JP2003042600A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JP2003042600A
JP2003042600A JP2001266514A JP2001266514A JP2003042600A JP 2003042600 A JP2003042600 A JP 2003042600A JP 2001266514 A JP2001266514 A JP 2001266514A JP 2001266514 A JP2001266514 A JP 2001266514A JP 2003042600 A JP2003042600 A JP 2003042600A
Authority
JP
Japan
Prior art keywords
valve
flow rate
refrigerant
flow
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001266514A
Other languages
Japanese (ja)
Inventor
Akira Sugiyama
昌 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujine Sangyo Kk
Original Assignee
Fujine Sangyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujine Sangyo Kk filed Critical Fujine Sangyo Kk
Priority to JP2001266514A priority Critical patent/JP2003042600A/en
Publication of JP2003042600A publication Critical patent/JP2003042600A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Safety Valves (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a cost and stabilize a quality by improving the flow controlling function of a refrigerant whose flow direction upon cooling and heating is different, and by decreasing the number of part items while eliminating a complicated structure, further, and also to eliminate the risk such as the blocking of a passage by restraining the use of a capillary tube. SOLUTION: A tubular valve body 16 is provided at the inner diameter side of the same with a projected stopper 13 and a valve seat 14 while provided at both ends of the same with valve units 15, 15', and is inserted into one side of the opening of a tubular flow passage 12 provided in a main body so that the valve unit 15 is opposed to the valve seat 14. Thereafter, a collar 17 provided with a stopper 13' for regulating the moving range of the valve body 16 and a valve seat 14' opposed to the valve unit 15' is inserted into the other opening of the flow passage 12, then, the collar is fixed by a stop ring 18. In this case, the valve body 16 is provided with a vane 19. The vane 19 secures a flow passage 20 between the inner diameter of the flow passage 12 and the valve body 16, and regulates the moving range of the valve body by abutting against the stopper 13 or a stopper 13' at the downstream side of the valve body 16, when the valve body 16 is moved by the change of flow direction of the refrigerant whereby a distance between the valve unit and the valve seat is kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和の冷凍サイク
ル等に使用され、冷媒の流れを制御する流量調節弁に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control valve used in an air-conditioning refrigeration cycle or the like to control the flow of a refrigerant.

【0002】[0002]

【従来の技術】近年、空気調和機は、冷房と暖房を備え
たヒートポンプ式が主流となっている。この種の空気調
和機には、冷房時と暖房時の冷媒の流れ方向が逆になる
ため、各々の流れについて流量調節する機能を持つ流量
調節装置を有しているが、その構造が複雑かつ使用する
部品点数が多く、これらの部品を接合する箇所が多いた
め、組立時の作業性が悪く、品質の安定化、コストの低
減が困難だった。その一例を図7に示す従来の冷凍サイ
クル図により説明する。
2. Description of the Related Art In recent years, a heat pump type air conditioner has mainly been provided with cooling and heating. This type of air conditioner has a flow rate control device that has a function of controlling the flow rate of each flow because the flow directions of the refrigerant during cooling and heating are opposite, but the structure is complicated and Since many parts are used and many parts are joined to each other, workability during assembly is poor, and it is difficult to stabilize quality and reduce cost. An example thereof will be described with reference to the conventional refrigeration cycle diagram shown in FIG.

【0003】図7において、1はコンプレッサー、2は
冷房暖房切換バルブ、3は室外側熱交換器、4’は冷媒
の流量を調節する従来の流量調節装置、5は室内側熱交
換器、6はアキュームレーターで、これらを環状に連結
することにより、基本の冷凍サイクルを構成している。
冷房時は、冷媒を前述順序で流し、7、8の室外側およ
び室内側熱交換器用ファンを作動させて運転する。
In FIG. 7, 1 is a compressor, 2 is a cooling / heating switching valve, 3 is an outdoor heat exchanger, 4'is a conventional flow rate adjusting device for adjusting the flow rate of refrigerant, 5 is an indoor heat exchanger, and 6 Is an accumulator, which forms a basic refrigeration cycle by connecting these in an annular shape.
During cooling, the refrigerant is caused to flow in the above-described order, and the outdoor heat exchangers 7 and 8 and indoor heat exchanger fans are operated to operate.

【0004】一方、暖房運転は、コンプレッサー1から
排出される冷媒を、冷房暖房切換バルブ2により、室内
側熱交換器5に流し、流量調節装置4’を介して室外側
熱交換器3、アキュームレーター6からコンプレッサー
1に戻るサイクルとなる。なお、この冷凍サイクルは上
述のごとく冷房暖房兼用のヒートポンプ式であるため、
流量調節装置4’は前述のごとく冷媒の流れ方向によっ
て流量を調節できる部品構成になっている。ここで、2
7,28,29は第1,2,3キャピラリチューブ、3
0は冷媒の逆流防止構造を有する逆止弁、なお第3キャ
ピラリチューブ29の両端末は逆止弁30の前後に接続
されバイパス流路を形成している。
On the other hand, in the heating operation, the refrigerant discharged from the compressor 1 is made to flow into the indoor heat exchanger 5 by the cooling / heating switching valve 2, and the outdoor heat exchanger 3 and the accumulator are passed through the flow rate control device 4 '. The cycle is from the lator 6 to the compressor 1. In addition, since this refrigeration cycle is a heat pump type for both cooling and heating as described above,
As described above, the flow rate adjusting device 4'has a component structure capable of adjusting the flow rate according to the flow direction of the refrigerant. Where 2
7, 28 and 29 are first, second and third capillary tubes, 3
Reference numeral 0 denotes a check valve having a structure for preventing the backflow of the refrigerant, and both terminals of the third capillary tube 29 are connected before and after the check valve 30 to form a bypass flow passage.

【0005】冷房運転と暖房運転は、基本的にはサイク
ル内の冷媒の流れ方向を切換えることでなされるが、そ
れぞれの運転で要求する室内温度や周囲の温度条件が異
なるため、前述のように冷房時と暖房時の冷媒流量を流
量調節装置4’で調節している。すなわち、冷房時の冷
媒は、第1キャピラリチューブ27を通過し、逆止弁3
0の流れ方向に沿って抵抗なく流れ、第2キャピラリチ
ューブ28を通って流量調節される。これに対し、暖房
時は、前記冷房時の流れとは逆に第2キャピラリチュー
ブ28を通過した後、逆止弁30に達するが、逆流防止
構造によって逆止弁30内を通過できずに第3キャピラ
リチューブ29を経由した後第1キャピラリチューブ2
7を通り流量調節される。
The cooling operation and the heating operation are basically performed by switching the flow direction of the refrigerant in the cycle. However, since the indoor temperature and ambient temperature conditions required for each operation are different, as described above. The flow rate adjusting device 4'adjusts the refrigerant flow rate during cooling and heating. That is, the refrigerant during cooling passes through the first capillary tube 27, and the check valve 3
It flows without resistance along the flow direction of 0, and the flow rate is adjusted through the second capillary tube 28. On the other hand, during heating, the flow reaches the check valve 30 after passing through the second capillary tube 28, which is the reverse of the flow during cooling, but the check valve 30 cannot pass through the check valve 30 due to the backflow prevention structure. 3 After passing through the capillary tube 29, the first capillary tube 2
The flow rate is adjusted through 7.

【0006】このように、従来の流量調節装置4’は冷
房時と暖房時の各々に必要な冷媒流量を得るために、冷
媒が通過する時の流量抵抗をキャピラリチューブの内径
や長さなどの種類を変えて調節していた。以上のように
従来の流量調節装置は、冷媒流量の調節を複数のキャピ
ラリチューブと逆止弁の組み合せで行っていた。
As described above, in order to obtain the refrigerant flow rate required for each of the cooling operation and the heating operation, the conventional flow rate adjusting device 4'determines the flow rate resistance when the refrigerant passes by the inner diameter and the length of the capillary tube. I adjusted it by changing the type. As described above, in the conventional flow rate control device, the flow rate of the refrigerant is adjusted by combining a plurality of capillary tubes and a check valve.

【0007】[0007]

【発明が解決しようとする課題】このような冷凍サイク
ルにおいて、前記流量調節装置4’は、図8に示すごと
く逆止弁30の周辺に第1、第2、第3キャピラリチュ
ーブ27、28、29を設け、これに主冷媒回路9、1
0を接続させる構造であった。このため、構造が複雑か
つ構成する部品点数が多く、各接続部a1、a2、a
3、a4、b1、b2においてろう付け接合を行わなけ
ればならない上、使用するキャピラリチューブは通路内
径が小さいためろう付けの際にキャピラリチューブ内部
へのろう材の流れ込みによる通路閉塞が発生しやすく、
ろう付け作業は細心の注意が必要だった。このため作業
性は極めて悪く通路閉塞の他気密漏れなどによる不具合
が多く、品質の安定化、コストの低減が困難であった。
加えてキャピラリチューブを多用するためサイクル内の
夾雑物や長期の運転で生成するコンタミがキャピラリチ
ューブの内壁に蓄積して流量抵抗を増加させたり、通路
閉塞させて運転不能に至らしめる危険性もかかえてい
た。
In such a refrigerating cycle, as shown in FIG. 8, the flow rate control device 4'includes the first, second and third capillary tubes 27, 28 around the check valve 30. 29 is provided, in which the main refrigerant circuits 9, 1
It was a structure for connecting 0s. Therefore, the structure is complicated and the number of components is large, and each of the connecting portions a1, a2, a
No. 3, a4, b1 and b2 must be brazed together, and the capillary tube used has a small passage inner diameter, so when brazing, the passage of brazing material into the capillary tube easily causes passage clogging,
Brazing work required careful attention. For this reason, the workability is extremely poor, and there are many problems due to airtight leakage in addition to the passage blockage, making it difficult to stabilize the quality and reduce the cost.
In addition, since many capillary tubes are used, there is a risk that contaminants in the cycle and contaminants generated during long-term operation will accumulate on the inner wall of the capillary tube, increasing flow resistance, or blocking the passageway, resulting in inoperability. Was there.

【0008】本発明は上記事情に鑑みてなされたもので
あって、部品点数の削減と複雑な構造の解消によるコス
トの低減および品質の安定化、ならびにキャピラリチュ
ーブの使用を抑えることによる通路閉塞などの危険性を
解消した流量調節弁の提供を目的とした。
The present invention has been made in view of the above circumstances, and reduces costs and stabilizes quality by reducing the number of parts and eliminating a complicated structure, and blockages of passages by suppressing the use of capillary tubes. The purpose is to provide a flow control valve that eliminates the danger of.

【0009】[0009]

【課題を解決するための手段】本発明の流量調節弁は、
両端に弁部を設けた軸状の弁体を本体の筒状の流路に挿
入し、該本体には前記弁体の移動範囲を規制するストッ
パーと、該弁体の移動軸方向に前記弁部に対峙する弁座
を対向させて具備したことを特徴とする。上記構成によ
れば、冷房、暖房時の流量調節機能を従来用いられてき
た複数のキャピラリーチューブや逆止弁などを使用しな
いため、安価でかつ信頼性の高い流量調節機能を可能に
したものである。
The flow control valve of the present invention comprises:
A shaft-shaped valve body provided with valve portions at both ends is inserted into a tubular flow path of the main body, and a stopper for restricting a movement range of the valve body is provided in the main body, and the valve is arranged in a movement axis direction of the valve body. It is characterized in that it is provided with a valve seat facing the section facing each other. According to the above configuration, since a plurality of capillary tubes and check valves that have been conventionally used are not used for the flow rate adjusting function during cooling and heating, it is possible to provide an inexpensive and highly reliable flow rate adjusting function. is there.

【0010】本発明の手段は、本体内に冷媒が流れると
前記弁体は、冷媒の抵抗を受けて下流方向に移動する
が、移動範囲をストッパーで規制されるので定位置で止
まる。ここで、冷媒流量は弁体の弁部とこれに対峙する
弁座との隙間を流れるときの抵抵抗、すなわち弁体と該
弁体の下流側にある弁座との距離によって決まるので、
該弁座をあらかじめ必要な流量が得られる位置に設定す
る。また、冷房と暖房の切換えによって冷媒が上記流れ
と逆方向になった場合には弁体は移動して上記と反対側
のストッパーで止るが、該弁体の両端には弁部を設け各
々に対峙する弁座を具備しているので、この場合の冷媒
流量の調節はもう一方の弁座の位置を設定して行う。こ
のように本発明の流量調節弁によれば、流れ方向の変化
に合わせて冷媒流量を簡単な方法で別個に調節すること
ができる。
According to the means of the present invention, when the refrigerant flows into the main body, the valve element receives the resistance of the refrigerant and moves in the downstream direction, but the movement range is restricted by the stopper, so that it stops at a fixed position. Here, the refrigerant flow rate is determined by the resistance when flowing through the gap between the valve portion of the valve body and the valve seat facing it, that is, the distance between the valve body and the valve seat on the downstream side of the valve body,
The valve seat is set in advance at a position where the required flow rate is obtained. Also, when the refrigerant flows in the opposite direction to the above flow due to switching between cooling and heating, the valve element moves and stops at the stoppers on the opposite side to the above, but valve parts are provided at both ends of the valve element. Since the valve seats facing each other are provided, the refrigerant flow rate in this case is adjusted by setting the position of the other valve seat. As described above, according to the flow rate control valve of the present invention, the flow rate of the refrigerant can be individually adjusted by a simple method according to the change in the flow direction.

【0011】また、冷媒流量は前述のように弁体の弁部
とこれに対峙する弁座との相対距離で決まるため、弁座
を進退可能に螺挿して弁座位置を可変できるようにする
と冷媒流量を任意に調節でき、汎用性が高まり標準化で
きる。
Further, since the flow rate of the refrigerant is determined by the relative distance between the valve portion of the valve body and the valve seat facing it as described above, when the valve seat is screwed so as to be able to move forward and backward, the valve seat position can be changed. Refrigerant flow rate can be adjusted as desired, increasing versatility and standardizing.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を実施
例にもとづき図面を参照して説明する。図2(a)にお
いて、本体11に設けた流路12の開口側の一方に内径
側に凸状のストッパー13と弁座14を設け、両端に弁
部15、15’を設けた軸状の弁体16を、弁部15が
弁座14に対峙するように前記流路12に軸心方向沿い
に挿入した後、もう一方の開口側に弁体16の移動範囲
を規制するストッパー13’と前記シート部15’に対
峙する弁座14’を設けたカラー17を挿入し、このカ
ラー17をストップリング18で固定している。また弁
体16には、図2(a)のX−X断面を表した図3に示
すように羽根19を設け前記流路12の内径と弁体16
との間に流通路20を確保すると共に、羽根19は、冷
媒の流れ方向の変化によって弁体16が移動すると下流
側にあるストッパー13または13’に当接して弁体の
移動範囲を規制し、弁部と弁座との距離を保ち冷媒を一
定量流すように作用する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described based on examples with reference to the drawings. In FIG. 2A, a shaft-shaped stopper 13 and a valve seat 14 are provided on the inner diameter side at one opening side of the flow path 12 provided in the main body 11, and valve portions 15, 15 ′ are provided at both ends. After inserting the valve body 16 into the flow passage 12 along the axial direction so that the valve portion 15 faces the valve seat 14, a stopper 13 ′ for restricting the movement range of the valve body 16 is provided on the other opening side. A collar 17 provided with a valve seat 14 'facing the seat portion 15' is inserted, and the collar 17 is fixed by a stop ring 18. Further, the valve body 16 is provided with blades 19 as shown in FIG. 3 showing the XX cross section of FIG. 2A, and the inner diameter of the flow passage 12 and the valve body 16 are provided.
The flow passage 20 is secured between the blades 19 and, and when the valve body 16 moves due to the change in the flow direction of the refrigerant, the blade 19 comes into contact with the stopper 13 or 13 'on the downstream side to regulate the moving range of the valve body. , Acts to keep the distance between the valve portion and the valve seat and to flow a certain amount of refrigerant.

【0013】このような状態で、例えば図2(a)に示
すように、冷房時の冷媒がAからBに向かって流れる
と、弁体16は冷媒の抵抗を受けてB側に移動し羽根1
9がストッパー13に当接して、弁部15の位置が定ま
る。冷媒は流通路20を通り弁座14と弁部15の隙間
を通過するが、この隙間は弁座14とストッパー13と
の軸方向の寸法L1で決まるのであらかじめ冷房時の必
要流量を確保できるように寸法L1を調整しておけば冷
媒は流量調節できる。
In this state, as shown in FIG. 2 (a), for example, when the cooling medium flows from A to B, the valve element 16 receives the resistance of the cooling medium and moves to the B side to move the blades. 1
9 contacts the stopper 13 to set the position of the valve portion 15. The refrigerant passes through the flow passage 20 and passes through the gap between the valve seat 14 and the valve portion 15. Since this gap is determined by the axial dimension L1 between the valve seat 14 and the stopper 13, the required flow rate for cooling can be secured in advance. If the dimension L1 is adjusted to, the flow rate of the refrigerant can be adjusted.

【0014】一方暖房時は図2(b)に示したように、
冷媒は冷房時とは逆にBからAに向かって流れるので弁
体16がA側に移動する。この時の冷媒流量は、弁座1
4’と弁部15’の距離すなわちカラー17のストッパ
ー13’と弁座14’の軸方向の寸法L2で決まるので
前述のごとくして暖房時の冷媒流量を寸法L2で調整す
ることにより冷房時と別個に調節できる。
On the other hand, during heating, as shown in FIG.
Since the refrigerant flows from B to A, which is the opposite of that during cooling, the valve element 16 moves to the A side. At this time, the refrigerant flow rate is 1
The distance between 4'and the valve portion 15 ', that is, the axial dimension L2 of the stopper 13' of the collar 17 and the valve seat 14 'is determined. Therefore, by adjusting the refrigerant flow rate during heating by the dimension L2 as described above, the cooling time is reduced. Can be adjusted separately.

【0015】なお、ここで弁体の上流側にある弁座と弁
体との距離は、流量に直接影響しないように大きく設定
する。少なくとも、上流側の弁座とそれに対峙する弁部
間の冷媒の通過断面積が、流通路20の軸方向の断面積
より大きくなるように弁座の位置を決める。
The distance between the valve seat on the upstream side of the valve body and the valve body is set to a large value so as not to directly affect the flow rate. At least the position of the valve seat is determined so that the cross-sectional area of passage of the refrigerant between the valve seat on the upstream side and the valve portion facing it is larger than the cross-sectional area of the flow passage 20 in the axial direction.

【0016】以上の構造による本発明の流量調節弁の特
徴は、冷房と暖房を備えたヒートポンプ式の空気調和機
に必要な流量調節機能、すなわち冷房時と暖房時の冷媒
流量をその流れ方向の変化に合わせて個々に調節する機
能を、単部品として一体化してある点にある。このた
め、従来のように冷凍サイクルの構造を複雑にすること
がなく、また使用部品も少なく接合箇所が少なくて済む
ため作業性が良く、ろう付け接合に起因する流路閉塞や
気密洩れなどの品質的な問題も解消でき品質の安定化が
計られ、コストの低減が可能になる。
The feature of the flow rate control valve of the present invention having the above structure is that it has a flow rate control function required for a heat pump type air conditioner equipped with cooling and heating, that is, the refrigerant flow rate during cooling and heating in the flow direction. The point is that the function of individually adjusting to changes is integrated as a single component. Therefore, it does not complicate the structure of the refrigeration cycle as in the past, and because it uses few parts and requires few joining points, it has good workability, such as flow path blockage and airtight leakage due to brazing joining. Quality problems can be resolved, quality can be stabilized, and costs can be reduced.

【0017】さらに冷房運転と暖房運転の切換え時に弁
体が移動して弁体の弁座との距離が広がるため、従来の
ように内径の小さいキャピラリチューブを使用する場合
に問題となるサイクル内の夾雑物やコンタミによる通路
閉塞の危険性が回避できる。
Further, since the valve element moves and the distance between the valve element and the valve seat increases when switching between the cooling operation and the heating operation, there is a problem in the cycle when a capillary tube having a small inner diameter is used as in the conventional case. The risk of blockage of the passage due to foreign matters and contaminants can be avoided.

【0018】[0018]

【実施例1】本発明の実施例を図1により説明する。1
はコンプレッサー、2は冷暖房切換バルブ、3は室外側
熱交換器、4は本発明の流量調節弁、5は室内側熱交換
器、6はアキュームレータでこれらを環状に連結して、
冷房暖房兼用のヒートポンプ式の冷凍サイクルを構成し
た。
[Embodiment 1] An embodiment of the present invention will be described with reference to FIG. 1
Is a compressor, 2 is a heating / cooling switching valve, 3 is an outdoor heat exchanger, 4 is a flow rate control valve of the present invention, 5 is an indoor heat exchanger, and 6 is an accumulator, which are connected in an annular shape,
A heat pump type refrigeration cycle for both air conditioning and heating was constructed.

【0019】冷房運転は、コンプレッサー1から排出さ
れた高温高圧ガス状の冷媒を冷房側にした冷暖房切換バ
ルブ2で室外側熱交換器3に流し、ファン7で冷却して
液化し本発明の流量調節弁4に導入する。流量調節弁4
は図2(a)に示す構造で前記のごとく、冷媒はその必
要流量を弁体16の弁部15と弁座14との隙間をスト
ッパー13と弁座14間の寸法L1で調整してあるの
で、弁部15と弁座14の隙間を通り適正な流量に調節
され室内側熱交換器5に導入される。ここで冷媒はファ
ン8で送られた室内空気の熱を吸収してガス化すると同
時に室内空気を冷却する。ガス化した冷媒はアキューム
レータ6を経てコンプレッサー1に戻る。
In the cooling operation, the high-temperature high-pressure gaseous refrigerant discharged from the compressor 1 is made to flow to the outdoor heat exchanger 3 by the cooling / heating switching valve 2 on the cooling side, and cooled by the fan 7 to be liquefied and flow rate of the present invention. It is introduced into the control valve 4. Flow control valve 4
In the structure shown in FIG. 2A, as described above, the necessary flow rate of the refrigerant is adjusted by adjusting the gap between the valve portion 15 of the valve element 16 and the valve seat 14 by the dimension L1 between the stopper 13 and the valve seat 14. Therefore, it is introduced into the indoor heat exchanger 5 after passing through the gap between the valve portion 15 and the valve seat 14 and adjusted to an appropriate flow rate. Here, the refrigerant absorbs the heat of the indoor air sent by the fan 8 to be gasified and at the same time cools the indoor air. The gasified refrigerant returns to the compressor 1 via the accumulator 6.

【0020】次に暖房運転は、コンプレッサー1から排
出された高温高圧ガス状の冷媒を暖房側にした冷暖房切
換バルブ2で室内側熱交換器5に流し、ファン8で送ら
れた室内空気を暖め、冷媒自身は冷却されて液化し流量
調節弁4に導入される。暖房運転時の流量調節弁4は図
2(b)に示すように弁体16の位置が冷房時と逆方向
になり、冷媒は寸法L2で調整した弁部15’と弁座1
4’の隙間を通り適正な流量に調節され室外側熱交換器
3に導入される。ここで冷媒はファン8で送られた室外
空気の熱を吸収してガス化し、アキュームレータ6を経
てコンプレッサー1に戻る。
Next, in the heating operation, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 is made to flow to the indoor heat exchanger 5 by the cooling / heating switching valve 2 on the heating side to warm the indoor air sent by the fan 8. The refrigerant itself is cooled and liquefied and introduced into the flow rate control valve 4. As shown in FIG. 2B, the flow control valve 4 in the heating operation has the valve element 16 in the opposite direction to that in the cooling operation, and the refrigerant has the valve portion 15 ′ and the valve seat 1 adjusted by the dimension L2.
It is introduced into the outdoor heat exchanger 3 after being adjusted to an appropriate flow rate through the gap 4 '. Here, the refrigerant absorbs the heat of the outdoor air sent by the fan 8 to be gasified, and returns to the compressor 1 via the accumulator 6.

【0021】このようにして構成した冷暖房兼用の空気
調和機は、全体の構造が単純化され、流量調節機能部分
の組込みスペースが従来の5分の1以下になり、また部
品の接合箇所が減少したことから組立時の作業性は大幅
に改善できた。
The air conditioner for both air conditioning and heating constructed in this way has a simplified overall structure, the space for incorporating the flow rate adjusting function is reduced to one fifth or less of the conventional space, and the number of parts to be joined is reduced. As a result, workability during assembly was greatly improved.

【0022】[0022]

【実施例2】図4は、弁座を進退可能に螺挿した場合の
実施例を示し、本体21内の流路12の開口側の一方に
ストッパー13を設け、前後に弁部15、15’を設け
た軸状の弁体16を前記流路12に軸心方向沿いに挿入
した後、もう一方の開口側から弁体16の移動範囲を規
制するストップリング18を組付け、さらに弁座14、
14’を弁部15、15’の各々に対峙するように螺挿
した構造で、前記弁座14、14’には、六角穴22、
22’が形成されていて、前記六角穴22、22’に六
角レンチを挿入することにより、各弁座14、14’を
操作し寸法L3、L4を調整して冷媒流量を設定できる
ようになっている。
[Embodiment 2] FIG. 4 shows an embodiment in which a valve seat is screwed so as to be able to advance and retreat. A stopper 13 is provided on one side of an opening of a flow passage 12 in a main body 21, and valve portions 15, 15 are provided in front and rear. After inserting the shaft-shaped valve body 16 provided with the'into the flow path 12 along the axial direction, a stop ring 18 for restricting the movement range of the valve body 16 is attached from the other opening side, and the valve seat is further installed. 14,
14 'is screwed so as to face each of the valve portions 15 and 15', and the valve seats 14 and 14 'have hexagonal holes 22 and
22 'is formed, and by inserting a hexagonal wrench into the hexagonal holes 22, 22', the valve seats 14 and 14 'can be operated to adjust the dimensions L3 and L4 to set the refrigerant flow rate. ing.

【0023】[0023]

【実施例3】図5は、図2で示したものと同様の流量調
節弁を、冷媒配管23に挿入した後ローリング24によ
って固定した状態で使用した実施例である。
[Third Embodiment] FIG. 5 shows an embodiment in which a flow control valve similar to that shown in FIG. 2 is used after being inserted into the refrigerant pipe 23 and fixed by a rolling 24.

【実施例4】図6は、弁座14にOリング25を装着し
て、流路12と外部との気密性を持たせ外部から弁座1
4の六角穴22を操作できる構造にしたもので、これに
より運転中においても冷媒の流量調節ができる。流量調
節後はシールキャップ26を本体11に締め付けて外部
との気密性を保持する。
[Embodiment 4] In FIG. 6, an O-ring 25 is attached to the valve seat 14 to provide airtightness between the flow path 12 and the outside, and the valve seat 1 is provided from the outside.
4 has a structure in which the hexagonal hole 22 can be operated, which allows the flow rate of the refrigerant to be adjusted even during operation. After adjusting the flow rate, the seal cap 26 is tightened to the main body 11 to maintain airtightness with the outside.

【0024】[0024]

【発明の効果】本発明は、冷房と暖房を備えたヒートポ
ンプ式の空気調和機に必要な流量調節機能、すなわち冷
房時と暖房時の冷媒流量をその流れ方向の変化に合わせ
て個々に調節する機能を、単部品として一体化した流量
調節弁であり、冷凍サイクルの構造を単純化し、接合箇
所を少なくしたものである。従って、空気調和機の組立
作業性が良く、ろう付け接合に起因する気密洩れや流路
閉塞などの問題も解消でき品質の安定化がはかれ、コス
トの低減が可能になる。さらに冷房運転と暖房運転の切
換え時に弁体が移動する構造であるため、従来の内径の
小さいキャピラリチューブを使用する場合に問題となる
サイクル内の夾雑物やコンタミによる通路閉塞の危険性
が回避できるといった様々な効果を奏するものである。
INDUSTRIAL APPLICABILITY According to the present invention, the flow rate adjusting function required for a heat pump type air conditioner having cooling and heating, that is, the refrigerant flow rate during cooling and heating is individually adjusted according to the change of the flow direction. This is a flow rate control valve that integrates the functions as a single component, which simplifies the structure of the refrigeration cycle and reduces the number of joints. Therefore, the workability of assembling the air conditioner is good, and problems such as airtight leak and blockage of the flow path due to brazing and joining can be solved, quality can be stabilized, and cost can be reduced. Furthermore, since the valve element moves when switching between cooling operation and heating operation, it is possible to avoid the risk of passage blockage due to contaminants and contaminants in the cycle, which is a problem when using a conventional capillary tube with a small inner diameter. It has various effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例における流量調節弁を具備
した空気調和機の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of an air conditioner including a flow rate control valve according to an embodiment of the present invention.

【図2】 (a)は本発明の一実施例における流量調節
弁の縦断面図、(b)は冷媒の流れ方向が(a)の場合
と逆の状態を示した流量調節弁の縦断面図である。
FIG. 2A is a vertical cross-sectional view of a flow rate control valve according to an embodiment of the present invention, and FIG. 2B is a vertical cross-sectional view of the flow rate control valve showing a state in which the flow direction of the refrigerant is opposite to that in the case of FIG. It is a figure.

【図3】 図2(a)の実施例において、X−X断面を
表した流量調節弁の縦断面図である。
FIG. 3 is a vertical cross-sectional view of the flow rate control valve showing an XX cross section in the embodiment of FIG. 2 (a).

【図4】 本発明の他の実施例における流量調節弁の縦
断面図である。
FIG. 4 is a vertical sectional view of a flow rate control valve according to another embodiment of the present invention.

【図5】 本発明に係わる流量調節弁を冷媒配管内に組
付けた状態の部分断面図である。
FIG. 5 is a partial cross-sectional view showing a state in which the flow rate control valve according to the present invention is assembled in the refrigerant pipe.

【図6】 本発明に係わる流量調節弁で、外部から冷媒
の流量調節ができる構造にした状態の縦断面図である。
FIG. 6 is a vertical cross-sectional view of a state in which the flow rate control valve according to the present invention has a structure capable of adjusting the flow rate of the refrigerant from the outside.

【図7】 従来例を示し、逆止弁とキャピラリチューブ
を用いた流量調節装置を具備した従来の空気調和機の冷
凍サイクル図である。
FIG. 7 is a refrigeration cycle diagram of a conventional air conditioner, which shows a conventional example and is equipped with a flow rate control device using a check valve and a capillary tube.

【図8】 図7に示す流量調節装置の斜視図である。8 is a perspective view of the flow rate adjusting device shown in FIG. 7. FIG.

【符号の説明】[Explanation of symbols]

1…コンプレッサー 2…冷暖房切換バルブ 3…室外側熱交換機 4…流量調節弁 4’…従来の流量調節装置 5…室内側熱交換機 6…アキュームレータ 7…室外側熱交換器用ファン 8…室内側熱交換器用ファン 9…主冷媒回路 10…主冷媒回路 11…本体 12…流路 13、13’…ストッパー 14、14’…弁座 15、15’…弁部 16…弁体 17…カラー 18…ストップリング 19…羽根 20…流通路 21…本体 22、22’…六角穴 23…冷媒配管 24…ローリング 25…Oリング 26…シールキャップ 27…第1キャピラリチューブ 28…第2キャピラリチューブ 29…第3キャピラリチューブ 30…逆止弁 a1、a2、a3、a4…接続部 b1、b2…接続部 1 ... Compressor 2 ... Air-conditioning switching valve 3 ... Outdoor heat exchanger 4 ... Flow control valve 4 '... Conventional flow rate adjusting device 5 ... Indoor heat exchanger 6 ... Accumulator 7: Fan for outdoor heat exchanger 8: Fan for indoor heat exchanger 9 ... Main refrigerant circuit 10 ... Main refrigerant circuit 11 ... Main body 12 ... Flow path 13, 13 '... stopper 14, 14 '... valve seat 15, 15 '... valve 16 ... Valve 17 ... Color 18 ... Stop ring 19 ... feather 20 ... Flow passage 21 ... Main body 22, 22 '... Hexagon socket 23 ... Refrigerant piping 24 ... rolling 25 ... O-ring 26 ... Seal cap 27 ... First capillary tube 28 ... Second capillary tube 29 ... Third capillary tube 30 ... Check valve a1, a2, a3, a4 ... Connection part b1, b2 ... Connection part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 両端に弁部を設けた軸状の弁体を本体の
筒状の流路内に挿入し、該本体には前記弁体の移動範囲
を規制するストッパーを対向させて設けると共に、該弁
体の移動軸方向に前記弁部に対峙する弁座を対向させて
具備したことを特徴とする冷凍サイクルに用いる流量調
節弁。
1. A shaft-shaped valve body having valve portions at both ends is inserted into a tubular flow passage of a main body, and a stopper for restricting a movement range of the valve body is provided facing the main body. A flow control valve used in a refrigerating cycle, comprising a valve seat facing the valve portion in the direction of the moving axis of the valve body.
【請求項2】 請求項1の弁座は、位置移動ができるよ
うに進退可能に螺挿されていることを特徴とする請求項
1に記載の冷凍サイクルに用いる流量調節弁。
2. The flow rate control valve used in the refrigeration cycle according to claim 1, wherein the valve seat of claim 1 is screwed so as to be movable so as to be movable back and forth.
JP2001266514A 2001-07-31 2001-07-31 Flow control valve Pending JP2003042600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266514A JP2003042600A (en) 2001-07-31 2001-07-31 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266514A JP2003042600A (en) 2001-07-31 2001-07-31 Flow control valve

Publications (1)

Publication Number Publication Date
JP2003042600A true JP2003042600A (en) 2003-02-13

Family

ID=19092790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266514A Pending JP2003042600A (en) 2001-07-31 2001-07-31 Flow control valve

Country Status (1)

Country Link
JP (1) JP2003042600A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024351A (en) * 2005-07-13 2007-02-01 Sharp Corp Refrigerant restricting device and connecting structure of check valve
JP2008101733A (en) * 2006-10-20 2008-05-01 Saginomiya Seisakusho Inc Differential pressure-regulating valve and air-conditioning equipment
CN103196261A (en) * 2013-04-17 2013-07-10 上海理工大学 One-way throttle valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024351A (en) * 2005-07-13 2007-02-01 Sharp Corp Refrigerant restricting device and connecting structure of check valve
JP2008101733A (en) * 2006-10-20 2008-05-01 Saginomiya Seisakusho Inc Differential pressure-regulating valve and air-conditioning equipment
CN103196261A (en) * 2013-04-17 2013-07-10 上海理工大学 One-way throttle valve

Similar Documents

Publication Publication Date Title
US8136364B2 (en) Refrigerant system with expansion device bypass
JP4569508B2 (en) Expansion valves used in supercritical and refrigeration cycles
JP5488185B2 (en) Air conditioner for vehicles
US5265438A (en) Dual restrictor flow control
JP2008121985A (en) Heat exchange system
CN109838586B (en) Fluid management assembly and thermal management system
JP6540904B2 (en) Air conditioner
US20070245769A1 (en) Fluid expansion-distribution assembly
JP2006266663A (en) Expansion valve and air conditioner
JP2501677B2 (en) Refrigerant expansion device
JP2003042600A (en) Flow control valve
US6367283B1 (en) Three-stage electronically variable orifice tube
JP6553539B2 (en) Integrated valve device
WO2006090678A1 (en) Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
US5813244A (en) Bidirectional flow control device
JP5239225B2 (en) Heat exchange system
US20110271710A1 (en) Connection device for an internal heat exchanger
JPH0829019A (en) Expansion valve for cooler device
JP2008157588A (en) Air conditioner
JPH08121879A (en) Refrigerating and air conditioning apparatus
JP2005315376A (en) Shutoff valve
JP2004226025A (en) Air-conditioner
JP7442732B2 (en) Flow path structure, flow path block equipped with the same, and refrigeration cycle device
JP2001174106A (en) Check valve for refrigeration cycle
JPH1144469A (en) Choking device and air conditioner