨量(研磨
レート)が変動すること、ウエーハ上に形成されたパタ
ーンの平面内にしめる割合(以降、パターン面積率)に
よって研磨レートが異なること等のため、精度の高い膜
厚管理が困難であった。図17は発明者らが特開200
0―310512号公報で開示した技術を用いて、計測
した半導体デバイスの膜厚分布計測結果である。図17
はCMP加工後のウエハの約□20mmの面積での透明膜
(層間絶縁膜)の膜厚分布計測結果160である。図1
7は配線パターン部161、162、周辺回路部16
3、周辺回路部と配線パターン部の境界部164、16
5の膜厚分布を示している。膜厚分布計測結果160か
らも分かるように、周辺回路部と配線パターン部の境界
部164、165では約□2mm程度の領域で数100nm
の膜厚変化が生じている。一方、配線パターン部16
1、162や周辺回路部163では、数mmの領域で比較
的平坦な膜厚である。
Generally, in the film thickness control by the processing time of CMP, the polishing amount (polishing rate) per unit time varies, and the ratio of filling in the plane of the pattern formed on the wafer (hereinafter, Since the polishing rate varies depending on the pattern area ratio), it is difficult to control the film thickness with high accuracy. FIG. 17 is a schematic diagram of the inventors
It is the film thickness distribution measurement result of the semiconductor device measured using the technique disclosed in Japanese Patent Laid-Open No. 0-310512. FIG. 17
Is a film thickness distribution measurement result 160 of the transparent film (interlayer insulating film) in an area of about 20 mm of the wafer after CMP processing. Figure 1
7 is a wiring pattern portion 161, 162, a peripheral circuit portion 16
3. Boundary parts 164, 16 between the peripheral circuit part and the wiring pattern part
5 shows the film thickness distribution of No. 5. As can be seen from the film thickness distribution measurement result 160, the boundary parts 164 and 165 of the peripheral circuit part and the wiring pattern part are several square nm in a region of about 2 mm.
The film thickness has changed. On the other hand, the wiring pattern portion 16
1, 162 and the peripheral circuit portion 163 have a relatively flat film thickness in a region of several mm.

【0007】この膜厚分布はパターン面積率や加工装置
の研磨用パッドの種類、研磨液(スラリー)の種類など
の加工条件に起因して生じるため、半導体回路パターン
の種類や加工条件(研磨パッドの消耗状態やスラリー濃
度)によって異なり、製品毎あるいはウエハ1枚の枚葉
毎に変化する。上述したようにCMP加工中のin−s
itu計測では計測する視野領域によっては、膜厚が大
きく変化している領域を計測する事になり計測精度が低
下する問題が生じる。また、計測位置を特定する方法と
して、特開平10−294297号公報や特開2000
−77371号公報で開示されているが、これらの公報
においても計測視野が着目されず比較的大きい領域(約
φ2mm程度)で計測視野を決定しているため、図17に
示すような膜厚分布の状態を計測する場合には計測精度
が低下するおそれがある。すなわち、分光波形が下地の
配線状態や膜厚が異なる広いエリアからの情報が含まれ
た波形データとなり、所望の計測位置を特定する事が困
難である。このため、CMP加工工程で、所定の膜厚に
加工された時点で加工を終了して高精度な平坦性と膜厚
ばらつきを低減することができず、高精度な膜厚管理を
する事が困難であり、半導体デバイスの歩留まりが低下
する問題があった。また、従来からCMP加工工程では
スラリーを研磨液として使用している。
Since this film thickness distribution is caused by processing conditions such as the pattern area ratio, the type of polishing pad of the processing apparatus, the type of polishing liquid (slurry), etc., the type of semiconductor circuit pattern and processing conditions (polishing pad It depends on the consumption state and the slurry concentration), and it changes for each product or for each wafer. As described above, in-s during CMP processing
In the in-tu measurement, depending on the visual field region to be measured, a region in which the film thickness is greatly changed is measured, which causes a problem that the measurement accuracy is lowered. Further, as a method of specifying the measurement position, Japanese Patent Laid-Open No. 10-294297 and Japanese Patent Laid-Open No. 2000-2000
Although it is disclosed in Japanese Patent Laid-Open No. 77371, the measurement field of view is determined in a relatively large region (about φ2 mm) without paying attention to the measurement field of view in these publications, so that the film thickness distribution as shown in FIG. When measuring the state of, the measurement accuracy may be reduced. That is, the spectral waveform is waveform data including information from a wide area where the underlying wiring state and film thickness are different, and it is difficult to specify a desired measurement position. For this reason, in the CMP process, the processing cannot be finished at the time when the film is processed to have a predetermined film thickness, and highly accurate flatness and film thickness variation cannot be reduced, so that highly accurate film thickness management can be performed. It is difficult and the yield of semiconductor devices is reduced. Further, conventionally, a slurry has been used as a polishing liquid in the CMP processing step.

【0008】特開平10−83977号公報でも開示さ
れているが、ポリッシングパッドへ透明窓を形成してス
ラリー中のウエハ表面からの分光波形を抽出してin−
situ計測を行っている。スラリーはシリカや水酸化
カリウムなどの粒子を含んだ研磨液であるため、光学的
に半透明であり透過率が小さい。また、使用中に透明窓
が研磨液に含まれている粒子によって加工されすりガラ
ス状の凹凸が生じて、ウエハ表面からの分光反射率が著
しく低下し、分光計測が安定に出来ず、CMP加工工程
で、所定の膜厚に加工された時点で加工を終了して高精
度な膜厚管理が困難になる問題もあった。
As disclosed in Japanese Unexamined Patent Publication No. 10-83977, a transparent window is formed in a polishing pad to extract a spectral waveform from the wafer surface in the slurry and in-
In-situ measurement is performed. Since the slurry is a polishing liquid containing particles such as silica and potassium hydroxide, it is optically translucent and has a low transmittance. In addition, during use, the transparent window is processed by particles contained in the polishing liquid to form frosted glass-like irregularities, the spectral reflectance from the wafer surface is significantly reduced, and the spectral measurement cannot be stabilized. However, there is also a problem that the processing is terminated at the time when the film is processed into a predetermined film thickness, and it becomes difficult to control the film thickness with high accuracy.

【0009】本発明の目的は、透明な膜の膜厚を、CM
P加工で生じるLSI領域の膜厚分布の影響を受けるこ
となく、CMP加工中に高精度に計測できる方法及びそ
の装置並びにそれを用いた薄膜デバイスの製造方法及び
その製造装置を提供することを目的とする。
An object of the present invention is to change the thickness of a transparent film to CM.
An object of the present invention is to provide a method and an apparatus therefor capable of performing highly accurate measurement during CMP processing without being affected by a film thickness distribution of an LSI region generated by P processing, a thin film device manufacturing method using the same, and a manufacturing apparatus therefor. And

【0010】また、本発明の目的は、透明な膜の膜厚
を、CMP加工で生じるウエハ面内での膜厚分布の影響
を受けることなく、CMP加工中に高精度に計測できる
方法及びその装置並びにそれを用いた薄膜デバイスの製
造方法及びその製造装置を提供することを目的とする。
It is another object of the present invention to provide a method and a method for measuring the film thickness of a transparent film with high accuracy during CMP processing without being affected by the film thickness distribution in the wafer surface which occurs during CMP processing. An object is to provide an apparatus, a method for manufacturing a thin film device using the apparatus, and an apparatus for manufacturing the same.

【0011】また、本発明の目的は、透明な膜の膜厚
を、CMP加工で生じるLSI領域の膜厚分布やウエハ
面内での膜厚分布の影響を受けることなく、CMP加工
中に所望の計測視野で高精度に計測できる方法及びその
装置並びにそれを用いた薄膜デバイスの製造方法及びそ
の製造装置を提供することを目的とする。また、本発明
の目的は、透明な膜の膜厚を、CMP加工で生じるLS
I領域の膜厚分布やウエハ面内での膜厚分布の影響を受
けることなく、CMP加工中に所望の計測位置を特定し
て高精度に計測できる方法及びその装置並びにそれを用
いた薄膜デバイスの製造方法及びその製造装置を提供す
ることを目的とする。
Another object of the present invention is to set the thickness of a transparent film during CMP processing without being affected by the film thickness distribution in the LSI region and the wafer surface thickness distribution that occur during CMP processing. It is an object of the present invention to provide a method and an apparatus therefor capable of measuring with high accuracy in the measurement visual field, a method for manufacturing a thin film device using the method and an apparatus for manufacturing the same. Another object of the present invention is to change the thickness of the transparent film to the LS produced by CMP processing.
Method and device for identifying a desired measurement position during CMP processing with high accuracy without being affected by the film thickness distribution in the I region and the film thickness distribution in the wafer surface, and its apparatus, and a thin film device using the same It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus therefor.

【0012】また、本発明の目的は、透明な膜の膜厚
を、CMP加工で生じるLSI領域の膜厚分布やウエハ
面内での膜厚分布の影響を受けることなく、CMP加工
中に所望の計測視野および所望の計測位置を特定して高
精度に計測した膜厚計測結果を、CMP加工工程後の製
造工程(エッチングや成膜等)のプロセス条件に用いて
高精度な薄膜デバイスの製造方法及びその製造装置を提
供することを目的とする。
Another object of the present invention is to set the thickness of the transparent film during CMP processing without being affected by the film thickness distribution in the LSI region and the film thickness distribution in the wafer surface which occur during CMP processing. High-precision thin-film device manufacturing by using the film thickness measurement result of high-precision measurement by specifying the measurement field of view and the desired measurement position for the process conditions of the manufacturing process (etching, film formation, etc.) after the CMP processing process. It is an object of the present invention to provide a method and a manufacturing apparatus thereof.

【0013】また、本発明の目的は、透明な膜の膜厚
を、CMP加工で生じるスラリの分光透過特性の低下の
影響を受けることなく、CMP加工中にS/Nの高い分
光波形を抽出して高精度に計測できる方法及びその装置
並びにそれを用いた薄膜デバイスの製造方法及びその製
造装置を提供することを目的とする。
Another object of the present invention is to extract a spectral waveform having a high S / N ratio during CMP processing without affecting the thickness of the transparent film by the deterioration of the spectral transmission characteristics of the slurry caused by CMP processing. It is an object of the present invention to provide a method and an apparatus therefor capable of performing highly accurate measurement, and a method and an apparatus for manufacturing a thin film device using the same.

【0014】本発明は、透明な膜の膜厚を、CMP加工
で生じるLSI領域の膜厚分布の影響を受けることな
く、CMP加工中に例えば実際のデバイスパターン上で
±数10nm以下の精度で計測できる方法及びその装置並
びにそれを用いた薄膜デバイスの製造方法及びその製造
装置を提供することを目的とする。その一例として特開
2000−310512号公報に開示されているような
計測技術を用いて、CMP加工後に実際のデバイスパタ
ーン上の最表面膜厚の計測を行い、LSI領域での膜厚
分布を抽出し、該膜厚分布の結果を基に計測視野および
計測位置を決定して、CMP加工中のデバイスパターン
からの所望の計測視野、計測位置からの分光波形を抽出
して、CMP加工中の最表面膜厚の計測を高精度に行う
ことにより高精度の膜厚管理を可能とする方法および装
置、およびプロセスのスループットの向上を実現する方
法および装置を提供することを目的としている。
According to the present invention, the film thickness of the transparent film is not affected by the film thickness distribution of the LSI region generated by the CMP processing, and the accuracy is, for example, ± several 10 nm or less on the actual device pattern during the CMP processing. An object of the present invention is to provide a measurable method and an apparatus thereof, a thin film device manufacturing method using the same, and a manufacturing apparatus thereof. As an example thereof, the measurement technique disclosed in Japanese Patent Laid-Open No. 2000-310512 is used to measure the outermost surface film thickness on the actual device pattern after CMP processing to extract the film thickness distribution in the LSI region. Then, the measurement field of view and the measurement position are determined based on the result of the film thickness distribution, the desired measurement field of view from the device pattern during CMP processing, and the spectral waveform from the measurement position are extracted to determine the maximum during CMP processing. It is an object of the present invention to provide a method and an apparatus that enable highly accurate film thickness management by measuring a surface film thickness with high accuracy, and a method and an apparatus that realize an improvement in process throughput.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に本発明では、CMP加工中の透明な膜の膜厚を計測す
る視野および計測位置は、CMP加工された実際のデバ
イスパターンのLSI領域での膜厚分布の計測結果を基
に決定する。実際のデバイスパターンを計測する技術
は、発明者達が開発した特開2000−310512号
公報で開示されているような膜厚計測方法(以下実パタ
ーン膜厚計測方法と表現する)を用いて、デバイスパタ
ーンの膜厚分布を計測し、計測結果を基に所望の計測視
野を決定する。図17の計測結果例から、計測視野をφ
50〜100μm程度にして、膜厚が急峻な変化(1mm
程度で数100nmの厚み変化)をしても高精度な計測精
度を確保できる視野にすることが望ましい。また、膜厚
分布がLSI領域で平坦な場合は、計測視野を数mmに大
きくしても良い。
In order to achieve the above object, according to the present invention, the field of view and the measurement position for measuring the film thickness of the transparent film during CMP processing are the LSI area of the actual device pattern processed by CMP. It is determined based on the measurement result of the film thickness distribution in. A technique for measuring an actual device pattern uses a film thickness measuring method (hereinafter referred to as an actual pattern film thickness measuring method) as disclosed in JP 2000-310512 A developed by the inventors. The film thickness distribution of the device pattern is measured, and the desired measurement visual field is determined based on the measurement result. From the measurement result example of FIG.
A sharp change in film thickness (1 mm
It is desirable to have a field of view that can secure high-precision measurement accuracy even if the thickness changes by several 100 nm. When the film thickness distribution is flat in the LSI region, the measurement visual field may be increased to several mm.

【0016】計測位置については、図17で示した比較
的平坦な領域161、162の膜厚を計測する事が高精
度計測を実現するのに望ましい。領域161や162は
配線回路パターン部であり、透明膜下部の下地の配線パ
ターン密度が数10%程度であり安定しているため、C
MP加工においても平坦性が良い領域である。また、半
導体の製造プロセスにおいても、コンタクトホール等を
形成して層間接続する配線形成領域であり、エッチング
条件等決定するためにも、配線回路形成領域の膜厚を管
理する事が望ましい。本発明における計測位置の決定は (1)分光反射光の強度差を抽出する。 (2)分光反射光の周波数スペクトル強度を抽出する。 (3)実パターン膜厚計測方法で計測した分光波形と比
較する。 等のいずれか一つ以上の手段を用いて行う。
Regarding the measurement position, it is desirable to measure the film thickness of the relatively flat regions 161 and 162 shown in FIG. 17 in order to realize highly accurate measurement. Areas 161 and 162 are wiring circuit pattern portions, and since the wiring pattern density of the base under the transparent film is about several tens% and stable, C
This is a region with good flatness even in MP processing. Also, in the semiconductor manufacturing process, it is desirable to control the film thickness of the wiring circuit formation region, which is a wiring formation region for forming contact holes and the like and connecting layers between layers, and for determining etching conditions and the like. In the determination of the measurement position in the present invention, (1) the intensity difference of the spectral reflection light is extracted. (2) Extract the frequency spectrum intensity of the spectrally reflected light. (3) Compare with the spectral waveform measured by the actual pattern film thickness measuring method. And the like.

【0017】この方法によれば、配線形成領域に限ら
ず、LSIの周辺回路部やスクライブエリヤ等の場所か
らの分光波形の特徴量から、計測位置を選択してそれぞ
れの位置での膜厚を管理することが出来る。
According to this method, the film thickness at each position is selected by selecting the measurement position from the feature amount of the spectral waveform from the peripheral circuit portion of the LSI, the scribe area, or the like, not limited to the wiring formation region. Can be managed.

【0018】上記は半導体ウエハに形成されたLSI領
域(チップ領域と表現する)での計測視野、計測位置の
決定について述べたが、ウエハ面内での膜厚管理を行う
ことも出来る。CMP加工ではウエハを回転運動と揺動
運動しながら加工する。本発明では、ウエハのオリエン
テーションフラット位置やノッチ位置を、ウエハホルダ
に概略位置決めした状態で保持し、ウエハホルダからの
ウエハのオリエンテーションフラット位置やノッチ位置
指示情報に基づき、CMP加工中のin−situ膜厚
計測系の計測位置がウエハの中心部か周辺部か等を判断
して、計測して計測結果を出力するようにした。
Although the measurement field and the measurement position in the LSI area (expressed as a chip area) formed on the semiconductor wafer have been described above, the film thickness can be controlled within the wafer surface. In CMP processing, a wafer is processed while rotating and oscillating. According to the present invention, the orientation flat position and the notch position of the wafer are held in a state of being roughly positioned on the wafer holder, and the in-situ film thickness measurement during the CMP processing is performed based on the orientation flat position and the notch position instruction information of the wafer from the wafer holder. It is determined whether the measurement position of the system is the central portion or the peripheral portion of the wafer, the measurement is performed, and the measurement result is output.

【0019】また、本発明では、光学的に不透明なスラ
リーを介在してウエハ表面の分光波形を高S/Nで計測
するため、分光波形計測窓の近傍では純水等の光学的に
透明な液体を供給してスラリーを希釈して分光計測でき
るようにしている。また、分光波形計測窓に用いる透明
窓の材料はスラリーの分光屈折率に近い材料を用いて、
スラリーと透明窓の界面での屈折率の違いによる反射率
の増加(分光透過率を向上)を低減している。このため
CMP加工中でも高S/Nの分光波形を抽出して膜厚管
理の精度が向上する。
Further, according to the present invention, since the spectral waveform on the wafer surface is measured at a high S / N with the optically opaque slurry interposed, pure water or the like is optically transparent in the vicinity of the spectral waveform measurement window. A liquid is supplied to dilute the slurry so that spectroscopic measurement can be performed. The material of the transparent window used for the spectral waveform measurement window is a material close to the spectral refractive index of the slurry,
The increase in reflectance (improvement of spectral transmittance) due to the difference in refractive index at the interface between the slurry and the transparent window is reduced. Therefore, the precision of the film thickness management is improved by extracting the high S / N spectral waveform even during the CMP processing.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態例として、半
導体デバイスの製造におけるCMP工程を対象とし、そ
の加工中のウェハ表面に形成された透明な膜の膜厚を、
CMP加工中に例えば実際のデバイスパターン上で数10
nm以内の精度で計測する方法に適用した例を示す。
BEST MODE FOR CARRYING OUT THE INVENTION As an example of an embodiment of the present invention, the film thickness of a transparent film formed on a wafer surface during processing is targeted for a CMP process in manufacturing a semiconductor device,
During CMP processing, for example, several tens on the actual device pattern
An example applied to a method of measuring with accuracy within nm will be shown.

【0021】図1は、本発明の膜厚管理方法をCMP加
工装置に適用した一実施例である。CMP加工装置は研
磨盤1上に研磨パッド2が形成され、ホルダ3に被加工
物のウエハ4が保持されている。また、研磨パッド2上
にはパッド表面の目立てをするドレッサ5により定期的
にパッドの目立てを行い加工レートを一定に保つように
している。研磨用の塗粒が混入された液状のスラリ6が
研磨パッド上に供給される構造になっている。CMP加
工中の膜厚を計測するため、計測光学系7が研磨盤1の
下方から、研磨パッド2に設けられた計測窓8から、ウ
エハ表面の分光波形を計測出来るように構成されてい
る。計測した分光波形は膜厚計測コントローラ9で膜厚
を算出する。膜厚計測コントローラ9には、実パターン
膜厚計測装置10からの情報が得られるように実パター
ン膜厚計測装置10に接続されている。実パターン膜厚
計測装置10は、特開2000−310512号公報に
開示されているような計測方式により、予めウエハ4と
同品種の工程のウエハの膜厚分布を計測してあり、この
膜厚分布計測結果に基づき、計測条件コントローラ11
で計測光学系7で用いる計測視野やそれぞれの計測位置
での膜厚に対応する分光波形を選定し膜厚計測コントロ
ーラ9に入力する。
FIG. 1 shows an embodiment in which the film thickness control method of the present invention is applied to a CMP processing apparatus. In the CMP processing apparatus, a polishing pad 2 is formed on a polishing platen 1, and a holder 3 holds a wafer 4 to be processed. Further, on the polishing pad 2, a dresser 5 for dressing the surface of the pad is used to regularly dress the pad to keep the processing rate constant. The structure is such that the liquid slurry 6 in which the coating particles for polishing are mixed is supplied onto the polishing pad. In order to measure the film thickness during the CMP process, the measurement optical system 7 is configured to be able to measure the spectral waveform of the wafer surface from below the polishing table 1 and from the measurement window 8 provided in the polishing pad 2. The thickness of the measured spectral waveform is calculated by the film thickness measurement controller 9. The film thickness measurement controller 9 is connected to the actual pattern film thickness measurement device 10 so that the information from the actual pattern film thickness measurement device 10 can be obtained. The actual pattern film thickness measuring device 10 measures the film thickness distribution of a wafer in the same kind of process as the wafer 4 in advance by the measuring method disclosed in Japanese Patent Laid-Open No. 2000-310512. Based on the distribution measurement result, the measurement condition controller 11
At, the spectral field corresponding to the measurement visual field used in the measurement optical system 7 and the film thickness at each measurement position is selected and input to the film thickness measurement controller 9.

【0022】ウエハ4は、研磨盤1を矢印A方向に回転
運動し、ホルダ3は矢印B方向の回転運動と矢印C方向
へ揺動運動させながらウエハ4の全面を加工すると共
に、ドレッサ5も定期的に矢印D方向の回転運動と矢印
E方向へ揺動運動しながらパッド2の目たてを行う。上
記構成において、研磨盤1が回転すると計測窓8に組み
込まれれているウインドウガラス81は研磨盤1が一回
転毎に計測光学系7の計測光路120上を通過し、ウエ
ハ4の分光波形を計測光学系7で検出し、検出された分
光波形は膜厚計測コントローラ9に入力され、所望の計
測位置での膜厚を算出する。
The wafer 4 rotates the polishing disk 1 in the direction of arrow A, and the holder 3 processes the entire surface of the wafer 4 while rotating the wafer in the direction of arrow B and oscillating in the direction of arrow C, and the dresser 5 also. The pad 2 is raised while periodically rotating in the direction of arrow D and swinging in the direction of arrow E. In the above configuration, when the polishing platen 1 rotates, the window glass 81 incorporated in the measurement window 8 passes on the measurement optical path 120 of the measurement optical system 7 every rotation of the polishing platen 1 to measure the spectral waveform of the wafer 4. The spectral waveform detected by the optical system 7 is input to the film thickness measurement controller 9 to calculate the film thickness at a desired measurement position.

【0023】図2は、図1の計測光学系7と膜厚計測コ
ントローラ9の詳細な一実施例を示すものである。計測
光学系7は検出レンズ71、照明光源72、ハーフミラ
ー73、空間フィルタ74、結像レンズ75、視野絞り
ユニット76、視野絞り761、視野絞り762、分光
器77からなる。計測光学系7では、照明光原に白色照
明光(波長300nm〜800nm程度)をハーフミラ
ー73で検出レンズ71、ウインドウガラス81を介し
て加工中のウエハ4に照明する。ウエハ4からの反射光
を空間フィルタ74、結像レンズ75、視野絞り761
を介して分光器77に導き分光する。分光された波形信
号を、膜厚計測コントローラ9で計測し、分光波形91
を後述するスラリーによる波形歪みの影響を除く波形補
正処理92を行う。波形補正された分光波形から特開2
000−310512号公報に開示されている、周波数
・位相解析計測方式あるいはパターン構造フィティング
計測方式により、加工中のデバイスパターン上の膜厚算
出94を行い、所定の膜厚に加工された時点で加工を終
了する。また、計測条件コントローラ11では実パター
ン膜厚計測装置10からの膜厚分布に基づく計測視野情
報や分光波形データを、膜厚コントローラ9に入力す
る。
FIG. 2 shows a detailed embodiment of the measuring optical system 7 and the film thickness measuring controller 9 of FIG. The measurement optical system 7 includes a detection lens 71, an illumination light source 72, a half mirror 73, a spatial filter 74, an imaging lens 75, a field stop unit 76, a field stop 761, a field stop 762, and a spectroscope 77. In the measurement optical system 7, white illumination light (wavelength of about 300 nm to 800 nm) is applied to the illumination light source by the half mirror 73 through the detection lens 71 and the window glass 81 to illuminate the wafer 4 being processed. The reflected light from the wafer 4 is reflected by the spatial filter 74, the imaging lens 75, and the field stop 761.
The light is guided to the spectroscope 77 through and is dispersed. The dispersed waveform signal is measured by the film thickness measurement controller 9, and the spectral waveform 91
The waveform correction process 92 for removing the influence of the waveform distortion due to the slurry described below is performed. From the spectral waveform whose waveform has been corrected
No. 000-310512 discloses a frequency / phase analysis measurement method or a pattern structure fitting measurement method, and a film thickness calculation 94 is performed on a device pattern being processed. Finish processing. Further, the measurement condition controller 11 inputs the measurement visual field information and the spectral waveform data based on the film thickness distribution from the actual pattern film thickness measuring device 10 to the film thickness controller 9.

【0024】膜厚コントローラ9では検出した分光波形
91について膜厚計測データとして適用するか否かを判
定し、計測に必要な分光波形を選択し膜厚算出に用い
る。計測視野は膜厚計測開始前にパラメータとして設定
し、計測光学系7の絞りユニット76を切り替えて視野
絞り径を決定して所望の計測視野を決定する。計測光学
系7の空間フィルタ74は配線パターンのエッジからの
散乱光や検出レンズのN.Aに起因する高次の回折光を
除去する事が出来るため、回折光が分光波形に大きな歪
みを生じる場合など波形歪みを低減する効果があり、分
光波形のS/N向上に効果がある。
The film thickness controller 9 determines whether or not the detected spectral waveform 91 is applied as film thickness measurement data, selects a spectral waveform required for measurement, and uses it for film thickness calculation. The measurement visual field is set as a parameter before the film thickness measurement is started, and the aperture unit 76 of the measurement optical system 7 is switched to determine the visual field aperture diameter to determine a desired measurement visual field. The spatial filter 74 of the measurement optical system 7 is the scattered light from the edge of the wiring pattern and the N.V. Since the high-order diffracted light caused by A can be removed, there is an effect of reducing the waveform distortion such as when the diffracted light causes a large distortion in the spectral waveform, and it is effective in improving the S / N of the spectral waveform.

【0025】図3は、本実施例の計測視野を説明する図
である。図3に示すウインドウガラス81を10〜50
mm、計測視野763を検出視野がφ50〜100μmに
して、光学系倍率を考慮して視野サイズを決定して分光
波形を計測する実施例を示す概略図である。研磨盤1の
1回転に対して、ウインドウガラス81からウエハ4の
複数箇所の分光波形データを検出する。図3の実施例で
は4回分光データを抽出する状態が記載されているが、
計測箇所が多いほど高精度な膜厚評価が可能である。実
際にはCMP加工機の研磨盤1の回転数と計測窓の大き
さ、分光機のサンプリング速度、照明系の光量、ウエハ
からの反射光等から計測サンプリング数が決定される。
図3で示した例では、研磨盤1の直径Dφ250mm、回
転数100rpm、分光器77のサンプリングを速度1
mmsとすると、φ50μm×0.4mmの幅の面積を計測
する事になる。ウインドウガラス81の大きさを直径1
0mmにしても、10回の計測が可能になる。すなわち研
磨盤1回転でウエハ4の10カ所の分光データから必要
な分光波形を選択して膜厚コントローラ9に入力して膜
厚算出を行う。
FIG. 3 is a diagram for explaining the measurement visual field of this embodiment. The window glass 81 shown in FIG.
FIG. 9 is a schematic diagram showing an example in which the detection field of view is Φ50 to 100 μm, the field of view size is determined in consideration of the optical system magnification, and the spectral waveform is measured. The spectral waveform data at a plurality of positions on the wafer 4 are detected from the window glass 81 for one rotation of the polishing platen 1. Although the embodiment of FIG. 3 describes a state in which spectral data is extracted four times,
The more measurement points there are, the more accurate the film thickness can be evaluated. Actually, the measurement sampling number is determined from the number of revolutions of the polishing board 1 of the CMP machine, the size of the measurement window, the sampling speed of the spectroscope, the light amount of the illumination system, the reflected light from the wafer, and the like.
In the example shown in FIG. 3, the polishing platen 1 has a diameter Dφ of 250 mm, the rotation speed is 100 rpm, and the spectroscope 77 is sampled at a speed of 1.
If mms, the area of the width of φ50 μm × 0.4 mm is measured. Window glass 81 size 1 diameter
Even if it is 0 mm, it is possible to measure 10 times. That is, one rotation of the polishing platen selects a necessary spectral waveform from the spectral data of the wafer 4 at 10 positions and inputs it to the film thickness controller 9 to calculate the film thickness.

【0026】次に図4〜図7を用いて本発明を更に具体
的に説明する。
Next, the present invention will be described more specifically with reference to FIGS.

【0027】図4は、LSI回路(1チップ)の一例で
ある。LSI回路40には配線回路パターン部41が中
心部に形成され、一部はメモリ回路部42で規則正しい
配線が形成され、配線回路パターン部41の周辺に周辺
回路パターン部43が形成されている。図5は図4の部
分的な拡大図で、計測視野φ100μmで計測する場合
のそれぞれの配線部と視野の関係を示している。図5
(a)に配線回路パターン部410、(b)に周辺回路
パターン部430を示す。
FIG. 4 shows an example of an LSI circuit (one chip). A wiring circuit pattern portion 41 is formed in the center of the LSI circuit 40, a regular wiring is partially formed in the memory circuit portion 42, and a peripheral circuit pattern portion 43 is formed around the wiring circuit pattern portion 41. FIG. 5 is a partially enlarged view of FIG. 4, showing the relationship between each wiring part and the visual field when measurement is performed in the measurement visual field φ100 μm. Figure 5
The wiring circuit pattern portion 410 is shown in (a), and the peripheral circuit pattern portion 430 is shown in (b).

【0028】配線パターン411は最近のLSIでは数
μm〜0.1μmの幅で形成され、計測視野412をφ
100μmとすると、計測視野412内でパターンが占
める面積率は数10%である。一方、周辺回路パターン
431や433は数10μm〜数100μmの幅で形成
され、計測視野432をφ100μmとすると、計測視
野412内でパターンが占める面積率は50%〜100
%である。
In the recent LSI, the wiring pattern 411 is formed with a width of several μm to 0.1 μm, and the measurement visual field 412 is φ.
When the thickness is 100 μm, the area ratio of the pattern in the measurement visual field 412 is several tens%. On the other hand, the peripheral circuit patterns 431 and 433 are formed with a width of several tens of μm to several hundreds of μm, and when the measurement visual field 432 is φ100 μm, the area ratio of the pattern in the measurement visual field 412 is 50% to 100%.
%.

【0029】図6は、図5で示した計測視野領域での分
光反射特性を示す。分光波形61は図5の計測視野41
2、分光波形62は図5の計測視野434、分光波形6
3は図5の計測視野432の位置で計測した場合の波形
である。
FIG. 6 shows the spectral reflection characteristics in the measurement visual field region shown in FIG. The spectral waveform 61 is the measurement visual field 41 of FIG.
2, the spectral waveform 62 is the measurement visual field 434 of FIG.
3 is a waveform when measured at the position of the measurement visual field 432 of FIG.

【0030】図7は、図5で示した計測視野領域の周波
数スペクトル特性を示している。すなわち分光反射特性
から下地パターン部の計測視野に対する面積率に応じて
分光反射特性が異なることが分かる。計測視野に占める
下地パターンの面積の比率が大きいと分光反射率は大き
くなり、面積が小さいと反射率が小さくなる。特に波長
が長い長波長領域にこの傾向が著しい。図7は図4で示
した計測視野領域の周波数スペクトル特性を示してい
る。図7の(a)は配線回路部、(b)はメモリ回路
部、(c)は周辺回路部の周波数スペクトル特性であ
る。計測視野に占める配線パターンの形状に応じてスペ
クトル特性が異なるため、分光波形の周波数スペクトル
からも計測位置を特定出来ることが分かる。
FIG. 7 shows the frequency spectrum characteristic of the measurement visual field region shown in FIG. That is, it can be seen from the spectral reflection characteristics that the spectral reflection characteristics differ depending on the area ratio of the base pattern portion to the measurement visual field. When the ratio of the area of the base pattern in the measurement visual field is large, the spectral reflectance is large, and when the area is small, the reflectance is small. This tendency is particularly remarkable in the long wavelength region where the wavelength is long. FIG. 7 shows the frequency spectrum characteristic of the measurement visual field region shown in FIG. 7A shows the frequency spectrum characteristic of the wiring circuit portion, FIG. 7B shows the memory circuit portion, and FIG. 7C shows the frequency spectrum characteristic of the peripheral circuit portion. Since the spectral characteristics differ depending on the shape of the wiring pattern occupying the measurement visual field, it can be seen that the measurement position can be specified also from the frequency spectrum of the spectral waveform.

【0031】また、図6、図7に示した分光波形の特徴
はそれぞれの配線部で再現性があるため、図2で示した
実パターン膜厚計測装置10の分光波形データを基にし
て、同様の分光波形や反射率、あるいは周波数スペクト
ル等を比較評価する事により、計測位置を特定できる。
Since the characteristics of the spectral waveforms shown in FIGS. 6 and 7 are reproducible in the respective wiring parts, based on the spectral waveform data of the actual pattern film thickness measuring device 10 shown in FIG. The measurement position can be specified by comparing and evaluating similar spectral waveforms, reflectances, frequency spectra, and the like.

【0032】図8は、半導体ウエハの模式図を示す。図
9は、図8の中心チップ82と周辺チップ83の膜厚分
布を実パターン膜厚計測装置10で計測した膜厚分布計
測結果の一例である。図8の中心チップの計測結果は中
部がやや暑く周辺部が薄く分布している。図9の(a)
は(b)に比べて全体が平坦である。図9(b)のチッ
プ最周辺95は膜厚が著しく薄くなっている。チップの
最外周96にはパターンが形成されないため、CMP加
工工程では加工レートが大きくなり薄くなると考えられ
る。
FIG. 8 shows a schematic view of a semiconductor wafer. FIG. 9 is an example of a film thickness distribution measurement result obtained by measuring the film thickness distribution of the central chip 82 and the peripheral chip 83 of FIG. 8 with the actual pattern film thickness measuring device 10. In the measurement result of the central chip in FIG. 8, the middle part is slightly hot and the peripheral part is thinly distributed. FIG. 9 (a)
Is flat as compared with (b). The film thickness at the outermost periphery 95 of the chip in FIG. 9B is extremely thin. Since no pattern is formed on the outermost periphery 96 of the chip, it is considered that the processing rate becomes large and thin in the CMP processing step.

【0033】図8で示した実施例ではチップのほぼ中心
領域92、93を、CMP加工中に計測位置として特定
出来れば、ウエハ全面での膜厚の状態を高精度に管理で
きる。すなわち図5で示した比較的平坦に加工されやす
い配線回路パターン部412を特定して、ウエハ面内の
各チップ毎に膜厚を計測する事により、ウエハ全面のチ
ップについてより高精度な膜厚管理が可能となる。本発
明におけるウエハ面内の膜厚分布の計測は、図16で示
した膜厚変動の大きい周辺回路パターン部部と配線回路
パターン部の境界部や、膜厚変動の大きい外周回路部よ
りも、比較的平坦配線回路部あるいは周辺回路パターン
部のどちらかを特定して計測できる効果がある。
In the embodiment shown in FIG. 8, if the substantially central regions 92 and 93 of the chip can be specified as the measurement positions during the CMP processing, the state of the film thickness on the entire surface of the wafer can be controlled with high accuracy. That is, the wiring circuit pattern portion 412 that is relatively flattened as shown in FIG. 5 is specified, and the film thickness is measured for each chip in the wafer surface. Can be managed. The measurement of the film thickness distribution in the wafer surface according to the present invention is performed by measuring the film thickness distribution on the boundary portion between the peripheral circuit pattern portion and the wiring circuit pattern portion where the film thickness variation is large and the outer peripheral circuit portion where the film thickness variation is large as shown in FIG. There is an effect that either the relatively flat wiring circuit portion or the peripheral circuit pattern portion can be specified and measured.

【0034】また図6の分光波形はスラリー6が介在し
ているため分光波形が理想的な正弦波状でなく、歪んだ
波形になっている。波形の歪みは、パターン上の透明膜
とスラリーの屈折率差が透明膜と空気等より小さいた
め、透明膜下部の下地パターンの反射強度が影響してい
ると考えられる。図6では波形の歪みとして曲線600
が中心トレンド成分として存在している。
Further, the spectral waveform of FIG. 6 is not an ideal sinusoidal waveform but a distorted waveform because the slurry 6 is interposed. Since the difference in refractive index between the transparent film and the slurry on the pattern is smaller than that of the transparent film and air, the waveform distortion is considered to be influenced by the reflection intensity of the underlying pattern below the transparent film. In FIG. 6, a curve 600 indicates distortion of the waveform.
Exists as the central trend component.

【0035】図10は、図6の分光波形のトレンドを除
去するため、それぞれの波形の包絡線から中心成分を波
形歪み係数として、図6の分光波形に加算及び乗算して
抽出した補正波形である。図10では分光波形91が図
6の分光波形61、分光波形92が図6の分光波形6
2、分光波形93が図6の分光波形63に該当してい
る。トレンド除去には特開2000-310512号公
報で開示した手法等をを用いても良く、このように分光
波形を補正した波形から膜厚を算出する事で高精度な膜
厚算出が出来る。
FIG. 10 shows a correction waveform extracted by adding and multiplying the spectral waveform of FIG. 6 with the central component as the waveform distortion coefficient from the envelope of each waveform in order to remove the trend of the spectral waveform of FIG. is there. In FIG. 10, the spectral waveform 91 is the spectral waveform 61 of FIG. 6, and the spectral waveform 92 is the spectral waveform 6 of FIG.
2. The spectral waveform 93 corresponds to the spectral waveform 63 of FIG. The method disclosed in Japanese Unexamined Patent Application Publication No. 2000-310512 may be used to remove the trend, and the film thickness can be calculated with high accuracy by calculating the film thickness from the waveform thus corrected for the spectral waveform.

【0036】図11は、ウエハ表面の分光波形を高S/
Nで計測するための説明図である。
FIG. 11 shows the spectral waveform of the wafer surface at high S /
It is explanatory drawing for measuring by N.

【0037】図11では、図2の実施例のウインドウガ
ラス81にスラリーの屈折率に近い光学材料、例えば、
屈折率がほぼ1.4程度の弗化リチュウム(MgF2)
や弗化マグネシウム(MgF2)等のウインドウガラス
101を用いるた。ウインドウガラス101とスラリー
102の屈折率がほぼ同等であるため、それぞれの界面
での反射率成分が低下し、分光器77で受光する反射光
強度が増加して分光反射光のS/Nが向上する効果があ
る。また、ウインドウガラス101近傍のスラリー10
2付近に純水タンク103から配管104を経由して局
部的に純水を供給するとスラリー102が局部的に希釈
され、研磨材などで白濁色のスラリー溶液が光学的に透
明になる。光学的に透明な水溶液を介して、ウエハ表面
の反射光を検出すると、図6で示した分光波形の反射率
が向上すると共に、スラリー中の研磨材からの散乱等に
よる波形歪みも低減され、より正弦波に近い分光波形と
なり、膜厚算出の精度が向上する効果もある。スラリー
を光学的に透明にする液体であれば、供給する液体は純
水に限定するものではない。
In FIG. 11, an optical material having a refractive index close to that of the slurry, for example, the window glass 81 of the embodiment shown in FIG.
Lithium fluoride (MgF2) with a refractive index of about 1.4
A window glass 101 made of magnesium fluoride (MgF2) or the like was used. Since the window glass 101 and the slurry 102 have almost the same refractive index, the reflectance component at each interface decreases, the intensity of the reflected light received by the spectroscope 77 increases, and the S / N of the spectral reflected light improves. Has the effect of In addition, the slurry 10 near the window glass 101
When pure water is locally supplied from the pure water tank 103 to the vicinity of 2 through the pipe 104, the slurry 102 is locally diluted, and the cloudy-slurry slurry solution becomes optically transparent with an abrasive or the like. When the reflected light on the wafer surface is detected through the optically transparent aqueous solution, the reflectance of the spectral waveform shown in FIG. 6 is improved, and the waveform distortion due to scattering from the abrasive in the slurry is also reduced. The spectral waveform is closer to a sine wave, and there is an effect that the accuracy of film thickness calculation is improved. The liquid to be supplied is not limited to pure water as long as it is a liquid that makes the slurry optically transparent.

【0038】図12、図13は、ウエハ全面の膜厚分布
を、CMP加工工程で計測してウエハ面内の膜厚分布を
管理する方法を説明する図である。
12 and 13 are diagrams for explaining a method of controlling the film thickness distribution within the wafer surface by measuring the film thickness distribution over the entire surface of the wafer in the CMP processing step.

【0039】図12、図13において、図2と同じ構成
及び動作については説明を省略する。図12には新た
に、ホルダ113に位置センサ111と回転角検出器1
12を設け、それぞれの位置と角度の情報を検出して計
測位置を算出する、ウエハ位置コントローラ121を設
けた。また、研磨盤の計測窓81の位置を検出するた
め、計測光学系7の光軸120の近傍にセンサ124を
設けている。
12 and 13, the description of the same structure and operation as in FIG. 2 will be omitted. In FIG. 12, a holder 113 is newly provided with a position sensor 111 and a rotation angle detector 1.
12 is provided, and a wafer position controller 121 that detects the information of each position and angle and calculates the measurement position is provided. Further, in order to detect the position of the measurement window 81 of the polishing board, a sensor 124 is provided near the optical axis 120 of the measurement optical system 7.

【0040】図12(a)は、ウエハ4とホルダ113
の位置合わせ方法を示す図である。ウエハ4を保持して
回転可能なウエハホルダ114、ウエハ4のノッチを検
出するノッチセンサ115、から成るプリアライメント
部117がホルダ113の下方に配されている。上記構
成において、プリアライメント部117のウエハホルダ
114を回転して、ノッチセンサ115でウエハのノッ
チ116を検出して、ウエハホルダ113を停止する。
次にノッチ116と相対関係を保つようにホルダ113
の位置センサ111が例えばノッチ134の直上に配す
るようにして、ホルダ113の保持面113aにウエハ
4を載置する。ホルダ113の保持面113aに保持さ
れたウエハ4はCMP加工機の研磨盤1上に移動しウエ
ハ4の研磨平坦化を開始する。図12(b)はCMP加
工機の正面からの概略図、(c)は平面図の一部を示
す。
FIG. 12A shows the wafer 4 and the holder 113.
It is a figure which shows the alignment method of. A pre-alignment unit 117 including a rotatable wafer holder 114 that holds the wafer 4 and a notch sensor 115 that detects the notch of the wafer 4 is disposed below the holder 113. In the above configuration, the wafer holder 114 of the pre-alignment unit 117 is rotated, the notch sensor 115 detects the notch 116 of the wafer, and the wafer holder 113 is stopped.
Next, the holder 113 so as to maintain the relative relationship with the notch 116.
The wafer 4 is placed on the holding surface 113 a of the holder 113 so that the position sensor 111 of FIG. The wafer 4 held by the holding surface 113a of the holder 113 moves onto the polishing plate 1 of the CMP processing machine and starts polishing and flattening the wafer 4. FIG. 12B is a schematic view from the front of the CMP processing machine, and FIG. 12C shows a part of the plan view.

【0041】図12において、ウエハ4の外形L1、研
磨盤1の中心と計測光学系7の計測光軸120の間隔L
2、研磨盤1の中心とホルダ113の間隔L3は一定値
である。ホルダ113は揺動運動するため、基準中心か
らの揺動量L4を揺動センサ118で検出する。この状
態でホルダ113の回転検出器112の角度位置をリセ
ットしてCMP加工を開始する。センサ124が計測開
始ドグ123を検出して計測開始の信号をウエハ位置コ
ントローラー124で検出すると、計測開始位置111
aでのウエハ4の中心から計測光軸120の距離L2−
L4(ウエハ径L1と検出したノッチ116と相対関係
にある計測開始ドグ124から、ウエハ中心から計測中
心120の位置関係を演算して求める)とウエハ4の回
転角θが定まり、研磨盤1が回転する毎に、計測光学系
7で計測された分光波形に基づく膜厚に対するウエハの
計測位置が特定される。
In FIG. 12, the outer shape L1 of the wafer 4, the distance L between the center of the polishing table 1 and the measurement optical axis 120 of the measurement optical system 7.
2. The distance L3 between the center of the polishing plate 1 and the holder 113 is a constant value. Since the holder 113 swings, the swing sensor 118 detects the swing amount L4 from the reference center. In this state, the angular position of the rotation detector 112 of the holder 113 is reset and CMP processing is started. When the sensor 124 detects the measurement start dog 123 and the wafer position controller 124 detects the measurement start signal, the measurement start position 111
The distance L2- of the measurement optical axis 120 from the center of the wafer 4 at a
L4 (calculate the positional relationship between the wafer center and the measurement center 120 from the measurement start dog 124 having a relative relationship with the wafer diameter L1 and the detected notch 116) and the rotation angle θ of the wafer 4 are determined, and the polishing table 1 is Each time the wafer is rotated, the wafer measurement position with respect to the film thickness based on the spectral waveform measured by the measurement optical system 7 is specified.

【0042】このため、図9で示したウエハ面内の中心
や周辺のどのチップを計測しているかが判別できる。例
えばウエハの相関絶縁膜のSio2をCMP工程でφ2
00mmウエハを加工する場合、研磨盤1回転(約100
rpm)で数nm程加工され、1分間に約200nm程
加工される。本実施例の膜厚計測精度は、数10nmの
膜厚変化を計測する事が可能であるため、研磨盤1回転
毎に計測場所を特定して残膜厚を算出して表示すること
もできる。
Therefore, it is possible to determine which chip at the center or the periphery of the wafer surface shown in FIG. 9 is being measured. For example, Sio2 of the correlation insulation film of the wafer is φ2 by CMP process.
When processing a 00 mm wafer, one rotation of the polishing plate (about 100
rpm) for several nm, and about 200 nm per minute. Since the film thickness measurement accuracy of the present embodiment can measure a film thickness change of several tens of nm, it is also possible to specify the measurement location for each rotation of the polishing platen, calculate the remaining film thickness, and display it. .

【0043】図14、図15は、残膜厚の計測表示状態
を示すものである。図14はチップ毎の残膜厚、図15
は数チップ毎の領域での残膜厚を表示している。これら
の結果はCMP加工中にリアルタイムで出力され、所定
の残膜厚になった状態で加工終了する。図14、図15
で示した計測結果は、加工されたウエハの来歴として管
理する事も可能であり、計測結果をウエハに添付して次
工程での加工条件などに用いると、製造工程のスループ
ットと製品品質が向上する効果がある。
14 and 15 show the measurement display state of the remaining film thickness. FIG. 14 shows the residual film thickness of each chip, and FIG.
Indicates the remaining film thickness in the area of several chips. These results are output in real time during CMP processing, and the processing ends when the predetermined remaining film thickness is reached. 14 and 15
The measurement results shown in can be managed as the history of processed wafers. If the measurement results are attached to a wafer and used as the processing conditions in the next process, the throughput and product quality of the manufacturing process can be improved. Has the effect of

【0044】図16は、本発明による半導体デバイスの
製造方法を示す図である。本発明による半導体デバイス
の製造方法においては、成膜装置152でスパタリング
等によりウエハ151の表面に薄膜を形成した後、この
ウェハをCMP加工工程153に運ぶ。CMP加工工程
153においては、加工終点検出部155で上記した実
施例で説明したような方法でウェハ151の表面の膜厚
管理をしながらCMP装置154を用いて膜厚を平坦に
加工し、洗浄装置156で洗浄後、必要に応じて膜厚計
測装置157でウエハ151の所望の箇所の膜厚を計測
する。なお、この膜厚計測装置157を用いた膜厚の計
測は、必ずしも全てのウェハに対して行う必要はなく、必
要に応じて何枚かに1枚のウェハを抜き取って実施して
もよい。CMP加工工程153を経たウェハは、露光装
置工程158を経てエッチング工程159で配線加工な
どが行なわれ、次の工程へ運ばれる。
FIG. 16 shows a method of manufacturing a semiconductor device according to the present invention. In the method of manufacturing a semiconductor device according to the present invention, after a thin film is formed on the surface of the wafer 151 by the film forming apparatus 152 by sputtering or the like, the wafer is transferred to the CMP processing step 153. In the CMP processing step 153, the film thickness of the surface of the wafer 151 is controlled by the processing end point detection unit 155 in the same manner as described in the above embodiment, and the film thickness is processed to be flat using the CMP apparatus 154, and the cleaning is performed. After cleaning with the device 156, the film thickness measuring device 157 measures the film thickness of a desired portion of the wafer 151 as necessary. It should be noted that the film thickness measurement using the film thickness measuring device 157 does not necessarily have to be performed on all the wafers, and may be carried out by extracting one of several wafers if necessary. The wafer that has gone through the CMP processing step 153 is subjected to wiring processing and the like in the etching step 159 after passing through the exposure device step 158, and then carried to the next step.

【0045】本発明では、CMP加工工程における膜厚
の計測をCMP加工中に実施することが出来、しかもウ
ェハ上の位置が特定された膜厚の計測を行うことが出来
るので、この膜厚の計測結果をCMP装置154のスラ
リー条件(材質、濃度、供給量)、パッド条件(材質、
形状、ドレス、交換時期等)、研磨回転数、ウエハ支持
圧力などのCMP加工条件にフィードバックすることに
より、ウエハの加工面の平坦性を従来の技術に比べて大
幅に向上させることができる。このようにしてCMP加
工による表面の平坦性が大幅に向上したウェハを、その
後の露光、エッチング工程において処理することによ
り、微細なパターンを高い信頼性で形成することが可能
になる。また、本発明による膜厚を管理しながらCMP
加工したウエハ151には、面内分布の膜厚計測結果を
添付する事も出来る。この添付された計測結果を用いる
ことにより、エッチング工程159でのエッチング条件
(エッチ時間や印加電圧、ガス供給量)等を最適にコン
トロールして高品質な半導体ウエハ160を製造するこ
ともできる。
According to the present invention, the film thickness in the CMP process can be measured during the CMP process, and the film thickness at a position on the wafer can be measured. The measurement result is used as a slurry condition (material, concentration, supply amount) of the CMP device 154, and a pad condition (material,
The flatness of the processed surface of the wafer can be significantly improved as compared with the conventional technique by feeding back to the CMP processing conditions such as the shape, the dress, the replacement time, etc.), the polishing rotation speed, the wafer supporting pressure and the like. By processing the wafer whose surface flatness is greatly improved by the CMP process in the subsequent exposure and etching steps, it becomes possible to form a fine pattern with high reliability. In addition, CMP is performed while controlling the film thickness according to the present invention.
It is also possible to attach the measurement result of the film thickness of the in-plane distribution to the processed wafer 151. By using the attached measurement results, it is possible to manufacture the high-quality semiconductor wafer 160 by optimally controlling the etching conditions (etching time, applied voltage, gas supply amount) and the like in the etching step 159.

【0046】[0046]

【発明の効果】本発明によればCMP工程で研磨加工中
の半導体デバイスの透明膜の高精度な膜厚計測が可能と
なり、計測した膜厚データを基に高精度の研磨加工管理
が可能となる。および研磨加工中の半導体デバイスのシ
リコンウエハ(基板)面内での膜厚分布を高精度に管理
することが出来るようになるため、膜厚分布に基づいた
CMP加工工程での平坦化加工の最適化や、成膜工程へ
の成膜条件やエッチング工程での加工条件の最適化を図
ることが出来、高精度な半導体デバイスの製造が可能と
なる。および、上記のシリコンウェハ上に半導体デバイ
スを製造する方法および製造ラインにおけるCMP工程
において終点検出を高精度に行うことが可能となり、工
程のスループット向上を図ることができる。
According to the present invention, it is possible to measure the film thickness of a transparent film of a semiconductor device which is being polished in the CMP process with high accuracy, and it is possible to control the polishing process with high accuracy based on the measured film thickness data. Become. Since it becomes possible to control the film thickness distribution within the silicon wafer (substrate) surface of the semiconductor device during polishing processing with high accuracy, the planarization processing in the CMP processing process based on the film thickness distribution is optimal. It is possible to optimize the film forming conditions in the film forming process and the processing conditions in the etching process, and it is possible to manufacture a highly accurate semiconductor device. In addition, it becomes possible to detect the end point with high accuracy in the CMP process in the method of manufacturing a semiconductor device on the silicon wafer and the manufacturing line, and it is possible to improve the throughput of the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による膜厚計測手段を備えたCMP研磨
装置構成の概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a CMP polishing apparatus provided with a film thickness measuring device according to the present invention.

【図2】本発明による膜厚計測手段を備えたCMP研磨
装置構成の具体的な一例を示す斜視図である。
FIG. 2 is a perspective view showing a specific example of the configuration of a CMP polishing apparatus equipped with a film thickness measuring means according to the present invention.

【図3】本発明による計測視野を説明するウェハを載せ
た研磨パッドの平面図である。
FIG. 3 is a plan view of a polishing pad on which a wafer for explaining a measurement visual field according to the present invention is mounted.

【図4】半導体用LSI回路パターンの平面図である。FIG. 4 is a plan view of an LSI circuit pattern for semiconductor.

【図5】半導体用LSI回路パターンと計測視野の詳細
な一例を示す半導体用LSI回路パターンの平面図であ
る。
FIG. 5 is a plan view of a semiconductor LSI circuit pattern showing a detailed example of a semiconductor LSI circuit pattern and a measurement field of view.

【図6】本発明による回路パターンからの分光反射特性
の一例を示すグラフである。
FIG. 6 is a graph showing an example of spectral reflection characteristics from a circuit pattern according to the present invention.

【図7】本発明による回路パターンからの分光スペクト
ル強度特性の一例を示すグラフである。
FIG. 7 is a graph showing an example of spectral spectrum intensity characteristics from a circuit pattern according to the present invention.

【図8】半導体用LSIウエハの平面図である。FIG. 8 is a plan view of a semiconductor LSI wafer.

【図9】半導体用LSIの透明膜の膜厚分布の一例を示
す斜視図である。
FIG. 9 is a perspective view showing an example of a film thickness distribution of a transparent film of a semiconductor LSI.

【図10】本発明による検出窓の構造の一例を示す正面
図である。
FIG. 10 is a front view showing an example of the structure of a detection window according to the present invention.

【図11】本発明による膜厚を算出する分光反射特性を
示すグラフである。
FIG. 11 is a graph showing spectral reflection characteristics for calculating a film thickness according to the present invention.

【図12】(a)本発明による膜厚測定機能を備えたC
MP加工装置の正面図、(b)本発明によるCMP加工
装置の正面図、(c)CMP加工装置のホルダの平面図
である。
FIG. 12 (a) C having a film thickness measuring function according to the present invention
FIG. 3 is a front view of the MP processing apparatus, (b) a front view of the CMP processing apparatus according to the present invention, and (c) a plan view of a holder of the CMP processing apparatus.

【図13】本発明によるCMP加工装置の概略構成を示
す正面図である。
FIG. 13 is a front view showing a schematic configuration of a CMP processing apparatus according to the present invention.

【図14】本発明における計測結果を表示する画面の一
例を示す表示画面の正面図である。
FIG. 14 is a front view of a display screen showing an example of a screen displaying a measurement result in the present invention.

【図15】本発明における計測結果を表示する画面の一
例を示す表示画面の正面図である。
FIG. 15 is a front view of a display screen showing an example of a screen displaying a measurement result in the present invention.

【図16】本発明によるCMP加工システムを用いて半
導体デバイスを製造する工程の一例を示す工程図であ
る。
FIG. 16 is a process chart showing an example of a process for manufacturing a semiconductor device using the CMP processing system according to the present invention.

【図17】半導体用LSIの透明膜の膜厚分布の一例を
示す半導体用LSIの斜視図である。
FIG. 17 is a perspective view of a semiconductor LSI showing an example of a film thickness distribution of a transparent film of the semiconductor LSI.

【符号の説明】[Explanation of symbols]

1……研磨盤 2……研磨パッド 3……ホルダ 4
……ウェハ 5……ドレッサー 6……スラリー 7……計測光学
系 8……計測窓 9……膜厚計測コントローラ 10……実パターン膜厚
計測装置 11……計測条件コントローラ 81……ウインドウガラス
71……検出レンズ 72……照明光源 73……ハーフミラー 74……空間
フィルタ 74……結像レンズ 76……絞りユニット
761……視野絞り 762……視野絞り 763……
計測視野 40……LSI回路 41……配線回路パター
ン部 42……メモリ回路部 43……周辺回路パター
ン部 412……計測視野 61、62、63……分光波形
82……中心チップ 83……周辺チップ 92、93
……チップの中心領域 600……波形のトレンド成分
91、92、93……トレンド補正後の分光波形 101
……ウインドウガラス 102……スラリー 103……
純水タンク 104……配管 111……位置センサ
112……回転角検出器 113……ホルダ 114……ウ
エハホルダ 115……ノッチセンサ 116……ノッチ 117……プリアライメント部 113a……保持面 120
……計測光軸 151……ウエハ 152……成膜装置
153……CMP加工工程 154……CMP装置 15
5……加工終点検出部 156……洗浄装置 157……
膜厚計測装置 158……露光装置 159……エッチング工程 151…
…半導体ウエハ
1 …… Polishing machine 2 …… Polishing pad 3 …… Holder 4
...... Wafer 5 ...... Dresser 6 …… Slurry 7 …… Measurement optical system 8 …… Measurement window 9 …… Film thickness measurement controller 10 …… Actual pattern film thickness measurement device 11 …… Measurement condition controller 81 …… Window glass
71 …… Detection lens 72 …… Illumination light source 73 …… Half mirror 74 …… Spatial filter 74 …… Imaging lens 76 …… Aperture unit
761 …… Field diaphragm 762 …… Field diaphragm 763 ……
Measurement field of view 40 …… LSI circuit 41 …… Wiring circuit pattern section 42 …… Memory circuit section 43 …… Peripheral circuit pattern section 412 …… Measurement field of view 61, 62, 63 …… Spectral waveform
82 …… Center chip 83 …… Peripheral chips 92, 93
…… Chip center area 600 …… Waveform trend component
91, 92, 93 ... Spectral waveform after trend correction 101
…… Window glass 102 …… Slurry 103 ……
Pure water tank 104 …… Piping 111 …… Position sensor
112 …… Rotation angle detector 113 …… Holder 114 …… Wafer holder 115 …… Notch sensor 116 …… Notch 117 …… Pre-alignment part 113a …… Holding surface 120
…… Measurement optical axis 151 …… Wafer 152 …… Deposition equipment
153 …… CMP processing process 154 …… CMP machine 15
5 …… Machining end point detector 156 …… Cleaning device 157 ……
Film thickness measuring device 158 ... Exposure device 159 ... Etching process 151 ...
... Semiconductor wafer

フロントページの続き (72)発明者 斉藤 啓谷 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 Fターム(参考) 2F065 AA30 BB03 BB17 BB22 CC02 CC19 CC31 DD13 EE00 FF42 FF51 GG02 HH04 LL22 LL30 LL46 LL67 MM04 PP13 QQ33 QQ44 UU07 3C058 AC02 BA01 BA07 CB03 CB06 DA12 DA17 5F033 HH38 QQ48 XX01 XX03 XX37Continued front page    (72) Inventor Keiya Saito             292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa             Inside the Hitachi, Ltd. production technology laboratory F term (reference) 2F065 AA30 BB03 BB17 BB22 CC02                       CC19 CC31 DD13 EE00 FF42                       FF51 GG02 HH04 LL22 LL30                       LL46 LL67 MM04 PP13 QQ33                       QQ44 UU07                 3C058 AC02 BA01 BA07 CB03 CB06                       DA12 DA17                 5F033 HH38 QQ48 XX01 XX03 XX37

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】研磨中の光学的に透明な薄膜を形成した試
料表面に白色光を照射し、該白色光の照射により該試料
から発生する反射光を検出し、該検出した反射光の分光
波形に基づいて前記光学的に透明な膜の膜厚を求める方
法であって、予め計測した膜厚分布に基づいて決定した
面積からの反射光を検出し、該検出した反射光の分光波
形に基づいて、透明な膜の膜厚を求めることを特徴とす
る薄膜の膜厚計測方法。
1. The surface of a sample on which an optically transparent thin film is being polished is irradiated with white light, the reflected light generated from the sample by the irradiation of the white light is detected, and the detected reflected light is spectroscopically analyzed. A method of obtaining the film thickness of the optically transparent film based on a waveform, detecting reflected light from an area determined based on a film thickness distribution measured in advance, and determining the spectral waveform of the detected reflected light. A method for measuring the thickness of a thin film, characterized in that the thickness of the transparent film is obtained based on the above.
【請求項2】研磨中の光学的に透明な薄膜を形成した試
料表面に白色光を照射し、該白色光の照射により該前記
試料から発生する反射光を検出し、該検出した反射光の
分光波形に基づいて前記光学的に透明な膜の膜厚を求め
る方法であって、前記試料から発生する反射光の分光波
形の特徴量に基づいた所望の位置の反射光の分光波形に
基づいて薄膜を計測することを特徴とする薄膜の膜厚計
測方法。
2. The surface of a sample on which an optically transparent thin film is being polished is irradiated with white light, the reflected light generated from the sample by the irradiation of the white light is detected, and the detected reflected light is detected. A method of obtaining the film thickness of the optically transparent film based on a spectral waveform, based on the spectral waveform of the reflected light at a desired position based on the characteristic amount of the spectral waveform of the reflected light generated from the sample A method for measuring the thickness of a thin film, which comprises measuring the thin film.
【請求項3】研磨中の光学的に透明な薄膜を形成した試
料表面に白色光を照射し、該白色光の照射により該前記
試料から発生する反射光を検出し、該検出した反射光の
分光波形に基づいて前記光学的に透明な膜の膜厚を求め
る方法であって、前記試料から発生する反射光を時分割
して検出し、時分割して検出したそれぞれの分光波形の
特徴量に基づいた所望の位置の分光波形に基づいて薄膜
を計測することを特徴とする薄膜の膜厚計測方法。
3. The surface of a sample on which an optically transparent thin film is being polished is irradiated with white light, the reflected light generated from the sample by the irradiation of the white light is detected, and the detected reflected light is A method for obtaining the film thickness of the optically transparent film based on a spectral waveform, wherein the reflected light generated from the sample is detected by time division, and the characteristic amount of each spectral waveform detected by time division is detected. A method for measuring the thickness of a thin film, which comprises measuring the thin film based on a spectral waveform at a desired position based on.
【請求項4】該検出した反射光の特徴量が該検出した反
射光の分光波形の反射光強度に基づくことを特徴とする
請求項2、3記載の膜厚計測方法。
4. The film thickness measuring method according to claim 2, wherein the characteristic amount of the detected reflected light is based on the reflected light intensity of the spectral waveform of the detected reflected light.
【請求項5】該検出した反射光の特徴量が該検出した反
射光の分光波形の周波数スペクトル強度に基づくことを
特徴とする請求項2、3記載の膜厚計測方法。
5. The film thickness measuring method according to claim 2, wherein the characteristic amount of the detected reflected light is based on the frequency spectrum intensity of the spectral waveform of the detected reflected light.
【請求項6】該検出した反射光の特徴量が予め計測した
膜厚分布に基づく分光波形の類似性であることを特徴と
する請求項2、3記載の膜厚計測方法。
6. The film thickness measuring method according to claim 2, wherein the characteristic amount of the detected reflected light is similarity of a spectral waveform based on a film thickness distribution measured in advance.
【請求項7】研磨中の光学的に透明な薄膜を形成した試
料表面に白色光を照射し、該白色光の照射により該試料
から発生する反射光を検出し、該検出した反射光の分光
波形に基づいて前記光学的に透明な膜の膜厚を求める方
法であって、予め計測した該試料と同じ工程の膜厚分布
に基づいて決定した面積からの反射光を検出し、該検出
した反射光の分光波形の特徴量に基づいた所望の位置の
反射光の分光波形に基づいて、薄膜を計測することを特
徴とする薄膜の膜厚計測方法。
7. The surface of a sample on which an optically transparent thin film is being polished is irradiated with white light, the reflected light generated from the sample by the irradiation of the white light is detected, and the detected reflected light is spectroscopically analyzed. A method for obtaining the film thickness of the optically transparent film based on a waveform, detecting reflected light from an area determined based on the film thickness distribution in the same step as the sample measured in advance, and detecting the reflected light. A method for measuring the thickness of a thin film, which comprises measuring the thin film based on the spectral waveform of the reflected light at a desired position based on the characteristic amount of the spectral waveform of the reflected light.
【請求項8】研磨中の光学的に透明な薄膜を形成した試
料表面に光学的に透明な流体を供給しながら白色光を照
射し、該白色光の照射により該前記試料から発生する反
射光を検出し、該検出した反射光の分光波形に基づいて
前記光学的に透明な膜の膜厚を求めることを特徴とする
薄膜の膜厚計測方法。
8. A white light is radiated while supplying an optically transparent fluid to the surface of a sample on which an optically transparent thin film is being polished, and the reflected light generated from the sample by the irradiation of the white light. Is detected and the film thickness of the optically transparent film is determined based on the detected spectral waveform of the reflected light.
【請求項9】研磨中の光学的に透明な薄膜を形成した試
料表面に白色光を照射し、該白色光の照射により該前記
試料から発生する反射光を検出し、該検出した反射光の
分光波形に基づいて前記光学的に透明な膜の膜厚を求め
る方法において、研磨液の屈折率と同等な屈折率の光学
ガラスを介在して、該前記試料から発生する反射光を検
出し、該検出した反射光の分光波形に基づいて前記光学
的に透明な膜の膜厚を求めることを特徴とする薄膜の膜
厚計測方法。
9. The surface of the sample on which an optically transparent thin film is being polished is irradiated with white light, the reflected light generated from the sample by the irradiation of the white light is detected, and the detected reflected light is detected. In the method for determining the film thickness of the optically transparent film based on the spectral waveform, the reflected light generated from the sample is detected through an optical glass having a refractive index equivalent to that of a polishing liquid, A method for measuring the thickness of a thin film, characterized in that the film thickness of the optically transparent film is obtained based on the detected spectral waveform of the reflected light.
【請求項10】研磨中の光学的に透明な薄膜を形成した
試料表面に白色光を照射する手段と、該照射手段により
照射されて前記試料から発生する反射光を検出する検出
手段と、該検出手段により検出した反射光の分光波形に
基づいて前記光学的に透明な膜の膜厚を求める手段と、
予め計測した膜厚分布に基づいて計測面積を決定する手
段と、該計測面積から発生する反射光の分光波形に基づ
いて透明な膜の膜厚を算出する手段とを備えたことを特
徴とする薄膜の膜厚計測装置。
10. A means for irradiating the surface of a sample on which an optically transparent thin film is being polished with white light, a detection means for detecting the reflected light emitted from the sample by the irradiation means, and Means for determining the film thickness of the optically transparent film based on the spectral waveform of the reflected light detected by the detection means,
A means for determining a measurement area based on a film thickness distribution measured in advance and a means for calculating a film thickness of a transparent film based on a spectral waveform of reflected light generated from the measurement area are provided. Thin film thickness measuring device.
【請求項11】研磨中の光学的に透明な薄膜を形成した
試料表面に白色光を照射する手段と、該照射手段により
照射されて前記試料から発生する反射光を検出する検出
手段と、該検出手段により検出した反射光の分光波形に
基づいて前記光学的に透明な膜の膜厚を求める手段と、
前記試料から発生する反射光の分光波形の特徴量を抽出
する手段と、該特徴量に基づいて所望の位置の透明な膜
の膜厚を算出する手段とを備えたことを特徴とする薄膜
の膜厚計測装置。
11. A means for irradiating the surface of a sample on which an optically transparent thin film is being polished with white light, a detecting means for detecting reflected light emitted from the sample and emitted from the sample, Means for determining the film thickness of the optically transparent film based on the spectral waveform of the reflected light detected by the detection means,
A thin film characterized by comprising: a means for extracting a characteristic amount of a spectral waveform of reflected light generated from the sample; and a means for calculating a film thickness of a transparent film at a desired position based on the characteristic amount. Film thickness measuring device.
【請求項12】研磨中の光学的に透明な薄膜を形成した
試料表面に白色光を照射する手段と、該照射手段により
照射されて前記試料から発生する反射光を検出する検出
手段と、該検出手段により検出した反射光の分光波形に
基づいて前記光学的に透明な膜の膜厚を求める手段と、
前記試料から発生する反射光を時分割して検出する手段
と、該時分割して検出した反射光の複数の分光波形の特
徴量を抽出する手段と、該特徴量に基づいて所望の位置
の透明な膜の膜厚を算出する手段とを備えたことを特徴
とする薄膜の膜厚計測装置。
12. A means for irradiating the surface of a sample on which an optically transparent thin film is being polished with white light, a detecting means for detecting reflected light emitted from the sample by the irradiation means, and Means for determining the film thickness of the optically transparent film based on the spectral waveform of the reflected light detected by the detection means,
A means for detecting the reflected light generated from the sample by time division, a means for extracting the characteristic amount of a plurality of spectral waveforms of the reflected light detected by the time division, and a means for detecting a desired position based on the characteristic amount. A film thickness measuring device for a thin film, comprising: means for calculating the film thickness of a transparent film.
【請求項13】薄膜デバイスの表面に形成した光学的に
透明な膜を研磨する工程において、前記光学的に透明な
膜に白色光を照射し、該白色光の照射により前記薄膜デ
バイスから発生する反射光を、予め計測した前記薄膜デ
バイスと同じ工程の薄膜デバイスの膜厚分布に基づいて
決定した面積からの反射光を検出し、該検出した反射光
の分光波形に基づいて前記光学的に透明な膜厚を求める
ことを特徴とする薄膜デバイスの製造方法。
13. In the step of polishing an optically transparent film formed on the surface of a thin film device, the optically transparent film is irradiated with white light, and the thin film device emits the white light. The reflected light is detected from an area determined based on the film thickness distribution of the thin film device in the same step as the thin film device measured in advance, and the optically transparent based on the spectral waveform of the detected reflected light. A method for manufacturing a thin film device, which comprises obtaining a uniform film thickness.
【請求項14】薄膜デバイスの表面に形成した光学的に
透明な膜を研磨する工程において、前記光学的に透明な
膜に白色光を照射し、該白色光の照射により前記薄膜デ
バイスから発生する反射光を、検出し、前記薄膜デバイ
スから発生する反射光の分光波形の特徴量に基づいた所
望の位置の反射光の分光波形に基づいて前記光学的に透
明な膜厚を求めることを特徴とする薄膜デバイスの製造
方法。
14. In the step of polishing an optically transparent film formed on the surface of a thin film device, the optically transparent film is irradiated with white light, and the thin film device emits the white light. The reflected light is detected, and the optically transparent film thickness is obtained based on the spectral waveform of the reflected light at a desired position based on the characteristic amount of the spectral waveform of the reflected light generated from the thin film device. Method for manufacturing thin film device.
【請求項15】薄膜デバイスの表面に形成した光学的に
透明な膜を研磨する工程において、前記光学的に透明な
膜に白色光を照射し、該白色光の照射により前記薄膜デ
バイスから発生する反射光を、検出し、前記薄膜デバイ
スから発生する反射光を時分割して検出し、時分割して
検出したそれぞれの分光波形の特徴量に基づいた所望の
位置の反射光の分光波形に基づいて前記光学的に透明な
膜厚を求めることを特徴とする薄膜デバイスの製造方
法。
15. In the step of polishing an optically transparent film formed on the surface of a thin film device, the optically transparent film is irradiated with white light, and the thin film device emits the white light. The reflected light is detected, the reflected light generated from the thin film device is detected by time division, and based on the spectral waveform of the reflected light at a desired position based on the characteristic amount of each spectral waveform detected by time division. A method for manufacturing a thin film device, characterized in that the optically transparent film thickness is obtained.
【請求項16】薄膜デバイスの表面に形成した光学的に
透明な膜を研磨する工程において、前記光学的に透明な
膜に白色光を照射し、該白色光の照射により前記薄膜デ
バイスから発生する反射光を、検出し、前記薄膜デバイ
スから発生する反射光を時分割して検出し、時分割して
検出したそれぞれの分光波形の特徴量に基づいた所望の
位置の反射光の分光波形に基づいて前記光学的に透明な
膜厚を求めることを特徴とする薄膜デバイスの製造方
法。
16. In the step of polishing an optically transparent film formed on the surface of a thin film device, the optically transparent film is irradiated with white light, and the thin film device emits the white light. The reflected light is detected, the reflected light generated from the thin film device is detected by time division, and based on the spectral waveform of the reflected light at a desired position based on the characteristic amount of each spectral waveform detected by time division. A method for manufacturing a thin film device, characterized in that the optically transparent film thickness is obtained.
JP2001226984A 2001-07-27 2001-07-27 Thin film thickness measuring method and apparatus, and device manufacturing method using the same Expired - Fee Related JP3932836B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001226984A JP3932836B2 (en) 2001-07-27 2001-07-27 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
US10/082,520 US7057744B2 (en) 2001-07-27 2002-02-22 Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US10/082,430 US7119908B2 (en) 2001-07-27 2002-02-22 Method and apparatus for measuring thickness of thin film and device manufacturing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226984A JP3932836B2 (en) 2001-07-27 2001-07-27 Thin film thickness measuring method and apparatus, and device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2003042721A true JP2003042721A (en) 2003-02-13
JP3932836B2 JP3932836B2 (en) 2007-06-20

Family

ID=19059709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226984A Expired - Fee Related JP3932836B2 (en) 2001-07-27 2001-07-27 Thin film thickness measuring method and apparatus, and device manufacturing method using the same

Country Status (2)

Country Link
US (2) US7057744B2 (en)
JP (1) JP3932836B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263096A (en) * 2007-04-13 2008-10-30 Disco Abrasive Syst Ltd Grinding method of device
JP2011176200A (en) * 2010-02-25 2011-09-08 Nec Corp Estimation device, estimation method and computer program
JP2011191297A (en) * 2010-03-12 2011-09-29 Precitec Optronik Gmbh Thickness measuring device and thickness measuring method of silicon wafer and silicon wafer thinning device
JP2012504752A (en) * 2008-10-01 2012-02-23 ピーター ヴォルターズ ゲーエムベーハー Method for measuring the thickness of a disk-shaped workpiece
JP2012507146A (en) * 2008-10-27 2012-03-22 アプライド マテリアルズ インコーポレイテッド Goodness of fit in spectral monitoring of substrates during processing
US8687197B2 (en) 2010-07-23 2014-04-01 Ebara Corporation Method of monitoring progress of substrate polishing and polishing apparatus
JP2014086733A (en) * 2012-10-23 2014-05-12 Applied Materials Inc Endpoint determination employing selective spectrum monitoring
JP2015020242A (en) * 2013-07-19 2015-02-02 株式会社荏原製作所 Polishing device, and polishing condition monitoring method
JP2015079984A (en) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US9999955B2 (en) 2013-07-11 2018-06-19 Ebara Corporation Polishing apparatus and polished-state monitoring method
US10276460B2 (en) 2005-08-22 2019-04-30 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
CN113640172A (en) * 2021-08-25 2021-11-12 北京建筑大学 Device and method for testing film forming rate of polymer emulsion

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277220A (en) * 2001-03-19 2002-09-25 Hitachi Ltd Method for determining point of measurement for measuring film thickness and method and device for manufacturing membrane device using the same
JP3932836B2 (en) * 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
US7235154B2 (en) * 2004-01-08 2007-06-26 Strasbaugh Devices and methods for optical endpoint detection during semiconductor wafer polishing
US7120553B2 (en) * 2004-07-22 2006-10-10 Applied Materials, Inc. Iso-reflectance wavelengths
DE102005008889B4 (en) * 2005-02-26 2016-07-07 Leybold Optics Gmbh Optical monitoring system for coating processes
WO2007024807A2 (en) * 2005-08-22 2007-03-01 Applied Materials, Inc. Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US8260446B2 (en) 2005-08-22 2012-09-04 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
US8392012B2 (en) * 2008-10-27 2013-03-05 Applied Materials, Inc. Multiple libraries for spectrographic monitoring of zones of a substrate during processing
US7409260B2 (en) * 2005-08-22 2008-08-05 Applied Materials, Inc. Substrate thickness measuring during polishing
US7406394B2 (en) 2005-08-22 2008-07-29 Applied Materials, Inc. Spectra based endpointing for chemical mechanical polishing
JP4997815B2 (en) * 2006-04-12 2012-08-08 旭硝子株式会社 Method for producing a highly flat and highly smooth glass substrate
US7998358B2 (en) 2006-10-31 2011-08-16 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US7444198B2 (en) * 2006-12-15 2008-10-28 Applied Materials, Inc. Determining physical property of substrate
KR101678082B1 (en) 2007-02-23 2016-11-21 어플라이드 머티어리얼스, 인코포레이티드 Using spectra to determine polishing endpoints
US7952708B2 (en) * 2007-04-02 2011-05-31 Applied Materials, Inc. High throughput measurement system
US8139231B2 (en) * 2008-05-01 2012-03-20 Cognex Corporation Machine vision technique for manufacturing semiconductor wafers
US20090275265A1 (en) * 2008-05-02 2009-11-05 Applied Materials, Inc. Endpoint detection in chemical mechanical polishing using multiple spectra
US8570516B2 (en) * 2008-09-12 2013-10-29 Cognex Corporation Infrared direct illumination machine vision technique for semiconductor processing equipment
US8189194B2 (en) * 2008-09-12 2012-05-29 Cognex Corporation Direct illumination machine vision technique for processing semiconductor wafers
US20100103422A1 (en) * 2008-10-27 2010-04-29 Applied Materials, Inc. Goodness of fit in spectrographic monitoring of a substrate during processing
US8352061B2 (en) 2008-11-14 2013-01-08 Applied Materials, Inc. Semi-quantitative thickness determination
KR101107507B1 (en) * 2009-03-23 2012-01-31 에스엔유 프리시젼 주식회사 Method for modeling distibution curve of reflectance and method, reflectometer for measuring thickness using the same
DK2251454T3 (en) 2009-05-13 2014-10-13 Sio2 Medical Products Inc Container coating and inspection
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
JP5490462B2 (en) * 2009-08-17 2014-05-14 横河電機株式会社 Film thickness measuring device
US20110086444A1 (en) * 2009-10-14 2011-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Process for producing substrates free of patterns using an alpha stepper to ensure results
KR101956838B1 (en) 2009-11-03 2019-03-11 어플라이드 머티어리얼스, 인코포레이티드 Endpoint method using peak location of spectra contour plots versus time
EP2539668B1 (en) * 2010-02-25 2015-11-25 Nova Measuring Instruments Ltd Method for measurng in patterned structures
JP6039545B2 (en) * 2010-05-05 2016-12-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Dynamic or adaptive tracking of spectral features for endpoint detection
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US8190285B2 (en) 2010-05-17 2012-05-29 Applied Materials, Inc. Feedback for polishing rate correction in chemical mechanical polishing
US8616935B2 (en) * 2010-06-02 2013-12-31 Applied Materials, Inc. Control of overpolishing of multiple substrates on the same platen in chemical mechanical polishing
US8954186B2 (en) 2010-07-30 2015-02-10 Applied Materials, Inc. Selecting reference libraries for monitoring of multiple zones on a substrate
TWI521625B (en) * 2010-07-30 2016-02-11 應用材料股份有限公司 Detection of layer clearing using spectral monitoring
US20120034844A1 (en) * 2010-08-05 2012-02-09 Applied Materials, Inc. Spectrographic monitoring using index tracking after detection of layer clearing
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US20130017762A1 (en) * 2011-07-15 2013-01-17 Infineon Technologies Ag Method and Apparatus for Determining a Measure of a Thickness of a Polishing Pad of a Polishing Machine
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
WO2013071138A1 (en) 2011-11-11 2013-05-16 Sio2 Medical Products, Inc. PASSIVATION, pH PROTECTIVE OR LUBRICITY COATING FOR PHARMACEUTICAL PACKAGE, COATING PROCESS AND APPARATUS
KR101892914B1 (en) * 2012-03-08 2018-08-29 어플라이드 머티어리얼스, 인코포레이티드 Fitting of optical model to measured spectrum
US9011202B2 (en) * 2012-04-25 2015-04-21 Applied Materials, Inc. Fitting of optical model with diffraction effects to measured spectrum
CA2887352A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
CN103575703B (en) * 2012-08-09 2016-03-09 中国科学院微电子研究所 Utilize the method for reflective spectral measure monocrystalline silicon base solar surface anti-reflection film
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
WO2014078666A1 (en) 2012-11-16 2014-05-22 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
BR112015012470B1 (en) 2012-11-30 2022-08-02 Sio2 Medical Products, Inc PRODUCTION METHOD OF A MEDICAL DRUM FOR A MEDICAL CARTRIDGE OR SYRINGE
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US20140242880A1 (en) * 2013-02-26 2014-08-28 Applied Materials, Inc. Optical model with polarization direction effects for comparison to measured spectrum
EP2961858B1 (en) 2013-03-01 2022-09-07 Si02 Medical Products, Inc. Coated syringe.
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
WO2014144926A1 (en) 2013-03-15 2014-09-18 Sio2 Medical Products, Inc. Coating method
WO2015085347A1 (en) * 2013-12-09 2015-06-18 Hatch Pty Ltd Measuring apparatus and method for same
US9997420B2 (en) 2013-12-27 2018-06-12 Taiwan Semiconductor Manufacturing Company Limited Method and/or system for chemical mechanical planarization (CMP)
WO2015148471A1 (en) 2014-03-28 2015-10-01 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US10072351B2 (en) * 2014-04-30 2018-09-11 1366 Technologies, Inc. Methods and apparati for making thin semi-conductor wafers with locally controlled regions that are relatively thicker than other regions and such wafers
JP2018523538A (en) 2015-08-18 2018-08-23 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド Drug packaging and other packaging with low oxygen transmission rate
JP2018001296A (en) * 2016-06-28 2018-01-11 株式会社荏原製作所 Polishing device, polishing method, and polishing control program
JP6842851B2 (en) * 2016-07-13 2021-03-17 株式会社荏原製作所 Film thickness measuring device, polishing device, film thickness measuring method, and polishing method
JP7023062B2 (en) * 2017-07-24 2022-02-21 株式会社荏原製作所 Substrate polishing equipment and method
JP6902452B2 (en) * 2017-10-19 2021-07-14 株式会社荏原製作所 Polishing equipment
JP7081919B2 (en) * 2017-12-26 2022-06-07 株式会社ディスコ Processing equipment
JP6986100B2 (en) * 2018-01-18 2021-12-22 富士フイルム株式会社 Film thickness measurement method
JP7046358B2 (en) * 2018-04-17 2022-04-04 スピードファム株式会社 Polishing equipment
CN110044278B (en) * 2019-04-09 2021-11-19 华南理工大学 Non-contact type fluid film thickness measuring device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019537A (en) * 1996-07-01 1998-01-23 Canon Inc Device for measuring surface form, and polishing device using it
JPH1076464A (en) * 1996-08-30 1998-03-24 Canon Inc Polishing method and polishing device using therewith
JPH11198033A (en) * 1997-10-31 1999-07-27 Canon Inc Polishing device and polishing method
JPH11285968A (en) * 1998-04-01 1999-10-19 Nikon Corp Polishing device and method
JP2000009437A (en) * 1997-10-22 2000-01-14 Hitachi Ltd Method and apparatus for measuring thickness of thin film, and method and apparatus for manufacturing thin film device using the same
JP2000354961A (en) * 1999-04-16 2000-12-26 Nikon Corp Detecting device and detecting method
WO2001027990A1 (en) * 1999-10-13 2001-04-19 Koninklijke Philips Electronics N.V. A method and system for polishing semiconductor wafers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087121A (en) * 1987-12-01 1992-02-11 Canon Kabushiki Kaisha Depth/height measuring device
JPH06252113A (en) 1993-02-26 1994-09-09 Matsushita Electric Ind Co Ltd Method for flattening semiconductor substrate
US5893796A (en) 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
DE69632490T2 (en) 1995-03-28 2005-05-12 Applied Materials, Inc., Santa Clara Method and device for in-situ control and determination of the end of chemical mechanical grading
JPH10294297A (en) 1997-04-18 1998-11-04 Nikon Corp Polishing device
JP3450651B2 (en) 1997-06-10 2003-09-29 キヤノン株式会社 Polishing method and polishing apparatus using the same
US6142855A (en) * 1997-10-31 2000-11-07 Canon Kabushiki Kaisha Polishing apparatus and polishing method
US6271047B1 (en) * 1998-05-21 2001-08-07 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
JP3395663B2 (en) 1998-09-03 2003-04-14 株式会社ニコン Detection method and detection device, polishing device and polishing method
JP3183259B2 (en) 1998-06-03 2001-07-09 日本電気株式会社 Semiconductor wafer polishing state monitoring apparatus and polishing end point detecting method
US6159073A (en) * 1998-11-02 2000-12-12 Applied Materials, Inc. Method and apparatus for measuring substrate layer thickness during chemical mechanical polishing
JP2000310512A (en) 1999-04-28 2000-11-07 Hitachi Ltd Method and device for measuring film thickness of thin film and method and device for manufacturing thin film device using the same
JP3327289B2 (en) * 2000-03-29 2002-09-24 株式会社ニコン Process end point measuring device, measuring method, polishing device, semiconductor device manufacturing method, and recording medium recording signal processing program
JP2002124496A (en) 2000-10-18 2002-04-26 Hitachi Ltd Method and equipment for detecting and measuring end point of polishing process, and method and equipment for manufacturing semiconductor device using the same for detecting and measuring end point of polishing process
JP3932836B2 (en) * 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019537A (en) * 1996-07-01 1998-01-23 Canon Inc Device for measuring surface form, and polishing device using it
JPH1076464A (en) * 1996-08-30 1998-03-24 Canon Inc Polishing method and polishing device using therewith
JP2000009437A (en) * 1997-10-22 2000-01-14 Hitachi Ltd Method and apparatus for measuring thickness of thin film, and method and apparatus for manufacturing thin film device using the same
JPH11198033A (en) * 1997-10-31 1999-07-27 Canon Inc Polishing device and polishing method
JPH11285968A (en) * 1998-04-01 1999-10-19 Nikon Corp Polishing device and method
JP2000354961A (en) * 1999-04-16 2000-12-26 Nikon Corp Detecting device and detecting method
WO2001027990A1 (en) * 1999-10-13 2001-04-19 Koninklijke Philips Electronics N.V. A method and system for polishing semiconductor wafers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079984A (en) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US11715672B2 (en) 2005-08-22 2023-08-01 Applied Materials, Inc. Endpoint detection for chemical mechanical polishing based on spectrometry
US11183435B2 (en) 2005-08-22 2021-11-23 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
US10276460B2 (en) 2005-08-22 2019-04-30 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
JP2008263096A (en) * 2007-04-13 2008-10-30 Disco Abrasive Syst Ltd Grinding method of device
JP2012504752A (en) * 2008-10-01 2012-02-23 ピーター ヴォルターズ ゲーエムベーハー Method for measuring the thickness of a disk-shaped workpiece
JP2012507146A (en) * 2008-10-27 2012-03-22 アプライド マテリアルズ インコーポレイテッド Goodness of fit in spectral monitoring of substrates during processing
JP2011176200A (en) * 2010-02-25 2011-09-08 Nec Corp Estimation device, estimation method and computer program
US9230817B2 (en) 2010-03-12 2016-01-05 Precitec Optronik Gmbh Apparatus and method for monitoring a thickness of a silicon wafer with a highly doped layer
JP2011191297A (en) * 2010-03-12 2011-09-29 Precitec Optronik Gmbh Thickness measuring device and thickness measuring method of silicon wafer and silicon wafer thinning device
US8687197B2 (en) 2010-07-23 2014-04-01 Ebara Corporation Method of monitoring progress of substrate polishing and polishing apparatus
JP2014086733A (en) * 2012-10-23 2014-05-12 Applied Materials Inc Endpoint determination employing selective spectrum monitoring
US9999955B2 (en) 2013-07-11 2018-06-19 Ebara Corporation Polishing apparatus and polished-state monitoring method
JP2015020242A (en) * 2013-07-19 2015-02-02 株式会社荏原製作所 Polishing device, and polishing condition monitoring method
CN113640172A (en) * 2021-08-25 2021-11-12 北京建筑大学 Device and method for testing film forming rate of polymer emulsion

Also Published As

Publication number Publication date
JP3932836B2 (en) 2007-06-20
US20050117164A1 (en) 2005-06-02
US7057744B2 (en) 2006-06-06
US20030022400A1 (en) 2003-01-30
US7119908B2 (en) 2006-10-10

Similar Documents

Publication Publication Date Title
JP3932836B2 (en) Thin film thickness measuring method and apparatus, and device manufacturing method using the same
KR100386793B1 (en) Apparatus and method for measuring thickness of thin film and method and apparatus for manufacturing thin film device using the same
JP3327289B2 (en) Process end point measuring device, measuring method, polishing device, semiconductor device manufacturing method, and recording medium recording signal processing program
JP5654753B2 (en) Determination of polishing end point using spectrum
KR100465929B1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
JP5583137B2 (en) Using optical metrology for feedback and feedforward process control
US6794206B2 (en) Method of polishing a film
JP2000326221A (en) Grinding monitoring method, grinding method and grinding apparatus
JP4460659B2 (en) Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
KR20030075912A (en) Apparatus and method for chemically and mechanically polishing semiconductor wafer
JP2000310512A (en) Method and device for measuring film thickness of thin film and method and device for manufacturing thin film device using the same
JP4858798B2 (en) Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus
TW200832538A (en) Determining physical property of substrate
JP2002523763A (en) Method and apparatus for measuring film thickness on semiconductor substrate, especially photoresist film thickness
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
JP2004012302A (en) Method and instrument for measuring film thickness distribution
JP2013219248A (en) Polishing device and polishing method
JP3360610B2 (en) Detection method, detection device, and polishing device
JP4427767B2 (en) Measuring method
JP5903135B2 (en) Polishing end point detection device and polishing end point detection method
JP4581427B2 (en) Film thickness evaluation method, polishing end point detection method
JP2012019114A (en) Polishing end point detection system and polishing end point detection method
JP2003249472A (en) Method and device for film thickness measurement and manufacturing method of thin film device
JP2001223192A (en) Polishing condition monitoring method and device, polishing device, semiconductor device manufacturing method, and semiconductor device
JP2000186917A (en) Detection method, detecting device and polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees