JPH06252113A - Method for flattening semiconductor substrate - Google Patents

Method for flattening semiconductor substrate

Info

Publication number
JPH06252113A
JPH06252113A JP3762793A JP3762793A JPH06252113A JP H06252113 A JPH06252113 A JP H06252113A JP 3762793 A JP3762793 A JP 3762793A JP 3762793 A JP3762793 A JP 3762793A JP H06252113 A JPH06252113 A JP H06252113A
Authority
JP
Japan
Prior art keywords
substrate
polishing
film thickness
film
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3762793A
Other languages
Japanese (ja)
Inventor
Minoru Fujii
稔 藤井
Mikio Nishio
幹夫 西尾
Noboru Nomura
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3762793A priority Critical patent/JPH06252113A/en
Publication of JPH06252113A publication Critical patent/JPH06252113A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the surface of a semiconductor substrate flat by grinding a film deposited on the substrate on which an irregular pattern is formed while the thickness of the film is always monitored with a grinding device equipped with a single or plurality of grinding heads which are sufficiently smaller than the substrate. CONSTITUTION:After sticking a silicon substrate 11 on which a film is deposited after forming an irregular pattern to a substrate holding turntable 13 turning on its axis with the main surface of the substrate 11 up, the main surface of the substrate 11 is ground by moving a grinding head 12 turning on its axis in the radial direction of the head 12 while the head 12 is press-contacted with the main surface. During the grinding operation, the average film thickness of the substrate 11 on its circumference is always monitored with a film thickness measuring device, since the detecting head section 14 of the measuring instrument is controlled so that the section 14 can be always positioned on the same circumference as that of the head 11 on the substrate 11. Film thickness data are sent to a computer and the grinding is carried on toward the central part from the outer peripheral section or toward the outer peripheral section from the central part of the substrate 11 while the position or grinding amount of the head 12 is controlled based on the film thickness data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造にお
ける平坦化工程に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planarization process in manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】LSIの集積度が向上し素子の微細化が
進むにつれ、素子製造工程はますます3次元的になり、
半導体の基板に必要とされる加工寸法と同等またはそれ
以上の高さの段差が形成されるようになる。基板にこの
ような急峻で複雑な形状をもつ段差をそのまま基板に残
しておくと、次に示すような様々な問題が生じる。
2. Description of the Related Art As the degree of integration of LSI is improved and the miniaturization of devices is advanced, the device manufacturing process is becoming more and more three-dimensional.
A step having a height equal to or higher than the processing dimension required for the semiconductor substrate is formed. If such a step having a steep and complicated shape is left on the substrate as it is, various problems as described below occur.

【0003】(1)フォトリソグラフィー工程で段差部
の上下で最適な焦点位置が異なるため、パターン精度が
劣化する。 (2)エッチング工程では異方性エッチングを用いるた
め、段差部での膜厚が厚くなると、エッチング残りを生
じやすい。
(1) In the photolithography process, the optimum focus position is different above and below the step portion, so that the pattern accuracy is deteriorated. (2) Since anisotropic etching is used in the etching step, if the film thickness at the step portion becomes thick, etching residue is likely to occur.

【0004】(3)スパッタ法などで配線材の金属の堆
積を行うと、段差部での膜の被覆率が低下し、配線の信
頼性が低下する。 このような問題を解決するために、LSI製造工程にお
いては、基板に段差をなくし表面を平坦化しながら加工
を進める技術がますます重要となりつつある。
(3) When the metal of the wiring material is deposited by the sputtering method or the like, the coverage of the film at the step portion is lowered and the reliability of the wiring is lowered. In order to solve such a problem, in an LSI manufacturing process, a technique of eliminating a step on a substrate and flattening the surface of the substrate is becoming more and more important.

【0005】従来の平坦化法としては主に、塗布法(S
OG(Spin no Glass))、流動化法(B
PSGフロー)、エッチバック法などが用いられてきた
(たとえば古川静二郎ら 超微細加工入門 オーム社
1989)。しかしながら、これらの方法では、局所的
には比較的平坦な表面を得ることができるが、数mmに
わたる比較的広い範囲では満足できる平坦度は得られて
いなかった。また、最近のLSIの高集積化にともな
い、局所的な平坦度に関しても、満足できるものではな
くなりつつある。
The conventional flattening method is mainly the coating method (S
OG (Spin no Glass)), fluidization method (B
PSG flow), etch-back method, etc. have been used (for example, Seijiro Furukawa, et al.
1989). However, although these methods can locally obtain a relatively flat surface, satisfactory flatness has not been obtained in a relatively wide range over several mm. Further, with the recent high integration of LSI, local flatness is becoming unsatisfactory.

【0006】広範囲にわたって平坦な表面を得る方法と
して、化学機械研磨をもちいる方法が注目されている
(たとえばS.Sivaram et al. Sol
idState Tech. May 1992 p.
87)。この方法は、パターンを形成した半導体基板表
面に膜を堆積した後、研磨により凸部を削り落し、表面
を平坦化するという原理的には非常に簡単なものであ
る。現在、この方法により、半導体表面に堆積された各
種金属(Al,W,Cu)、酸化物などが基板表面の非
常に広範囲にわたって平坦に研磨されることが示されて
いる。
As a method for obtaining a flat surface over a wide area, a method using chemical mechanical polishing has attracted attention (for example, S. Sivaram et al. Sol.
idState Tech. May 1992 p.
87). This method is very simple in principle, in that after the film is deposited on the surface of the semiconductor substrate on which the pattern is formed, the convex portions are removed by polishing to flatten the surface. Presently, this method has been shown to polish various metals (Al, W, Cu), oxides, etc. deposited on the semiconductor surface flat over a very wide range on the substrate surface.

【0007】以下図面を参照しながら、上記の化学機械
研磨による平坦化方法の一例について説明する。図6に
は上記の化学機械研磨に用いられる研磨装置の要部が示
されている。
An example of the planarization method by chemical mechanical polishing will be described below with reference to the drawings. FIG. 6 shows a main part of a polishing apparatus used for the above chemical mechanical polishing.

【0008】図6において符号1は基板押え治具を示し
ており、この基板押え治具1の下面には、膜堆積、フォ
トリソグラフィー、ドライエッチングの繰り返しで微細
凸凹パターンを形成した後、全面に膜を堆積した基板2
が、たとえば真空吸着により着脱可能に接着されてい
る。一方基板押え治具1の下方に位置するターンテーブ
ル3の上面には研磨布4が設けられている。前記基板押
え治具1によって基板2の研磨布4に圧接させるととも
に、ターンテーブル3および基板押え治具1を回転させ
ることにより、基板押え治具1の下面に接着されている
基板2の主面を研磨する。その際、研磨布4に対して
は、スラリーとして、例えばシリコン酸化膜研磨の際に
は、弱アルカリ性のコロイダルシリカなどの研磨剤を含
む水溶液が供給される。またターンテーブル3上の研磨
パッドとしては、ポリウレタンパッドなどが用いられ
る。
In FIG. 6, reference numeral 1 denotes a substrate pressing jig. On the lower surface of the substrate pressing jig 1, a fine uneven pattern is formed by repeating film deposition, photolithography and dry etching, and then the entire surface is covered. Substrate 2 on which film is deposited
However, they are detachably bonded by, for example, vacuum suction. On the other hand, a polishing cloth 4 is provided on the upper surface of the turntable 3 located below the substrate pressing jig 1. The main surface of the substrate 2 adhered to the lower surface of the substrate holding jig 1 by pressing the polishing cloth 4 of the substrate 2 by the substrate holding jig 1 and rotating the turntable 3 and the substrate holding jig 1 To polish. At that time, an aqueous solution containing a polishing agent such as weakly alkaline colloidal silica is supplied to the polishing cloth 4 as a slurry, for example, when polishing a silicon oxide film. A polyurethane pad or the like is used as the polishing pad on the turntable 3.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような研磨方法では、種々の工程を経た基板2を大量
に、しかも精度よく研磨することは非常に難しい。通常
上記のような研磨装置を利用しての研磨にあっては、研
磨布4自身の経時変化によって、研磨が進むにつれて研
磨速度が低下するという問題が生じる。そのため、基板
2を一枚処理するごとに、研磨布4を再生したり、研磨
速度の低下を考慮し経験的に研磨時間を増加させるなど
の操作が必要になるが、いずれの場合も、制御性は良い
とは言い難い。制御性を上げるためには、研磨中にその
場で基板2上の膜の膜厚を検出する必要がある。しかし
ながら上記のような構成では、基板2の主面の全面が研
磨布4に接しているため、研磨中に基板2の主面上に堆
積された膜の膜厚を測定することができない。
However, with the above-described polishing method, it is very difficult to polish a large number of substrates 2 which have undergone various steps and with high precision. Usually, in the polishing using the polishing apparatus as described above, there is a problem that the polishing rate decreases as the polishing progresses due to a change with time of the polishing cloth 4 itself. Therefore, every time one substrate 2 is processed, it is necessary to regenerate the polishing cloth 4 or to empirically increase the polishing time in consideration of the decrease in the polishing rate. It is hard to say that the sex is good. In order to improve controllability, it is necessary to detect the film thickness of the film on the substrate 2 in situ during polishing. However, in the above-described configuration, the entire main surface of the substrate 2 is in contact with the polishing cloth 4, so that the film thickness of the film deposited on the main surface of the substrate 2 cannot be measured during polishing.

【0010】さらに、種々の工程を経た基板2は、一般
に凸または凹に反っているが、上記のような研磨装置で
は、反った基板2上に堆積した膜を均一に研磨すること
はできず、たとえば凸に反った場合であると基板2の中
心部のみを選択的に研磨することになる。
Further, although the substrate 2 which has undergone various steps is generally convex or concave, the polishing apparatus as described above cannot uniformly polish the film deposited on the curved substrate 2. For example, in the case where it is convexly warped, only the central portion of the substrate 2 is selectively polished.

【0011】本発明は、かかる点を鑑みなされたもの
で、半導体の基板表面に堆積した膜を研磨する、研磨布
の経時変化に影響されない、非常に制御性のよい研磨を
行うことを特徴とする基板の平坦化方法を提供すること
を目的としている。さらに、本発明は、基板が凸または
凹に反っている場合でも、反った基板上に堆積した膜を
均一に研磨することができる基板の平坦化方法を提供す
ることを目的としている。
The present invention has been made in view of the above points, and is characterized in that it polishes a film deposited on the surface of a semiconductor substrate, and performs polishing with excellent controllability that is not affected by the change with time of the polishing cloth. It is an object of the present invention to provide a method for planarizing a substrate that can be used. It is another object of the present invention to provide a method for planarizing a substrate that can uniformly polish a film deposited on a warped substrate even when the substrate is convex or concave.

【0012】この発明のそのほかの目的と新規な特徴に
ついては、本明細書の記述および添付図面から明かにな
るであろう。
Other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、半導体の基板より小さい研磨ヘッドを備
えた研磨装置により、前記基板を研磨する。基板上には
研磨ヘッドが存在しない領域が存在し、その部分を利用
して研磨中にその場で膜厚を測定し、研磨の終点を正確
に検知する。
In order to achieve the above object, the present invention polishes a substrate by a polishing apparatus having a polishing head smaller than a semiconductor substrate. There is a region where the polishing head does not exist on the substrate, and that portion is used to measure the film thickness in-situ during polishing to accurately detect the end point of polishing.

【0014】さらに本発明では、膜厚検出装置の検出ヘ
ッド部を基板上を移動させるか、もしくは複数の検出ヘ
ッド部を備えた膜厚検出装置を用い、基板面内の膜厚分
布を研磨中にその場でモニターしながら研磨を行う。前
記膜厚分布データをもとに、研磨ヘッドの位置、研磨ヘ
ッドにかける圧力などをコントロールしながら前記膜を
研磨する。さらに本発明では、基板より小さい研磨ヘッ
ドを複数個同時に用いる。さらに本発明では、自転のみ
を行う基板より十分小さい複数の研磨ヘッドを基板上に
敷き詰めて研磨する。
Further, according to the present invention, the detection head part of the film thickness detection device is moved over the substrate, or a film thickness detection device having a plurality of detection head parts is used to polish the film thickness distribution in the substrate surface. And polishing while monitoring on the spot. Based on the film thickness distribution data, the film is polished while controlling the position of the polishing head, the pressure applied to the polishing head, and the like. Further, in the present invention, a plurality of polishing heads smaller than the substrate are used simultaneously. Further, in the present invention, a plurality of polishing heads that are sufficiently smaller than the substrate that rotates only are spread over the substrate and polished.

【0015】[0015]

【作用】本発明によれば、研磨中に常に基板上に堆積し
た膜の膜厚を検出することが可能であるため、研磨ヘッ
ドの経時変化に左右されることなく、常に所望の研磨量
を研磨することが可能である。また、研磨ヘッドは基板
より十分小さく、基板表面の大部分の空間が露出してい
るため、膜厚検出装置の検出ヘッド部を基板上を移動さ
せるか、もしくは複数の膜厚検出ヘッド部を備えた膜厚
検出装置を用いて、基板面内の膜厚分布を研磨中にその
場で算出することが可能である。前記基板面内の膜厚分
布をもとに、前記研磨ヘッドの位置および、前記研磨ヘ
ッドによる研磨量をコントロールし、どのように反った
基板上に堆積した膜も均一に研磨することが可能にな
る。つまり、基板が凹に反っている場合に周辺部だけを
優先的に研磨したり、凸に反っている場合中心部だけを
優先的に研磨することを防ぐことができる。さらに複数
の研磨ヘッドを用い、小さいヘッドを用いることによる
研磨速度の低下を防止し、上記の優れた特徴を備えなが
ら、従来法と同程度の研磨速度を得る。
According to the present invention, since the film thickness of the film deposited on the substrate can be detected at all times during polishing, the desired polishing amount can always be obtained without being affected by the change with time of the polishing head. It is possible to polish. Further, since the polishing head is sufficiently smaller than the substrate and most of the space on the surface of the substrate is exposed, either the detection head unit of the film thickness detection device is moved over the substrate or a plurality of film thickness detection head units are provided. It is possible to calculate the film thickness distribution in the surface of the substrate in-situ during polishing by using the film thickness detector. It is possible to control the position of the polishing head and the amount of polishing by the polishing head based on the film thickness distribution in the surface of the substrate to uniformly polish a film deposited on a warped substrate. Become. That is, it is possible to prevent preferential polishing of only the peripheral portion when the substrate is warped concavely, and preferentially polishing only the central portion when the substrate is warped convexly. Further, a plurality of polishing heads are used, a reduction in the polishing rate due to the use of a small head is prevented, and a polishing rate comparable to the conventional method is obtained while having the above-mentioned excellent characteristics.

【0016】[0016]

【実施例】(実施例1)以下図面を参照して本発明の一
実施例を説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1には、本発明で用いられる研磨装置の
要部が示されている。図1において符号13は基板保持
ターンテーブルを示してている。基板保持ターンテーブ
ル13上には、膜堆積、フォトリソグラフィー、エッチ
ングの繰り返しにより凸凹パターンを形成した後膜堆積
を行った直径150mmもしくは200mmのシリコン
基板11がたとえば真空吸着により接着されている。本
実施例においては、基板保持ターンテーブル13は自転
のみを行うよう設計されている。一方シリコン基板11
の上面にはシリコン基板11より十分小さい、たとえば
直径50mmの研磨ヘッド12が配置されている。研磨
ヘッド12は自転を行いながらシリコン基板11の半径
方向に移動できる構造になっている。一方、シリコン基
板11上の研磨ヘッド12と対称の位置には膜厚測定装
置の検出ヘッド部14が設置される。膜厚測定装置の検
出ヘッド部14は、研磨ヘッド12のシリコン基板の半
径方向への動きに同期して、シリコン基板の半径方向に
移動するように構成されている。
FIG. 1 shows a main part of a polishing apparatus used in the present invention. In FIG. 1, reference numeral 13 indicates a substrate holding turntable. On the substrate holding turntable 13, a silicon substrate 11 having a diameter of 150 mm or 200 mm, which has been subjected to film deposition after forming an uneven pattern by repeating film deposition, photolithography and etching, is bonded by, for example, vacuum suction. In this embodiment, the substrate holding turntable 13 is designed to rotate only on its own axis. On the other hand, the silicon substrate 11
A polishing head 12 having a diameter of 50 mm, which is sufficiently smaller than the silicon substrate 11, is arranged on the upper surface of the. The polishing head 12 has a structure capable of moving in the radial direction of the silicon substrate 11 while rotating. On the other hand, the detection head unit 14 of the film thickness measuring device is installed at a position symmetrical to the polishing head 12 on the silicon substrate 11. The detection head unit 14 of the film thickness measuring device is configured to move in the radial direction of the silicon substrate in synchronization with the movement of the polishing head 12 in the radial direction of the silicon substrate.

【0018】次に、この装置を用いての研磨による平坦
化の手順を述べる。基板保持テーブル13に接着したシ
リコン基板11の主面に、研磨ヘッド12を圧接させる
とともに、研磨ヘッド12を自転させ、シリコン基板1
1上をシリコン基板11の半径方向に移動させることに
より、シリコン基板11の主面を研磨する。このとき、
基板保持テーブル13の自転も同時に行う。シリコン基
板11上に堆積したシリコン酸化膜を研磨する場合、研
磨剤としては、たとえばコロイダルシリカを水溶液中に
分散させ、KOHで弱アルカリ性にPH調整されたもの
が用いられる。研磨剤は、研磨ヘッド12の中心からシ
リコン基板11上に供給する。また研磨ヘッド12の研
磨面には、たとえばポリウレタンパッドを取りつけ、こ
れを研磨布とする。研磨中、膜厚検出装置の検出ヘッド
部14は、シリコン基板11上で常に研磨ヘッド12と
同一の円上に位置するようにコントロールされているた
め、シリコン基板11上の研磨ヘッド12が存在する円
周上の平均の膜厚は常に膜厚測定装置によってモニター
されている。膜厚検出装置により得られた膜厚データは
コンピュータに送られ、コンピュータは前記膜厚データ
をもとに研磨ヘッド12の位置、研磨ヘッド12にかけ
る圧力、研磨ヘッド12の回転数、研磨ヘッド12から
供給する研磨剤の量、研磨ヘッド12の温度などをコン
トロールしながら、シリコン基板11の外周部から中心
部、もしくはシリコン基板11の中心部から外周部に向
かって研磨を進める。
Next, the procedure of flattening by polishing using this apparatus will be described. The polishing head 12 is brought into pressure contact with the main surface of the silicon substrate 11 adhered to the substrate holding table 13, and the polishing head 12 is rotated to rotate the silicon substrate 1
The main surface of the silicon substrate 11 is polished by moving the silicon substrate 1 in the radial direction of the silicon substrate 11. At this time,
The rotation of the substrate holding table 13 is also performed at the same time. When polishing the silicon oxide film deposited on the silicon substrate 11, as the polishing agent, for example, colloidal silica dispersed in an aqueous solution and pH adjusted to be weakly alkaline with KOH is used. The polishing agent is supplied onto the silicon substrate 11 from the center of the polishing head 12. Further, for example, a polyurethane pad is attached to the polishing surface of the polishing head 12 and used as a polishing cloth. During the polishing, the detection head portion 14 of the film thickness detection device is controlled so as to be always located on the same circle as the polishing head 12 on the silicon substrate 11, so that the polishing head 12 on the silicon substrate 11 exists. The average film thickness on the circumference is constantly monitored by a film thickness measuring device. The film thickness data obtained by the film thickness detection device is sent to a computer, and the computer uses the film thickness data to position the polishing head 12, the pressure applied to the polishing head 12, the number of revolutions of the polishing head 12, and the polishing head 12. While controlling the amount of the polishing agent supplied from the device, the temperature of the polishing head 12, and the like, the polishing proceeds from the outer peripheral portion of the silicon substrate 11 to the central portion or from the central portion of the silicon substrate 11 to the outer peripheral portion.

【0019】本実施例によれば、シリコン基板11上の
実際に研磨している円周部の平均の膜厚を常に取得しつ
つ研磨をおこなっているため、所望の残し膜厚で正確に
研磨を終了することができる。また、本実施例のもう一
つの大きい特徴としては、シリコン基板11より十分小
さい研磨ヘッド12を用いて、研磨部分の膜厚を常に取
得しながら研磨しているため、平坦なシリコン基板11
上に堆積した膜のみならず、凸または凹に反ったシリコ
ン基板11上に堆積した膜をも、シリコン基板11の形
状に反った形で平坦に研磨することができる。つまり、
シリコン基板11が凹に反っている場合に周辺部だけを
優先的に研磨したり、凸に反っている場合に中心部だけ
を優先的に研磨することを防ぐことができる。
According to the present embodiment, since the polishing is performed while always obtaining the average film thickness of the circumferential portion on the silicon substrate 11 which is actually being polished, the desired remaining film thickness is accurately polished. Can be finished. Another major feature of this embodiment is that the polishing head 12 that is sufficiently smaller than the silicon substrate 11 is used to perform polishing while always obtaining the film thickness of the polished portion, so that the flat silicon substrate 11 is used.
Not only the film deposited on the upper surface, but also the film deposited on the silicon substrate 11 that is convex or concave can be polished flatly in a shape that is warped to the shape of the silicon substrate 11. That is,
It is possible to prevent preferential polishing of only the peripheral portion when the silicon substrate 11 is warped concavely, or preferentially polishing only the central portion when the silicon substrate 11 is curved convexly.

【0020】本実施例において、研磨ヘッド12をシリ
コン基板11の外周部から中心部、もしくはシリコン基
板11の中心部から外周部に向かって一度だけ動かし研
磨を行うのではなく、一往復につき目標研磨膜厚の1/
100程度研磨しながら、研磨ヘッド12のシリコン基
板11の半径方向への移動を繰り返し行うことにより、
より平坦に研磨することができる。
In this embodiment, the polishing head 12 is not moved only once from the outer peripheral portion of the silicon substrate 11 toward the central portion or from the central portion of the silicon substrate 11 toward the outer peripheral portion to perform the target polishing for each reciprocation. 1 / thickness
By repeatedly moving the polishing head 12 in the radial direction of the silicon substrate 11 while polishing about 100,
It can be polished more flatly.

【0021】本実施例においては、膜厚測定装置の検出
ヘッド部14を、研磨ヘッド12の位置と同期して移動
させ、常に検出ヘッド部14が研磨ヘッド12とシリコ
ン基板11上の同一円周上に存在するようにコントロー
ルした。研磨のポイントと同一円周上での平均の膜厚を
モニターするもう一つの方法として、膜厚検出ヘッド部
14の位置を研磨ヘッド12の位置と同期させず、たと
えば研磨ヘッド12の移動速度の10倍程度の速度でシ
リコン基板11上を半径方向に向かって膜厚を常にモニ
ターしながら往復運動させる方法がある。この方法によ
ると、現在研磨中の円周上での膜厚のみならず、シリコ
ン基板11上での膜厚分布が得られ、シリコン基板11
全体に渡っての研磨の状況を把握しながら研磨を進める
ことが可能であるため、研磨後のシリコン基板11の平
坦性をより高めることができる。
In the present embodiment, the detection head unit 14 of the film thickness measuring apparatus is moved in synchronization with the position of the polishing head 12, and the detection head unit 14 is always in the same circumference on the polishing head 12 and the silicon substrate 11. Controlled to be on top. As another method of monitoring the average film thickness on the same circumference as the polishing point, the position of the film thickness detection head unit 14 is not synchronized with the position of the polishing head 12, and, for example, the moving speed of the polishing head 12 is changed. There is a method of reciprocating on the silicon substrate 11 in the radial direction at a speed of about 10 times while constantly monitoring the film thickness. According to this method, not only the film thickness on the circumference currently being polished but also the film thickness distribution on the silicon substrate 11 can be obtained.
Since it is possible to proceed with the polishing while grasping the overall polishing status, it is possible to further improve the flatness of the silicon substrate 11 after the polishing.

【0022】さらに、前記高速で移動する膜厚の検出ヘ
ッド14部のかわりに、シリコン基板11の半径方向
に、複数の膜厚検出ヘッド部14を備えた膜厚測定装置
の検出ヘッド部14を一列に並べることにより、基板1
1上での膜厚分布がリアルタイムで得られ、シリコン基
板11全体にわたっての研磨の状況を把握しながら研磨
を進めることが可能であるため、研磨後のシリコン基板
の平坦性をより高めることができる。 (実施例2)実施例1の基板の研磨方法は、非常に簡便
な方法で、研磨の終点を正確に判定できる非常に優れた
方法である。しかしながら、研磨ヘッドが小さいため研
磨速度が従来例より低下する。本実施例は、実施例1の
全ての特徴を備えながら、研磨速度を向上させる研磨方
法に関するものである。
Further, instead of the film thickness detecting head portion 14 which moves at a high speed, a detecting head portion 14 of a film thickness measuring apparatus having a plurality of film thickness detecting head portions 14 in the radial direction of the silicon substrate 11 is provided. By arranging them in a line, the substrate 1
1, the film thickness distribution on 1 can be obtained in real time, and it is possible to proceed with polishing while grasping the polishing state over the entire silicon substrate 11, so that the flatness of the silicon substrate after polishing can be further improved. . (Embodiment 2) The substrate polishing method of Embodiment 1 is a very simple method and is a very excellent method capable of accurately determining the polishing end point. However, since the polishing head is small, the polishing rate is lower than that of the conventional example. The present embodiment relates to a polishing method that improves the polishing rate while having all the features of the first embodiment.

【0023】図2には、本発明で用いられる研磨装置の
要部が示されている。装置の構成は実施例1の研磨装置
(図1)とほぼ同等である。実施例1との違いとして
は、研磨ヘッド22が3つ存在し、それぞれが独立に制
御されている。各研磨ヘッド22はシリコン基板21の
半径方向に自由に移動できるように設計されており、そ
れぞれがシリコン基板21上の同一円周上に存在するこ
とも、任意の位置に位置することも可能である。また、
膜厚検出装置としては、実施例1記載の、複数の研磨ヘ
ッドを備えた膜厚測定装置を用いており、膜厚検出ヘッ
ド列24がシリコン基板21の半径方向に配置されてい
る。
FIG. 2 shows the essential parts of the polishing apparatus used in the present invention. The structure of the apparatus is almost the same as that of the polishing apparatus of Embodiment 1 (FIG. 1). The difference from the first embodiment is that there are three polishing heads 22 and they are independently controlled. The polishing heads 22 are designed so that they can move freely in the radial direction of the silicon substrate 21, and they can be on the same circumference on the silicon substrate 21 or can be located at arbitrary positions. is there. Also,
As the film thickness detection device, the film thickness measurement device having a plurality of polishing heads described in Embodiment 1 is used, and the film thickness detection head row 24 is arranged in the radial direction of the silicon substrate 21.

【0024】この装置を用いての研磨による平坦化の手
順は、研磨ヘッド22が3つ存在すること以外は基本的
には実施例1と同等である。シリコン基板21上の膜の
膜厚分布は、複数の検出ヘッド列24を備えた膜厚測定
装置によりリアルタイムでモニターされている。前記膜
厚分布データをもとに、各研磨ヘッド22の位置、各研
磨ヘッド22にかける圧力、各研磨ヘッド22の回転
数、温度、各研磨ヘッド22から供給する研磨剤の量な
どを独立に制御し、シリコン基板21を平坦に研磨す
る。
The procedure of flattening by polishing using this apparatus is basically the same as that of the first embodiment except that there are three polishing heads 22. The film thickness distribution of the film on the silicon substrate 21 is monitored in real time by a film thickness measuring device equipped with a plurality of detection head rows 24. Based on the film thickness distribution data, the position of each polishing head 22, the pressure applied to each polishing head 22, the number of rotations of each polishing head 22, the temperature, the amount of the polishing agent supplied from each polishing head 22, etc. are independently determined. The silicon substrate 21 is controlled and polished to be flat.

【0025】本実施例によれば実施例1と同様、シリコ
ン基板11上の実際に研磨している円周部の膜厚を常に
取得しつつ、膜厚データを研磨ヘッド22のコントロー
ル部にフィードバックをかけているため、所望の残し膜
厚で正確に研磨を終了することができる。また、シリコ
ン基板21より十分小さい研磨ヘッド22を用いて、研
磨部分の膜厚を常に取得しながら研磨しているため、平
坦なシリコン基板21上に堆積した膜のみならず、凸ま
たは凹にそったシリコン基板21上に堆積した膜をも、
シリコン基板21の形状に反った形で平坦に研磨するこ
とができる。さらに、研磨ヘッド22を複数備えている
ため、実施例1の研磨方法より研磨速度を大幅に高めつ
つ、上記性能を維持させることができる。
According to this embodiment, as in the first embodiment, the film thickness data is fed back to the control unit of the polishing head 22 while always obtaining the film thickness of the circumferential portion of the silicon substrate 11 which is actually being polished. Therefore, the polishing can be accurately finished with a desired remaining film thickness. Further, since the polishing head 22 which is sufficiently smaller than the silicon substrate 21 is used for polishing while constantly obtaining the film thickness of the polished portion, not only the film deposited on the flat silicon substrate 21 but also the convex or concave surface The film deposited on the silicon substrate 21
The silicon substrate 21 can be flatly polished in a warped shape. Furthermore, since a plurality of polishing heads 22 are provided, the above performance can be maintained while significantly increasing the polishing rate as compared with the polishing method of the first embodiment.

【0026】本実施例では、研磨ヘッド22が3個の場
合を示したが、研磨ヘッド22の数は、膜厚測定装置の
ヘッド部の列24が設置でき、個々の研磨ヘッド22の
動きが互いに干渉されない限り、何個でもよく、研磨ヘ
ッド22の数が増加するほど研磨速度は向上する。 (実施例3)実施例1および実施例2の研磨方法は、研
磨の終点を正確に検知できることおよび凸または凹に反
ったシリコン基板上に堆積した膜をも、シリコン基板の
形状に反った形で平坦に研磨することができるという優
れた特徴を持っている。本実施例は、実施例1および2
の研磨方法をさらに進化させ、凸または凹に反ったシリ
コン基板上に堆積した膜のみならず、表面がより複雑に
凸凹したシリコン基板(たとえば凸または凹に反ってる
シリコン基板でも、凸または凹の中心がシリコン基板の
中心からずれているシリコン基板)を、より高速に平坦
化するシリコン基板の平坦化方法である。以下図面を参
照して本実施例を説明する。
In the present embodiment, the case where the number of the polishing heads 22 is three is shown, but the number of the polishing heads 22 can be set to the head row 24 of the film thickness measuring apparatus, and the movement of each polishing head 22 can be changed. As long as the number of polishing heads 22 does not interfere with each other, the polishing speed increases as the number of polishing heads 22 increases. (Embodiment 3) In the polishing methods of Embodiments 1 and 2, the end point of polishing can be accurately detected, and a film deposited on a silicon substrate which is convex or concave is also warped to the shape of the silicon substrate. It has an excellent feature that it can be polished flat. This example is based on Examples 1 and 2.
The polishing method of (1) has been further advanced, and not only the film deposited on a convex or concave silicon substrate but also a silicon substrate with a more complicated surface (for example, a silicon substrate with convex or concave curvature, A silicon substrate whose center is offset from the center of the silicon substrate) is planarized at a higher speed. This embodiment will be described below with reference to the drawings.

【0027】図3には、本実施例で用いられる研磨装置
の要部が示されている。図3において符号33は基板保
持ターンテーブルを示している。基板保持ターンテーブ
ル33上には、膜堆積、フォトリソグラフィー、エッチ
ングの繰り返しにより凸凹パターンを形成した後膜堆積
を行った直径200mmのシリコン基板31が、たとえば
真空吸着により接着されている。一方シリコン基板31
の上面には複数の研磨ヘッド32がシリコン基板31の
全面を覆う形で密に敷き詰められている。個々の研磨ヘ
ッド32の直径は、たとえば40mm程度とする。実施例
1および2とは異なり、個々の研磨ヘッド32は自転の
みを行ない、その研磨ヘッド中心軸36は固定されてい
る。研磨剤は、個々の研磨ヘッド32の中心部からシリ
コン基板31の表面に供給される。各研磨経都度32と
研磨ヘッド32のすきまには、膜厚検出機の検出部34
が備え付けられており、各ポイントでの膜厚をリアルタ
イムで測定する。
FIG. 3 shows the main part of the polishing apparatus used in this embodiment. In FIG. 3, reference numeral 33 indicates a substrate holding turntable. On the substrate holding turntable 33, a silicon substrate 31 having a diameter of 200 mm, which has been subjected to film deposition after forming an uneven pattern by repeating film deposition, photolithography and etching, is bonded by, for example, vacuum suction. Meanwhile, the silicon substrate 31
A plurality of polishing heads 32 are densely spread on the upper surface of the so as to cover the entire surface of the silicon substrate 31. The diameter of each polishing head 32 is, eg, about 40 mm. Unlike the first and second embodiments, each polishing head 32 only rotates, and the polishing head central axis 36 is fixed. The polishing agent is supplied to the surface of the silicon substrate 31 from the center of each polishing head 32. In the clearance between each polishing process 32 and the polishing head 32, the detection unit 34 of the film thickness detector is provided.
Is installed, and the film thickness at each point is measured in real time.

【0028】次に、この装置を用いての研磨による平坦
化の手順を述べる。基板保持ターンテーブル33上に接
着したシリコン基板31の主面に、シリコン基板31上
に敷き詰められた複数の研磨ヘッド32を圧接させると
ともに、個々の研磨ヘッド32を自転させ、シリコン基
板31の主面を研磨する。研磨の際、本実施例の特徴の
一つとして、基板保持テーブル33を自転のみならず公
転もさせることにより、シリコン基板31の主面をより
均一に研磨する。研磨の際の研磨剤としては、たとえば
シリコン酸化膜を研磨する場合は、コロイダルシリカを
水溶液中に分散させ、KOHなので弱アルカリ性にPH
調整されたものが用いられる。また、研磨ヘッド32の
研磨面には、たとえばポリウレタンパッドが接着され研
磨布として用いられる。研磨中、シリコン基板31上の
各ポイントでの膜厚は複数の検出ヘッド部34をもった
膜厚検出装置によってモニターされている。膜厚検出装
置によって得られた膜厚データはコンピュータに送ら
れ、コンピュータはシリコン基板31の自転および公転
のデータから各測定ポイントのシリコン基板31上での
位置を計算し、シリコン基板31上での膜厚分布データ
をリアルタイムで算出する。コンピュータは、前記膜厚
分布データをもとに、個々の研磨ヘッド32にかける荷
重を変化させながらシリコン基板31を平坦に研磨す
る。
Next, the procedure of flattening by polishing using this apparatus will be described. A plurality of polishing heads 32 spread on the silicon substrate 31 are brought into pressure contact with the main surface of the silicon substrate 31 adhered onto the substrate holding turntable 33, and the individual polishing heads 32 are rotated to rotate the main surface of the silicon substrate 31. To polish. At the time of polishing, one of the features of this embodiment is that the main surface of the silicon substrate 31 is polished more uniformly by rotating the substrate holding table 33 as well as revolving it. As a polishing agent for polishing, for example, when polishing a silicon oxide film, colloidal silica is dispersed in an aqueous solution, and since it is KOH, it has a weak alkaline pH.
The adjusted one is used. Further, for example, a polyurethane pad is bonded to the polishing surface of the polishing head 32 and used as a polishing cloth. During polishing, the film thickness at each point on the silicon substrate 31 is monitored by a film thickness detection device having a plurality of detection head portions 34. The film thickness data obtained by the film thickness detection device is sent to a computer, and the computer calculates the position of each measurement point on the silicon substrate 31 from the rotation and revolution data of the silicon substrate 31, and calculates the position on the silicon substrate 31. Calculate the film thickness distribution data in real time. The computer polishes the silicon substrate 31 flat while changing the load applied to each polishing head 32 based on the film thickness distribution data.

【0029】本実施例によれば実施例1および2と同
様、シリコン基板31上の膜の膜厚を常に取得しつつ、
膜厚データを研磨ヘッド32のコントロール部にフィー
ドバックをかけているため、所望の残し膜厚で正確に研
磨を終了することができる。また、個々のシリコン基板
31より十分小さい研磨ヘッド32を移動させず、シリ
コン基板31上のある位置に固定することにより、シリ
コン基板31上の研磨ヘッド32と研磨ヘッド32の間
に膜厚検出装置のヘッド部34を設置することが可能に
なる。各検出ヘッド部34からの信号の取得タイミング
とシリコン基板31の自転スピードおよびシリコン基板
31の公転半径とスピードをコンピュータで処理するこ
とにより、シリコン基板31上の膜厚測定ポイントを正
確に同定することができ、シリコン基板31上の各円周
上での平均の膜厚のみならず、シリコン基板31上の各
ポイントでの膜厚を測定することが可能になる。得られ
たシリコン基板31上での膜厚分布にもとずいて、各研
磨ヘッド32にかける圧力をコントロールすることによ
り、平坦なシリコン基板31上の膜はいうに及ばず、凸
または凹に反ったシリコン基板31上に堆積した膜のみ
ならず、より複雑な表面形状をもったシリコン基板31
(たとえば凸や凹の反っている場合でも凸や凹の中心が
シリコン基板31の中心からずれているようなシリコン
基板31)上に堆積した膜も、シリコン基板31表面の
形状に反った形で平坦に研磨することができる。さらに
は、研磨ヘッド32を密に敷き詰めているため、研磨速
度を大幅に高めることができる。
According to the present embodiment, similar to the first and second embodiments, while always obtaining the film thickness of the film on the silicon substrate 31,
Since the film thickness data is fed back to the control unit of the polishing head 32, polishing can be accurately completed with a desired remaining film thickness. Further, the polishing head 32, which is sufficiently smaller than each silicon substrate 31, is not moved but fixed at a certain position on the silicon substrate 31, so that the film thickness detection device is provided between the polishing head 32 and the polishing head 32 on the silicon substrate 31. It is possible to install the head portion 34 of the. To accurately identify the film thickness measurement point on the silicon substrate 31 by processing the acquisition timing of the signal from each detection head unit 34, the rotation speed of the silicon substrate 31, and the revolution radius and speed of the silicon substrate 31 by a computer. Therefore, not only the average film thickness on each circumference on the silicon substrate 31 but also the film thickness at each point on the silicon substrate 31 can be measured. By controlling the pressure applied to each polishing head 32 based on the obtained film thickness distribution on the silicon substrate 31, not only the film on the flat silicon substrate 31 but also the convex or concave is warped. Not only the film deposited on the silicon substrate 31 but also the silicon substrate 31 having a more complicated surface shape
A film deposited on (for example, a silicon substrate 31 in which the center of the convex or concave is displaced from the center of the silicon substrate 31 even if the convex or concave is warped) is also warped to the shape of the surface of the silicon substrate 31. It can be ground flat. Further, since the polishing heads 32 are densely spread, the polishing rate can be significantly increased.

【0030】なお、本実施例において、個々の研磨ヘッ
ド32ごとの研磨速度制御の方法として、個々の研磨ヘ
ッド32にかける圧力を変化させたが、個々の研磨ヘッ
ド32の回転数を変化させることによっても個々の研磨
ヘッド32による研磨速度をコントロールすることがで
きる。また、個々の研磨ヘッドから、ウエハーに供給す
るスラリーの量をコントロールすることによっても、個
々の研磨ヘッド32による研磨速度をコントロールする
ことができる。また、個々の研磨ヘッド32にヒーター
を備え、前記ヒーターの温度をコントロールすることに
よっても、個々の研磨ヘッド32による研磨速度をコン
トロールすることができる。さらには、上記個々の研磨
ヘッド32にかける圧力、個々の研磨ヘッド32の回転
数、個々の研磨ヘッド32からシリコン基板31に供給
するスラリーの量、個々の研磨ヘッド32の温度のコン
トロールを複数組み合わせることにより、個々の研磨ヘ
ッド32による研磨速度をコントロールすることができ
る。
In this embodiment, the pressure applied to each polishing head 32 was changed as a method of controlling the polishing rate for each polishing head 32, but the number of revolutions of each polishing head 32 is changed. The polishing rate by each polishing head 32 can also be controlled by. Further, the polishing rate by each polishing head 32 can also be controlled by controlling the amount of slurry supplied to the wafer from each polishing head. Further, the polishing speed of each polishing head 32 can be controlled also by providing each polishing head 32 with a heater and controlling the temperature of the heater. Furthermore, the pressure applied to each polishing head 32, the number of revolutions of each polishing head 32, the amount of slurry supplied from each polishing head 32 to the silicon substrate 31, and the control of the temperature of each polishing head 32 are combined. As a result, the polishing rate of each polishing head 32 can be controlled.

【0031】上記、実施例1、2、3において、いずれ
の場合も研磨中にシリコン基板上の膜の膜厚をモニター
しながら研磨をおこなっている。シリコン基板に凸凹パ
ターンが形成され、その上に膜が堆積してある場合の膜
厚検出は比較的困難である。次に、本実施例で用いた膜
厚検出法を示す。図4に示すように、シリコン基板10
1上に、高さ1μmのポリシリコンパターン102を形
成し、その上に厚さ2.5μmのシリコン酸化膜103
を形成した基板を研磨する。目標残し膜厚はポリシリコ
ンパターン上で0.5μmとする。
In each of Examples 1, 2 and 3 described above, polishing is performed while monitoring the film thickness of the film on the silicon substrate during polishing. It is relatively difficult to detect the film thickness when the uneven pattern is formed on the silicon substrate and the film is deposited thereon. Next, the film thickness detection method used in this example will be described. As shown in FIG. 4, the silicon substrate 10
1, a polysilicon pattern 102 having a height of 1 μm is formed, and a silicon oxide film 103 having a thickness of 2.5 μm is formed thereon.
The substrate on which is formed is polished. The target remaining film thickness is 0.5 μm on the polysilicon pattern.

【0032】光源としてたとえばタングステンランプな
どの白色光源を用い、よく知られている通常の方法によ
り、基板の反射率のスペクトルを測定する。図5(A)
(b)は図4のパターンから得られる反射率スペクトル
である。本実施例では、入射光のエネルギーとして、
1.5eVから4eVの範囲を用いた。エネルギーが増
加するにともない反射率が振動しながら増加しているの
は、このエネルギー範囲では、シリコン酸化膜103の
屈折率ほとんどを分散を示さないが、下地のシリコン基
板101およびポリシリコンパターン102が比較的大
きい分散を示すことに起因する。図5(A)(b)のス
ペクトルをフーリエ変換したものを、図5−(A)
(c)にしめす。ただし、図5(A)(c)では、フー
リエ変換により得られた複素数スペクトルの絶対値の2
乗をとった後、3次元スプライン曲線により補間を行っ
ている。図5(A)(c)の横軸はエネルギーの逆数の
ディメンジョンになっている。図5(A)(c)におい
て、段差上と段差下で膜厚が同じであり、また、このエ
ネルギー範囲ではシリコン酸化膜103の屈折率はほと
んど分散を持たないため、単一のピークが表れている。
横軸が1以下の部分が非常に大きい値になっているの
は、図5(A)(b)のDC成分や、シリコンの屈折率
の分散に起因する非常に周期の長い信号によるものであ
る。シリコン酸化膜103の屈折率が分散を持たないと
仮定すると、図5(A)(c)のピークの位置から下記
式1を用いて膜厚を求めることができる。
A white light source such as a tungsten lamp is used as a light source, and the reflectance spectrum of the substrate is measured by a well-known ordinary method. Figure 5 (A)
(B) is a reflectance spectrum obtained from the pattern of FIG. In this embodiment, as the energy of incident light,
A range of 1.5 eV to 4 eV was used. The fact that the reflectance increases while oscillating as the energy increases is that the refractive index of the silicon oxide film 103 shows almost no dispersion in this energy range, but the underlying silicon substrate 101 and the polysilicon pattern 102 are Due to exhibiting relatively large variance. Fourier transform of the spectra of FIGS. 5A and 5B is shown in FIG.
(C) However, in FIGS. 5A and 5C, the absolute value of the complex spectrum obtained by the Fourier transform is 2
After taking the power, interpolation is performed using a three-dimensional spline curve. The horizontal axis of FIGS. 5A and 5C is the dimension of the reciprocal of energy. In FIGS. 5A and 5C, the film thickness is the same on the step and below the step, and since the refractive index of the silicon oxide film 103 has almost no dispersion in this energy range, a single peak appears. ing.
The very large value in the part where the horizontal axis is 1 or less is due to the DC component in FIGS. 5A and 5B and the signal with a very long period due to the dispersion of the refractive index of silicon. is there. Assuming that the refractive index of the silicon oxide film 103 does not have dispersion, the film thickness can be calculated from the peak position of FIGS.

【0033】[0033]

【数1】 [Equation 1]

【0034】図5(A)(a)から、研磨を開始し、図
5(B)(a)状態になった場合の、反射率スペクトル
とそのフーリエ変換を図5(B)(b)、図5(B)
(c)に示す。この段階では、段差上に堆積した膜のみ
研磨され、段差下に堆積した膜は研磨されないため、そ
れぞれの膜厚に対応してピークが2つに分裂する。段差
下に堆積した膜からのピークは図5(A)(c)と同じ
位置に位置し、段差上の膜からのピークは研磨され薄く
なったことに対応して値の小さい方にシフトする。
The reflectance spectrum and its Fourier transform in the case where polishing is started from FIG. 5 (A) (a) to reach the state of FIG. 5 (B) (a) are shown in FIG. 5 (B) (b), FIG. 5 (B)
It shows in (c). At this stage, only the film deposited on the step is polished and the film deposited under the step is not polished, so that the peak is divided into two corresponding to each film thickness. The peak from the film deposited under the step is located at the same position as in FIGS. 5A and 5C, and the peak from the film on the step shifts to the smaller value corresponding to the thinning due to polishing. .

【0035】さらに研磨が進み図5(C)(a)のよう
に、段差上の高さが段差下の高さと一致した場合の反射
率スペクトルとそのフーリエ変換を図5(C)(b)、
図5(C)(c)に示す。段差下に堆積した膜からの信
号は、依然同じ位置に位置しているが、段差上に堆積し
た膜からの信号はさらに低い値の方にシフトしている。
As the polishing progresses further, as shown in FIGS. 5C and 5A, the reflectance spectrum and the Fourier transform thereof when the height above the step and the height below the step match are shown in FIGS. ,
It shows in FIG.5 (C) (c). The signal from the film deposited under the step is still located at the same position, but the signal from the film deposited on the step is shifted to a lower value.

【0036】研磨がさらに進み図5(D)(a)のよう
に、段差上の膜も段差下の膜も研磨した場合の反射率ス
ペクトルとそのフーリエ変換を図5(D)(b)、図5
(D)(c)に示す。段差下に堆積した膜も研磨されて
いるため、段差下に堆積した膜からの信号も、低い値の
方にシフトし、同時に段差上に堆積した膜からの信号は
さらに低い値の方にシフトする。つまり、フーリエ変換
スペクトルを常にモニターすることにより、段差下部上
の膜が研磨され始めた瞬間を正確に把握することができ
る。
As shown in FIGS. 5D and 5A, as shown in FIGS. 5D and 5A, the reflectance spectrum and its Fourier transform when the film above and below the step are polished are shown in FIGS. Figure 5
(D) Shown in (c). Since the film deposited under the step is also polished, the signal from the film deposited under the step also shifts to a lower value, and at the same time the signal from the film deposited on the step shifts to a lower value. To do. That is, by constantly monitoring the Fourier transform spectrum, it is possible to accurately grasp the moment when the film on the lower portion of the step starts to be polished.

【0037】研磨がさらに進み、図5(E)(a)のよ
うに目標の残し膜厚に達した場合の、反射率スペクトル
とそのフーリエ変換を図5(E)(b),図5(E)
(c)に示す。
5 (E) (b) and 5 ((E) (b) and FIG. 5 (F), the reflectance spectrum and its Fourier transform when the target remaining film thickness is reached as shown in FIGS. E)
It shows in (c).

【0038】以上のように、反射率スペクトルのフーリ
エ変換後のピークの位置を常にモニターし、式1により
遂次膜厚に換算しながら研磨を進めることにより、凸凹
段差を形成した基板上に堆積した膜を研磨する場合で
も、膜厚の絶対値をモニターすることができ、正確に研
磨の終点を検出することができる。ちなみに、フーリエ
変換後のスペクトルのサンプリング間隔は、反射率スペ
クトルの測定エネルギー範囲に依存し、測定エネルギー
範囲が狭い場合は、ピーク位置を精度よく同定するのは
難しい。本実施例では、フーリエ変換により得られた複
素数スペクトルの絶対値の2乗をとった後、3次元スプ
ライン曲線により補間を行い、ピーク位置を正確に読み
取る工夫をしており、測定範囲内で膜の屈折率が変動し
ない場合は、約0.05μm程度の精度で膜厚の絶対値
を求めることが可能である。
As described above, the peak position after the Fourier transform of the reflectance spectrum is constantly monitored, and the polishing is performed while converting it to the successive film thickness according to the equation (1) to deposit it on the substrate on which uneven steps are formed. Even when polishing the formed film, the absolute value of the film thickness can be monitored, and the polishing end point can be accurately detected. By the way, the sampling interval of the spectrum after the Fourier transform depends on the measured energy range of the reflectance spectrum, and when the measured energy range is narrow, it is difficult to accurately identify the peak position. In this embodiment, after taking the square of the absolute value of the complex spectrum obtained by the Fourier transform, interpolation is performed by a three-dimensional spline curve to accurately read the peak position, and the film is measured within the measurement range. If the refractive index of No. does not change, the absolute value of the film thickness can be obtained with an accuracy of about 0.05 μm.

【0039】本実施例では、段差が一段だけの場合を示
したが、本発明の膜厚検出方法は、段差が1段の場合だ
けではなく、段差が2段3段の場合にも適用することが
できる。
In this embodiment, the case where there is only one step is shown, but the film thickness detection method of the present invention is applied not only when there is one step but also when there are two steps and three steps. be able to.

【0040】本実施例においては、膜厚をリアルタイム
で測定する必要があるため、反射率スペクトルの測定に
は、分光器とマルチチャンネル光検出器の組み合せが必
要となる。さらには、マルチチャンネル光検出器として
タイオードアレーのような一次元光検出器を用いるより
も、CCDカメラなどの2次元検出器を用いることが望
ましいCCDカメラでは画素は2次元に配列されている
ため、分光器により波長分解された光の強度検出に、あ
る一方向に配列した画素を用いた場合、もう一方向の配
列を他の用途に用いることができる。実施例2、3で
は、基板面内の複数の点で膜厚をモニターしながら研磨
することを特徴としているため、一次元光検出器が複数
台必要になる。CCDカメラを用いることにより、一次
元光検知器を複数並べたものと同等の働きを一素子で行
うことができ、コストの削減と装置サイズの大幅な縮小
を同時に達成する。また、単一の素子を用いるため、各
膜厚検出ヘッド間の検出膜厚の精度を、大幅に改善する
ことができる。
In this embodiment, since it is necessary to measure the film thickness in real time, it is necessary to combine the spectroscope and the multi-channel photodetector to measure the reflectance spectrum. Further, in a CCD camera, it is preferable to use a two-dimensional detector such as a CCD camera rather than using a one-dimensional photodetector such as a Thai array as a multi-channel photodetector. Therefore, when the pixels arranged in one direction are used for detecting the intensity of the light wavelength-separated by the spectroscope, the arrangement in the other direction can be used for other purposes. In Examples 2 and 3, polishing is performed while monitoring the film thickness at a plurality of points on the surface of the substrate. Therefore, a plurality of one-dimensional photodetectors are required. By using a CCD camera, a single element can perform the same function as that in which a plurality of one-dimensional photodetectors are arranged, and at the same time, cost reduction and device size reduction can be achieved at the same time. Further, since a single element is used, the accuracy of the detected film thickness between the film thickness detection heads can be greatly improved.

【0041】[0041]

【発明の効果】本発明において開示される発明のうち代
表的なものによって得られる効果を簡単に説明すれば下
記の通りである。
The effects obtained by the typical ones of the inventions disclosed in the present invention will be briefly described as follows.

【0042】本発明によれば、研磨中に常に基板上に堆
積した膜の膜厚を検出することが可能であるため、研磨
ヘッドの経時変化に左右されることなく、常に所望の研
磨量を研磨することが可能である。また、基板より十分
小さい研磨ヘッドを用いることにより、基板表面の大部
分の空間が露出しているため、膜厚検出装置の検出ヘッ
ド部を基板上を移動させるか、もしくは複数の膜厚検出
ヘッド部を備えた膜厚検出装置を用いることにより、基
板面内の膜厚分布を研磨中にその場で算出することが可
能である。前記基板面内の膜厚分布をもとに、前記研磨
ヘッドをコントロールすることにより、どのように反っ
た基板上に堆積した膜も均一に研磨することが可能にな
る。つまり、基板が凹に反っている場合に周辺部だけを
優先的に研磨したり、凸に反っている場合中心部だけを
優先的に研磨することを防ぐことができる。さらに複数
の研磨ヘッドを用いることにより、小さいヘッドを用い
ることによる研磨速度の低下を防止し、上記の優れた特
徴を備えながら、従来法と同程度の研磨速度を得ること
ができる。
According to the present invention, since the film thickness of the film deposited on the substrate can be detected at all times during polishing, a desired polishing amount can always be obtained without being influenced by the change with time of the polishing head. It is possible to polish. Further, since a polishing head that is sufficiently smaller than the substrate is used, most of the space on the surface of the substrate is exposed. Therefore, the detection head unit of the film thickness detection device is moved over the substrate, or a plurality of film thickness detection heads are used. By using the film thickness detection device provided with the section, it is possible to calculate the film thickness distribution in the surface of the substrate on the spot during polishing. By controlling the polishing head based on the film thickness distribution in the surface of the substrate, it becomes possible to uniformly polish the film deposited on the warped substrate. That is, it is possible to prevent preferential polishing of only the peripheral portion when the substrate is warped concavely, and preferentially polishing only the central portion when the substrate is warped convexly. Further, by using a plurality of polishing heads, it is possible to prevent a reduction in polishing rate due to the use of a small head, and it is possible to obtain a polishing rate comparable to the conventional method while having the above-mentioned excellent characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例の研磨方法の実
施に使用されるポリッシング装置の一部を示す平面図 (b)は同断面図
1A is a plan view showing a part of a polishing apparatus used for carrying out a polishing method according to a first embodiment of the present invention, and FIG. 1B is a sectional view of the same.

【図2】(a)は本発明の第2の実施例の研磨方法の実
施に使用されるポリッシング装置の一部を示す平面図 (b)は同断面図
FIG. 2A is a plan view showing a part of a polishing apparatus used for carrying out a polishing method according to a second embodiment of the present invention, and FIG. 2B is a sectional view of the same.

【図3】(a)は本発明の第3の実施例の研磨方法の実
施に使用されるポリッシング装置の一部を示す平面図 (b)は同断面図
FIG. 3A is a plan view showing a part of a polishing apparatus used for carrying out a polishing method according to a third embodiment of the present invention, and FIG.

【図4】シリコン基板上にポリシリコンの段差を形成し
た後、シリコン酸化膜を堆積した基板の断面図
FIG. 4 is a cross-sectional view of a substrate on which a silicon oxide film is deposited after forming a step of polysilicon on the silicon substrate.

【図5】(A)は研磨前の状態、(B)は0.5μm研
磨後、(C)は1μm研磨し、基板表面が平になった状
態、(D)は0.5μm研磨後、(E)は2.0μm研
磨し目標残し膜厚に到達した場合の状態を示し、(a)
は研磨が進むにともなう基板断面図、(b)は基板の反
射率のスペクトル図、(c)は基板の反射率のスペクト
ルをフーリエ変換した後、絶対値の2乗を求め、その後
3次元スプライン曲線により補間したスペクトル図
5A is a state before polishing, FIG. 5B is a state after polishing 0.5 μm, FIG. 5C is a state where the substrate surface is flat, and FIG. 5D is a state after polishing 0.5 μm. (E) shows the state when the target remaining film thickness is reached after polishing by 2.0 μm, (a)
Is a cross-sectional view of the substrate as polishing progresses, (b) is a spectrum diagram of the reflectance of the substrate, (c) is the Fourier transform of the spectrum of the reflectance of the substrate, and then the square of the absolute value is obtained, after which the three-dimensional spline is obtained. Spectral diagram interpolated by curve

【図6】従来のポリッシング装置の一部を示す断面図FIG. 6 is a sectional view showing a part of a conventional polishing apparatus.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 研磨ヘッド 13 基板保持ターンテーブル 14 膜厚測定装置のヘッド部 11 Silicon Substrate 12 Polishing Head 13 Substrate Holding Turntable 14 Head of Film Thickness Measuring Device

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 凸凹パターンを形成した基板表面に膜を
堆積した後,前記膜の膜厚を常に検出しながら、前記基
板より小さい研磨ヘッドをもった研磨装置により、回転
する前記基板上の前記膜を研磨し、前記基板表面を平坦
化することを特徴とする半導体基板の平坦化方法。
1. After depositing a film on the surface of a substrate on which an uneven pattern is formed, while constantly detecting the film thickness of the film, a polishing apparatus having a polishing head smaller than the substrate is used to rotate the substrate on the rotating substrate. A method of planarizing a semiconductor substrate, comprising: polishing a film to planarize the surface of the substrate.
【請求項2】 自転しながら基板の半径方向に移動する
ことによって前記基板の研磨を行う前記基板より小さい
研磨ヘッドの位置と、膜厚測定装置の検出ヘッド部の位
置が、常に前記基板上の同一円周上にあるように、前記
膜厚測定装置の検出ヘッド部の位置をコントロールする
ことを特徴とする請求項1記載の半導体基板の平坦化方
法。
2. The position of the polishing head, which is smaller than the substrate for polishing the substrate by moving in the radial direction of the substrate while rotating on its own axis, and the position of the detection head portion of the film thickness measuring device are always on the substrate. 2. The method of planarizing a semiconductor substrate according to claim 1, wherein the position of the detection head portion of the film thickness measuring device is controlled so that it is on the same circumference.
【請求項3】 膜厚測定装置の検出ヘッド部を、基板上
の研磨ヘッドの位置に関係なく基板の半径方向に基板の
移動速度より早く往復運動させながら膜厚を測定するこ
とにより、基板面内の膜厚分布を常にモニターすること
を特徴とする請求項2記載の半導体基板の平坦化方法。
3. The substrate surface is measured by reciprocating the detection head portion of the film thickness measuring device in the radial direction of the substrate faster than the moving speed of the substrate regardless of the position of the polishing head on the substrate. The method for planarizing a semiconductor substrate according to claim 2, wherein the film thickness distribution in the inside is constantly monitored.
【請求項4】 基板の半径方向に一列に並んだ複数の膜
厚検出ヘッドを備えた膜厚測定装置により、基板面内の
膜厚分布を常にモニターすることを特徴とする請求項1
記載の半導体基板の平坦化方法。
4. A film thickness measuring device equipped with a plurality of film thickness detecting heads arranged in a line in the radial direction of the substrate to constantly monitor the film thickness distribution in the substrate surface.
A method for planarizing a semiconductor substrate according to claim 1.
【請求項5】 研磨ヘッドを複数個備えたことを特徴と
する請求項1記載の半導体基板の平坦化方法。
5. The method of planarizing a semiconductor substrate according to claim 1, further comprising a plurality of polishing heads.
【請求項6】 複数の研磨ヘッドを移動させず、自転の
みを行うようにしたことを特徴とする請求項5記載の半
導体基板の平坦化方法。
6. The method of planarizing a semiconductor substrate according to claim 5, wherein a plurality of polishing heads are not moved and only rotation is performed.
【請求項7】 複数の研磨ヘッドの中心軸が、基板の中
心軸と重ならないようにしたことを特徴とする請求項6
記載の半導体基板の平坦化方法。
7. The center axes of the plurality of polishing heads do not overlap with the center axes of the substrates.
A method for planarizing a semiconductor substrate according to claim 1.
【請求項8】 複数の研磨ヘッドを基板上に密に敷き詰
めたことを特徴とする請求項6記載の半導体基板の平坦
化方法。
8. The method of planarizing a semiconductor substrate according to claim 6, wherein a plurality of polishing heads are densely spread on the substrate.
【請求項9】 基板を自身の回転のみならず公転させる
ようにしたことを特徴とする請求項6記載の半導体基板
の平坦化方法。
9. The method of planarizing a semiconductor substrate according to claim 6, wherein the substrate is not only rotated but also revolved.
【請求項10】 複数の検出ヘッド部を備えた膜厚測定装
置の各検出ヘッド部を基板上に研磨ヘッドが存在しない
任意の位置に設置し、前記膜の膜厚分布を常に検出しな
がら研磨を行うことを特徴とする請求項6記載の半導体
基板の平坦化方法。
10. A film thickness measuring apparatus comprising a plurality of detection head units, wherein each detection head unit is installed on a substrate at an arbitrary position where a polishing head does not exist, and polishing is performed while always detecting the film thickness distribution of the film. 7. The method for planarizing a semiconductor substrate according to claim 6, wherein:
【請求項11】 基板上の膜の膜厚分布データをもとに、
複数の研磨ヘッドの回転数を個々のヘッド毎にコントロ
ールすることを特徴とする請求項6記載の半導体基板の
平坦化方法。
11. Based on the film thickness distribution data of the film on the substrate,
7. The method for planarizing a semiconductor substrate according to claim 6, wherein the number of rotations of the plurality of polishing heads is controlled for each individual head.
【請求項12】 基板上の膜の膜厚分布データをもとに、
複数の研磨ヘッドにかける圧力を個々のヘッド毎にコン
トロールすることを特徴とする請求項6記載の半導体基
板の平坦化方法。
12. Based on the film thickness distribution data of the film on the substrate,
7. The method for planarizing a semiconductor substrate according to claim 6, wherein the pressure applied to the plurality of polishing heads is controlled for each individual head.
【請求項13】 基板上の膜の膜厚分布データをもとに、
複数の研磨ヘッドから前記基板表面上に供給する研磨剤
を含む水溶液の供給量を個々のヘッド毎にコントロール
することを特徴とする請求項6記載の半導体基板の平坦
化方法。
13. Based on the film thickness distribution data of the film on the substrate,
7. The method of planarizing a semiconductor substrate according to claim 6, wherein the supply amount of the aqueous solution containing the polishing agent supplied onto the substrate surface from a plurality of polishing heads is controlled for each individual head.
【請求項14】 基板上の膜の膜厚分布データをもとに、
複数の研磨ヘッドの温度を個々のヘッド毎にコントロー
ルすることを特徴とする請求項6記載の半導体基板の平
坦化方法。
14. Based on the film thickness distribution data of the film on the substrate,
7. The method of planarizing a semiconductor substrate according to claim 6, wherein the temperatures of the plurality of polishing heads are controlled for each individual head.
【請求項15】 凹凸パターンをもつ基板上に白色光を照
射し、前記基板の反射率の波長依存性を求めた後、前記
反射率のスペクトルをフーリエ変換することにより、前
記反射スペクトルを前記凸凹パターンの凸部に堆積した
膜からの反射率スペクトルと、前記で凸凹パターンの凹
部に堆積した膜からの反射率スペクトルに分離し前記凸
凹パターンの凹部に堆積した膜の膜厚および凸部に堆積
した膜の膜厚を同時に測定することを特徴とした請求項
1記載の半導体基板の平坦化方法。
15. Irradiating a substrate having a concavo-convex pattern with white light, determining the wavelength dependence of the reflectance of the substrate, and then Fourier transforming the spectrum of the reflectance to obtain the unevenness of the reflection spectrum. The reflectance spectrum from the film deposited on the convex portion of the pattern and the reflectance spectrum from the film deposited on the concave portion of the concave-convex pattern are separated and deposited on the film thickness and the convex portion of the film deposited on the concave portion of the concave-convex pattern. The method for planarizing a semiconductor substrate according to claim 1, wherein the film thickness of the formed film is measured at the same time.
JP3762793A 1993-02-26 1993-02-26 Method for flattening semiconductor substrate Pending JPH06252113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3762793A JPH06252113A (en) 1993-02-26 1993-02-26 Method for flattening semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3762793A JPH06252113A (en) 1993-02-26 1993-02-26 Method for flattening semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH06252113A true JPH06252113A (en) 1994-09-09

Family

ID=12502880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3762793A Pending JPH06252113A (en) 1993-02-26 1993-02-26 Method for flattening semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH06252113A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788759A (en) * 1993-09-20 1995-04-04 Nec Corp Wafer polishing device
EP0806266A2 (en) * 1996-05-09 1997-11-12 Canon Kabushiki Kaisha Polishing method and polishing apparatus using the same
EP0827193A2 (en) * 1996-08-30 1998-03-04 Canon Kabushiki Kaisha Polishing endpoint determination method and apparatus
US5938502A (en) * 1996-11-15 1999-08-17 Nec Corporation Polishing method of substrate and polishing device therefor
EP1000705A2 (en) * 1998-11-16 2000-05-17 Chartered Semiconductor Manufacturing Pte Ltd. A scalable multipad design for improved CMP process
JP2000354961A (en) * 1999-04-16 2000-12-26 Nikon Corp Detecting device and detecting method
WO2001018860A3 (en) * 1999-09-09 2002-01-17 Allied Signal Inc Improved apparatus and methods for integrated circuit planarization
JP2002519859A (en) * 1998-06-26 2002-07-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド System and method for controlling a multi-arm polishing tool
US6489624B1 (en) 1997-07-18 2002-12-03 Nikon Corporation Apparatus and methods for detecting thickness of a patterned layer
JP2003001560A (en) * 2001-06-22 2003-01-08 Semiconductor Leading Edge Technologies Inc Substrate lapping apparatus, substrate lapping method and semiconductor device
JP2003019659A (en) * 2001-07-06 2003-01-21 Nec Kyushu Ltd Chemical machine polishing apparatus and chemical machine polishing method
JP2003053659A (en) * 2001-08-17 2003-02-26 Sony Corp Polishing device and method
US6670200B2 (en) 1998-05-21 2003-12-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6806970B2 (en) 1998-04-21 2004-10-19 Hitachi, Ltd. Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US6913513B2 (en) 2000-02-16 2005-07-05 Ebara Corporation Polishing apparatus
US7057744B2 (en) 2001-07-27 2006-06-06 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
KR100655584B1 (en) * 2005-07-08 2006-12-08 동부일렉트로닉스 주식회사 Fixed abrasive pad having different real contact area and method for forming the same
US7169016B2 (en) * 2005-05-10 2007-01-30 Nikon Corporation Chemical mechanical polishing end point detection apparatus and method
KR100807046B1 (en) * 2003-11-26 2008-02-25 동부일렉트로닉스 주식회사 Chemical mechanical polishing apparatus
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
KR101041873B1 (en) * 2008-11-28 2011-06-16 세메스 주식회사 Substrate polishing apparatus and method of polishing substrate using the same
CN103100966A (en) * 2011-11-11 2013-05-15 中芯国际集成电路制造(上海)有限公司 Chemical mechanical lapping device and system
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
JP2018525834A (en) * 2015-08-14 2018-09-06 エム キューブド テクノロジーズ, インコーポレイテッド Method for deterministic finishing of chuck surfaces

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788759A (en) * 1993-09-20 1995-04-04 Nec Corp Wafer polishing device
US6093081A (en) * 1996-05-09 2000-07-25 Canon Kabushiki Kaisha Polishing method and polishing apparatus using the same
EP0806266A2 (en) * 1996-05-09 1997-11-12 Canon Kabushiki Kaisha Polishing method and polishing apparatus using the same
EP0806266A3 (en) * 1996-05-09 1998-12-09 Canon Kabushiki Kaisha Polishing method and polishing apparatus using the same
EP0827193A3 (en) * 1996-08-30 1998-12-30 Canon Kabushiki Kaisha Polishing endpoint determination method and apparatus
US6004187A (en) * 1996-08-30 1999-12-21 Canon Kabushiki Kaisha Method and apparatus for measuring film thickness and film thickness distribution during polishing
EP0827193A2 (en) * 1996-08-30 1998-03-04 Canon Kabushiki Kaisha Polishing endpoint determination method and apparatus
US5938502A (en) * 1996-11-15 1999-08-17 Nec Corporation Polishing method of substrate and polishing device therefor
US6489624B1 (en) 1997-07-18 2002-12-03 Nikon Corporation Apparatus and methods for detecting thickness of a patterned layer
US6806970B2 (en) 1998-04-21 2004-10-19 Hitachi, Ltd. Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US7052920B2 (en) 1998-05-21 2006-05-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6670200B2 (en) 1998-05-21 2003-12-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
JP2002519859A (en) * 1998-06-26 2002-07-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド System and method for controlling a multi-arm polishing tool
EP1000705A2 (en) * 1998-11-16 2000-05-17 Chartered Semiconductor Manufacturing Pte Ltd. A scalable multipad design for improved CMP process
SG97127A1 (en) * 1998-11-16 2003-07-18 Chartered Semiconductor Mfg A scalable multi-pad design for improved cmp process
US6296550B1 (en) * 1998-11-16 2001-10-02 Chartered Semiconductor Manufacturing Ltd. Scalable multi-pad design for improved CMP process
EP1000705A3 (en) * 1998-11-16 2003-02-05 Chartered Semiconductor Manufacturing Pte Ltd. A scalable multipad design for improved CMP process
JP2000354961A (en) * 1999-04-16 2000-12-26 Nikon Corp Detecting device and detecting method
JP4505893B2 (en) * 1999-04-16 2010-07-21 株式会社ニコン Detection apparatus and detection method
WO2001018860A3 (en) * 1999-09-09 2002-01-17 Allied Signal Inc Improved apparatus and methods for integrated circuit planarization
US6913513B2 (en) 2000-02-16 2005-07-05 Ebara Corporation Polishing apparatus
JP2003001560A (en) * 2001-06-22 2003-01-08 Semiconductor Leading Edge Technologies Inc Substrate lapping apparatus, substrate lapping method and semiconductor device
JP4502168B2 (en) * 2001-07-06 2010-07-14 ルネサスエレクトロニクス株式会社 Chemical mechanical polishing apparatus and chemical mechanical polishing method
JP2003019659A (en) * 2001-07-06 2003-01-21 Nec Kyushu Ltd Chemical machine polishing apparatus and chemical machine polishing method
US7057744B2 (en) 2001-07-27 2006-06-06 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US7119908B2 (en) 2001-07-27 2006-10-10 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
JP2003053659A (en) * 2001-08-17 2003-02-26 Sony Corp Polishing device and method
KR100807046B1 (en) * 2003-11-26 2008-02-25 동부일렉트로닉스 주식회사 Chemical mechanical polishing apparatus
US7169016B2 (en) * 2005-05-10 2007-01-30 Nikon Corporation Chemical mechanical polishing end point detection apparatus and method
KR100655584B1 (en) * 2005-07-08 2006-12-08 동부일렉트로닉스 주식회사 Fixed abrasive pad having different real contact area and method for forming the same
KR101041873B1 (en) * 2008-11-28 2011-06-16 세메스 주식회사 Substrate polishing apparatus and method of polishing substrate using the same
JP2010230515A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Film thickness measuring apparatus and measuring method
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
US8649023B2 (en) 2009-03-27 2014-02-11 Hamamatsu Photonics K.K. Film thickness measurement device and measurement method
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
CN103100966A (en) * 2011-11-11 2013-05-15 中芯国际集成电路制造(上海)有限公司 Chemical mechanical lapping device and system
JP2018525834A (en) * 2015-08-14 2018-09-06 エム キューブド テクノロジーズ, インコーポレイテッド Method for deterministic finishing of chuck surfaces
US10953513B2 (en) 2015-08-14 2021-03-23 M Cubed Technologies, Inc. Method for deterministic finishing of a chuck surface

Similar Documents

Publication Publication Date Title
JPH06252113A (en) Method for flattening semiconductor substrate
US6524165B1 (en) Method and apparatus for measuring substrate layer thickness during chemical mechanical polishing
USRE34425E (en) Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5081796A (en) Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US7008295B2 (en) Substrate monitoring during chemical mechanical polishing
US6776692B1 (en) Closed-loop control of wafer polishing in a chemical mechanical polishing system
US6659842B2 (en) Method and apparatus for optical monitoring in chemical mechanical polishing
US6923711B2 (en) Multizone carrier with process monitoring system for chemical-mechanical planarization tool
US6309276B1 (en) Endpoint monitoring with polishing rate change
KR100289985B1 (en) Care method and device for polishing pad
EP1068047B1 (en) Apparatus and method for film thickness measurement integrated into a wafer load/unload unit
US8014004B2 (en) Determining physical property of substrate
TWI700474B (en) Method and apparatus for measuring surface properties of polishing pad
KR101918803B1 (en) Measurement of film thickness using fourier transform
US20050026542A1 (en) Detection system for chemical-mechanical planarization tool
US6821895B2 (en) Dynamically adjustable slurry feed arm for wafer edge profile improvement in CMP
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
TW201205704A (en) Control of overpolishing of multiple substrates on the same platen in chemical mechanical polishing
JPH1015807A (en) Polishing system
US20050118839A1 (en) Chemical mechanical polish process control method using thermal imaging of polishing pad
JPH1071558A (en) Forming device and method for polishing pad
US6609946B1 (en) Method and system for polishing a semiconductor wafer
EP3430642B1 (en) In-situ monitoring method of use in semiconductor processing
US6913513B2 (en) Polishing apparatus
JP2004014999A (en) Cmp polishing device and polishing method